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Abstract

Adaptive sequential decision making is one of the central challenges in machine learning and ar-
tificial intelligence. In such problems, the goal is to design an interactive policy that plans for an
action to take, from a finite set of n actions, given some partial observations. It has been shown that
in many applications such as active learning, robotics, sequential experimental design, and active
detection, the utility function satisfies adaptive submodularity, a notion that generalizes the notion
of diminishing returns to policies. In this paper, we revisit the power of adaptivity in maximizing
an adaptive monotone submodular function. We propose an efficient semi adaptive policy that with
O(log n x log k) adaptive rounds' of observations can achieve an almost tight 1 — 1 /e — € approx-
imation guarantee with respect to an optimal policy that carries out k actions in a fully sequential
manner. To complement our results, we also show that it is impossible to achieve a constant factor
approximation with o(logn) adaptive rounds. We also extend our result to the case of adaptive
stochastic minimum cost coverage where the goal is to reach a desired utility () with the cheapest
policy. We first prove the long-standing conjecture by Golovin and Krause [24] and show that the
greedy policy achieves the asymptotically tight logarithmic approximation guarantee. We then pro-
pose a semi adaptive policy that provides the same guarantee in polylogarithmic adaptive rounds
through a similar information-parallelism scheme. Our results shrink the adaptivity gap in adaptive
submodular maximization by an exponential factor.

1. Introduction

Adaptive stochastic optimization under partial observability is one of the fundamental challenges
in artificial intelligence and machine learning with a wide range of applications, including active
learning [15], optimal experimental design [40], interactive recommendations [31], viral marketing
[41], adaptive influence maximization [44], active detection [12], Wikipedia link prediction [37],
and perception in robotics [30], to name a few. In such problems, one needs to adaptively make
a sequence of decisions while taking into account the stochastic observations collected in previous
rounds. For instance, in active learning, the goal is to learn a classifier by carefully requesting as
few labels as possible from a set of unlabeled data points. Similarly, in experimental design, a
practitioner may conduct a series of tests in order to reach a conclusion.

Even though it is possible to determine all the selections ahead of time before any observations
take place (e.g., select all the data points at once or conduct all the medical tests simultaneously), so
called a priori selection, it is more efficient to consider a fully adaptive procedure that exploits the

1. We also refer to an adaptive round as a batch query and use these two terms interchangeably throughout the paper.
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information obtained from past selections in order to make a new selection. Indeed, a priori and fully
sequential selections are simply two ends of a spectrum. In this paper, we develop a semi-adaptive
policy that enjoys the power of a fully sequential procedure while performing exponentially fewer
adaptive rounds compared to previous work. In particular, we only need poly-logarithmic number
of rounds for both adaptive stochastic submodular maximization and adaptive stochastic minimum
cost coverage problems. In the following, we will state these problems more formally, and then
present our results in more details.

1.1. Notations

We mostly follow the notation used by Golovin and Krause [24]. Let the ground set E =
{e1,...,e,} be a finite set of elements (e.g., tests in medical diagnostics, data points in active
learning). Each element e € F is associated with a random variable ®(e) € Q where (2 is the
set of all possible outcomes. A realization of the random variable ®(e) is denoted by ¢(e) € Q.
Note that a realization ¢ : £ — € is simply a function from the ground set E to the outcomes (2.
For the ease of notation, we can also represent ¢ as a relation {(e,w) : ¢(e) = w,Ve € E}. For
instance, in medical diagnosis, the element e may represent a test, such as the blood pressure, and
®(e) its outcome, such as, high or low. Or in active learning, an item e may represent an unlabeled
data point and ®(e) may represent its label. We assume that there is a prior probability distribu-
tion p(¢) = p(® = ¢) over realizations ¢. This probability distribution encodes our uncertainty
about the outcomes as well as their dependencies. In its simplest form, the outcomes maybe inde-
pendent and the distribution p completely factorizes. The product distribution may very well be a
valid model in the sensor placement scenario where sensors may fail to work independent of one
another [2]. However, in many practical settings, such as medical diagnosis and active learning, the
underlying distribution may not factorize and the outcomes may depend on each other.

In this paper, we consider adaptive strategies for picking elements where based on our obser-
vations so far, we sequentially pick an item e and observe its associated outcome ®(e). The set of
observations made so far can be represented by a partial realization v = {(e,w) : (e) = w}} C
E x Q. We use dom(¢)) = {e : Jws.t (e,w) € 1} to denote the domain of ). We say that 1) is
a subrealization of 1’, and denoted by 1) < 1/, if dom(¢)) C dom(%)’) and Ve € dom(1)) we have
¥(e) = 1'(e). Similarely, a partial realization 1) is consistent with a realization ¢, and denote by
1 X ¢, if they agree everywhere in the domain of ). We take a Bayesian approach and assume that

after observing ¢, we can compute the posterior distribution p(¢[y) = p(® = ¢y < ).

A policy 7 : 2> 5 F is a partial mapping from partial observations 1 to elements E, stating

which element e € E to select next>. Note that any deterministic policy can be visualized by a
decision tree. In the proofs we also make use of two notions related to policies, namely, truncation
and concatenation [24]. Given a policy 7, we define the level-k-truncation m() by running 7 until
it terminates or until it selects k£ items. Given two policies m; and 7y, we define concatenation
w1 @y as the policy obtained by first running 7; to completion, and then running policy me as if
from a fresh start, ignoring the information gathered during the running of 7. The utility of a set
of observations 1) is specified through a utility function f : 26> — R . The expected utility of a

2. Golovin and Krause [24] originally defined a policy as follows 7 : 2F x QF — E. However, in subsequent works
[11; 13], the less restrictive form, the one we consider in this paper, is used.
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policy is then defined as

Favg(m) = E[f(S(m, ®), ®)] = > p(¢) f(S(, ), 9),
¢

where the expectation is taken with respect to p(¢). Throughout the paper S (7, ¢) denotes the set of
elements selected by policy 7 under realization ¢. Without any structural assumptions, it is known
that finding an optimal policy, the one that maximizes the expected utility, is notoriously hard as in
many cases the utility functions are computationally intractable [39].

Adaptive submodularity [24], a generalization of diminishing returns property from sets to poli-
cies, is a sufficient condition under which a partially observable stochastic optimization problem
admits (approximate) tractability. This condition ensures that the expected marginal benefit associ-
ated with any particular selection never increases as we make more observations. More formally,
we define the conditional expected marginal benefit A(e|v) of an item e conditioned on observing
the partial realization v as follows:

Alely) = E[f(dom(¢) U {e}, @) — f(dom(y)), @)[¢ < D
=D p(®(e) =wy)[f(¥ U {e.w}) = f(¥)]

The utility function f is adaptive submodular if for all subrealizations ¢» < 1/, and all e €
E \ dom(¢), we have
Alelp) > Alely)).

Moreover, we say that the utility function f is adaptive monotone if for all subrealizations v, and
all e ¢ dom(v) we have A(e|y) > 0.

Whenever we use expectation notation E[y] for a random variable y, the expectation is over all
randomness of x, unless specified otherwise. Moreover, note that we always use capital letters for
random variables, and small letters for realizations. For example U refers to a random variable, and
1) refers to a realization of W, and hence ) is a deterministic quantity.

1.2. Problem Formulation

The general goal in adaptive stochastic optimization is to develop policies that can maximize the
expected utility while minimizing the cost of running the policy. One way to formalize it is through
the adaptive stochastic submodular maximization problem where we aim to maximize the expected
utility subject to a cardinality constraint, i.e.,

T = arg max fouq(m) s.t. |S(m, ¢)| <k whenever p(¢) > 0.

It is known that when the utility is adaptive submodular and adaptive monotone, the greedy policy,
shown in Algorithm (1), achieves the tight (1 — 1/e) approximation ratio with respect to the optimal
policy [24]. This result has lead to a surge of applications in decision making problems that are
amenable to myopic optimization such as active learning [25], interactive recommender systems
[32], value of information [14], and active object detection [12], to name a few.

An alternative formalization is through adaptive stochastic minimum cost coverage where we
prespecify a quota () of utility to achieve, and aim to find a policy that achieves it with the cheapest
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Algorithm 1 Adaptive Greedy Policy mgreeqy Algorithm 2 Adaptive Greedy Policy mgreedy

[24] for Adaptive Stochastic Maximization [24] for Adaptive Stochastic Min Cost Coverage
1: Input: Ground set F, size k, distribution 1: Input: Ground set F, quota (), cost function
p(¢), function f(+) ¢(-), distribution p(¢), function f(-)
2: initialize A < (), ) < 0 2: initialize A < (), ¢ < 0
3: fori=1to k do 3: while f(A,v¢) < Q do
4. e = argmax.cp\ 4 Alel) 4. e = argmax.cp 4 Alelh)/c(e)
55 A+ Au{e’} 55 A<+ Aud{e*}
6 e YU{(e D) 6 b B U{(e D))
7: return A 7: return A
policy, i.e.,

7 = arg min caye () s.t. f(S(m, 9)) >Q whenever p(¢) > 0,

where cuye(m) = Ep[|S(7, ¢)]] is the expected number of actions a policy 7 selects. We can also
consider a slightly more general setting where each item e has a non-negative cost c(e) and replace
Cavg(T) = Ep[c(S(m, ¢))] where ¢(S) = > cgc(e). Unlike the adaptive stochastic submodular
maximization problem, the performance of the greedy policy, shown in Algorithm (2), is unknown
for the above problem unless one makes strong assumptions about the distribution or the utility
function. One of the contributions of this paper is to resolve this issue.

1.3. Our Contributions

Fully sequential policies benefit from previous observations in order to make informed decisions.
In many scenarios, however, it is more effective (and sometimes the only way) to select multiple
elements in parallel and observe their realizations together. Examples include crowdsourcing (where
a single task consists of a collection of unlabeled data to be labeled altogether), multi-stage viral
marketing (where in each stage a subset of nodes are chosen as seed nodes), batch-mode pool-based
active learning (where the label of a set of data points are requested simultaneously), or medical
diagnosis (where there is a shared cost among experiments). A batch-mode, semi-adaptive policy is
a mix of a priori and fully sequential selections. The focus of this paper is to answer the following
question in the context of adaptive stochastic optimization:

How many adaptive rounds of observations are needed in order to be competitive to an
optimal and fully sequential policy?

We answer the above question in the context of adaptive submodularity. In this paper, we consider
two adaptive stochastic optimization problems, namely, adaptive stochastic maximization and adap-
tive stochastic minimum cost cover. We re-examine the required amount of adaptivity in order to be
competitive to the optimal and fully sequential policy. In particular, we show the following results
in the information-parallel stochastic optimization when the utility function is adaptive submodular
and adaptive monotone.

e For the adaptive stochastic submodular maximization problem, we develop a semi adaptive
policy that with O(log(n)log(k)) adaptive rounds (a.k.a., batch queries) achieves the tight
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(1 — 1/e — ¢) approximation guarantee with respect to the optimum policy 7* that selects k
items fully sequentially, i.e., fave(7) > (1 — 1/e — €) fave(77).

e We complement the above result by showing that no policy can achieve a constant factor
approximation guarantee with fewer than o(log(n)) adaptive rounds. Moreover, the approxi-
mation guarantee of any semi adaptive policy that chooses batches of fixed size r will degrade
with a factor of O(r/log?(r)).

e For the adaptive stochastic minimum cost coverage problem, we show that the greedy pol-
icy achieves an asymptoticly tight logarithmic approximation guarantee, effectively proving

[24]’s conjecture. More precisely, we show that Cayg (Tgreedy) < (Cavg(7*) + 1) log (%) +1

where we make the common assumption that there is a value 1 such that f(¢)) > Q — n
implies that f () = @ for all partial realizations .

e We also develop a semi adaptive policy for the adaptive stochastic minimum cost
coverage problem that achieves the same logarithmic approximation guarantee with
O(lognlog(Qn/n)) adaptive rounds.

2. Related Work

Submodularity captures an intuitive diminishing returns property where the gain of adding an
element to a set decreases as the set gets larger. More formally, a non-negative set function
f : 2V — R, is submodular if for all sets A C B C V and every element ¢ € V \ B, we
have

f(Au{e}) — f(A) = f(BU{e}) — f(B).

Submodular maximization has found numerous applications in machine learning and artificial in-
telligence [43], including neural network interpretation [17], data summarization [35], crowd teach-
ing [42], privacy [36], fairness [8], and adversarial attacks in deep neural nets [34]. Moreover, in
many information gathering and sensing scenarios, the objective functions satisfy submodularity
[33; 45; 28]. However, the classic notion of submodularity falls short in interactive information ac-
quisition settings as it requires the decision maker to commit to all of her selections ahead of time,
in an open-loop fashion [27].

To circumvent this issue, [24] proposed adaptive submodularity, a generalization of submod-
ularity from sets to policies. Like submodularity, adaptive submodularity is a sufficient condition
that ensures tractability in adaptive settings. More precisely, in the adaptive stochastic submodular
maximization problem, when the objective function is adaptive monotone and adaptive submodular,
the greedy policy achieves the tight (1 — 1/e) approximation guarantee with respect to an opti-
mum policy [24]. More generally, [26] proposed a random greedy policy that not only retains the
aforementioned (1 — 1/e) approximation ratio in the monotone setting, but also provides a (1/e)
approximation ratio for the non-monotone adaptive submodular functions.

The results for adaptive stochastic minimum cost coverage problem are much weaker. Origi-
nally, [24] claimed that the greedy policy also achieves a logarithmic approximation factor but as
pointed out by [38] the proof was flawed. Instead, under stronger conditions, namely, strong adap-
tive submodularity and strong adaptive monotonicity, Golovin and Krause proposed a new proof,

2
with a squared-logarithmic factor approximation, i.e., Caye(Tereedy) < Cave (") (log (%) + 1) .

5
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Note that there are some fundamental technical differences between the notions of submodularity
and adaptive submodularity. For example, submodularity preserves under truncation, that is, if a
function f(-) is submodular, for any constant ¢, min (f(-),¢) is submodular as well. This comes
very handy in designing algorithms for submodular functions and often used as a simple way to re-
duce minimum cost coverage to submodular maximization. However, unfortunately, truncation does
not preserve adaptive submodularity (See Appendix B) and thus all the previous attempts to use this
reduction are futile. In this paper, we prove the original conjecture of Golovin and Krause [24] and
show that under adaptive submodularity (without resorting to stronger conditions), the greedy policy

achieves a logarithmic approximation factor, namely, Caye(Tgreedy) < (Cave(7*) + 1) log % + 1.

The main focus of this paper is to explore the information parallelism, a.k.a., batch-mode,
stochastic optimization [29; 23]. Many active learning problems naturally fall into this setting when
it is more cost-effective to request labels in large batches, rather than one-at-a-time (for detailed dis-
cussions, we refer the interested reader to [10]). Note that the two extremes of batch-mode stochas-
tic optimization are full batch setting (i.e., all selections are done in a single batch, and hence the
batch-mode setting reduces to the non-adaptive, open-loop optimization problem) and full sequen-
tial setting (i.e., elements are selected one-by-one in a closed-loop manner where each selection is
based on the results of all previous selections). In this paper, we lay out a rigorous foundation for
the semi-adaptive setting where elements are selected in a sequential and closed-loop way but with
multiple selections at each round.

There are a few partial results regarding the semi-adaptive policy for the adaptive stochastic
minimum cost coverage problem. In particular, [11] proposed a policy that selects batches of fixed
size r and proved that under strong adaptive submodularity and strong adaptive monotonicity, this
policy achieves a poly-logarithmic approximation to an optimal policy that is also constrained to
picking up batches of size r. Note that this result does not provide any guarantees with respect to
the actual baseline, namely, the optimal and fully sequential policy. Moreover, [10] showed that
this policy has a sublinear-approximation® guarantee against the fully sequential policy. In fact, we
show that for the adaptive stochastic submodular maximization problem, the approximation factor
of a fixed batch-policy suffers by at least a factor of log?(r)/r in the worst case, so unless 7 is a
fixed constant, no constant factor approximation guarantee is possible.

Back to the adaptive stochastic minimum cost coverage, when the distribution p is fully factor-
ized (i.e., the outcomes are independent), [1] very recently showed that there exists a policy that,
using O(log(Q)/ loglog(Q)) rounds of adaptivity, achieves a poly-logarithmic approximation to
the optimal sequential policy. In this paper, we propose a (batch-mode) semi adaptive policy that,
using only polylogarithmic adaptive rounds, achieves an asymptotically tight logarithmic approxi-
mation to the fully sequential policy for general adaptive monotone submodular functions (we do
not need to resort to stronger notions of adaptivity and monotonicity).

To the best of our knowledge, no results are known for semi-adaptive policies for the adaptive
stochastic submodular maximization problem. We develop a (batch-mode) semi adaptive policy that
achieves an almost tight 1 — 1/e — ¢ approximation guarantee with only polylogarithmic adaptive
rounds. We also complement our result by showing that no semi-adaptive policy can achieve a
constant factor approximation to the optimal policy by fewer than o(log(n)) adaptive rounds.

3. Unfortunately, the approximation factor grows polynomially in . Moreover, note that this result assumes strong
adaptive submodularity and strong adaptive monotonicity.
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Our work is also related to the adaptivity complexity of submodular maximization, which refers
to the number of parallel rounds required to achieve a constant factor approximation guarantee in the
offline, open-loop setting. [3] developed a parallel algorithm that O(log n) rounds finds a solution
with an approximation arbitrarily close to % which was soon improved to (1 — % — €)-approximation
[21; 6; 18]. The adaptivity complexity was also studied in the non-monotone submodular max-
imization [5; 20; 9], convex minimization [4; 16; 7] and multi-armed bandit [22; 19]. We lift the
notion of adaptivity complexity from the offline optimization to the interactive setting where instead
of parallelizing the optimization steps we parallelize the information acquisition.

3. Greedy Versus Optimum

Throughout the paper, we assume that the utility function f is an adaptive monotone and adaptive
submodular function with respect to the distribution p(¢). In this section, we show how the expected
utility obtained by the greedy policy 7greeqy is related to the expected utility obtained by the optimum
policy 7*. Let us define 7" to be the policy that runs the greedy policy 7grecqy and stops when the
expected marginal gain of every single remaining element is less than or equal to 7. We define 7;
to be a threshold such that the expected number of elements selected by 7™ is ¢, in other words
> P(@)S(m7, ¢)| = i.* Also remember that for two policies 7 and ' we define @7’ to be a
policy that first runs 7 and then runs 7’ from a fresh start (i.e., ignoring the information gathered by
7). This definition implies S(7@Qn’, ¢) = S(7,¢) U S(7’, ¢). The following is the key lemma of
this paper.

Lemma 1 For any policy ©* and any positive integer { we have

S
Fang(77) > (1 = e FRTT) foyg (77),
where K is a random variable that indicates the number of items picked by 7%, i.e. K = |S(7*, ®)|.

Before proving Lemma 1, we provide some primitives that we use in the proof of this lemma as
well as Lemmas 6 and 14. For a randomized policy 7, we use © to indicate the random bits of the
policy m. We use 6 to indicate a realization of ©, and use p(f;) to indicate the probability that 6,
is realized. We drop 7 from the notation when it is clear from the context.

For a deterministic policy 7, a (potentially) randomized policy 7*, an element e, and two sub-
realization 1 and v < v)’, we define the event < 1,1/, e, m, m* > to be the event that

e dom(v)) = dom(7), meaning that the policy 7 selects exactly all of the elements of 1),

e and, the set of elements selected by the policy 7@7n*, at some point during its run, coincides
exactly with the domain of v/,

e and, right after the policy 7@Q7* selects all the elements of ¢, it chooses e.

4. Use an arbitrary tie breaking rule to make it exactly equal. For example, if by accepting elements whose expected
marginal benefit is strictly larger than 7 the greedy policy selects a < % elements in expectation, and by accepting
elements with expected marginal benefit larger than or equal to 7 the greedy policy selects 5 > i elements in

expectation, then we let the policy 77 accepts the elements with a marginal gain of 7 with probability ;}:‘Zt Hence,

the expected number of items accepted by 77 is o + [’3__‘2 (B—a)=1.
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Note that for a fixed 0,+, and conditioned on ¢’ < ®, we can simulate 7@7* and deterministi-
cally indicate whether the event < 1,1, e, m, ™" > happens or not.”> We define Ly wpemm 6,4 tO
be a deterministic binary variable that is 1 if and only if, conditioned on ©,+ = 0, and ¢’ < D,
the event < 1,4, e, m, 7" > happens. We use the shorthand 1y, . ¢ (and drop the notations of
policies) when it is clear from the context.

Proof of Lemma 1:  First we provide an upper bound on f,,4(7*). Pick an arbitrary number
i € {0,...,¢}. Note that by adaptive monotonicity, we have fu,q(7*) < faug(n7@Qn*). Next we
show that fi,e (77 Q1) < foug(n™) + E [K] AT (), where ATi(m) = faug(17) — favg(m7-1).
This implies that

fa'ug(ﬂ—*) < favg(ﬂn@'fr*) < favg(ﬂﬂ—i) +E [K] AT (7T) (1)

Note that once we run 7™ the set of selected elements and their realizations depends on ®.
To capture this randomness, we let U; be a random variable that indicates the partial realization
observed by running policy 7n7:. We use ¢; to indicate a realization of the random variable ;.
Note that, by definition of 77 we have 7; > maX.cp\dom(y;) A(€[t)i). Moreover, by adaptive
submodularity, for all sub-realizations 1’ such that ¢»; < ¢/, and for all e € E'\ dom(v’) we have
Alely;) > Ale|y)’). Therefore, we have

i > Ale|y’), Vi)' s.t. b < o', and Ve € E'\ dom(v)). )

Now, we can bound the different between the expected utility obtained by 7#7¢@z* and 7™ as fol-
lows:
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where the first equality is by definition, the second equality is by independency®, the third equality
is by definition, forth inequality is by Inequality 2 and the fifth inequality is by A" (7) > 7;. This

5. Note that if policy 7@7* attempts to query an element that does not exist in ¢, prior to querying e, we know that
the event < 1,1’ e, m, 7* > does not happen and we do not need to simulate the policy any further.
6. Note that v’ is fixed, hence f (10" U ®(e)) — (1) is independent of ©.
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proves inequality (1) as promised. Let us define Af = fu04(7*) — fawg(7™). Inequality 1 implies
that AY < E[K](Af_; — A}). By a simple rearrangement we have A¥ < (1 — W)A;ﬂl. By
iteratively applying this inequality we have

1

* -
Ap=(1 E[K]+1

0.« NI S
) A < e FRFTAS.

By applying the definition of AY and further rearrangements we have fauq(77) > (1 —

et
e EEIFT) foug (%), as desired. O

Next, we will use Lemma 1 to prove the conjecture by [24] that the greedy policy achieves the
asymptotically tight logarithmic approximation guarantee.

4. Adaptive Stochastic Minimum Cost Coverage

In this section, we show that the greedy policy, outlined in Algorithm 2, achieves a logarithmic ap-
proximation guarantee for adaptive stochastic minimum cost coverage. For the ease of presentation,
we focus on the unit cost case, i.e., ¢c(e¢) = 1 for all e € E. The generalization to the non-uniform
cost is immediate. To prove this theorem we use Lemma 1 and follow the usual proof for set cover.

Theorem 2 Assume that there is a value n € (0, Q] such that f(¢) > Q — n implies () = Q
for all 1. Let ™ be an arbitrary policy (including the optimum policy’) that covers everything i.e.,
f(7*) = Q for all ¢. Let Tgpeeqy be the greedy policy, and let n = |E|. We have

. n
Ca”ug(ﬂ—greedy) < (Cavg(7r ) + 1) log (??) + 1.

Proof Let K be a random variable that indicates the number of items picked by 7*, i.e., K =
S(m*, ®@). Set £ = (E [K]+ 1) log(n@/n). Note that by definition of 7* we have f(7*) = @ for all
¢, hence we have fq,4(7*) = . By Lemma | we have

4
Faug(m™) > (1= €7FRTT ) fop (n°) By Lemma |

_ (1 e logWQ/n)) Favg () Since £ = (E [K] + 1) log(nQ/n)

<1 - nZ)) Favg (")
-1

313

Since favg(ﬂ-*) =Q

Recall that by definition we have E [f(77)] = fauq(7™) = @ — :L. Moreover, by adaptive mono-
tonicity we have f(7™) < f(¢) = Q. Hence by Markov inequality with probability 1 — 1/n
we have f(n7¢) > @ — 7. By definition of 7 this implies that with probability 1 — % we have
f(#x™) = Q. Therefore, with probability 1 — 1/n, the policy 7™ reaches the utility () after selecting

7. One can think of this as an optimal policy that minimizes the expected number of selected items and guarantees that
every realization is covered.
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¢ = (E[K] + 1) log(nQ/n) items in expectation. Otherwise, Tgreedy picks at most all the n items.
Hence the expected number of items that mgeedy picks is upper bounded by

(1 — i) x (E[K]+ 1) log (?) + % x 1 < (Caug(m*) + 1) log (?) + 1.

With slight modifications to the proof of Theorem 2 we achieve the following corollary. We
provide the proof of this result in Appendix A.1.

Corollary 3 Assume that there is a value 1 € (0, Q] such that f(1) > Q — n implies f(v)) = Q
for all 1. Let ™ be an arbitrary policy that covers everything i.e. f(m*) = Q for all ¢. Let Tgreeay
be the greedy policy, and let § = ming p(¢). We have

o) < () 4 1)1 (£ 41

5. Semi Adaptive Stochastic Submodular Maximization

In this section, we provide a policy for adaptive stochastic submodular maximization that makes
only O(lognlog k) batch queries (a.k.a. adaptive rounds). We show that our policy provides a
(1- % — &) approximate solution compare to that of the best fully sequential policy. Our policy is
based on two notions, semi-adaptive values and information gap. We first provide some intuition
and notations, and then explicitly define these two notions. At any stage of the algorithm, semi-
adaptive value of an item e is our estimate of the expected value of selecting item e. We provide
these estimations based on the information of the last batch query that we carried out and the set
of items that we are deciding to select but not queried yet. Information gap is our estimate of the
accuracy of the maximum semi-adaptive value. We use the information gap to balance between the
loss on the performance and the number of batch queries that we make. We iteratively and greedily

Algorithm 3 Semi Adaptive Greedy Policy for Algorithm 4 Semi Adaptive Greedy Policy for

Adaptive Submodular Maximization Minimum Cost Coverage
1: Input: Ground set F, size k, distribution 1: Input: Ground set F, quota (), distribution
p(¢), function f(-), value € > 0 p(¢), function f(-), value € > 0
2: initialize A < 0, ¢/ < 0,7« 1 2: initialize A < 0, ¢ < 0,7« 1
3: while |A] < k do 3. while f(A,¢') < Q do
4:  whileIG(i,¢') > (1—€)and |A| < kdo 4  while RIG(:,¢’) > (1 —¢) do
5: e* = argmax.cp\ 4 SAV (e, i,v) 5: e* = argmax.cp\ 4 SAV (e, i,v)
6: A<+ AU {e*} 6: A+ AUu{e*}
7: 14 1+1 7: 14 1+1
8: 1" < query all elements in A \ dom(¢)’)  8: " <— query all elements in A \ dom(%)’)
9: W Uy 9: W U
10: return A 10: return A

select elements based on their semi-adaptive values. We continue this selection non-adaptively until

10
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the information gap decreases to (1 —&). When the information gap drops below (1 —¢) we query all
the selected elements. We call this algorithm semi-adaptive greedy and is outlined in Algorithm 3.
In this section, we use 7 to refer to this policy. We refer to the step ¢ of a policy as the time it selects
the ¢-th element. We use W7 to refer to the (random) partial realization up to and including step ¢
of policy m. Again, note that the partial realization we observe by running 7 depends on ¢. We
also use ¢’ to refer to the observed partial realization of items that have been queried so far. Since
policy 7 is deterministic, given 1/’, we can deterministically indicate the domain of W7. Therefore,
dom(WT) is deterministic and well specified (while the state of items e € dom(¥7T) \ dom(¢’) is
random). We are ready to define the semi-adaptive values and the information gap.

Definition 4 (Semi-Adaptive Value) At any step i of the policy w, and given the partial realization
' < WT, the semi-adaptive value of an item e € E \ dom(VUT) is defined as follows:

SAV(e,i,9') = Eyur [A(e]¥T)].

Note that the semi-adaptive value of an item e is equal to the expected marginal gain of e over
all the unknown random realizations (i.e., not in v)’).

Definition 5 (Information Gap) At any step i of the policy w, and given the partial realization
W' < WT, the information gap is defined as follows.

[E—

. MaXegdom(wr) Eyr<ur [A(e|PT)

1G(i,7') = :
( ) Ew’—\allf [maxegédom(\llf) A(d\l’?)]

Equipped with these definitions, we show next the utility obtained by the semi adaptive greedy
policy, shown in Algorithm 3, along with the total number of batch queries.

5.1. Performance

Golovin and Krause [24] showed that a fully sequential greedy policy mgreeqy achieves
Javg(Treeayle]) > (1 ek ) favg(m*). The next lemma bounds the performance of our semi adaptive
greedy policy in a similar fashion. We use the notions of semi-adaptive values and the information
gap to prove this lemma. In the following lemma, 7 is the semi-adaptive greedy policy and 7y is a
policy that runs 7 and stops if it selects ¢ items.

Lemma 6 Let w be the semi-adaptive greedy policy. For any policy m* and positive integer £ we
have

favg(ﬂ'[[]) > (1 - eiﬁ - E)favg(ﬂ-*)-

This is one of the main technical contributions of the paper, but due to the space constraint we
provide the proof of this lemma in Appendix A.2. The proof of this lemma relies on Lemma 1 and
uses a similar machinery.

11
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5.2. Query Complexity

In this subsection, we bound the number of batch queries of the semi-adaptive greedy policy. We
define random variable W} to be the partial realization obtained by the ¢-th batch query (do not
confuse it with ¥7). We use ¢/, to indicate the realization of random variable ¥;. The next lemma

shows that after any log_1_ (%) = O.(log (%)) batch queries, the maximum expected marginal

1-¢/2
benefit drops by a factor (1 — 5), with high probability. We later apply this lemma iteratively for
O(log k) times to show that after O.(lognlog k) batch queries, the maximum expected marginal

gain is vanishingly small.

Lemma 7 Pick an arbitrary t and fix partial realization 1. Let A}, = MAX g dom())) Alelyy), and
lettt =t+log L (%) With probability at least 1 — § we have
1—e/2

£

Alelwy) < (1-2) Ar

egdf;rrln%;Jr) () < 2) 7t

Proof For any ¢ > t we use the random variable Sy to indicate the set of elements such that

Ale|P},) > (1 — 5)A}. To prove the above lemma, we show that E [|Sy[] < (1 — 5)E [|Sy1]].

This together with |S;| < n implies that E [|Sy+|] < 6 for tT = ¢ + log L (%). Note that |S;+| is
1—e/2

a non-negative integer, and hence we have S;+ = () with probability at least 1 — 4.

Next, we show that E[|Sy|] < (1 — §)E[|Sy41|]. First note that by adaptive monotonicity
e € Syy1 implies e € Sy, and hence we have Sy 1 C Sp. In the following, we use the notion of
information gap and show that for any element e € Sy, we have e ¢ Sy 1 with probability at least
5. This directly implies E[|Sy|] < (1 — §)E[|Sy11]] as desired. Note that when we query ¥},
the information gap is at most (1 — ¢). Hence, for some W7 (which corresponds to ¥}, 1) we have

Ep —gr [Ale]PT)| < (1 —e)Ey wpr Ale|wT inf ti
P v, <ur [AeTT)] < (1 - €)Ey, <o [eidrggggm (e[ ¥7)] information gap
< (1—¢)A]. by adaptive monotonicity

This implies that for all e ¢ dom(¥]), with probability at least 5, we have A(e|¥T) < (1 — 5)Af.
Therefore, for any element e € Sy, we have e ¢ Sy 1 with probability at least £, as promised. B

Now, we are ready to prove the main theorem of this section. In the following theorem, 7 is the
semi-adaptive greedy policy, 7 is a policy that runs 7 and stops if it selects £ items and W[:Z] isa
policy that runs 7, and stops if it makes 7" batch queries.

Theorem 8 Let 7 be the semi-adaptive greedy policy and let 77[72] be a policy that runs s and
stops if it makes T batch queries. For any policy w* (including the optimum policy) and any positive
integer { and for some T € O, (log nlog () we have

Favg() > (1= €% — 3¢) faug (1),

Proof Letussetd = —=——
log_1 (2)

1—-e/2

and let A; () be the expected marginal benefit of the first selected

item. By applying Lemma 7 iteratively log L (g) times we have
1—e/2

log 1 (%) €
U < (1 — € TI—e/2 ° —
egdrélﬁgf%)A(e] 7) < ( 2) Aq () EAl(ﬂ'),

12
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with probability 1 — § X log L (f) = 1 — e. This means that with probability (1 — ) the total
1—e/2

expected marginal benefit of the elements added after the 7'-th batch query is at most
€
£ x ZAl(W) = €A1(7T) < e’:‘fcwg(ﬂm),

where T' = log L (%) x log L (£) € O-(lognlogt). This, together with lemma 6, implies
1—e/2 1—-e/2
that if we stop policy 7 after 7' € O, (log n log ¢) batch queries for any policy 7* we have

fcwg(ﬂ[é}) > (1 - e_ﬁ - 35)favg(7r*)7

as desired. ]

6. Semi Adaptive Stochastic Minimum Cost Coverage

In this section, we bound the efficiency and round complexity of the semi-adaptive greedy policy,
outlined in Algorithm 4. To simplify the proofs, we use a more restricted notion of information
gap. It is easy to observe that the same proofs in the previous section hold using this version of
information gap as well.®

Definition 9 (Restricted Information Gap) Ar any step i of the policy w, and given the partial
realization ' < UT, the restricted information gap is defined as follows.

RIG(, ) = — "egdomp Alel)
’ Ew/<\y? [maxegdom(\lff) A(e\\llf)]

6.1. Performance

Next theorem bounds the performance of our policy. The proof of this theorem is a combination of
the ideas in Lemma 1, Lemma 6 and Theorem 2 and is presented in Appendix A.4.

Theorem 10 Assume that there is a value n) € (0, Q] such that f(1)) > Q — n implies f(¢) = Q
for all 1. Let ™ be an arbitrary policy that covers everything, i.e., f(7*) = Q for all ¢. Let 7 be
the semi-adaptive greedy policy, outlined in Algorithm 4. We have

) = (VL (19

6.2. Query Complexity

Next, we bound the number of batch queries of the semi-adaptive greedy policy. We use Lemma 7
presented in the previous section together with Theorem 10 to prove the above theorem. The proof
of this theorem follows the proof of Theorem 8 and is presented in Appendix A.5.

Theorem 11 Letn € (0, Q| be a value such that f(v) > Q —nimplies f(v)) = Q for all 1. Let *
be any policy that covers everything, i.e., f(7*) = Q for all . Let w be the semi-adaptive greedy
policy (Algorithm 4) and let ©* be a policy that runs w and stops if it makes T batch queries. For
some T € O(lognlog(Qn/n)) we have f(x) = Q with probability at least 1 — 1/n.

8. We use this notion in this section for simplicity. However, since the previous notion of information gap is more
intuitive, we keep the previous notion as well.

13
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7. Hardness

Next theorem states our hardness result.

Theorem 12 Any policy with a constant approximation guarantee for adaptive stochastic submod-
ular maximization requires )(log n) batch queries.

Proof Consider the following example. We have n = 2~ — 1 elements, and we want to select k
elements. The elements are decomposed into k bags of sizes 1,2, ..., 2*, where the decomposition
is chosen uniformly at random. The objective function for a set .S is the number of distinct bags that
elements in S belong to. Whenever we select an element e we see all of the elements that are in the
same bag as e. It is easy to see that this function is adaptive monotone and adaptive submodular.

Note that one can iteratively select k& elements each with a marginal benefit of 1 and hence the
value of the optimum solution of this instance is k. Next we upper-bound the value of the solution
of a policy with ¢ € o(logn) batch-queries.

Let B; be the i-th batch query and let b; = |B;|. Note that the marginal gain of each element
is either 0 or 1. Moreover, all of the elements with the marginal gain of 1 are symmetric. Hence,
without loss of generality, we assume that B; is random subset of elements with the marginal gain
of 1. Hence, with probability at least (1 — b%) all of the elements in B; belong to the log? b; largest
bags with the marginal gain of 1. Hence, the expected marginal benefit of batch B; is at most
(1-— b%) log? b; + b%-bi < log? b; + 1. Hence the expected value of the solution of this policy is at

most
t

t
5 k
Z(longi—Fl Zlog f—i—l ) = tlog? ——l—tEO(k)
=1 =1

where the last inequality is due to ¢ € o(logn) = o(k). [

Notice that in the hard example provided in the above theorem, we upper bound the marginal
gain of each batch of size r by log? 7 + 1. Hence if we force each batch to query exactly r elements,
2
the expected value of the final solution is at most % (log2 T+ 1) € O(%).

Corollary 13 Let m be a policy for adaptive stochastic submodular maximization that queries
2
batches of size r. The approximation factor of  is upper bounded by O(log%).

8. Conclusion

In this paper, we re-examined the required rounds of adaptive observations in order to maximize
an adaptive submodular function. We proposed an efficient batch policy that with O(logn x log k)
adaptive rounds of observations can achieve a (1 —1/e —e) approximation guarantee with respect to
an optimal policy that carries out k actions, from a set of n actions, in a fully sequential setting. We
also extended our result to the case of adaptive stochastic minimum cost coverage and proposed a
batch policy that provides the same guarantee in polylogarithmic adaptive rounds through a similar
information-parallelism scheme. In the mean time, we also proved the conjecture by [24] that the
greedy policy achieves the asymptotically tight logarithmic approximation guarantee for adaptive
stochastic minimum cost coverage. One interesting future direction is to develop a semi adaptive
policy for maximizing the value of information [13].

14
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Appendix A. Omitted proofs
A.1. Proof of Corollary 3
Proof Let K be a random variable that indicates the number of items picked by 7*, i.e., K =

S(m*, ). Set ¢ = (E[K] + 1) log(%). Note that by definition of 7* we have f(7*) = @ for all ¢,
hence we have f,,4(7*) = Q. By Lemma 1 we have

favg(ﬂ—n) > (1 - eilE[K,ﬁ>favg(7T*) By Lemma 1
= (1 _ e—log(%)>favg(7r*) Since ¢ = (E[K] + 1) IOg(gi)
0
()
=Q — . Since faug(m*) = Q

Recall that by definition we have E [f(77)] = faue(n™) = @Q — 6n. Moreover, by adaptive
monotonicity we have f(7™) < f(¢) = Q. Hence by Markov inequality with probability more
than 1 — § we have f(7™) > ) — 7. By definition of 7 this implies that with probability more than
1 — § we have f(n7) = Q. Equivalently, probability of f(7™) # @ is less than 6.

Note that the only source of randomness in 777¢ is from the randomness of the input. Hence, for
any fixed ¢ we either have f(7™) = Q or f(n™) # @, deterministically. On the other hand, by
definition § = ming p(¢). Hence, since the probability of f(77¢) # () is less than ¢, the probability
of f(n™) # @ must be 0. Therefore, the policy 7" reaches the utility @), certainly, after selecting
¢ = (E[K] + 1) log(nQ/n) items in expectation. [ |

A.2. Proof of Lemma 6

Proof First we provide an upper bound on fq,q(7*). Pick an arbitrary i € {0,...,¢}. Note that
by adaptive monotonicity, we have foug(7*) < favg(m;@m*). Next we show that fi,q(7j; Q") <

Favg(mpi) + 722 Ai(), where Ai() = favg (1) — favg(m];)). This implies that

k
1—¢

favg(ﬂ'*) < favg(ﬂ'[z']@ﬂ'*) < favg(ﬂ'[i}) + Ai(m). 3

Let ¥; be a random variable that indicates the partial realization of the elements selected by ;).
We use %; to indicate a realization of W;. Let ¥ be a random variable that indicates the last partial
realization that is queried by 7[; (ignoring the selected elements in the last batch that is not queried
yet).

We have
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By definition
= P )P(0) Ly, e 0E [f (&' U B(e)) — f(4)[¢'

N

@]

By independency
= P(W)P(Q)]lwi,w’,e,eA@W)

By definition of A(e|t)’)
< P )P(0) Ly, 7 c0 A (e]thi)

Bu adaptive Submodularity.

<> P)P(O) e, max A(|;)
;€W Y <Y e¢dom(y’) HEO 1+ ¢dom ;)

- 0)1 ) A(e |
> > o ited ), mAX (e'[vs)

i€V i<y e¢dom(y’) 0€O o«

< 3 pwk | max  A()

=t e/ ¢dom(s:)

=k Z p(;) max A€ |yy)

e’¢dom(v);)

i [e/eggéi}((%) A(e/‘%)}

E@[Eq,ﬁq,{ max A(e’|\IJZ-)”

*Le’¢dom(T;)
1 / ™
1—¢ e'¢£2}({wg) Eo<ur (AT )”

I
=

By information gap bound

_ i L
E‘lf [elgéégli}((qj?) Eq/<\p;r [A(e |\I/l )]]

- 1-— sAi(W)

This proves Inequality 3 as promised. Let us define

A;k = favg(ﬂ'*) - favg(ﬂ'[i])'
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Inequality 3 implies that

k
A7 < E(Af — A1)
By a simple rearrangement we have
* l1—¢ *
By iteratively applying this inequality we have
N 1—ev,. (a-e)
AF < (1- 7 VA <e TE A}

By applying the definition of A} and some rearrangements we have

_(A—e)e

Favg () > (1= €77 ) fang(7*) = (1= €7F = &) faug (")

as desired.

A.3. Proof of Lemma 14

Let us start with some definitions. Let 7 be the semi-adaptive greedy policy as defined in section 5,
using restricted information gap (Definition 9). For an arbitrary number 7 let 77 be a policy that
selects elements according to 7 and stops when the semi-adaptive value of all of the remaining
elements is less than or equal to 7. We define 7; to be a number such that the expected number of
elements selected by 77 is 1.

Now we are ready to prove Lemma 14.

Lemma 14 For any policy 7 and any positive integer { we have

(1—e)¢

_ )
Javg(m™) > (1 — € BRI fopy (%),
where K is a random variable that indicates the number of items picked by 7%, i.e. K = |S(7*, ®)|.

Proof Let us define A7 (1) = fuug(m™) — favg(m7~1). Recall that in expectation 77 picks one
item more than 77~1. Moreover note that by definition of 7™ the semi-adaptive value of all of the
items selected by 77 is at least 7;. Hence

Fang(77) = favg(7771) = AT () 2 73, )

Let ¥; be a random variable that indicates the partial realization of the elements selected by 7.
We use ¢; to indicate a realization of W;. Next we show that for any consistent partial realization
1; < v’ and any element e we have

T

Alel) < 5)

1—¢

We have two cases based on the time that the policy 77 stops.
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e The policy 77 queries a batch and then observe that the semi-adaptive value of all items drop
below 7; and then 7™ stops.

e While adding items to a batch (and before performing the query), the semi-adaptive value of
all items drop below 7; and then 77¢ stops.

Note that in the first case the semi-adaptive values of all of the items are equal to their actual ex-
pected marginal benefit (i.e., A(e|y)")). Hence, we have A(e|y)’) < A(ele;) < 7;. In the second
case, by the definition of the algorithm, the restricted information gap is at least 1 — €. This to-
gether with the fact that the semi-adaptive values of all items are below 7; implies that the expected

adaptive monotonicity implies A(e[t)") < 1= as desired.

We have
favg( Ti@ﬂ*)—favg( Ti)
=3 S S s L eoB [f( U () — F(@)Y < B and © = 0]

Y€V, ;<) e¢dom () 0€O +
By definition

=3 3 S > p@p(O) Ly, e B [f( U D(e)) — F(U)Y

Y€V, ;<) e¢ddom(y) 0€O 1«

N

@]

By independency
=2 > 2 2 pWIROLyweeAel)
wze‘lj dh#wl 6¢d0m(¢ ) 0697,*

By definition of A(e|v)

<> > > > ﬂwz,weelng

Y€V, ;<) e¢ddom () 0€O 1«

By Inequality 5
ATi(m)
<Y D D D WO ywes T
%G\IJ dh%wl e¢dom(1/1’) GEGW*
By Inequality 4
ATi(m)
(X X X X O Liwes) T2
Vi €W, P Y e¢dom(zp’) HEO 1%

= MA” (7).

1-¢
Now define A = fuuq(7*) — favg(7™). The above inequality implies that

. EIK] L\ ;
Tl — ! — A7),
AT < T (AL - A

1 — (3

By a simple rearrangement we have

* 1 * 1—e *
1—e
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By iteratively applying this inequality we have

1—c¢
E[K]—i—l)

(1—e)¢

A < (1— CAL < e ERFLA.

By applying the definition of A} and some rearrangement we have

_(A-—e)e "
fzwg(”rm) > (1 —e€ ]E[K]-H)favg(']r )

as desired. |

A.4. Proof of Theorem 10

Proof Let K be a random variable that indicates the number of items picked by 7*. Set

E[K]+1
1_

l= log(nQ/n).

Note that by definition of 7* we have f(7*) = @ for all ¢, hence we have fu,q(7*) = Q. By
Lemma 14 we have

favg(ﬂje) > (1 - 6_%)]0(1119(71'*) By Lemma 14
= (11— o909 £, (2%) Since 0 Llog(n@/n)
= (1 - %)favg(ﬂ'*)
=Q - % Since fuuy(7*) = Q

Recall that, by definition fq,q(7™) = E[f(7™)]. Moreover, note that by adaptive monotonicity
we have f(n7) < f(¢) = Q. Hence by Markov inequality with probability 1 — 1/n we have
f(@™) > @Q — n. By definition of 7 this implies that with probability 1 — % we have f(7™) = Q.
Therefore, with probability 1 —1/n, 77 reaches @ after selecting £ = (I [K]+1) log(nQ/n) items
in expectations. Otherwise, 7 picks at most all n items. Hence the expected number of items that m
picks is upper bounded by

(1_1)XE[K]+1

)+1>< <(
— —Xn
n 1—¢ n -

log(

Cavg(T*) + 1 nQ
91 — 6—) log (7) + 1.

A.5. Proof of Theorem 11

First let us start with a couple of definitions. We define random variable U, to be the partial realiza-
tion obtained by the ¢-th query. Next we prove Theorem 11.

Proof of Theorem 11: In order to prove this theorem we show that fy,,4(71) > Q — . Note that
f(xT) < Q. This together with a Markov bound imply f(77) > @Q — 7, and hence f(7') = Q,
with probability 1 — 1/n. In this theorem we simply set ¢ = 0.01.
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Let us set ,
f=— 2
2Qn?
10g1718/2 n
By applying Lemma 7, log_ 1 2Q times iteratively we have
1—¢/
2
_ e log 1 2Gn~ n
max Ale|Ur) < (1—-2) =<2 " Ay(n) = —=A(n),
e¢dom(¥r) ( | T) o ( 2) 1( ) 2Qn2 1( )
with probability 1 — § x log_ 1 - 2% =1- ﬁ This means that with probability 1 — 57 the
1—e/

total expected marginal gain of the elements added after the T'-th query is at most

n n n
X s tm) = 5o M) < o

where

n 20Qn?
zlogl_ile/2 (3) o

€ O((logn + loglog(Qn/n)) log(@n/n))
€ O(lognlog(Qn/n)).’

This implies that

foug(") > (1= 52(Q— 51) > Q@ — .

2Q
This implies that f(77) = @ with probability at least 1 — ﬁ, as desired. O

Appendix B. Truncation

Consider the following simple adaptive submodular function f(-). We have three elements {z,y, z}
each of x and y are associated with an independent uniform random binary variable. The value of
the empty set is zero. If element 2 exists in a set, it deterministically adds a value 1 to the set. If
there is only one of x and y in the set, it adds a value 1 to the set. However, if both x and y are in
the set, if their corresponding random variables match, they add a value 2 to the set, and otherwise
add nothing.

Note that if one of x and y exists in a set, adding the other one does not change the value of
the set in expectation. In all other cases the value of adding an element is 1. This implies that this
function is adaptive submodular. However, ¢g(¢)) = min ( f@), 1) is not adaptive submodular. For
example the marginal gain of z on g({(z,1)}) is 0 but the marginal gain of z on g({(z, 1), (y,0)})
is 1.

9. We can assume log n > loglog(Qn/n), since otherwise n < log(Qn/n) and hence trivially T € O(log(Qn/n))
as desired.
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