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Abstract
Dimension is an inherent bottleneck to some modern learning tasks, where optimization methods
suffer from the size of the data. In this paper, we study non-isotropic distributions of data and de-
velop tools that aim at reducing these dimensional costs by a dependency on an effective dimension
rather than the ambient one. Based on non-asymptotic estimates of the metric entropy of ellipsoids
-that prove to generalize to infinite dimensions- and on a chaining argument, our uniform con-
centration bounds involve an effective dimension instead of the global dimension, improving over
existing results. We show the importance of taking advantage of non-isotropic properties in learning
problems with the following applications: i) we improve state-of-the-art results in statistical pre-
conditioning for communication-efficient distributed optimization, ii) we introduce a non-isotropic
randomized smoothing for non-smooth optimization. Both applications cover a class of functions
that encompasses empirical risk minization (ERM) for linear models.
Keywords: Effective Dimension, Large Deviation, Chaining Method, Metric Entropy, Ellipsoids,
Random Tensors, Statistical Preconditioning, Smoothing Technique.

1. Introduction

The sum of i.i.d. symmetric random tensors of order 2 and rank 1 (i.e. symmetric random ma-
trices of rank 1) is studied in probability and statistics both for theoretical and practical interests,
the most classical application being covariance estimation. The empirical mean of such matrices
follows the Wishart distribution (Wishart, 1928; Uhlig, 1994). Marčenko and Pastur (1967) proved
the convergence in law of their spectrum when the number of observations and the dimension are
of the same order. Machine Learning applications however require non-asymptotic properties, such
as concentration bounds for a potentially large finite number of observations and finite dimension
(Tropp, 2011, 2015; Donoho et al., 2017; Minsker, 2017), to control the eigenvalues of sums of
independent matrices, namely:∥∥∥∥∥ 1

n

n∑
i=1

aia
>
i − E

[
aa>

]∥∥∥∥∥
op

= sup
‖x‖≤1

1

n

n∑
i=1

x>
(
aia
>
i − E

[
aa>

])
x (1)

for a, a1, ..., an i.i.d. random variables in Rd.
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1.1. Theoretical Contributions

Our main contribution consists in new tools for the control of quantities generalizing (1). More
precisely, for r ≥ 2, f1, ..., fr Lipschitz functions on R, a, a1, ..., an i.i.d. random variables in Rd,
and B the d-dimensional unit ball, we derive in Section 2 concentration bounds on:

sup
x1,...,xr∈B

 1

n

∑
i∈[n]

(
r∏

k=1

fk(a
>
i xk)− E

[
r∏

k=1

fk(a
>xk)

]) . (2)

We thereby extend previous results in three directions. i) Matrices are tensors of order 2, which
we generalize by treating symmetric random tensors of rank 1 and order r ≥ 2 (Section 2.3).
ii) We consider non linear functions fi of scalar products 〈ai, x〉, motivated by Empirical Risk
Minimization. (2) can thus be seen as the uniform maximum deviation of a symmetric random
tensor of order r and rank 1, with non-linearities f1, ..., fr. iii) Finally, by observing that data are
usually distributed in a non-isotropic way (the MNIST dataset lies in a 712 dimensional space, yet
its empirical covariance matrix is of effective dimension less than 3 for instance), we generalize
classical isotropic assumptions on random variables ai by introducing a non-isotropic counterpart:

Definition 1 (Σ-Subgaussian Random Vector) A random variable a with values in Rd is Σ -
subgaussian for Σ ∈ Rd×d a positive-definite matrix if:

∀t > 0,∀x ∈ B,P(|a>x| > t) ≤ 2 exp

(
−1

2

t2

x>Σx

)
. (3)

A gaussian N (0,Σ) is for instance Σ-subgaussian. Note however that in the general case, Σ is not
equal to the covariance matrix. The aim is then to derive concentration bounds on (2) (Section 2)
that involve an effective dimension of Σ: a quantity smaller than the global dimension d, that reflects
the non-isotropic repartition of the data:

Definition 2 (Effective Dimension deff(r)) Let Σ ∈ Rd×d a symmetric positive semi-definite ma-
trix of size d × d, where d ∈ N∗. Let σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

d ≥ 0 denote its ordered eigenvalues. For
any r ∈ N∗, let deff(r) be defined as follows:

deff(r) :=
d∑
i=1

(
σi
σ1

) 2
r

=
Tr(Σ1/r)∥∥Σ1/r

∥∥
op

. (4)

This notion generalizes intrinsic dimension in Tropp (2015) and stable rank in Vershynin (2011,
2014), both obtained for r = 1.

Chaining Argument and Metric Entropy of Ellipsoids: Control of (2) involves a chaining argu-
ment (Boucheron et al. (2013), Chapter 13). In the simplest version of chaining, in order to bound
a random variable of the form supt∈T Xt, one discretizes the set of indices T and approximates
the value supt∈T Xt by a supremum taken over successively refined discretizations. To exploit the
non-isotropic properties of Σ-subgaussian random variables, we apply chaining based on a covering
of the unit ball B with ellipsoids. Our approach yields similarities with that of Zhong (2017), who
uses chaining with ellipsoids for a different purpose (control of eigenvectors). In section 2.3, in
the setting where f1 = ... = fr = Id, control of (2) reduces to controlling the operator norm of
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EFFECTIVE DIMENSION AND CONCENTRATION

empirical tensors. This can be done using our bounds on the ε-entropy of ellipsoids, without the use
of chaining.

In Section 3, we present results on the number of balls of fixed radius ε needed to cover an
ellipsoid in dimension d. The logarithm of this quantity is often called the ε-entropy of an ellipsoid.
Dumer et al. (2004) studied the limit d→∞, while we provide non-asymptotic estimates. Further-
more, in Appendix A.3, we extend these results to ellipsoids in infinite dimension, obtaining bounds
on metric entropy in terms of power-law norm decay.We believe these technical results (both in fi-
nite and infinite dimension) to be of strong practical and theoretical interests: the bridge between
covering numbers and suprema of random subgaussian processes is rather thin due to Dudley’s
inequality (Dudley, 1967). Bounding metric entropy of ellipsoids is thus a step towards uniform
bounds on more general random variables than the one we consider in (2).

1.2. Applications in Learning Problems and ERM

We show the relevance of our concentration bounds through the following applications.

Operator Norm Of Tensors Setting f1 = ... = fr = Id yields the operator norm of the empirical
tensor 1

n

∑
i a
⊗r
i − Ea⊗r in (2). In Section 2.3 we derive precise large deviation bounds on such

tensors involving the effective dimension deff(r), improving on previous works (Bubeck et al., 2020;
Paouris et al., 2017) which depended on the global dimension. Optimal concentration inequalities
on rank 1 symmetric tensors (i.e. of the form a⊗r) are not known. We refer the interested reader
to Vershynin (2020) for the study of rank 1 tensors of the form a1 ⊗ ... ⊗ ar where a1, ..., ar
are i.i.d. random variables, a different problem than ours. In Appendix F, we apply these bounds
to the study of the Lipschitz constant of two-layered neural networks with polynomial activation,
elaborating on the results in Bubeck et al. (2020).

Concentration of Hessians and Statistical Preconditioning For ` a twice differentiable function
on R and Hessian-Lipschitz, let f(x) = 1

n

∑n
i=1 `(a

>
i x). Then, ∇2f(x) = 1

n

∑n
i=1 `

′′(a>i x)aia
>
i ,

and setting r = 3, f1 = `′′, f2 = f3 = Id in (2) yields supx∈B
∥∥∇2f(x)− E[∇2f(x)]

∥∥
op

. Con-
trolling such quantities is relevant in optimization when studying functions that have an empirical
risk structure. Methods such as statistical preconditioning (Shamir et al., 2014) take advantage of
the i.i.d. structure of the observations, as we illustrate in Section 4. Our results improve on the state
of the state-of-the-art (Hendrikx et al., 2020), establishing guarantees based on deff(r) rather than d.

Randomized Smoothing Minimizing a non-smooth convex function f is a difficult problem, as
acceleration methods cannot be used. Duchi et al. (2012); Scaman et al. (2018) propose to use the
gradients of fγ a smoothed version of f , where fγ(x) = EX∼N (0,Id)[f(x + γX)]. This method
suffers from a dimensional cost, a factor d1/4 in the convergence time, that cannot in general be
removed (Bubeck et al., 2019; Nemirovsky and Yudin, 1985). In Section 5, considering an em-
pirical risk structure for f and a non-isotropic smoothing distribution for X , we take advantage of
the non-isotropic repartition of data to obtain an effective dimension deff(r) instead of the whole
dimension d.

Organization of the paper We first present our 3 main uniform concentration bounds in Section
2: control of (2) and of the same quantity but un-centered (both using chaining), and a more precise
control of (2) in the case where f1 = ... = fr = Id (control of empirical mean of symmetric random
tensors of rank 1 ann order p). In section 3, we provide bounds on the metric entropy of ellipsoids
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in terms of effective dimension. We also investigate the case of infinite dimension with the notion
of spectral dimension. The last two sections present two applications of the results presented in
Section 2. In Section 4, we apply Theorem 1 to control uniform deviation of Hessians, in order to
prove that statistical preconditioning methods naturally adapt to the underlying effective dimension.
In Section 5, we introduce a non-isotropic smoothing method for empirical risk minimization.

2. Main Theoretical Results

2.1. Concentration Bound With Centering

Theorem 1 (Concentration With Centering) Let r ≥ 2 and d, n ≥ 1 integers. Let Σ ∈ Rd×d a
positive-definite matrix and a, a1, ..., an i.i.d. Σ−subgaussian random variables. Let deff(s), s ∈ N∗
be defined as in (4). Let f1, ..., fr be 1-Lipshitz continuous functions on R such that fi(0) = 0 for
i ∈ [n]. For all k = 1, ..., r, let Bk > 0 such that:

∀x ∈ B, ∀i ∈ [n], |fk(a>i x)| ≤ Bk almost surely. (5)

Let B = B1...Bk. Define the following random variable:

Z := sup
x1,...,xr∈B

 1

n

∑
i∈[n]

(
r∏

k=1

fk(a
>
i xk)− E

[
r∏

k=1

fk(a
>xk)

]) . (6)

Then, for any λ > 0 and for some universal constantCr, the following large-deviation bound holds:

P

(
Z ≥ Crσr1

(
1

n

λ+ deff(r) ln(d)(
σ−r1 B

)2/r−1
+

√
λ+

√
deff(1) ln(d)√
n

))
≤ e−λ. (7)

2.2. Concentration Bound Without Centering

Theorem 2 (Concentration Without Centering) Let r ≥ 2 and d, n ≥ 1 integers. Let Σ ∈
Rd×d a positive-definite matrix and a, a1, ..., an i.i.d. Σ−subgaussian random variables (3). Let
deff(s), s ∈ N∗ be defined as in (4). Let f1, ..., fr be 1-Lipshitz continuous functions on R such that
fi(0) = 0 for i ∈ [n]. For all k = 1, ..., r, let Bk > 0 such that:

∀x ∈ B, ∀i ∈ [n], |fk(a>i x)| ≤ Bk almost surely.

Let B = B1...Bk. Define the following random variable:

Y := sup
x1,...,xr∈B

1

n

∑
i∈[n]

r∏
k=1

fk(a
>
i xk). (8)

Then, for any λ > 0 and for some universal constantCr, the following large-deviation bound holds:

P
(
Y ≥ σr1Cr

(
1 +

deff(r) ln(d) + λ

n
(σ−r1 B)1−2/r

))
≤ e−λ. (9)

4
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Remark 1 Assumptions (5) in Theorem 1 can be replaced by high-probability bounds on the ran-
dom variables a1, ..., an in the following way. If we denote R = supi=1,...,n ‖ai‖, we always have
Bk ≤ R and B ≤ Rr using Lipshitz continuity of functions fk. Furthermore, a Chernoff bound
gives with probability 1− δ:

R2 ≤ 4σ2
1(2deff(1) + ln(1/δ) + ln(n)),

yielding, with probability 1− δ, where Z is defined in (6):

Z ≤ Crσr1

(
ln(δ−1) + deff(r) ln(d)

n

(
deff(1) + ln(δ−1) + ln(n)

) r
2
−1

+

√
ln(δ−1) +

√
deff(1) ln(d)√
n

)
.

The same reasoning applies to Theorem 2 in the case without centering.

Remark 2 Theorems 1 and 2 assume that the functions fk are 1-Lipshitz and that the supremum is
taken over B the centered unit ball. By considering Lk-Lipshitz functions and a ball B(x0, ρ), one
obtains the same bound, up to a factor ρL1...Lr.

Remark 3 In Appendix B.4, we study the tightness of these results. We prove that, for f1 = ... =
fr = Id: {

E[YNon−Centered] ≥ C1σ
r
1

(
1 + deff(1)r/2

n

)
E[Y 2

Centered] ≥ C2σ
2r
1
C(Σ)
n .

Dependency in terms of n is thus optimal in both Theorems 1 (O(1/
√
n)) and 2 (σr1(1 +O(1/n))).

However, we believe that both the factor ln(d) and having deff(r) instead of deff(1) are artifacts
of the proof, coming from our non-asymptotic estimates of the metric entropy of ellipsoids (next
Section).

2.3. Concentration of Non-Isotropic Random Tensors

In this section, we provide a concentration bound on the empirical mean of symmetric ran-
dom tensors of rank 1, involving an effective dimension. In the appendix, we exploit this result to
derive some results on the robustness of two-layered neural networks with polynomial activations
(Appendix F). Methods such as in Paouris et al. (2017); Bubeck et al. (2020), which do not rely
ellipsoids, cannot yield results as sharp as ours, as detailed in Appendix C.

Definition 3 (Tensor) A tensor of order p ∈ N∗ is an array T = (Ti1,...,ip)i1,...,ip∈[d] ∈ Rdp.
T is said to be of rank 1 if it can be written as:

T = u1 ⊗ · · · ⊗ up

for some u1, ..., up ∈ Rp.
Scalar product between two tensors of same order p is defined as:

〈T, S〉 =
∑
i1,...,ip

Ti1,...,ipSi1,...,ip , giving the norm: ‖T‖2 =
∑
i1,...,ip

T 2
i1,...,ip .

We define the operator norm of a tensor as:

‖T‖op = sup
‖x1⊗...⊗xp‖≤1

〈T, x1 ⊗ ...⊗ xp〉.
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Definition 4 (Symmetric Random Tensor of Rank 1) A symmetric random tensor of rank 1 and
order p is a random tensor of the form:

T = X⊗p, (10)

where X ∈ Rd is a random variable. We say that T is Σ-subgaussian if X is a Σ-subgaussian
random variable.

We wish to bound the operator norm of tensors of the form T = 1
n

∑n
i=1 Ti, where T1, ..., Tn

are i.i.d. subgaussian random tensors of rank 1 and order p, using a dependency in an effective
dimension rather than the global one. We have:

‖T − ET‖op =
1

n
sup

x1,...,xp∈S

n∑
i=1

{
p∏

k=1

〈ai, xk〉 − E

[
p∏

k=1

〈ai, xk〉

]}
.

This quantity can be upper-bounded using chaining as in Theorem 1. However, using a simpler
argument (Appendix C) inspired by Bubeck et al. (2020) and our bounds on the metric entropy of
ellipsoids, we have the following.

Theorem 3 (Non-Isotropic Concentration Bound on Random Tensors) Let T1, ..., Tn be i.i.d.
random tensors of order p, rank 1, symmetric and Σ-subgaussian. Let T = 1

n

∑n
i=1 Ti. With

probability 1− δ for any δ > 0 and universal constant Cp > 0, we have:

‖T − ET‖op ≤ Cpσ
p
1

√
deff(1) + ln(d) + ln(δ−1)

n
.

Equivalently, for any λ > 0:

P

(
‖T − ET‖op ≥ Cpσ

p
1

√
deff(1) + ln(d) + λ

n

)
≤ e−λ.

We next present the upper-bounds on the number of balls needed to cover an ellipsoid we use to
prove the concentration bounds with chaining (Theorems 1 and 2) or without (Theorem 3). We
believe these technical results to be of independent interest due to the strong link between metric
entropy and uniform concentration bounds.

3. Results on Covering of Balls with Ellipsoids and Metric Entropy

3.1. Metric Entropy of an Ellipsoid

Definition 5 (Ellipsoid and ε-Entropy) Given a vector b = (b1, . . . , bd) with b1 ≥ · · · ≥ bd > 0,
the ellipsoid Eb is defined as

Eb =

x ∈ Rd :
∑
i∈[d]

x2
i

b2i
≤ 1

 .
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The ε-entropy Hε(Eb) of ellipsoid Eb is the logarithm of the size of a minimal ε-covering (or ε-net
in information theory terminology) of Eb. More formally:

Hε(Eb) = ln

(
min

{
|A| : A ⊂ Rd, Eb ⊂

⋃
x∈A
B(x, ε)

})
, (11)

where B(x, ε) is the Euclidean ball of radius ε. The unit entropy is the ε-entropy for ε = 1.

Given an ellipsoid Eb, define the following quantities:

Kb =

mb∑
i=1

ln(bi) and mb =
∑
i∈[d]

1Ibi>1. (12)

Provided that:

ln(b1) = o

(
K2
b

mb ln(d)

)
, (13)

Dumer et al. (2004) (Theorem 2 in their article) prove the following asymptotic equivalent of
H1(Eb) when d→∞:

H1(Eb) ∼ Kb. (14)

However, we need non-asymptotic bounds on H1(Eb). Using techniques introduced in Dumer
et al. (2004), we thus establish Theorem 4, whose proof appears in Appendix A, together with an
extension to ellipsoids in infinite dimension.

Theorem 4 (Unit Entropy of an Ellipsoid in Fixed Dimension) One has, for some universal con-
stant c > 0, the following bound on the unit entropy of ellipsoid Eb:

H1(Eb) ≤ Kb + c
[
ln(d) +

√
ln(b1)mb ln(d)

]
.

This theorem gives the following corollary, bounding the number of ellipsoids required to cover the
unit ball, directly linked with the number of balls required to cover an ellipsoid thanks to a linear
transformation.

3.2. Coverings of the Unit Ball With Ellipsoids

Corollary 1 Let ε > 0. Let random vector a ∈ Rd satisfy subgaussian tail assumption (3) for
matrix Σ, with spectrum σ2

1 ≥ · · · ≥ σ2
d > 0. Then there exists a collection Nε of vectors in S1 the

unit sphere of Rd such that, for all x ∈ S1, there exists y = Πεx ∈ Nε such that

‖x− y‖2Σ := (x− y)>Σ(x− y) ≤ ε2σ2
1, (15)

and the covering Nε verifies

ln(|Nε|) ≤ Hε :=

mε∑
i=1

ln

(
σi
εσ1

)
+ c

[
ln(d) +

√
ln(ε−1) ln(d)mε

]
, (16)

where

mε =

d∑
i=1

1Iσi>εσ1 (17)
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and c is some universal constant. Furthermore, we have:

Hε ≤ ln(ε−1)+
min

(
d− 1, ε−

2
r
deff(r)−1

e

)
2/r

ln

(
max(e, ε−

2
r
deff(r)− 1

d− 1
)

)
+c
[
ln(d) +

√
ln(ε−1) ln(d)mε

]
,

and
mε ≤ 1 + (deff(r)− 1)ε−

2
r .

This last bound onHε is a core technical lemma behind Theorems 1 and 2 . It is to be noted thatHε
is not linear in an effective dimension. Indeed, for ε ≤ Cr

(
d−1

deff(r)−1

)r/2
, our expression is linear

in d. This difficulty is the non-asymptotic equivalent of Dumer et al. (2004)’s assumption in (13).

3.3. Ellipsoids in Infinite Dimension

We here define ellipsoids in infinite dimension and upper-bound asymptotically their ε-entropy
in terms of spectral dimension. Although not used in the applications described in the present article,
uniform concentration of infinite-dimensional random vectors that satisfy an infinite-dimensional
subgaussian property require results such as the one we provide below.

Let V be a separable real Hilbert space (e.g. RN, `2([0, 1])).

Definition 6 (Ellipsoids in Hilbert Spaces) Let A a self-adjoint and semi-definite positive opera-
tor on V i.e. such that ∀(x, y) ∈ V2, we have 〈A(x), y〉 = 〈x,A(y)〉 ≥ 0. We define the ellipsoid
EA ⊂ V by:

EA =

{
x ∈ V :

∥∥∥A†(x)
∥∥∥2
≤ 1

}
,

where A† is the pseudo-inverse of A.

This notion generalizes Definition 5: taking V = Rd and A = Diag(b1, ..., bd), we have EA = Eb.
We next define the spectral dimension of an ellipsoid. We recall that if A is a self-adjoint and semi-
definite positive operator on V , there exists a Hilbert basis of eigenvectors of A, and the eigenvalues
of A are non-negative.

Definition 7 (Spectral Dimension and Effective Dimension) Let EA an ellipsoid in V , where A
is a self-adjoint and semi-definite positive operator. Assume that the eigenvalues ofA can be ordered
as a decreasing sequence (bi)i∈N∗ . EA is of spectral dimension d ∈ R+,∗ if

∑
i∈N∗ b

2
i < ∞ and

when n→∞: ∑
i≥n+1

b2i = O
(
n−

2
d
)
.

The effective dimension of ellipsoid EA is then
∑

i∈N∗ b
2
i .

The right notion of dimension for the control of metric entropy in infinite dimension is the spectral
dimension, as shown in the next proposition: the ε-entropy of an ellipsoid scales as the spectral
dimension in infinite dimension.

Proposition 1 Let EA be an ellipsoid in V , of spectral dimension d > 0. We have, when ε→ 0:

Hε(EA) ≤ d ln
(
ε−1
)2(

1 + o(1)
)
,

whereHε(EA) is the number (possibly infinite) of balls of radius ε required to cover EA.

8
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4. Statistical Preconditioning: Bounding Relative Condition Numbers

In this section, we present an application of Theorem 1 to optimization. Essentially, we show
that statistical preconditioning-based optimization automatically benefits from low effective dimen-
sion in the data, thus proving a conjecture made in Hendrikx et al. (2020).

4.1. Large Deviation of Hessians

Let f be a convex function defined on Rd. We assume that the following holds, which is true
for logistic or ridge regressions (Appendix D.4).

Assumption 1 (Empirical Risk Structure) Let ` : R → R convex, twice differentiable such that
`′′ is ‖`′′‖Lip-Lipschitz. Let n ∈ N∗, some convex functions `j : R → R, j ∈ [n] such that
∀j ∈ [n], `′′j = `′′ and i.i.d. Σ-subgaussian random variables (aj)j∈[n]. We assume that:

∀x ∈ Rd, f(x) =
1

n

n∑
j=1

`j(a
>
j x). (18)

Proposition 2 Denote Hx the Hessian of f at some point x ∈ Rd and H̄x its mean. We have:

Hx =
1

n

n∑
i=1

`′′(a>i x)aia
>
i , and H̄x = Ea

[
`′′(a>1 x)a1a

>
1

]
.

Let:
Z = sup

‖x‖≤1

∥∥Hx − H̄x

∥∥
op
. (19)

With probability 1− δ, we have, with C a universal constant:

Z ≤ Cσ3
1

∥∥`′′∥∥
Lip

(
(deff(3) ln(d) + ln(1/δ))

√
deff(1) + ln(n/δ)

n
+

√
ln(1/δ) +

√
deff(1) ln(d)√
n

)
.

Previous works (Hendrikx et al., 2020) obtained:

C ′σ3
1

∥∥`′′∥∥
Lip

(d+ ln(1/δ))
√
deff(1) + ln(n/δ)√
n

[
1√
d

+
1√
n

]
. (20)

In order for this bound to be of order 1, n was required to be of order the whole dimension d, while
we only need n to be of order deff(3).

4.2. Statistical Preconditioning

Consider the following optimization problem:

min
x∈Rd

Φ(x) := F (x) + ψ(x), (21)

where F (x) = 1
n

∑n
j=1 fj(x) has a finite sum structure and ψ is a convex regularization function.

Standard assumptions are the following:

∀x, σF Id ≤ ∇2F (x) ≤ LF Id. (22)

9
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We focus on a basic setting of distributed optimization. At each iteration t = 0, 1, ..., the server
broadcasts the parameter xt to all workers j ∈ {1, ..., n}. Each machine j then computes in parallel
∇fj(xt) and sends it back to the server, who finally aggregates the gradients to form ∇F (xt) =
1
n

∑
j ∇fj(xt) and use it to update xt in the following way, using a standard proximal gradient

descent, for some parameter ηt ≤ 1/LF :

xt+1 ∈ arg min
x∈Rd

{
〈∇F (xt), x〉+ ψ(x) +

1

2ηt
‖x− xt‖2

}
. (23)

Setting ηt = 1/LF yields linear convergence:

Φ(xt)− Φ(x∗) ≤ LF (1− κ−1
F )t‖x0 − x∗‖2. (24)

In general, using an accelerated version of (23), one obtains a communication complexity (i.e. num-
ber of steps required to reach a precision ε > 0) of O(κ

1/2
F ln(1/ε)) (where κF = LF

σF
) that cannot

be improved in general. Statistical preconditioning is then a technique to improve each iteration’s
efficiency, based on the following insight: considering i.i.d. datasets leads to statistically similar
local gradients∇fj . The essential tool for preconditioning is the Bregman divergence.

Definition 8 (Bregman divergence and Relative Smoothness) For a convex function φ : Rd →
R, we define Dφ its Bregman divergence by:

∀x, y ∈ Rd, Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (25)

For convex functions φ, F : Rd → R, we say that F is relatively LF/φ-smooth and σF/φ-strongly-
convex if, for all x, y ∈ Rd:

σF/φDφ(x, y) ≤ DF (x, y) ≤ LF/φDφ(x, y), (26)

or equivalently:
σF/φ∇2φ(x) ≤ ∇2F (x) ≤ LF/φ∇2φ(x), (27)

We consequently define κF/φ =
LF/φ
σF/φ

the relative condition number of F with respect to φ.

Taking φ = 1
2‖.‖

2 gives Dφ = 1
2‖.‖

2 and thus yields classical smoothness and strong-convexity
definitions. The idea of preconditioning is then to replace 1

2ηt
‖x− xt‖2 in (23) by Dφ(x, y) for a

convenient function φ which the server has access to, leading to:

xt+1 ∈ arg min
x∈Rd

{
〈∇F (xt), x〉+ ψ(x) +

1

ηt
Dφ(x, xt)

}
. (28)

With ηt = 1/LF/φ, the sequence generated by (28) satisfies:

Φ(xt)− Φ(x∗) ≤ LF/φ(1− κ−1
F/φ)t. (29)

Hence, the effectiveness of preconditioning hinges on how smaller κF/φ is compared to κF . Next
subsection presents how our large deviation bound of Hessians (Proposition 2) comes into place.
The better φ approximates F , the smaller κF/φ and the more efficient each iteration of (28) is.

10
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4.3. Main Results in Statistical Preconditioning

We furthermore assume that F (x) = f(x) + λ
2‖x‖

2 where f verifies Assumption 1 and λ >
0. Assume that the server has access to an i.i.d. sample ã1, ..., ãN of the same law as the aj’s
and to functions ˜̀

1, ..., ˜̀
N such that ˜̀′′

i = `′′. Define f̃(x) = λ
2‖x‖

2 + 1
N

∑N
i=1

˜̀
i(a
>
i x). The

preconditioner φ is chosen as, for some µ > 0:

φ(x) =
λ

2
‖x‖2 +

1

N

N∑
i=1

˜̀
i(ã
>
i x) +

µ

2
‖x‖2, (30)

Parameter µ > 0 is chosen such that, with high probability:

∀x ∈ Domψ,
∥∥∥∇2f̃(x)−∇2F (x)

∥∥∥
op
≤ µ. (31)

For such a µ > 0, we have: LF/φ ≤ 1, σF/φ ≥ (1 + 2µ/λ)−1 and κF/φ ≤ 1 + 2µ
λ . Recall that for

t = 0, 1, 2, ..., we have ‖xt − x∗‖2 ≤ C(1− κF/φ)t.

Proposition 3 (Statistical Preconditioning: Non-Isotropic Results) Assume that for all x ∈ Domψ,
‖x‖ ≤ R. Under Assumption 1, with probability 1− δ, we have:

sup
‖x‖≤R

∥∥∥∇2f̃(x)−∇2F (x)
∥∥∥ ≤ CRσ3

1

∥∥`′′∥∥
Lip

(
(deff(3) ln(d) + ln(1/δ))

√
deff(1) + ln(n/δ)

n

+

√
ln(1/δ) +

√
deff(1) ln(d)√
n

)
.

If µ is taken as this upper bound, then we control the rate of convergence in (29) with:

κF/φ = 1 + Õ

{
Rσ3

1‖`′′‖Lip

λ
max

(√
deff(1)√
n

,

√
deff(1)deff(3)

n

)}
, (32)

where Õ hides logarithmic factors in d, n and δ−1.

Contrast this with known results:

Remark 4 (Statistical Preconditioning: Isotropic Results) Still under Assumption 1, Hendrikx
et al. (2020) obtained:

κF/φ = 1 + Õ

{
Rσ3

1‖`′′‖Lip

λ
max

(√
d

n
,
d3/2

n

)}
. (33)

The only parameter required is an upper-bound on deff(3) and deff(1) in order to tune µ. Simply
knowing that data are distributed according to a highly non-isotropic subgaussian law can thus
improve the efficiency of statistical preconditioning, by decreasing drastically estimates of κF/φ
and the number of samples required in the preconditioning function.
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5. Non-Isotropic Randomized Smoothing

5.1. General Considerations on the Randomized Smoothing Technique

Consider an objective function f : Rd → R and a known convex regularizer ψ. f is assumed
to be convex and L-Lispchitz for some L > 0. We assume that Domψ ⊂ B(0, R). The following
minimization problem:

min
x∈Domψ

Φ(x) := f(x) + ψ(x) (34)

is potentially hard as f is not necessarily smooth. Moreover, f is assumed to be of the form:

∀x ∈ Rd, f(x) = Ea[F (x, a)], (35)

for some random variable a and F a convex function, Lipschitz in its first variable. The second
difficulty is thus that f may not be directly computable, and a stochastic framework is required.

Principle of the randomized smoothing technique and description of the algorithm: in order
to both use acceleration techniques and stochasticity of the gradients, the objective function f is
approximated by a smoothed version fγ , where γ > 0 is a parameter of the algorithm:

∀x ∈ Rd, fγ(x) = EZ [f(x+ γZ)] (36)

where Z is a random variable, following a smoothing ditribution µ. Scaman et al. (2018) consider
isotropic gaussians (µ = N (0, Id)), while Duchi et al. (2012) consider more general smoothing
distributions (encompassing uniform distributions on the euclidean ball or on the `1-ball). The
algorithm then:

1. Draws Z1,t, ..., Zm,t i.i.d. random variables according to the smoothing distribution µ, for m
a fixed integer.

2. Queries the oracle at the m points yt + utZi,t, i = 1, ...,m, yielding stochastic gradients
gi,t ∈ ∂F (yt + utZi,t, ai,t), where yt is the query point.

3. Computes the average gt = 1
m

∑m
i=1 gi,t.

4. Uses this estimated gradient to perform an accelerated stochastic and proximal gradient step.

For brevity, precise formulations of the algorithm and in particular of that last point are deferred to
Appendix E.

5.2. Isotropic Randomized Smoothing

We restrict ourselves to gaussian smoothing distributions µ. In the isotropic case µ = N (0, Id)
considered by Duchi et al. (2012); Scaman et al. (2018), the following crucial property holds, lead-
ing to a trade-off between precision and the smoothness parameter of fγ .

Proposition 4 (Properties of Isotropic Gaussian Smoothing) Let γ > 0 and assume that µ =
N (0, Id). Recall that fγ(x) = EZ∼N (0,Id)[f(x+ γZ)] and f is L-Lipschitz. We have:

∀x ∈ Rd, f(x) ≤ fγ(x) ≤ f(x) + γL
√
d, (37)

and fγ is L
γ -smooth. In order to reach an ε > 0 precision, one can take γ = ε

L
√
d

, for which fγ is

then L2
√
d

ε -smooth.

12
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Proposition 5 (Convergence Guarantees with Isotropic Smoothing) Take µ = N (0, Id) for the
smoothing distribution. For a smoothing parameter γ = Rd−1/4 and varying stepsizes in the
accelerated gradient descent (Appendix E), we have:

E[f(xT ) + ψ(xT )− f(x∗)− ψ(x∗)] ≤ 10LRd1/4

T
+

5LR√
Tm

, (38)

and this d1/4 factor cannot be improved: there exist objective functions f and dimension-free con-
stants such that we have an effective d1/4 dependency in the global dimension.

For m big enough, the dominant term is O(LRd1/4/T ), a dimensional dependency that cannot be
alleviated (Nemirovsky and Yudin, 1985; Duchi et al., 2012; Bubeck et al., 2019).

5.3. Non-Isotropic Randomized Smoothing

In order to improve over Proposition 5, as it is optimal on the class of Lipschitz functions of
the form (35), more assumptions are required in order to take advantage of an enventual underlying
small effective dimension. We restrict ourselves to empirical measures of subgaussian random
variables for ν in (35) and to an empirical risk assumption for linear models such as in Assumption 1.
We will hence assume that:

f(x) =
1

n

n∑
i=1

`i(a
>
i x), (39)

for convex functions `i, and Σ-subgaussian random variables ai. We furthermore assume that each
`i is L`-Lispchitz. Our interest in empirical measures lies in the fact that in practice one does not
have access to an infinite number of samples. Our assumptions encompass non-smooth losses, such
as `i(x) = max(0, a>i x − bi). As in Proposition 3, one can hope to replace the d1/4 factor in
Proposition 5 by an effective dimension dependent factor. A non-isotropic analog of Proposition 4
for a smoothing distribution µ of the form N (0,Σ′) is required. It is quite intuitive to conjecture
that adapting the smoothing distribution to the distribution of the data should indeed improve the
efficiency of the algorithm. An analysis in the appendix shows that an optimal Σ′ is

√
Σ, hence the

following proposition.

Proposition 6 (Properties of Non-Isotropic Gaussian Smoothing) Set µ = N (0,
√

Σ), γ > 0.
We have, with probability 1− δ:

∀x ∈ Rd, fγ(x) ≤ f(x) + γL`
√
σ3

1(deff(1) + ln(nδ−1))deff(2)

‖∇fγ‖Lip ≤ L`σ
1/2
1 deff(2)1/2

γdeff(1)

(
1 + C

√
deff(1) ln(d)+ln(δ−1)

N

)
.

(40)

In order to reach an ε > 0 precision, one can take γ = ε

L`
√
σ3

1deff(1)deff(2)
, for which fγ is then

σ2
1L

2
`deff(2)

ε
√
deff(1)

(1 + C

√
deff(1) ln(d)+ln(δ−1)

N )-smooth with probability 1− δ.

Proposition 7 (Convergence Guarantees with Non-Isotropic Smoothing) Taking µ = N (0,
√

Σ),
for time-varying stepsizes defined in Appendix E, we have with probability 1 − δ conditionally on

13



EVEN MASSOULIÉ

the random variables ai, ãj:

E[f(xT ) + ψ(xT )− f(x∗)− ψ(x∗)] ≤ Õ

LRσ1

√
deff(2)/

√
deff(1)

T

+
5L0R√
Tm

, (41)

where Õ hides logarithmic factors in d and δ−1.

(40) corresponds to (38), with d replaced by deff(2)2

deff(1) . Taking advantage of the underlying geometric
repartition of the data thus yields better convergence guarantees, if we assume a more restrictive
structure on the objective function. The knowledge of Σ is here required to apply the previous
considerations, whereas in the previous section only Tr(Σ) is needed. One may wonder to what
extent our assumptions on f could be generalized in order to obtain similar results.

6. Conclusion

Achieving effective dimension-dependent bounds thus yields several applications, and we be-
lieve many others than the ones we studied exist. Broadening the set of applications could be
achieved by: considering more general random variables, other models of effective dimension such
as spectral dimension (Durhuus, 2009) or doubling dimension (Karbasi et al., 2012), and infinite
dimension d but finite effective dimension such as in Appendix A.3 in order to take into account
functional spaces for instance. Also, efficient methods for testing Σ-subgaussianity do not seem to
exist, which should be an interesting problem to tackle.
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Appendix A. Covering Ellipsoids with Balls

A.1. Proof of Theorem 4

Dumer et al. (2004) prove the asymptotic version of our result. We use their method in order to
prove Theorem 4 in what follows.
Proof The proof involves three steps. In the first one, we cover ellipsoid Eb by direct products of
balls of lesser dimensions. Then, in Step 2, we derive a general upper bound. Finally, tuning our
parameters from the bound obtained in Step 2 leads to the desired result in Step 3. Steps 1 and 2 of
the proof are directly inspired by Dumer et al. (2004), while step 3 and the corollaries that follow
are the non-asymptotic improvements over their results.
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Step 1. Let t ∈ N, t ≤ d, 0 = n0 < n1 < ... < nt = d and Ii = {ni−1+1, ..., ni} for i = 1, ..., t, in
order to divide [d] into t subsets. Let si = ni − ni−1 for i = 1, ..., t. For some parameter h ∈ (0, 1)
let the set of numbers:

H = {ih, i = 1, ...,
⌊
h−1

⌋
+ 1}.

For any w ∈ [0, 1], let w̄ be the closest point in H exceeding w. Consider the following subset
of Ht:

U = {(u1, ..., ut) ∈ Ht|
t∑
i=1

ui ≤ 1 + th}

Let u ∈ U be fixed. For i = 1, ..., t, consider the ball of dimension si:

Bu
i =

x ∈ RIi |
∑
j∈Ii

x2
j ≤ ρ2

i

 , where ρ2
i = uib

2
ni−1+1.

Let Du be the direct product of all t balls:

Du =
t∏
i=1

Bu
i =

x ∈ Rd|
d∑

j∈Ii

x2
j/b

2
ni−1+1 ≤ ui, i = 1, ..., t

 .

We have:
Eb ⊂

⋃
u∈U

Du.

Indeed, for x ∈ Eb, let wi =
∑

j∈Ii x
2
j/b

2
j and take ui = w̄i. First, xIi ⊂ Bi:∑

j∈Ii

x2
j/b

2
ni−1+1 ≤

∑
j∈Ii

x2
j/b

2
j = wi ≤ ui.

Moreover, u ∈ U :
t∑
i=1

ui ≤
t∑
i=1

wi + h ≤ 1 + th.

Hence, for any x ∈ Eb, there exists u ∈ U such that x ∈ Du.

Step 2. Given Du for some u ∈ U , denoteH1(Du) its unit entropy. We have:

H1(Du) = inf
e∈(R+∗)t:

∑
i e

2
i≤1

t∑
i=1

Hei(Bu
i ),

whereHei(Bu
i ) is the ei-entropy of Bu

i . As Eb ⊂
⋃
u∈U Du, we have that:

H1(Eb) ≤ ln(|U |) + sup
u∈U

(
inf

e∈(R+∗)t:
∑
i e

2
i≤1

t∑
i=1

Hei(Bu
i )

)
.

We have:

|U | =
(
t+ bh−1c

t

)
:= N (t, h).

In order to estimate quantities such asHei(Bu
i ), we will need results on the ε-entropies of balls that

directly come from Rogers (1963):
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Lemma 5 For any dimension d > 0, any ball Bρ of radius ρ > 0 has a unit entropy H1(Bρ)
upper-bounded by:

H1(Bρ) ≤ n ln(ρ) + c ln(n+ 1), (42)

for some universal constant c > 0.

Using this, we obtain:

H1(Eb) ≤ ln(N (t, h)) + sup
u∈U

(
inf

e∈(R+∗)t:
∑
i e

2
i≤1

t∑
i=1

si ln(ρi/ei) + c ln(si + 1)

)
.

As ρ2
i = uib

2
ni−1+1, for fixed u ∈ U we have:

inf
e∈(R+∗)t:

∑
i e

2
i≤1

t∑
i=1

si ln(ρi/ei) = inf
e∈(R+∗)t:

∑
i εi≤1

1

2

t∑
i=1

si ln(uib
2
ni−1+1/εi)

≤ 1

2

t∑
i=1

si ln(ui) +
t∑
i=1

si ln+(bi)

≤ ln(γ)

t∑
i=1

si +

t∑
i=1

si ln+(bi),

where we note γ =
√

1 + th. Now consider b̂ ∈ Rd the vector with coefficients:

b̂j = bni−1+1, j ∈ Ii, i = 1, ..., t,

such that:
t∑
i=1

si ln+(bi) = Kb̂.

Furthermore, comparing Kb and Kb̂:

t∑
i=1

si ln+(bi) ≤
d∑
j=1

ln+(bj) +
t−1∑
i=1

∑
j∈Ii

ln(bni−1+1/bi)

≤ Kb +

t−1∑
i=1

(si − 1) ln(bni−1+1/bni).

The sum above ends at t−1 by definition ofm and of the interval It. We hence obtain the following
general upper-bound onH(Eb), concluding Step 2:

H(Eb) ≤ Kb + ln(N (t, s)) +

t∑
i=1

(si − 1) ln(bni−1+1/bni) + n ln(γ) + c

t∑
i=1

ln(si + 1). (43)
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Step 3. To provide the desired result, we tune h, n1, ..., nt, t, s1, ..., st in the following way. Let
h = 1/d. For simplicity, we denote m = mb =

∑
i:bi>1 1. We choose st = d − m and for

i = 2, ..., t− 1, we set si = s for some s ∈ N∗ to determine. We have s1 ≤ s, and t ≤ 1 + dm/se.
Let us bound the terms appearing in (43) from left to right.

ln(N (t, s)) ≤ ln((e(1 + t−1h−1))t) ≤ t(1 + ln(1 + d)).

Then, since s1 ≤ s2 = ... = st−1 = s, and by definition of m:

t−1∑
i=1

(si − 1) ln(bni−1+1/bni) = (s− 1) ln(b1/bm) ≤ (s− 1) ln(b1).

We chose h = 1/n such that, using γ =
√

1 + th:

n ln(γ) =
n

2
ln(1 + t/n) ≤ t/2.

Finally:

t∑
i=1

ln(si + 1) = (t− 1) ln(s+ 1) + ln(d−m+ 1).

Combining these inequalities leads to:

H1(Eb) ≤ Kb + C (t ln(d) + (s− 1) ln(b1)) .

As t ≤ 1 + dm/se:

H1(Eb) ≤ Kb + C ((1 + dm/se) ln(d) + (s− 1) ln(b1)) .

We now need to tune s. We take s of the form:

s =

⌈
m ln(d)

η

⌉
,

for some η > 0, leading to:

H1(Eb) ≤ Kb + C

(
(1 + dη/ ln(d)e) ln(d) + (

⌈
m ln(d)

η

⌉
− 1) ln(b1)

)
.

Using dxe ≤ 1 + 2x for any x ≥ 0:

H1(Eb) ≤ Kb + C

(
2η + 2

m ln(d)

η
ln(b1) + 2 ln(d)

)
.

Optimizing and taking η =
√
m ln(d) ln(b1) gives:

H1(Eb) ≤ Kb + C
(

4
√
m ln(d) ln(b1) + 2 ln(d)

)
,

concluding our proof.
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A.2. Proof of Corollary 1

We start by proving Corollay 1. Let ε > 0. Consider the ellipsoid Eb, where bi = ε−1σi/σ1,
i ∈ [d], and a covering C(Eb) of Eb by unit Euclidean balls. Theorem 4 gives us an upper
bound on the minimal size of such coverings. Let S = Diag(ε−1σi/σ1)i∈[d]. We then define
Nε = S−1C(Eb). By definition of Eb, x ∈ S1 if and only if Sx ∈ Eb, so that Nε consists of
vectors in S1. Moreover, for each y ∈ S1, by definition of C(Eb), there exists x ∈ Nε such that
‖Sy − Sx‖2 ≤ 1. This is precisely the condition required.

We now derive an upper bound onHε in terms of deff(r). Let mε be given, so that:

ε−1σmε/σ1 > 1 ≥ ε−1σmε+1/σ1.

Given deff(r), the value of σmε is maximized by taking the values of σ2
2/σ

2
1, . . . , σ

2
mε/σ

2
1 all equal

to (deff(r)− 1)/(mε − 1). We thus find that necessarily,

ε−
2
r (deff(r)− 1) ≥ mε − 1.

We also have the trivial bound mε − 1 ≤ d − 1. Next, we note that, for fixed mε, the value of∑mε
i=1 ln(ε−1σi/σ1) is maximized again, using concavity of ln, by taking σ2/r

2 /σ
2/r
1 , . . . , σ

2/r
mε /σ

2/r
1

all equal to (deff(r)− 1)/(mε − 1). This then evaluates to:

mε∑
i=1

ln(ε−1σi/σ1) = ln(ε−1) +
mε − 1

2/r
ln(ε−

2
r (deff(r)− 1)/(mε − 1))

We then use the fact that x → x ln(A/x) is increasing over [0, A/e]. Here, x plays the role of
mε − 1, and A the role of ε−

2
r (deff(r)− 1). We end up with:

mε∑
i=1

ln(ε−1σi/σ1) ≤ ln(ε−1)+
min(d− 1, ε−

2
r (deff(r)− 1)/e)

2/r
ln(max(e, ε−

2
r (deff(r)−1)/(d−1))).

A.3. Ellipsoids in Infinite Dimension

We here present results on the unit entropy of ellipsoids in infinite dimension, which we believe
to be of interest. More precisely, consider the space V = `2(R) = {x ∈ RN∗ |

∑
i≥1 x

2
i <∞} with

the classical euclidean topology. We have ‖x‖2 =
∑

i≥1 x
2
i for x ∈ V . Note however that what

follows can naturally be extended to any separable Hilbert space.

Definition 9 For b ∈ V such that b1 ≥ b2 ≥ ... > 0, we define the ellipsoid Eb as:

Eb =

x ∈ V :
∑
i≥1

x2
i

b2i
≤ 1

 . (44)

We then define the ε-entropy and unit-entropy of such an ellipsoid as in the finite-dimension case.
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Theorem 5 (Unit Entropy of Ellipsoids in Infinite Dimension) Let Eb ⊂ V an ellipsoid. Define
the following quantities:

Kb =
∑

i≥1 ln+(bi),

mb =
∑

i≥1 1Ibi≥1/2

Mb = inf{n ≥ 1 :
∑

i≥n+1 b
2
i ≤ 1/2}

Then, we have for some universal constant c > 0:

H1(Eb) ≤ Kb + c

(√
ln+(b1) ln(Mb)mb + ln(Mb)

)
. (45)

The proof follows the same steps as the one in finite dimension, replacing the global dimension
in Step 1 by Mb. The interest of ellipsoids in infinite dimension lies in the appearance of another
notion of dimension than the one we studied: the power-law norm decay of a vector v ∈ V .

Definition 10 (Power-Law Norm Decay) A vector x ∈ V is of power-law norm decay d > 0 if:∑
i≥n+1

x2
i = O

(
n−2/d

)
.

An ellipsoid Eb is said of power-law norm decay d if b is of power-law norm decay d.

The power-law norm decay d of a vector λ ∈ V is closely related to the spectral dimension of
infinite graphs or operators on Hilbert spaces: (λ)i∈N∗ usually corresponds to the eigenvalues of the
Laplacian of the graph in the first case, or to the eigenvalues of the operator in the second case. The
following corollary illustrates how this notion is relevant.

Corollary 2 (ε-Entropy and Power-Law Norm Decay) Let Eb ⊂ V be an ellipsoid of power-law
norm decay d > 0. Then, when ε→ 0, we have:

Hε(Eb) ≤ d ln(ε−1)2(1 + o(1)). (46)

Proof We have for any ellipsoid Eb of power-law norm decay d:

mb/ε ≤Mb/ε = O(ε−d/2). (47)

Remark thatHε(Eb) = H1(Eb/ε). Then, using Theorem 5, and the previous consideration (47), we
obtain our result.

This needs to be put in light with the ε-entropy of the unit ball in dimension d <∞, that behaves
as d ln(ε−1) when ε→ 0. Despite the presence of ln(ε−1)2 instead of ln(ε−1), we have a linearity
in this expression in terms of d.

Appendix B. Proof of Theorems 2 and 1 and General Considerations on these Large
Deviation Bounds

B.1. Proof of Theorem 2: Bound Without Centering

In order to have lighter notations, we write d′eff = deff(r) in what follows. For all j ≥ 0, let
Nj be a covering of S1 satisfying the properties of Corollary 1 for εj = 2−j . For all x ∈ S1, let
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Πjx be some point in Nj such that (15) holds. By convention we take Π0x = 0. Then for all
(x1, . . . , xr) ∈ Sr, using the chaining approach, we write

1

n

∑
i∈[n]

∏
k∈[r]

fk(a
>
i xk) =

∑
j≥0

1

n

∑
i∈[n]

∏
k∈[r]

fk(a
>
i Πj+1xk)−

∏
k∈[r]

fk(a
>
i Πjxk)


=
∑
j≥0

∑
k∈[r]

1

n

∑
i∈[n]

[fk(a
>
i Πj+1xk)− fk(a>i Πjxk)]

×

{
k−1∏
`=1

f`(a
>
i Πj+1x`)×

r∏
`=k+1

f`(a
>
i Πjx`)

}
.

Let j ≥ 0 and k ∈ [r] be fixed. Consider a term of the form

Z =
1

n

∑
i∈[n]

Zi,

with

Zi =

k−1∏
`=1

f`(a
>
i u`)[fk(a

>
i uk)− fk(a>i vk)]

r∏
`=k+1

f`(a
>
i v`), (48)

where u` ∈ Nj , v` ∈ Nj+1, and ‖uk−vk‖Σ ≤ σ1εj , where we defined εj := 2−j+1. By the triangle
inequality, for all x` ∈ S1, letting u` = Πjx` and v` = Πj+1x`, these assumptions are satisfied.
Note also that ‖u`‖Σ and ‖v`‖Σ are upper-bounded by σ1.
Clearly, |Zi| ≤ 2B. Also,

|Zi| ≤ (B/Bk)|a>i (uk − vk)|
≤ (B/Bk)‖ai‖Σ−1‖uk − vk‖Σ.

We introduce the new parameter RΣ−1 , that is an upper bound on the norms ‖ai‖Σ−1 . Note that, for
the Gaussian case where Σ is the covariance matrix of the Gaussian vector ai, the natural scaling
assumption is to take:

RΣ−1 = Θ(
√
d).

As we don’t want any dependency on the overall dimension d, we will aim at making this quantity
disappear. We then introduce the notation

Pj,k := min(2B/εj , (B/Bk)σ1RΣ−1).

For each Zi and t > 0, using that ‖uk − vk‖Σ ≤ εj , we then have:

P(Zi ≥ εjσr1t) ≤ P(|f`(a>i u`)| ≥ σ1t
1/r for some ` < k,

or |fk(a>i uk)− fk(a>i vk)| ≥ σ1εjt
1/r,

or |f`(a>i v`)| ≥ σ1t
1/r for some ` > k)

≤ 2re−t
2/r/2 if t ≤ σ−r1 Pj,k

= 0 if t > σ−r1 Pj,k,

23



EVEN MASSOULIÉ

We note Pj = 2B
εj
≥ Pj,k. The previous bounds on the tail of Zi’s distribution allow to bound

exponential moments of Zi. Fix some θ > 0. Then

Ee(θ/n)σ−r1 Zi/εj ≤ 1 + θ
n

∫∞
0 e(θ/n)yP(σ−r1 Zi/εj ≥ y)dy

≤ 1 + θ
n2r

∫ σ−r1 Pj,k
0 e(θ/n)ye−y

2/r/2dy.

We now fix θj,k > 0 such that, for all y ∈ [0, σ−rPj,k], one has:

(θj,k/n)y ≤ 1

4
y2/r,

or equivalently, we assume (recall that r ≥ 2):

θj,k
n
≤ 1

4
(σ−r1 Pj,k)

2/r−1. (49)

This entails the bound:

Ee(θj,k/n)σ−r1 Zi/εj ≤ 1 +
θj,k
n

2r

∫ ∞
0

e−y
2/r/4dy =: 1 +

θj,k
n
cr,

where we introduced notation cr := 2r
∫∞

0 e−y
2/r/4dy. Thus, for θj,k > 0 satisfying (49), one has:

Eeθj,kσ
−r
1

1
n

∑
i∈[n] Zi/εj ≤ (1 + θj,kcr/n)n ≤ eθj,kcr . (50)

The number of possible choices for u` ∈ Nj and v` ∈ Nj+1 involved in the definition of Zi is
upper-bounded by

|Nj+1|r+1 ≤ e(r+1)Hj+1 ,

where Hj is defined in (16). Thus for any tj,k > 0, the probability that for some choice of u`, v` in
the corresponding nets, one has

1

n

∑
i∈[n]

Zi ≥ εjσrtj,k

is upper bounded by:
e(r+1)Hj+1 inf

θ∈[0,n
4

(σ−rPj,k)2/r−1]
e−θtj,k+θcr .

We now take θj,k =
n(σ−r1 Pj,k)2/r−1

4 , and :

tj,k = cr +
(r + 1)Hj+1 + λ+ 2 ln(j + 1)

θj,k

for some λ ≥ 0. This upper bound is then no more than (1 + j)−2e−λ. We now use a union bound
over j ≥ 0 and k ∈ [r] to obtain:

P(Y ≥ σr
∑
j≥0

∑
k∈[r]

εjtj,k) ≤ e−λ r
∑
j≥0

(1 + j)−2 = r
π2

6
e−λ.
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Let us bound the sum appearing in this probability. Fix some k ∈ [r].∑
j≥0

εjtj,k =
∑
j≥0

2−j+1

[
cr +

(r + 1)Hj+1 + λ+ 2 ln(j + 1)

θj,k

]
(51)

with θj,k ≥ n
4

(
σ−r1 Pj

)2/r−1
=
(
σ−r1 2B

)2/r−1
2−j+j

2
r , for Pj = 2B/εj . Moreover, for j∗ =

r
2 ln2

(
e d−1
d′eff−1

)
, we have:

j ≤ j∗ =⇒ Hj ≤ j ln(2) + 2j
2
r
d′eff − 1

e
+ c

[
ln(d) +

√
j ln(d)mj

]
,

j > j∗ =⇒ Hj ≤ j ln(2) + (d− 1) ln

(
2j

2
r
d′eff − 1

d− 1

)
+ c

[
ln(d) +

√
j ln(d)mj

]
,

with mj ≤ 1 + 2j
2
r (d′eff − 1).

The easy part of (51) to study:∑
j≥0

2−j+1

[
cr +

λ+ 2 ln(j + 1)

θj,k

]
≤ Arλ+Br

n
4

(
σ−r1 B

)2/r−1

Now, let us bound H :=
∑

j>0 2−jHj/ε1−2/r
j =

∑
j>0 2−j

2
rHj .∑

1≤j≤j∗
2−j

2
rHj ≤

∑
1≤j≤j∗

2−j
2
r

(
j ln(2) + 2j

2
r
d′eff − 1

e
+ c

[
ln(d) +

√
j ln(d)2j

2
r d′eff

])
≤ Crj∗d′eff +Dr

√
ln(d)d′eff + Er ln(d).

Using that j∗ is big when d′eff � d, we bound the sum for j > j∗:∑
j>j∗

2−j
2
rHj ≤

∑
j>j∗

2−j
2
r

(
j ln(2) + (d− 1) ln

(
2j

2
r
d′eff − 1

d− 1

)
+ c

[
ln(d) +

√
j ln(d)mj

])
≤ F ′r

∑
j>j∗

j2−j
2
r d+G′r

∑
j>j∗

2−j
2
r

√
j2j

2
r ln(d)

≤ Frd′eff ln

(
d

d′eff

)
+Gr,

where we used that 2j
∗ 2
r = e d−1

d′eff−1
and

∑
j>k j2

−j 2
r ≤ Ck2−k

2
r . All in one, that leaves us with the

following bound on (51):

∑
j≥0

εjtj,k ≤ cr
Arλ+Br + Crd

′
eff +Dr

√
ln(d)d′eff + Er ln(d) + Frd

′
eff ln

(
d
d′eff

)
+Gr

n
4

(
σ−r1 B

)2/r−1
.

In a more synthetic formulation:

∑
j≥0

εjtj,k ≤ Cr

(
1 +

d′eff ln(d) + λ

n
4

(
σ−r1 B

)2/r−1

)
. (52)
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For some suitable constant Cr the following holds, by summing previous considerations for 1 ≤
k ≤ r. One has for all λ > 0 that:

P
(
Y ≥ σr1Cr

(
1 +

deff(r) ln(d) + λ

n
(σ−r1 B)1−2/r

))
≤ e−λ rπ

2

6
. (53)

B.2. Proof of Theorem 1: Bound With Centering

We now look for bounds on:

Y ′ := sup
x1,...,xr∈S1

1

n

∑
i∈[n]

{
r∏

k=1

fk(a
>
i xk)− E

r∏
k=1

fk(a
>
1 xk)

}
. (54)

Fixing j ≥ 0, k ∈ [r], we again consider the random variables Zi as previously defined in (48).
Write:

Ee(θ/n)σ−r1 [Zi−EZi]/εj = 1 +

(
θ

n

)2

E
[
(ε−1
j σ−r1 (Zi − EZi))2F ((θ/n)(ε−1

j σ−r1 (Zi − EZi)))
]
,

where :
F (x) := x−2[ex − x− 1] ≤ e|x|.

Thus using this bound and the inequality xy ≤ x2 + y2:

Ee(θ/n)σ−r1 [Zi−EZi]/εj ≤ 1 +

(
θ

n

)2 [
E((ε−1

j σ−r1 (Zi − EZi))4 + Ee2(θ/n)σ−r1 |Zi−EZi|/εj
]
.

By the sub-gaussian tail assumption, E(ε−1
j σ−r1 (Zi−EZi))4 is bounded by a constant κr dependent

on r. By the same arguments as above, for:

θ

n
≤

(σ−r1 Pj,k)
2/r−1

8
,

then Ee2(θ/n)σ−r1 |Zi−EZi|/εj is also bounded by another constant κ′r dependent on r. Indeed, by the
sub-gaussian tail assumption, |EZi| ≤ σr1εjsr for some r-dependent constant, and we can then use
the upper bound:

Ee2θ/nσ−r1 |Zi−EZi|/εj ≤ e2(θ/n)sr [1 + θ
n

∫∞
0 e2(θ/n)y[P(Zi ≥ yσr1εj) + P(−Zi ≥ yσr1εj)]dy]

≤ e2(θ/n)sr [1 + θ
n2r

∫ σ−rPj,k
0 e2(θ/n)y−y2/r/2dy].

Thus the probability that for some choices of u`, v`, ` ∈ [r] in the suitable ε-nets, one has:

1

n

∑
i∈[n]

Zi − EZi ≥ σr1εjtj,k

is upper-bounded, for all θ ∈ [0, n(σ−r1 Pj,k)
2/r−1/8] by:

exp
(
(r + 1)Hj+1 − θtj,k + κ′′rθ

2/n
)
,
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where we defined κ′′r = κr + κ′r. Let now θj,k = min(n, n(σ−r1 Pj,k)
2/r−1/8), and :

tj,k = κ′′r
θj,k
n

+
1

θj,k
[(r + 1)Hj+1 + λ+ 2 ln(j + 1)],

where λ > 0 is a free parameter. We have, for tj =
∑

k tj,k, if all θj,k have the same value θj :

tj ≤ cr
(
θj
n

+
(r + 1)Hj+1 + λ+ 2 ln(j + 1)

θj

)
We now take θj = min

(
n(σ−r1 Pj,k)2/r−1

8 ,
√
n [(r + 1)Hj+1 + λ+ 2 ln(j + 1)]

)
, leading to:

εjtj ≤ arε2/r
j

(Bσ1)1− 2
r

n
[Hj+1 + λ+ 2 ln(j + 1)] + brεj

√
Hj+1 + λ+ 2 ln(j + 1)

n
.

The first term is treated in the non-centered case:

arε
2/r
j

(Bσ1)1− 2
r

n
[Hj+1 + λ+ 2 ln(j + 1)] ≤ Ar

1

n

d′eff ln(d) + λ(
σ−r1 B

)1−2/r
.

The second one follows the same lines:

brεj

√
Hj+1 + λ+ 2 ln(j + 1)

n
≤ b′rεj

1√
n

(√
Hj+1 +

√
λ
)
.

In the same way that we proved
∑

j εjHj ≤ Cter deff(r) ln(d), we have that, for C > 0 a constant:∑
j≥0

εj
√
Hj ≤ C

√
deff(1) ln(d),

giving us: ∑
j≥0

brεj

√
Hj+1 + λ+ 2 ln(j + 1)

n
≤ Br

√
λ+

√
deff(1) ln(d)√
n

.

We then have:

P

Y ′ ≥ σr∑
j≥0

εjtj

 ≤ rπ2

6
e−λ,

for: ∑
j≥0

εjtj ≤ Ar
1

n

d′eff ln(d) + λ(
σ−r1 B

)2/r−1
+Br

√
λ+

√
deff(1) ln(d)√
n

.

for some suitable constant Ar dependent only on r. We hence end up with the same computation as
in the non-centered case (up to constants), leading to the following result. For suitable constant C ′r,
for all λ > 0, one has that:

P

(
Y ′ ≥ C ′rσr1

(
1

n

λ+ d′eff ln(d)(
σ−r1 B

)2/r−1
+

√
λ+

√
deff(1) ln(d)√
n

))
≤ rπ

2

6
e−λ, (55)

Y ′ defined in (54).
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B.3. Proof of Remark 1

Lemma 1 (Maximum of n i.i.d. Subagaussian Random Variables) Let a1, ..., an be i.i.d. Σ-subgaussian
random variables. Denote R = maxi=1,...,n ‖ai‖. There exists a (universal) constant C > 0 such
that, with probability 1− δ:

R2 ≤ 4σ2
1

(
ln(δ−1) + 2deff(1) + ln(n)

)
. (56)

Proof Let t ≥ 0. Using a classical Markov-Chernoff approach, for some λ > 0:

P(R ≥ t) ≤ nP(‖a1‖2 ≥ t2)

≤ ne−λt2/2Eeλ‖a1‖2/2.

Then, writing a1 =
∑d

j=1 ejσjXj where (e|)j is an orthonormal basis of eigenvectors of Σ, and
X1, ..., Xd are i.i.d. standard gaussian variables N (0, 1), yields, using independence:

Eeλ‖a1‖2/2 =
d∏
j=1

Eeλσ
2
jX

2
j /2

=
d∏
j=1

1√
1− λσ2

j

,

where we assume that λ < σ−2
1 . We take λ = 1

2σ2
1

. Now, using that 1√
1−u ≤ e2u for 0 ≤ u ≤ 1/2

yields for this particular λ:

Eeλ‖a1‖2/2 ≤ e
2
∑d
j=1

σ2
j

σ2
1

= e2deff(1).

We thus get P(R ≥ t) ≤ n exp(− t2

4σ2
1

+ 2deff(1)). For δ ∈ (0, 1), we hence have that, with
probability 1− δ:

R2 ≤ 4σ2
1(ln(δ−1) + 2deff(1) + ln(n)). (57)

B.4. Eventual Tightness

B.4.1. WITHOUT CENTERING

We want to derive possible tightness for our probability bounds. Let A1, ..., An i.i.d. centered
gaussians of covariance Σ. Then, for x1, ..., xr ∈ S:

E

[
r∏

k=1

A>1 xk

]
≤ O(σr1).
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We then take x1 = ... = xr = A1/‖A1‖ in order to have:

1

n

∑
i

r∏
k=1

A>i xk =
‖A1‖r

n
+O(σr1) (58)

= O

(
σr1deff(1)r/2

n
+ σr1

)
. (59)

Cotrast this we the results obtained in Theorem 2: we require n to be of order deff(r) ln(d)deff(1)r/2−1

(Remark 1) for our bound to be of order O(1). Considerations just above, and in particular (59) re-
quire deff(1)r/2 = O(n). Our lower and upper bounds match only up to a factor deff(r) ln(d)

deff(1) , that
should not be too large. However, our dependency in n seems optimal (1/n). We believe that
deff(r) ln(d) instead of deff(1) is is simply an artifact of the proof.

B.4.2. WITH CENTERING

We now consider the centered case. The non-centered case suggest that we are not tight in
terms of dimension-dependency, we thus restrict ourselves to the dependency in n. Consider the
same random variables A1, ..., An as above. Let, for x1, ..., xk ∈ B:

X =
1

n

n∑
i=1

(
r∏

k=1

A>i xk − E

[
r∏

k=1

A>i xk

])
. (60)

We have:

E[X2] =
1

n
E

( r∏
k=1

A>1 xk − E
r∏

k=1

A>1 xk

)2
 .

We thus observe a dependency in 1/n on the second moment. That leads to an optimal dependency
in n in our centered bound. Indeed, we have a 1/

√
n, but we cannot gain any order of magnitude: if

we have something of the form P(X ≥ γ λ+β
nα ) ≤ e−λ for all λ > 0, we get E[X2] ≤ γ2β2

n2α , leading
to an optimal exponent α of 1/2, which we have.

Appendix C. Bounding Random Tensors

C.1. General Considerations: Isotropic Bound VS Non-Isotropic Bound

We wish to bound the operator norm of tensors of the form T = 1
n

∑n
i=1 Ti, where T1, ..., Tn

are i.i.d. subgaussian random tensors of rank 1 and order p, using a dependency in an effective
dimension rather than the global one. We have:

‖T‖op =
1

n
sup

x1,...,xp∈S

n∑
i=1

p∏
k=1

〈ai, xk〉 (61)

=
1

n
sup
x∈S

n∑
i=1

〈ai, x〉p. (62)
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Bubeck et al. (2020) use tools from Paouris et al. (2017) and version (62) of the operator norm in
the following way: for fixed x ∈ S,

∑n
i=1〈ai, x〉p is bounded by cpσ

p
1

√
τ
n with probability c′pe

−c′′pτ .
Then, a union bound on N a 1

2p -net of balls (N of size (1 + 4p)d) covering S is made. Finally, as
‖T‖op ≤ maxx∈N 〈T, x⊗p〉+ 1

2‖T‖op yields the following.

Proposition 8 (Isotropic Bound on Random Tensors) Let T1, ..., Tn be i.i.d. random tensors of
order p, rank 1, symmetric and σ2

1Id-subgaussian. Let T = 1
n

∑n
i=1 Ti. Then, for some universal

constant Cp > 0 we have with probability 1− δ:

‖T − ET‖op ≤ Cpσ
p
1

√
d+ ln(δ−1)

n
. (63)

However, if we desire to use the non-isotropic properties of the random variables a1, ..., an, some
changes need to be done. Still using formulation (62), we get:

‖T‖op =
1

n
sup
x∈S

n∑
i=1

〈
√

Σ
−1
ai,
√

Σx〉p (64)

=
1

n
sup

√
Σ
−1
y∈S

n∑
i=1

〈
√

Σ
−1
ai, y〉p. (65)

(65) can then be upper-bounded with high probability in the same way as in the isotropic case. Then,
instead of covering S with balls of radii εp = 1/(2p), we need to cover

√
ΣS with these balls. Our

hope would be that the logarithm of the size of this εp-net would be linear in an effective dimension
rather than a global dimension. However, as highlighted in Corollary 1, that is the case only if εp is
not too small in front of deff(r)−1

d−1 for any effective dimension as in Theorem 2.

Proposition 9 (Non-Isotropic Bound on Random Tensors, Version 1) Let T1, ..., Tn be i.i.d. ran-
dom tensors of order p, rank 1, symmetric and Σ-subgaussian. Let T = 1

n

∑n
i=1 Ti. Assume that

their exists some r ∈ N∗ such that:

(2p)
2
r
deff(r)− 1

d− 1
≤ e. (66)

Then, for some universal constant Cp,r > 0 we have with probability 1− δ:

‖T − ET‖op ≤ Cp,rσ
p
1

√
deff(r) + ln(d) + ln(δ−1)

n
. (67)

Corollary 3 Let T1, ..., Tn be i.i.d. random tensors of order p, rank 1, symmetric and Σ-subgaussian.
Let T = 1

n

∑n
i=1 Ti. Then, for some universal constant Cp > 0 we have with probability 1− δ:

‖T − ET‖op ≤ Cpσ
p
1

√
deff(1) + ln(d) + ln(δ−1)

n
. (68)

Using Theorem 1, the chaining argument uses an infinite sequence of ε-coverings and gives the
following.

30



EFFECTIVE DIMENSION AND CONCENTRATION

Proposition 10 (Non-Isotropic Bound on Random Tensors, Version 2) Let T1, ..., Tn be i.i.d. ran-
dom tensors of order p, symmetric and Σ-subgaussian. Let T = 1

n

∑n
i=1 Ti. With probability 1− δ

for any δ > 0, we have:

‖T‖op ≤ cpσ
p
1

(
1 +

deff(p) ln(d) + ln(δ−1)

n
(deff(1) + ln(δ−1))p/2−1

)
,

and:

‖T − ET‖ ≤ C ′pσ
p
1

(
deff(p) ln(d) + ln(δ−1)

n
(deff(1) + ln(δ−1))p/2−1

+

√
ln(δ−1) +

√
deff(1) ln(d)√
n

)
.

C.2. Proof of the Isotropic Large Deviation Bound (Proposition 8)

Let x ∈ S. Let us bound deviations from its mean with high probability of Yx =
∑n

i=1〈ai, x〉p.
〈ai, x〉 for i = 1, ..., n are i.i.d. distributed according to N (0, σ2

1). From Paouris et al. (2017) (their
Theorem 1.1, concentration of `p norms of gaussians), we get:

P
(

1

n
(Yx − EYx) ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ .

Let N be 1
2p -covering of S. We know that one can achieve |N | ≤ (1 + 4p)d. An union bound on

N yields:

P
(
∃x ∈ N :

1

n
(Yx − EYx) ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ+d ln(1+p),

giving:

P
(

sup
x∈N
〈(T − ET ), x⊗p〉 ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ+d ln(1+p).

Now, let y ∈ S. There exists x ∈ N such that ‖x− y‖ ≤ 1/(2p).

〈(T − ET ), y⊗p〉 ≤ 〈(T − ET ), x⊗p〉+ ‖T − ET‖op

∥∥(x− y)⊗p
∥∥

≤ sup
x∈N
〈(T − ET ) +

1

2
‖T − ET‖op,

as we have ‖(x− y)⊗p‖ ≤ p‖x− y‖ ≤ 1/2. We then have our result by taking the supremum over
all x ∈ S.

C.3. Proof Of the Non-Isotropic Large Deviation Bounds

Here, the ai’s are assumed to be Σ-subgaussian. We begin by proving Proposition 9. Remind
that we have:

‖T‖op =
1

n
sup
x∈S

n∑
i=1

〈
√

Σ
−1
ai,
√

Σx〉p

=
1

n
sup

√
Σ
−1
y∈S

n∑
i=1

〈
√

Σ
−1
ai, y〉p,
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and the
√

Σ−1ai, i = 1, ..., n are i.i.d. distributed according to N (0, Id). Denote as above Zy =∑n
i=1〈
√

Σ
−1
ai, y〉p, for any y ∈

√
ΣS. We know that for such y, we have ‖y‖ ≤ σ1. Using again

results from Paouris et al. (2017) for y ∈
√

ΣS:

P
(

1

n
(Zy − EZy) ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ .

Let now N be an 1/(2p)-covering of
√

ΣS. We thus have:

P
(

sup
x∈N
〈(T − ET ), x⊗p〉 ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ+ln(|N |).

Let us use Corollary 1 in order to bound ln(|N |):

ln(|N |) ≤ C ′p,r
[
min

(
d− 1, (2p)2/r(deff(r)− 1)/e

)
ln

(
max

(
e, (2p)2/r deff(r)− 1

d− 1

))
+ ln(d) + deff(r)

]
,

and thus, as we assume that (2p)2/r ≤ e d−1
deff(r)−1 , we have:

ln(|N |) ≤ C ′p,r
(

(2p)2/r deff(r)

e
+ ln(d)

)
.

Back to our probabilistic bound:

P
(

sup
x∈N
〈(T − ET ), x⊗p〉 ≥ cpσp1

√
τ

n

)
≤ c′pe−c

′′
pτ+Cp,r(deff(r)+ln(d)),

yielding the stated result, using the same argument as in the isotropic case: for some constant Cp,r,
for any δ > 0, with probability 1− δ:

‖T − ET‖op ≤ Cp,r

√
deff(r) + ln(d) + ln(δ−1)

n
.

Let now take r = 1. If (2p)2 ≤ e d−1
deff(1)−1 , we have with probability 1− δ:

‖T − ET‖op ≤ Cp,1

√
deff(1) + ln(d) + ln(δ−1)

n
.

If (2p)2 > e d−1
deff(1)−1 , we have:

‖T − ET‖op ≤ Cp,∞

√
d+ ln(d) + ln(δ−1)

n
.

In the latter case, since d ≤ cpdeff(1), we still have

‖T − ET‖op ≤ C
′
p

√
deff(1) + ln(d) + ln(δ−1)

n
.

Finally, with Cp = max(C ′p, Cp,1), in both cases, with probability 1− δ

‖T − ET‖op ≤ Cp

√
deff(1) + ln(d) + ln(δ−1)

n
.

Proving Proposition 10 simply requires to use Theorems 2 and 1, and Remark 1.
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Appendix D. Statistical Preconditioning

D.1. Large Deviation of Hessians and Proposition 2

Proof We first apply Theorem 1 and Remark 1 with f1 = f2 = Id and f3 = `′′ − `′′(0), giving a
bound on the following quantity:

M := sup
x,y,z∈B

1

n

n∑
i=1

{
(a>i x)(a>i y)(`′′(a>i z)− `′′(0))− E

[
(a>i x)(a>i y)(`′′(a>i z)− `′′(0))

]}
.

Now, notice that: ∥∥Hx − H̄x

∥∥
op
≤M +N,

where

M ′ := sup
x,y∈B

`′′(0)

n

n∑
i=1

{
(a>i x)(a>i y)− E

[
(a>i x)(a>i y)

]}
.

Again, M ′ can be bounded by Theorem 1 and Remark 1.

D.2. Bregman Gradient Descent: Algorithms and Theoretical Guarantees

Problem Formulation: As mentioned in Section 4.3, we aim at solving the following problem:

min
x∈Rd

Φ(x) := F (x) + ψ(x), (69)

for some convex regularizer ψ on a convex domain Domψ, and F σF/φ relatively strongly convex
and LF/φ relatively smooth with respect to some strongly convex function φ (named the precondi-
tioner). We still denote κF/φ =

σF/φ
LF/φ

their relative condition numbers.

Bregman Gradient Descent: The most classical algorithm in order to solve this optimization prob-
lem is Bregman Gradient Descent or Mirror Gradient Descent. The algorithm is the following, as
sketched in Section 4.3.

1. Start from x0 ∈ Domψ;

2. For t ∈ N and some stepsize ηt > 0, perform the update:

xt+1 ∈ arg min
x∈Rd

{
〈∇F (xt), x〉+ ψ(x) +

1

ηt
Dφ(x, xt)

}
. (70)

For φ = ‖.‖2
2 , we get classical proximal gradient descent.

Proposition 11 (Bregman Gradient Descent: Convergence Guarantees) For stepsizes ηt = 1
LF/φ

and x∗ the minimizer, (70) yields:

Dφ(xt, x
∗) ≤

(
1− κ−1

F/φ

)t
Dφ(x0, x

∗).

If φ is µ-strongly convex, one has:

‖xt − x∗‖2 ≤
1

µ

(
1− κ−1

F/φ

)t
Dφ(x0, x

∗).
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Proof For simplicity, we only assume that ψ = 0 (no regularization). Let Vt(x) = 〈∇F (xt), x〉+
1
ηt
Dφ(x, xt). One has ∇Vt(x) = ∇F (xt) + 1

ηt
(∇φ(x)−∇φ(xt)). As∇Vt(xt+1) = 0, we have:

ηt∇F (xt) +∇φ(xt+1)−∇φ(xt) = 0.

Moreover:
Vt(x

∗)− Vt(xt+1) = Dφ(xt+1, x
∗),

leading to:

Dφ(xt+1, x
∗) = ηt∇F (xt)

>(x∗ − xt+1) +Dφ(xt, x
∗)−Dφ(xt+1, xt).

In order to study ηt∇F (xt)
>(x∗ − xt+1), we write:

ηt∇F (xt)
>(x∗ − xt+1) = ηt∇F (xt)

>(x∗ − xt) + ηt∇F (xt)
>(xt − xt+1).

We have ηt∇F (xt)
>(x∗−xt) = ηt(F (x∗)−F (xt)−DF (xt, x

∗)). For the second term, we remark
that;

Dφ(xt+1, xt) +Dφ(xt, xt+1) = 〈∇φ(xt)−∇φ(xt+1), xt − xt+1〉
= ηt〈∇F (xt), xt − xt+1〉.

Plugging all this leads to:

Dφ(xt+1, x
∗) = Dφ(xt, x

∗)− ηt(DF (x∗, xt) + F (xt)− F (x∗)) +Dφ(xt, xt+1)

≤ (1− ηtσF/φ)Dφ(x∗, xt) +Dφ(xt, xt+1)− ηtDF (xt, x
∗).

Finally, using Bregman co-coercivity yields Dφ(xt, xt+1) ≤ ηtDF (xt, x
∗) for ηt = 1/LF/φ, hence

the result.

Acceleration and SPAG Algorithm: although Dragomir et al. (2019) prove that the rate of conver-
gence (1−κF/φ) above is optimal, Hendrikx et al. (2020) propose an acceleration (SPAG algorithm)
in the sense that asymptotically, one can reach a rate of convergence (1−√κF/φ). Using stochastic
gradients is also possible (Dragomir et al., 2021), with or without variance reduction.

D.3. Bounding Condition Numbers and Consequences on Statistical Preconditioning

For µ > 0 such that ∀x ∈ Domψ,
∥∥∇2f(x)−∇2F (x)

∥∥
op
≤ µ, we have, for all x ∈ Domψ

and for φ(x) = f(x) + ‖x‖2
2 (inequalities are taken in terms of symmetric matrices):

∇2F (x) ≤ ∇2f(x) + µId = ∇2φ(x),

giving us LF/φ ≤ 1. Then, for relative strong*convexity, as F is λ-strongly convex:

∇2f(x) + µId ≤ ∇2F (x) + 2µId

≤ (1 + 2µ/λ)∇2F (x).

Hence, we obtain:

κF/φ ≤ 1 +
2µ

λ
. (71)

Proposition 3 bounds this µ with high probability using large deviations on Hessians, in order to
apply these considerations.
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D.4. Assumption 1 Encompasses Logistic and Ridge Regressions

The statistician has access to feature vectors a1, ..., an, and corresponding labels b1, ..., bn. Lin-
ear models (including logistic and ridge regression) take the form `(x, (ai, bi)) = `i(a

>
i x)+ λ

2‖x‖
2.

Linear regression problems then reduces to the minimization of:

1

n

n∑
i=1

`i(a
>
i x) +

λ

2
‖x‖2. (72)

It is then to be noticed that for logistic and ridge regressions, functions `i verify `′′i = `′′j for
i, j ∈ [n].

Appendix E. Randomized Smoothing

E.1. Randomized Smoothing: Detailed Algorithm and Convergence Guarantees for General
Smoothing Distributions

Detailed Algorithm: we here describe in details how the algorithm works. We recall that f(x) =
Ea[F (x, a)] for x ∈ Rd. µ is the smoothing distribution, φ the known regularizing function.
The algorithm uses three sequences of points (xt, yt, zt)t, where yt is the query point: at iter-
ation t, stochastic gradients are computed using yt. The three sequences evolve according to a
dual-averaging algorithm, involving three scalars Lt, θt, ηt to control the stepsizes. The smoothed
gradients use a sequence of scalars (ut)t. The algorithm:

1. Computes yt = (1− θt)xt + θtzt.

2. Draws Z1,t, ..., Zm,t i.i.d. random variables according to the smoothing distribution µ, for m
a fixed integer.

3. Queries the oracle at the m points yt + utZi,t, i = 1, ...,m, yielding stochastic gradients
gi,t ∈ ∂F (yt + utZi,t, ai,t).

4. Computes the average gt = 1
m

∑m
i=1 gi,t.

5. Performs the update:

zt+1 = arg minx

{∑t
τ=0

1
θτ
〈gτ , x〉+

∑t
τ=1

1
θτ
φ(x) + 1

2(Lt+1 + ηt+1

θt+1
)‖x‖2

}
,

xt+1 = (1− θt)xt + θtzt+1.
(73)

Duchi et al. (2012) obtain the folowing result.

Proposition 12 (Convergence Guarantees for General Smoothing) Assume that there exist con-
stants L0 and L1 such that for all u > 0, we have EZ∼µ[f(x + uZ)] ≤ f(x) + L0u, and
EZ∼µ[f(x + uZ)] has L1-Lispchitz continuous gradient. Set ut = θtu, Lt = L1/ut, and as-
sume that ηt is non-decreasing. Set θ0 = 1, and θt+1 = 2

1+
√

1+4/θ2
t−1

. Assume that ‖x∗‖ ≤ R.

Then, for all T > 0:

E[f(xT ) + φ(xT )− f(x∗)− φ(x∗)] ≤ 6L1R
2

Tu
+

2ηTR
2

T
+

1

T

T−1∑
t=0

1

ηt
E[‖et‖2] +

4L0u

T
, (74)

where et = ∇fµt(yt)− gt is the error in the gradient estimate.
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E.2. Isotropic Smoothing: Proof of both Propositions 4 and 5

In the isotropic case, µ = N (0, Id) is the smoothing distribution. We now assume that F (., a)
and thus f are L-Lipschitz. Proposition 4 leads to explicit constants L0 and L1 in Proposition 12
just above. We prove Proposition 4 here.

Proof For all x ∈ Rd, one has with Jensen inequality:

f(x) ≤ fγ(x).

Then, we obtain fγ(x) ≤ f(x) + γL
√
d using Lipschitz continuity of f and E‖Z‖ ≤

√
d. In order

to prove that fγ is L/γ-smooth, we need to compute its gradient:

fγ(x+ h)− fγ(x)

h
=

∫
Rd

dzf(z)(µ(z − h/γ)− µ(z))/h

= −1

γ
EZ [f(x+ γZ)Z]

when h→ 0, where µ(z) is the density of the smoothing distribution. As in Duchi et al. (2012), we
then have that:

‖∇fγ(x)−∇fγ(y)‖ ≤ 1

γ

∫
Rd

dzL0|µ(z − x)− µ(z − y)|.

The end of the proof follows as in their Lemma 10.

Using these properties, and setting ηt = L
√
t+1

R
√
m

, u = Rd−1/4 and Lt = L/ut, Proposition 5 is
obtained by simplifying the expression in Proposition 12 (Duchi et al., 2012).

E.3. Non-Isotropic Smoothing

We now focus on non-isotropic smoothing distributions: µ = N (0,Σ′), for Σ′ a symmetric
definite positive matrix to determine. We start by proving Proposition 6.
Proof Let X ∼ N (0,Σ′). Denote, for i ∈ [N ]:

fγi (x) = E[`(a>i (x+ γX))]. (75)

We have using L-Lipschitz continuity of f :

f ≤ fγ ≤ f + γL
√
deff(1)σ2

1

√
Tr(Σ′). (76)

Some computations lead to: fγi is differentiable and

∇fγi (x) = −1

γ
E[`i(a

>
i (x+ γX))Σ′−1X] (77)

= −1

γ
E[`i(a

>
i (x+ γΣ′Y ))Y ] where Y ∼ N (0,Σ′−1) (78)

= −1

γ
E[`i(a

>
i (x+ γΣ′Y ))ai ×

〈Y, ai〉
‖ai‖2

], (79)
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as only the contribution of Y in Rai is to be taken into account. The form (8) begins to appear here.

‖∇fγ(x)−∇fγ(y)‖ =
1

γ
sup
‖v‖≤1

1

N

N∑
i=1

EY [(`i(a
>
i (x+ γΣ′Y ))− `i(a>i (y + γΣ′Y )))

ai〈Y, ai〉
‖ai‖2

]>v

≤ 1

γ
sup
‖v‖≤1

1

N

N∑
i=1

EY [L|a>i (x− y)||a>i v|
|〈Y, ai〉|
‖ai‖2

]

=
1

γ
sup
‖v‖≤1

1

N

N∑
i=1

L|a>i (x− y)||a>i v|
EY [|〈Y, ai〉|]
‖ai‖2

≤ 1

γ

maxi ‖ai‖Σ′−1

mini ‖ai‖2
sup
‖v‖≤1

1

N

N∑
i=1

L|a>i (x− y)||a>i v|.

Using Theorem 3, we have that:∥∥∥∥∥ 1

N

∑
i

aia
>
i − Eaia>i

∥∥∥∥∥
op

≤ C
√
deff(1) + ln(δ−1)

N
.

Thus, with probability 1− δ:

sup
‖v‖≤1,‖x−y‖≤1

1

N

N∑
i=1

L|a>i (x− y)||a>i v| ≤ Cσ2
1

√
deff(1) + ln(δ−1)

N
+ σ2

1.

Furthermore, tightness of norms of gaussian random variables around their mean lead to mini ‖ai‖2 ≈
σ2

1deff(1). Then, maxi ‖ai‖Σ′−1 ≈ Tr(ΣΣ′−1). Minimizing this under ‖Σ′‖ = Cte leads to
Σ′ =

√
Σ.

All in one, with Σ′ =
√

Σ, we end up with:

fγ ≤ f + γL
√
σ3

1deff(1)deff(2),

‖∇fγ‖Lip ≤
Lσ

1/2
1 deff(2)1/2

γdeff(1)

(
1 + C

√
deff(1) ln(d) + ln(δ−1)

N

)
.

Then, Proposition 7 is obtained in the same way as Proposition 5, setting ηt = L
√
t+1

R
√
m

, u =
R

Lσ
1/2
1 deff(2)1/2

γdeff(1)

(
1+C

√
deff(1) ln(d)+ln(δ−1)

N

) and Lt = L/ut. We just replaced d−1/4 by a less er-

gonomic, yet smaller expression.

Appendix F. Robustness of Two-Layered Neural Networks with Polynomial
Activation

In this section, we present two applications of our chaining bounds, that played a role of toy
problem. Bubeck et al. (2020) conjecture that two-layered neural networks interpolating generic
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data (defined below)) have a Lipshitz constant that must be lower bounded by
√

n
k where n is the

number of data points, and k the number of neurons.

Definition 11 (Generic Data 1) Data (xi, yi)1≤i≤n are generic if they are i.i.d. and if yi are cen-
tered random signs, xi centered gaussians of covariance Id/d.

We aim at generalizing some of their results in a non-isotropic framework. We thus define in another
way generic data.

Definition 12 (Generic Data 2) Data (xi, yi)1≤i≤n are generic if they are i.i.d. and if yi are cen-
tered random signs, xi centered gaussians of covariance Σ/(σ2

1deff(1)).

Definition 13 (Tensor) A tensor of order p ∈ N∗ is an array T = (Ti1,...,ip)i1,...,ip∈[d] ∈ Rdp.
T is said to be of rank 1 if it can be written as:

T = u1 ⊗ · · · ⊗ up

for some u1, ..., up ∈ Rp.
Scalar product is defined as:

〈T, S〉 =
∑
i1,...,ip

Ti1,...,ipSi1,...,ip .

We define the operator norm of a tensor as:

‖T‖op = sup
‖x1⊗...⊗xp‖≤1

〈T, x1 ⊗ ...⊗ xp〉.

Definition 14 (Two Layered Neural Network) A two-layered neural network with inputs in Rd, k
neurons and Lipschitz non-linearity ψ is a function of the form:

f(x) =

k∑
`=1

a`ψ(w>` x+ b`). (80)

Conjecture: A two-layered neural network f that fits generic data (xi, yi)1≤i≤n must satisfy, with
high probability when d→∞, for some constant c > 0 (Bubeck et al., 2020):

LipS(f) ≥ c
√
n

k
. (81)

That conjecture is not proven (just in some very particular cases and regimes). However, we propose
to adapt considerations made with polynomial activation functions ψ in the isotropic regime, to the
non-isotropic one. Our aim is however not to link k the number of neurons, to n the number of
observations. Indeed, we believe that in this model of generic data (both isotropic and non-isotropic
ones), dimensionality plays a core role in the Lipschitz constant of f . If one considers different
dimensions, n and k being fixed, it is natural to believe that, due to the concentration of gaussians in
small dimensions, the Lipschitz constant will be bigger for smaller dimensions. Furthermore, adding
non-isotropy and introducing effective dimensions should not change this replacing dimensions by
effective ones, hence the following proposition, which aims at giving insights on the impact of
(effective) dimension on the Lipschitz constant of f .
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Proposition 13 Assume that (xi, yi)1≤i≤n are generic data (Definition 12). Let ψ(t) =
∑p

q=0 αqt
q

and f a two-layered neural network with activation function ψ such that ∀i, f(xi) = yi. Then, if
deff(1) ≤ c0n for some c0 > 0, with probability 1− a exp(−bdeff(1)):

LipS(f) ≥ Cp
n

dp−1deff(1)
. (82)

Either the bound is not tight (likely), or achieving better Lipschitz constants for f is easier with non
isotropic data. Both are possible however, and suggest the importance of effective dimensions in the
robustness of neural networks. The proof below follows the same steps as in Bubeck et al. (2020).
Proof Note that there exist T0, ..., Tp tensors such that Tq is of order q and:

f(x) =
∑
q

〈Tq, x⊗q〉.

Let Ωq =
∑n

i=1 yix
⊗q
i . We have:

n =
∑
i

yif(xi) =

p∑
q=0

〈Tq,Ωq〉.

Hence, there exists q ≥ 1 such that 〈Tq,Ωq〉 ≥ cpn.

cpn ≤ 〈Tq,Ωq〉
≤ ‖Ωq‖op‖Tq‖op,∗
≤ dq−1‖Ωq‖op‖Tq‖op,

using that ‖Tq‖op,∗ ≤ d
q−1‖Tq‖op. We then notice that:

1

n
‖Ωq‖op = sup

z1,...,zq∈S

1

n

n∑
i=1

yi

q∏
k=1

x>i zk,

which is exactly the same form as Y in (8), except for the yi’s. However, we need a centered bound
here: we will use the yi for this. Let n+ = {i : yi = 1}, and n− = {i : yi = −1}. We have:

1

n

n∑
i=1

yi

q∏
k=1

x>i zk =
1

n

∑
i∈n+

yi

q∏
k=1

x>i zk − E

[
q∏

k=1

x>1 zk

]
+

1

n

∑
i∈n−

yi

q∏
k=1

x>i zk + E

[
q∏

k=1

x>1 zk

]
+
n+ − n−

n
E

[
q∏

k=1

x>1 zk

]
.

With probability 1− C exp(−cτ) (with respect to the yi’s):

|n+ − n−| ≤
√
nτ.
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We then have with probability 1− Ce−cτ :

n+ − n−

n
E

[
q∏

k=1

x>1 zk

]
≤
√
τ

n
.

The first two terms can be bounded using Theorem 3 and the fact that under the event |n+ − n−| ≤
√
nτ , we have n+, n− ≥ n−

√
nτ

2 ≥ n/3 if τ ≤ c0n. Using these considerations gives with
probability 1− Ce−cτ − 4δ:

‖Ωq‖op ≤
√
τ

n
+ 2c′

√
ln(δ−1) + deff(1)

n
.

Taking δ = exp(−deff(1)) and τ = deff(1) yields:

1

n
‖Ωq‖op ≤ C

′
√
deff(1)

n
.

Finally, we have, with probability 1− a exp(−deff(1)), if deff(1) ≤ c0n:

‖Tq‖op ≥
cpn

dq−1‖Ωq‖op

≥ Cq
n

dq−1deff(1)
.

Then, by observing that the Lipschitz constant of f on the unit ball is lower bounded by ‖Tq‖op
for any q (with a constant multiplicative factor, using Markov brother’s inequality), we obtain with
probability 1− a exp(−bdeff(p) ln(d)):

LipS(f) ≥ Cp
n

dp−1deff(1)
. (83)
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