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Abstract
This paper proposes a new mean-field framework for over-parameterized deep neural networks
(DNNs), which can be used to analyze neural network training. In this framework, a DNN is
represented by probability measures and functions over its features (that is, the function values
of the hidden units over the training data) in the continuous limit, instead of the neural network
parameters as most existing studies have done. This new representation overcomes the degenerate
situation where all the hidden units essentially have only one meaningful hidden unit in each middle
layer, leading to a simpler representation of DNNs. Moreover, we construct a non-linear dynamics
called neural feature flow, which captures the evolution of an over-parameterized DNN trained by
Gradient Descent. We illustrate the framework via the Residual Network (Res-Net) architecture. It
is shown that when the neural feature flow process converges, it reaches a global minimal solution
under suitable conditions.
Keywords: deep residual network, mean-field theory, non-linear dynamics, global minimum.

1. Introduction

In recent years, deep neural networks (DNNs) have achieved great success empirically. However,
the theoretical understanding of the practical success is still limited. One main conceptual diffi-
culty is the non-convexity of DNN models. More recently, there has been remarkable progress in
understanding the over-parameterized neural networks (NNs), which are NNs with massive hidden
units. The over-parameterization is capable of circumventing the hurdles in analyzing non-convex
functions under specific settings:

(i) Under a specific scaling and initialization, it is sufficient to study the NN weights in a small
region around the initial values given sufficiently many hidden units - the aptly named “lazy
training” regime (Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019a; Arora et al., 2019;
Du et al., 2019b; Allen-Zhu et al., 2018; Allen-Zhu and Li, 2019; Zou et al., 2018; Chizat
et al., 2019). The NN in this regime is nearly a linear model fitted with a random kernel in
the tangent space, and provably achieves minimum training error. However, this regime does
not explain why NNs can effectively learn representative features, and the expressive power
of random kernels is limited (Yehudai and Shamir, 2019).
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(ii) Another line of research applies the mean-field analysis for NNs (Mei et al., 2018; Chizat
and Bach, 2018; Sirignano and Spiliopoulos, 2019a; Rotskoff and Vanden-Eijnden, 2018; Mei
et al., 2019; Dou and Liang, 2019; Wei et al., 2018; Sirignano and Spiliopoulos, 2019b; Fang
et al., 2019; Araújo et al., 2019; Nguyen and Pham, 2020; Chen et al., 2020). Learning a
two-layer over-parameterized NN can be approximately described as optimizing a functional
over probability distributions of the NN weights. The evolution of NN weights trained by the
(noisy) Gradient Descent algorithm corresponds to a Wasserstein gradient flow called “distri-
butional dynamics”, solution to a non-linear partial differential equation (PDE) of McKean-
Vlasov type (Sznitman, 1991). In the mean-field limit, the Wasserstein gradient flow converges
to the globally optimal solution for two-layer NNs (Mei et al., 2018; Chizat and Bach, 2018;
Fang et al., 2019). Compared with lazy training, the mean-field view can characterize the
entire training process of NNs.

However, the mean-field analysis on DNNs is a challenging task. First of all, it is not easy
to formulate the mean-field limit of DNNs. As we will discuss in Section 2.1, extending existing
formulations to DNNs, hidden units in a middle layer essentially behave as a single unit along the
training. This degenerate situation arguably cannot fully characterize the training process of actual
DNNs. Moreover, understandings for the global convergence of Gradient Descent on DNNs are still
required in the mean-field regime.

In this paper, we propose a new mean-field framework for over-parameterized DNNs to analyze
NN training. In contrast to existing studies focusing on the NN weights, this framework represents
a DNN in the continuous limit by probability measures and functions over its features, that is, the
outputs of the hidden units over the training data. This new representation overcomes the degenerate
situation in previous studies (Araújo et al., 2019; Nguyen and Pham, 2020).

We further describe a non-linear dynamic called neural feature flow that captures the evolution
of a DNN trained by Gradient Descent. We illustrate the framework by Res-Nets (He et al., 2016).
Neural feature flow involves the evolution of the features and does not require the boundedness
of the weights. Under the standard initialization method of discrete Res-Nets (Glorot and Bengio,
2010; He et al., 2015), the NN weights scale to infinity with the growth of the number of hidden
units. There are empirical studies, e.g. Zhang et al. (2019), which show that properly rescaling the
standard initialization stabilizes training. We introduce a simple `2-regression at initialization (see
Algorithm 2). We prove that Gradient Descent from the regularized initialization with a suitable
time scale on Res-Nets can be well-approximated by its limit, i.e., neural feature flow, when the
number of hidden units is sufficiently large.

Finally, we consider the global convergence of neural feature flow for Res-Nets. Surprisingly,
we show that when the neural feature flow process converges, it reaches a globally optimal solution
under suitable conditions. We summarize the contributions of the paper below:

(A) We propose a new mean-field framework of DNNs which characterizes DNNs via probabil-
ity measures and functions over the features and introduce neural feature flow to capture the
evolution of DNNs trained by the Gradient Descent algorithm.

(B) We illustrate our framework by Res-Net model. We show that neural feature flow can find a
global minimal solution of the learning task under certain conditions.
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Our mean-field description can also be used to study the standard DNNs, which is discussed in
Appendix E. However, it still remains open to achieve the global convergence of neural feature flow
for standard DNNs.

1.1. Notations

Let [m1 : m2] := {m1,m1 + 1, . . . ,m2} for m1,m2 ∈ N with m1 ≤ m2 and [m2] := [1 : m2]
for m2 ≥ 1. Let Pn be the set of probability distributions over Rn. For a matrix A ∈ Rn×m, let
‖A‖2, ‖A‖F , and ‖A‖∞ denote its operator, Frobenius, max norms, respectively. IfA is symmet-
ric, let λmin(A) be its smallest eigenvalue. Vectors are treated as columns. For a vector a ∈ Rn, let
‖a‖2 and ‖a‖∞ denote its `2 and `∞ norms, respectively. The i-th coordinate is denoted by a(i).
For a, b ∈ Rn, denote the entrywise product by a ◦ b that [a ◦ b] (i) := a(i) ◦ b(i) for i ∈ [n].
For c > 0 and p ∈ [1,∞], let Bp(a, c) denote the `p-ball centered at a of radius c. For an unary
function f : R → R, define ḟ : Rn → Rn as the entrywise operation that ḟ(a)(i) = f(a(i)) for
i ∈ [n] and a ∈ Rn. Denote n-dimensional identity matrix by In. Denote m-by-n zero matrix
and n-dimensional zero vector by 0n×m and 0n, respectively. We say a univariate distribution p is
σ-sub-gaussian if Ex∼p exp(x2/σ2) ≤ e1; we say a d-dimensional distribution p is σ-sub-gaussian
if the law of u>x is σ-sub-gaussian for x ∼ p and any u ∈ Sd−1. For two positive sequences {pn}
and {qn}, pn = O(qn) if pn ≤ Cqn for some positive constant C, and pn = Ω(qn) if qn = O(pn).

2. Related Deep Learning Theory

In recent years, there have been a number of significant developments to obtain better theoretical
understandings of NNs. One remarkable direction is to restrict the NN training in a small region.
In this lazy training regime, the analysis cannot explain how NNs learn discriminative features.
This is observed in real applications and argued to be one of the contributors to the success of deep
learning. Beyond lazy training, one promising direction is to conduct mean-field analysis. However,
in section 2.1, we show the challenges of analysis on DNNs. Specifically, if we still model from
the weights, the standard initialization,e.g., (Glorot and Bengio, 2010; He et al., 2015) scales the
weights to

√
m, which diverges in the mean-field limit, where m is the number of hidden units.

On the other side, if we initialize the weights from a fixed distribution that is independent of m as
existing mean-field works (Araújo et al., 2019; Nguyen and Pham, 2020) considered, DNNs would
be stuck in a degenerate situation where the middle layers essentially only have one single feature.
Both the issues motivate us to study DNN directly from the features. As a result, we propose a
mean-field framework from tracking the distributions of features to analyze the DNN training.

2.1. Challenges on Mean-field Theory for DNNs

We discuss related mean-field studies and point out the challenges in modeling DNNs. For two-
layer NNs, most of the existing works (Mei et al., 2018; Chizat and Bach, 2018; Sirignano and
Spiliopoulos, 2019a; Rotskoff and Vanden-Eijnden, 2018) formulate the continuous limit as

f(x; p) =

∫
w2 h

(
w>1 x

)
dp (w2,w1) ,

1. Here the value e can be replaced by any number greater than one. See Vershynin (2010, Remark 5.6).
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where p is the probability distribution over the pair of weights (w2,w1). The weights of the second
layer w2 can be viewed as functions of w1, which is a d-dimensional vector. However, follow-
ing the approach, the higher-layer weights, say w3, are functions over features of the hidden layer,
with a diverging dimensionality in the mean-field limit. For 3-layer NNs, w3 as the last hidden
layer is indexed by the connection to the output units in Nguyen and Pham (2020), which is not
generalizable when middle layers present. An alternative approach is to model DNNs with nested
measures (also known as multi-layer measures; see Dawson et al. (1982); Dawson (2018) and ref-
erences therein), which however suffers the closure problem to establish a well-defined limit (see
discussions in Sirignano and Spiliopoulos (2019b, Section 4.3)).

The continuous limit of DNNs is investigated by Araújo et al. (2019); Nguyen and Pham (2020)
under the initialization that all weights are i.i.d. realizations of a fixed distribution independent of
the number of hidden units. However, under that setting, all neurons in a middle layer essentially
behave as a single neuron. Consider the output β̂ of a middle-layer neuron connecting to m hidden
neurons in the previous layer:

β̂ =
1

m

m∑
i=1

h(β̂′i) wi, (1)

where β̂′i is the output of i-th hidden neuron in the previous layer with bounded variance, wi is
the connecting weight, and h is the activation function. If wi is initialized independently from
N (0, 1), it is clear that var[β̂] → 0 as m → ∞, and thus the hidden neurons in middle layers are
indistinguishable at the initialization. Moreover, the phenomenon sustains along the entire training
process, as shown in Proposition 1. This phenomenon serves as the basis of Araújo et al. (2019);
Nguyen and Pham (2020) to characterize the mean-field limit using finite-dimensional probability
distributions. This degenerate situation arguably does not fully characterize the actual DNN training.
In fact, similar calculations to (1) are carried out by Glorot and Bengio (2010); He et al. (2015) and
motivate the popular initialization strategy with N (0,O(m)) such that the variance of β̂ is non-
vanishing.

Proposition 1 Consider fully-connected L-layer DNNs with m units in each hidden layer trained
by Gradient Descent. Suppose the activation and loss functions satisfy Assumption 1. Let the
weights be initialized from a distribution with O(1) variance. Let β̂k`,i denote the output of i-th

hidden neuron at `-th layer and k-th iteration, and define ∆`,m := maxi 6=i′,k∈[K] ‖β̂k`,i − β̂k`,i′‖∞.
Then, for every ` ∈ [2 : L− 1], almost surely,

lim
m→∞

∆`,m = 0.

To overcome this degenerate situation, we consider the popular initialization strategy with a simple
`2 regression (See Algorithm 2). The regression preserves all initial features, thus the variance of
the features is now non-vanishing. Moreover, to accurately characterize DNNs in the mean-field
regime, we introduce a probability measure over the features instead of the weights, which leads
to a new dynamic system called neural feature flow to describe the neural nets trained by Gradient
Descent. We achieve to describe a more realistic learning process.

2.2. Comparisons of Dynamics with Other Mean-field Works

It is known that the evolution of a two-level NN trained by Gradient Descent can be described as
a Mckean-Vlason process (Mei et al., 2018; Chizat and Bach, 2018). There are lots of works that
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studies the evolution of DNN trained by Gradient Descent. One important work from Araújo et al.
(2019) shows that the evolution of DNNs can also be characterized by PDEs of Mckean-Vlason
type when weights of DNNs in the first and the last layers are not updated. More recently, Nguyen
and Pham (2020); Pham and Nguyen (2020) proposed another very interesting attempt by directly
tracking the trajectories of the weights. In their description called neuronal embedding, the evolution
of Gradient Descent is characterized by systems of ODEs, avoiding the presence of the conditional
probabilities which is the main issue proposed by Araújo et al. (2019). Our description follows
from the idea of Nguyen and Pham (2020). However, our dynamic further involves the evolution
of the features and does not require the boundedness of the weights. Moreover, we introduce the
conception of skip-connected paths to deal with the Res-Net architecture. Neural feature flow is
more meaningful training dynamics as it is no longer restricted in the degenerate situation as Section
2.1 described.

For the analysis to achieve a global minimum for the dynamics, the work from Lu et al. (2020)
considers the DNN as a relatively simple composition of multiple two-layer NNs. Their global con-
vergence result requires a very restricted assumption that the limiting distribution has full support.
The work form Nguyen and Pham (2020); Pham and Nguyen (2020) proved the global convergence
for DNNs by a very novel topology argument under the degenerate initialization. Pham and Nguyen
(2020) also mentioned the possibility of non-degenerate initialization leading to global convergence
guarantees. Our proof idea is similar to Nguyen and Pham (2020), whereas, we take our concentra-
tion on the features.

2.3. Beyond Lazy Training

In the “lazy training” regime, e.g. Jacot et al. (2018); Du et al. (2019a); Allen-Zhu and Li (2019);
Zou et al. (2018), the weights are restricted in an infinitely small region. The DNN in this regime
essentially corresponds to a linear model on random features associated with a kernel termed neural
tangent kernel. In the limit, the features are fixed. Encouragingly, we consider NNs beyond the lazy
training regime and further allow the feature to move in a constant region. To arrive the goal, we
study a special Res-Net architecture that bounds residuals by a bounded mapping h2 (see Section
3.1). Note that in our analysis, the bound is not needed to be small enough but can be arbitrarily large
and less than infinity. Therefore, our setting allows the DNN to learn the targeted features. From
the technical aspect, we require a different treatment to show the full rank of the feature matrices;
this is achieved by Brouwer’s fixed-point theorem (see the Proof of Theorem 8 in Appendix B.2).

3. Formulation of Continuous Res-Nets

We consider the empirical minimization problem over N training samples {xi, yi}Ni=1, where xi ∈
Rd and yi ∈ Y . For regression problems, Y is typically R; for classification problems, Y is often
[K] for an integer K. We first present the formulation of L-layer Res-Nets.

3.1. Discrete Res-Nets

For discrete Res-Nets, let m` denote the number of units at layer ` for ` = [0 : L + 1]. Suppose
each hidden layer has m hidden units that m` = m for ` ∈ [L]. Let m0 = d and node i outputs
the value of i-th coordinate of the training data for i ∈ [d]. Let mL+1 = 1 that is the unit of the
final network output. For ` ∈ [L + 1], the output of node i for the N training samples in layer `
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is denoted by β̂`,i ∈ RN ; the weight that connects the node i at layer ` − 1 to node j at layer ` is
denoted by v̂`,i,j ∈ R.

(1) At the input layer, for i ∈ [d], let β̂0,i :=
[
x1(i),x2(i), . . . ,xN (i)

]>.

(2) At the first layer, for j ∈ [m], let

β̂1,j =
1

m0

m0∑
i=1

v̂1,i,j β̂0,i. (2)

(3) We recursively define the upper layers for ` ∈ [2 : L]. Let α̂`,j ∈ RN be the residual term at
node j at layer `:

α̂`,j =
1

m

m∑
i=1

v̂`,i,j ḣ1

(
β̂`−1,i

)
, j ∈ [m], (3)

where h1 : R→ R is the activation function and ḣ1 : RN → RN is the entrywise operation for
h1, which satisfies ḣ1(a)(i) = h1(a(i)) for i ∈ [N ] and a ∈ RN . Furthermore, we consider
the following coupling between the residual and the previous feature:

β̂`,j = ḣ2 (α̂`,j) + β̂`−1,j , j ∈ [m]. (4)

where h2 : R→ R.

(4) For the output,

β̂L+1,1 =
1

m

m∑
i=1

v̂L+1,i,1ḣ1

(
β̂L,i

)
. (5)

We collect the weights from all layers into a single vector v̂ ∈ RD1 withD1 := m2(L− 1) + (d+ 1)m.
We also collect the residuals, and features from layers 2 to L into single vectors α̂ ∈ RD2 , and
β̂ ∈ RD2 , respectively, where D2 := Nm(L− 1). The learning problem for Res-Nets is given by

min
v̂,α̂,β̂

L̂(v̂, α̂, β̂) =
1

N

N∑
n=1

φ
(
β̂L+1,1(n), yn

)
, (6)

where (v̂, α̂, β̂) satisfies (2) – (5), and φ : R × Y → R denotes the loss function. One noteworthy
feature in the architecture is (4), where we introduce a mapping h2 on the residual α̂`,j before fusing
it with β̂`−1,j . As have been mentioned, we assume that h2 is bounded by a constant L1, and hence
‖β̂`,j − β̂`−1,j‖∞ ≤ L1. Therefore, the high-layer features can be regarded as perturbations of the
low-layer ones. Similar ideas have also appeared in Du et al. (2019a); Hardt and Ma (2016), but
realized in a different way. For example, in the lazy training regime, Du et al. (2019a) achieved it
by scaling α̂`,j with a vanishing O( 1√

m
) factor.
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3.2. Continuous Res-Nets Formulation

We propose our formulation for the continuous Res-Nets. We consider the Res-Net with the ar-
chitecture described in Section 3.1 that is initialized by a combination of a standard initialization
and an additional regression procedure (See Algorithm 2). One can find that the regression proce-
dure preserves all initial features but reduces the redundancy of the weights, making us introduce
real-value functions to characterize the weights in the mean-field limit.

In fact, displayed in Appendix E.2, the continuous limit of a standard DNN can be described by
introducing probability measures over features for individual layers. This idea is much clear. Here,
we study Res-Net with the skip connections as in (4). In the continuous case, the discrete index j
no longer makes sense and the skip connections need to be properly parametrized by an infinite set.
To overcome the hurdle of infinite skip connections, we introduce Θ = (v1,α2, . . . ,αL) ∈ RD for
D = d+(N−1)L to parametrize the skip connections that are described in (8) and (9) below. Each
Θ consists of v1,α2, . . . ,αL that can be regarded as an input-output path v1 → α2 → · · · → αL
and is called a skip-connected path. Our main technique is to characterize the overall state of the
continuous Res-Nets by the density p over skip-connected paths. Thus the joint distribution p can
be regarded as a description of the overall topological structure about the skip connections. We
represent the features β` in the hidden layer ` ∈ [L] as functions of Θ that we introduce next:

(1) At the input layer, letX =
[
x1,x2, . . . ,xN

]> ∈ RN×d.

(2) At the first layer, let the features be

β1 (Θ) =
1

d
(Xv1) . (7)

(3) At layer ` ∈ [2 : L], let v` : supp(p) × supp(p) → R denote the weights on the connections
from layer ` − 1 to `, then for all Θ = (v1,α1,α2, . . . ,αL) ∈ RD, we have the forward-
propagation constraint for v` and p:

α` =

∫
v`
(
Θ, Θ̄

)
ḣ1

(
β`−1(Θ̄)

)
dp
(
Θ̄
)
, (8)

β` (Θ) = ḣ2 (α`) + β`−1 (Θ) . (9)

Here, Θ takes on values in RD and for each Θ, α` is one part of Θ and β` is a function of Θ.
α` represents the residual at layer ` on the skip connected path described by Θ. And β`(Θ)
represents the corresponding feature.

(4) At the output layer, let vL+1 : supp(p)→ R be the weights in the layer L+ 1, and we have

βL+1 =

∫
vL+1 (Θ) ḣ1 (βL (Θ)) dp (Θ) . (10)

In our continuous formulation, a static Res-Net is characterized by p and v2 . . . vL+1. We will show
in the next section that the continuous Res-Net ({v`}L+1

`=2 , p) that satisfies the (7) – (10) will serve
as a feasible initialization for neural feature flow.
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Algorithm 1 Scaled Gradient Descent for Training a Res-Net.

1: Input the data {xi, yi}Ni=1, step size η, and initial weights v̂0.
2: for k = 0, 1, . . . ,K − 1 do
3: Perform forward-propagation (2) – (5) to compute β̂k

L+1,1.

4: Perform backward-propagation to compute the gradient Ĝk`,i,j = ∂L̂
∂v̂k

`,i,j

.

5: Perform Scaled Gradient Descent:

v̂k+1
`,i,j = v̂k`,i,j − [ηm`−1m`] Ĝk`,i,j , ` ∈ [L+ 1], i ∈ [m`−1], j ∈ [m`].

6: end for
7: Output the weights v̂K .

4. Scaled Gradient Descent and Neural Feature Flow for Res-Nets

We focus on the dynamic of the Res-Net trained by Gradient Descent. We consider the scaled Gra-
dient Descent algorithm2. Given initial weights v̂0, the meta-algorithm of scaled Gradient Descent
is presented in Algorithm 1. Note that Algorithm 1 differs from the standard Gradient Descent only
on the step sizes (time scales). Such scaling is also adopted in existing works (Araújo et al., 2019;
Nguyen and Pham, 2020).

Now we describe the continuous limit of the Res-Net trained by Algorithm 1 by the continuous
trajectories of the Res-Nets. This idea follows from Nguyen and Pham (2020) for analyzing there-
layer DNNs. A trajectory is denoted by Φ that maps the initial Res-Nets at t = 0 to a Res-Net
process over [0, T ]. Specifically, it consists of the following parts:

• Φβ` : supp(p)→ C([0, T ],RN ) is the trajectory of β` for ` ∈ [L];

• Φα` : supp(p)→ C([0, T ],RN ) is the trajectory of α` for ` ∈ [2 : L];

• Φv1 : supp(p) → C([0, T ],Rd) and ΦvL+1 : supp(p) → C([0, T ],R) are the trajectories of
v1 and vL+1, respectively;

• Φv` : supp(p)× supp(p)→ C([0, T ],R) is the trajectory of v` for ` ∈ [2 : L].

The continuous gradient for the weight can be obtained from the backward-propagation algo-
rithm. For a given trajectory Φ, the gradients of weights at time t ∈ [0, T ] can be obtained from
the backward-propagation algorithm. Similar to the usual backward-propagation, we first define
gradients with respect to the features and residuals. Specifically, for all Θ = (v1,α2, . . . ,αL) ∈

2. In practice, one often use stochastic gradient instead of the full counterpart for training. Under mild conditions, the
dynamic of scaled Stochastic Gradient Descent will also converge to the neural feature flow in the continuous limit.
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supp(p), t ∈ [0, T ], and ` ∈ [2 : L], let

βL+1 (Φ, t) :=

∫
ΦvL+1 (Θ) (t) ḣ1

(
ΦβL (Θ) (t)

)
dp (Θ) , (11a)

DL+1(Φ, t) :=
[
φ′1
(
βL+1 (Φ, t) (1), y1

)
, . . . , φ′1

(
βL+1 (Φ, t) (N), yN

)]>
,

DβL(Θ; Φ, t) :=
[
ΦvL+1 (Θ) (t) DL+1(Φ, t)

]
◦ ḣ′1

(
ΦβL(Θ)(t)

)
, (11b)

Dα` (Θ; Φ, t) := Dβ` (Θ; Φ, t) ◦ ḣ′2 (Φα` (Θ)(t)) , (11c)

Dβ`−1(Θ; Φ, t) := Dβ` (Θ; Φ, t)+

[∫
Φv`
(
Θ, Θ̄

)
(t) Dα` (Θ̄; Φ, t)dp

(
Θ̄
)]
◦ ḣ′1

(
Φβ`−1 (Θ) (t)

)
.

For all Θ, Θ̄ ∈ supp(p), the drift term for the weights is given by

GvL+1 (Θ; Φ, t) :=
1

N

[
DL+1(Φ, t)

]>
ḣ1

(
ΦβL(Θ)(t)

)
, (12a)

Gv`
(
Θ, Θ̄; Φ, t

)
:=

1

N

[
Dα` (Θ̄; Φ, t)

]>
ḣ1

(
Φβ`−1 (Θ) (t)

)
, ` ∈ [2 : L], (12b)

Gv1 (Θ; Φ, t) :=
1

N
X Dβ1 (Θ; Φ, t) . (12c)

Moreover, the changes of the weights will induce a change of the residuals and features. By the chain
rule, we can obtain the drift term for the residuals and features: for ` ∈ [L− 1] and Θ ∈ supp(p),

Gβ1 (Θ; Φ, t) :=
1

d

[
XGv1 (Θ; Φ, t)

]
, (13a)

Gα`+1 (Θ; Φ, t) :=

∫
Φv`+1

(
Θ̄,Θ

)
(t)
[
ḣ′1

(
Φβ` (Θ̄)(t)

)
◦ Gβ`

(
Θ̄; Φ, t

)]
dp
(
Θ̄
)

+

+

∫
ḣ1

(
Φβ`
(
Θ̄
)

(t)
)
◦ Gv`+1

(
Θ̄,Θ; Φ, t

)
dp
(
Θ̄
)
, (13b)

Gβ`+1 (Θ; Φ, t) := Gβ` (Θ; Φ, t) + Gα`+1 (Θ; Φ, t) ◦ ḣ′2
(
Φα`+1 (Θ) (t)

)
. (13c)

In all, the process of a continuous Res-Net trained by scaled Gradient Descent can be defined
below.

Definition 2 (Neural Feature Flow for Res-Net) Given an initial continuous Res-Net
({v`}L+1

`=2 , p) that satisfies the (7) – (10) and T < ∞, we say a trajectory Φ∗ is a neural feature
flow if for all Θ = (v1,α2, . . . ,αL) ∈ supp(p), Θ̄ ∈ supp(p), and t ∈ [0, T ],

Φβ∗,` (Θ) (t) =

[
1

d
Xv1 +

∑̀
i=2

ḣ2 (αi)

]
−
∫ t

0
Gβ` (Θ; Φ∗, s) , ` ∈ [L],

Φα∗,` (Θ) (t) = α` −
∫ t

0
Gα` (Θ; Φ∗, s) ds, ` ∈ [2 : L],

Φv∗,1 (Θ) (t) = v1 −
∫ t

0
Gv1 (Θ; Φ∗, s) ds,

Φv∗,`
(
Θ, Θ̄

)
(t) = v`(Θ, Θ̄)−

∫ t

0
Gv`
(
Θ, Θ̄; Φ∗, s

)
ds, ` ∈ [2 : L],

Φv∗,L+1 (Θ) (t) = vL+1(Θ)−
∫ t

0
GvL+1 (Θ; Φ∗, s) ds.

9
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We call the process as neural feature flow because it characterizes the evolution of both weights and
features.

5. Main Results

5.1. Assumptions

We first present the assumptions that are needed in our analysis.

Assumption 1 (Activation Functions and Loss Function) For the activation functions, we as-
sume that there exist constants L1, L2, L3 > 0 such that, for all x ∈ R,

|h1(x)| ≤ L1, |h2(x)| ≤ L1,
∣∣h′1(x)

∣∣ ≤ L2,
∣∣h′2(x)

∣∣ ≤ L2.

Moreover, for all x, y ∈ R,∣∣h′1(x)− h′1(y)
∣∣ ≤ L3|x− y|,

∣∣h′2(x)− h′2(y)
∣∣ ≤ L3|x− y|.

For the loss function, we assume that there exist constants L4, L5 > 0 such that, for all y ∈ Y ,
x1 ∈ R, and x2 ∈ R,∣∣φ′1(x1, y)

∣∣ ≤ L4,
∣∣φ′1(x1, y)− φ′1(x2, y)

∣∣ ≤ L5|x1 − x2|.

Assumption 1 is easy to be satisfied. It only requires some boundedness, continuity, and smoothness
for the activation and loss functions. It is adopted in most mean-field analysis, such as Mei et al.
(2018); Araújo et al. (2019).

Assumption 2 (Strong Universal Approximation Property) Assume that for any function f2 :
Rd → RN that is bounded by CB , i.e., for all v1 ∈ Rd, ‖f2(v1)‖∞ ≤ CB , we have

λmin

[∫ [
ḣ1

(
1

d
Xv1 + f2 (v1)

)][
ḣ1

(
1

d
Xv1 + f2 (v1)

)]>
dp1 (v1)

]
≥ λ̄ > 0. (14)

where λ̄ only depends onX , CB , and h1, and p1 = N
(
0d, Id

)
.

Assumption 2 is a technical assumption that we conjecture to hold under fairly general condi-
tions. Notably when CB = 0, it is shown in Du et al. (2019a, Lemma F.1) that the assumption holds
for all analytic non-polynomial h1. Lemma 3 affords many examples that satisfy the assumption for
constant CB .

Lemma 3 Suppose that the data is non-parallel, i.e., xi /∈ Span(xj) for all i 6= j.

(i) If g : R → R is a non-polynomial function that is bounded and has Lipschitz continuous
gradient, then h1(x) := g(cx) satisfies Assumption 2 when c > 0 is sufficiently small.

(ii) The Relu-type function h1(x) = (x)α+ for α > 0 satisfies Assumption 2.

(iii) If h1(x) = c|x|−α or h1(x) = c(x)−α+ for |x| > c′, where c, c′, α > 0, then h1 satisfies
Assumption 2.

10
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The condition in Lemma 3 is standard and widely used in the analysis of lazing training (see Du
et al. (2019a, Lemma F.1)). It only requires the data are not parallel: for every j 6= i, xj 6= cxi
for any scalar c. In the following, we propose the conditions for the initial continuous Res-Net
({v`}L+1

`=2 , p). In the next section, we will show concrete examples that realize these assumptions.

Assumption 3 (Initialization for Continuous Res-Net) We first assume that the initial continuous
Res-Net ({v`}L+1

`=2 , p) is a feasible continuous Res-Net that satisfies the forward propagation con-
straints, i.e., (7) – (10). Moreover, p is σ-sub-gaussian distribution and has a full support3. For all
` ∈ [2 : L], v`(·, ·) has sublinear growth on the second argument, that is, there is a constant C1

such that ∣∣v` (Θ, Θ̄
)∣∣ ≤ C1

(
1 +

∥∥Θ̄∥∥∞) , for all Θ, Θ̄ ∈ supp(p), ` ∈ [2 : L]. (15)

Besides, v`(·, ·) are locally Lipschitz continuous where the Lipschitz constant has sub-linear growth
on the second argument. In detail, there is a constant C2, such that for Θ1 ∈ supp(p), Θ̃1 ∈
supp(p) ∩ B∞ (Θ1, 1), Θ2 ∈ supp(p), and Θ̃2 ∈ supp(p) ∩ B∞ (Θ2, 1), we have∣∣∣v`(Θ1,Θ2

)
− v`

(
Θ̃1, Θ̃2

)∣∣∣ ≤ C2

(
1 + ‖Θ2‖∞

) (∥∥Θ1 − Θ̃1

∥∥
∞ +

∥∥Θ2 − Θ̃2

∥∥
∞

)
.

Finally, for the last layer, there exist constants C3 and C4, such that for all Θ, Θ̄ ∈ supp(p), we
have ∣∣vL+1

(
Θ
)∣∣ ≤ C3 and

∣∣vL+1

(
Θ
)
− vL+1(Θ̄)

∣∣ ≤ C4

∥∥Θ− Θ̄
∥∥
∞ .

5.2. Property and Approximation of Neural Feature Flow

We analyze the neural feature flow for the continuous Res-Net under the initial conditions in As-
sumption 3. The following theorem guarantees the existence and uniqueness.

Theorem 4 (Existence and Uniqueness of Neural Feature Flow on Res-Net) Under Assumptions
1 and 3, for any T <∞, there exists an unique neural feature flow Φ∗.

In fact, we also have that Φ∗ is a continuous mapping on Θ given time t (see Theorem 13 in
Appendix C.1). A similar continuity argument has also been observed by Nguyen and Pham (2020).
The proofs of Theorems 4 and 13 can be obtained by the technique of Picard iterations (see, e.g.,
Hartman (1964)) with a special consideration on the search space to deal with the unboundedness
of parameters. The latter differs from the former by introducing a more restrictive space in which
all the candidates satisfy the desired property. We defer the proofs of this paper to Appendix.

Now we consider the approximation between a discrete DNN trained by scaled Gradient De-
scent and a continuous one evolving as neural feature flow. Based on the initial condition for the
continuous Res-Net, we introduce the initial condition for discrete Res-Net.

Definition 5 (ε1-independent Initial Discrete Res-Net) We say an initial discrete Res-Net (v̂, α̂, β̂)
is ε1-independent if there exists a continuous initial Res-Net ({v`}L+1

`=2 , p) satisfying Assumption 3
and (v̄, ᾱ, β̄) such that

3. The assumption that p has a full support will only be used in Theorem 8. It can be replaced by a slightly weaker as-
sumption that there exists a continuous function f1 : Rd → RD−d such that supp(p) ⊇

{
(v1, f1(v1)) : v1 ∈ Rd

}
.

When p1 has a full support, f1 can be simply chosen as f1(v1) ≡ 0D−d.

11
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(1) Θ̄i = (v̄1,i, ᾱ2,i, . . . , ᾱL,i)
i.i.d.∼ p;

(2) For β̄ and v̄,

• β̄`,i = 1
d (Xv̄1,i) +

∑`
`1=2 ḣ2(ᾱ`1,i) for ` ∈ [L] and i ∈ [m];

• v̄`,i,j = v`
(
Θ̄i, Θ̄j

)
for ` ∈ [2 : L], i, j ∈ [m];

• v̄L+1,i,1 = vL+1

(
Θ̄i

)
for i ∈ [m];

(3) ε1-closeness:

• ‖v̄1,i − v̂1,i‖∞ ≤
(
1 +

∥∥Θ̄i

∥∥
∞
)
ε1 for i ∈ [m];

• |v̄`+1,i,j − v̂`+1,i,j | ≤
(
1 +

∥∥Θ̄i

∥∥
∞ +

∥∥Θ̄j

∥∥
∞
)
ε1 for ` ∈ [L− 1], i, j ∈ [m];

• |v̄L+1,i,1 − v̂L+1,i,1| ≤
(
1 +

∥∥Θ̄i

∥∥
∞
)
ε1 for i ∈ [m].

As an ε1-independent initialization relates to a continuous Res-Net satisfying Assumption 3, which
yields an unique neural feature flow Φ∗ by Theorem 4, we show that scaled Gradient Descent from
an ε1-independent initialization is well-approximated by the corresponding neural feature flow when
the number of hidden units is Ω̃(ε−2

1 ), where Ω̃ hides poly-logarithmic factors. This resembles a
“propagation of chaos” argument from a Kac’s chaotic initial system (Sznitman, 1991). We compare
the scaled Gradient Descent with an ideal discrete process determined by Φ∗ as specified below:

• Actual process (v̂[0:K], α̂[0:K], β̂[0:K]) by executing Algorithm 1 in K = T
η steps on the

discrete Res-Net from (v̂, α̂, β̂);

• Ideal process
(
v̄[0,T ], ᾱ[0,T ], β̄[0,T ]

)
that evolves as neural feature flow:

β̄t`,i = Φβ∗,`
(
Θ̄i

)
(t), ` ∈ [L], i ∈ [m], t ∈ [0, T ],

ᾱt`,i = Φα∗,`
(
Θ̄i

)
(t), ` ∈ [2 : L], i ∈ [m], t ∈ [0, T ],

v̄t1,i = Φv∗,1
(
Θ̄i

)
(t), i ∈ [m], t ∈ [0, T ],

v̄t`,i,j = Φv∗,`
(
Θ̄i, Θ̄j

)
(t), ` ∈ [2 : L], i ∈ [m], i ∈ [m], t ∈ [0, T ],

v̄tL+1,i,1 = Φv∗,L+1

(
Θ̄i

)
(t), i ∈ [m], t ∈ [0, T ].

We also compare the discrete and the continuous losses denoted by L̂k := 1
n

∑N
n=1 φ(β̂kL+1,1(n), yn)

and Lt := 1
N

∑N
n=1 φ (βL+1(Φ∗, t)(n), yn), respectively. We have the theorem below.

Theorem 6 Under Assumption 1, suppose ε1 ≤ O(1) and m ≥ Ω̃(ε−2
1 ), and treat the parameters

in assumptions and T as constants. Consider the actual process from an ε1-independent initializa-
tion in Definition 5 with step size η ≤ Õ(ε1). Then, the following holds with probability 1− δ:

(1) The two processes are close to each other:

sup
k∈[0:K]

{
sup
i∈[m]

∥∥∥v̂k1,i − v̄kη1,i

∥∥∥
∞
, sup
`∈[2:L], i,j∈[m]

∣∣∣v̂k`,i,j − v̄kη`,i,j∣∣∣ } ≤ Õ(ε1),

sup
k∈[0:K], i∈[m]

{ ∣∣∣v̂kL+1,i,1 − v̄
kη
L+1,i,1

∣∣∣ , sup
`∈[2:L]

∥∥∥α̂k`,i − ᾱkη`,i∥∥∥∞ , sup
`∈[L]

∥∥∥β̂k`,i − β̄kη`,i∥∥∥∞
}
≤ Õ(ε1).
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Algorithm 2 Initialize a Discrete Res-Net.
1: Input the dataX , variance σ1, and a constant C3.
2: Independently draw v̂1,i,j ∼ p0 = N

(
0, dσ2

1

)
for i ∈ [d] and j ∈ [m].

3: Set β̂1,j = 1
d

∑d
i=1 v̂1,i,j β̂0,i where j ∈ [m]. � Standard Initialization for layer 1

4: for ` = 2, . . . , L do
5: Independently draw ṽ`,i,j ∼ N

(
0,mσ2

1

)
for i, j ∈ [m].

6: Set α̂`,j = 1
m

∑m
i=1 ṽ`,i,j ḣ1(β̂`−1,i) where j ∈ [m].

7: Set β̂`,j = β̂`−1,j + ḣ2 (α̂`,j) for j ∈ [m]. � Standard Initialization for layer `
8: end for
9: Set v̂L+1,i,1 = C3 where i ∈ [m]. � Simply initialize {v̂L+1,i,1}mi=1 by a constant

10: for ` = 2, . . . , L do
11: for j = 1, . . . ,m do
12: Solve convex optimization problem: � Perform `2-regression to reduce redundancy

min
{v̂`,i,j}mi=1

1

m

m∑
i=1

(v̂`,i,j)
2
, s.t. α̂`,j =

1

m

m∑
i=1

v̂`,i,j ḣ1(β̂`−1,i). (16)

13: end for
14: end for
15: Output the discrete Res-Net parameters (v̂, α̂, β̂).

(2) The training losses are also close to each other:

sup
k∈[0:K]

∣∣∣L̂k − Lkη ∣∣∣ ≤ Õ(ε1).

Note in the discrete Res-Net, even though the connecting weights are independently initialized,
α̂`,j are not mutually independent since they all depend on a common set of random outputs from
the previous layer. Therefore, Definition 5 restricts the skip-connected paths of the discrete Res-
Net {v̂1,i, α̂2,i, . . . , α̂L,i}mi=1 are nearly independent, which makes it possible to construct an ideal
initialization with independent skip-connected paths to approximate the discrete one. Then, using a
“propagation of chaos” argument (Sznitman, 1991), we obtain Theorem 6.

Now we demonstrate real examples that can achieve our assumptions. We consider the Res-Net
initialized by Algorithm 2, which is composed of a standard initialization (Glorot and Bengio, 2010;
He et al., 2015) and an additional regression procedure while preserving all initial features.4 The
standard initialization strategy scales the weights to

√
m, which diverges in the mean-field limit. We

perform the simple `2-regression to reduce the redundancy of the weights. The result in Theorem 7
shows that Algorithm 2 can produce an ε1-independent initialization when m is sufficiently large.

Theorem 7 Under Assumptions 1 and 2, treat the parameters in assumptions as constants. With
probability at least 1 − δ, Algorithm 2 produces an ε1-independent initial discrete Res-Net with
ε1 ≤ Õ( 1√

m
).

4. In Algorithm 2, the weights in the last layer {vL+1,i,1}mi=1 can also be initialized by the standard initialization
followed by an `2-regression. The `2-regression (16) can be replaced by a soft version

min
{v̂`,i,j}mi=1

λm
m

m∑
i=1

(v̂`,i,j)
2 +

∥∥∥∥∥α̂`,j − 1

m

m∑
i=1

v̂`,i,j ḣ1(β̂`−1,i)

∥∥∥∥∥
2

.
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5.3. Finding Global Minimum

We study the convergence of neural feature flow. We show in Theorem 8 that the neural feature flow
always finds a globally optimal solution when it converges.

Theorem 8 Under Assumptions 1 and 2, assume that the loss function φ is convex in the first
argument. Let

(
{v`}L+1

`=2 , p
)

be the initial continuous Res-Net that satisfies Assumption 3 and Φ∗

and Lt be the solution and loss of the neural feature flow, respectively. If Φβ∗,L(Θ)(t) converges in
`∞(p) and Φv∗,L+1(Θ)(t) converges in `1(p) as t→∞, where Θ ∼ p, then we have

lim
t→∞
Lt =

N∑
n=1

[
min
y′

φ
(
y′, yn

)]
.

Theorem 8 is an important application of our mean-field framework, which shows that neural
feature flow can find a global minimizer after it converges5. We prove that the distribution of the
weights in the first layer always have a full support in any finite time by Brouwer’s fixed-point
theorem. Then, using a similar argument to Chizat and Bach (2018); Nguyen and Pham (2020),
we show that all bad local minima are unstable. Our global convergence holds for Res-Nets with
arbitrary (finite) depth. Before us, the global optimality was proved for three-layer ones (Nguyen
and Pham, 2020) under a similar convergence assumption on the weights in the second layer.

6. Discussion

This paper proposed a new mean-field framework for DNNs where features in hidden layers have
non-vanishing variance. We constructed a continuous dynamic called neural feature flow that cap-
tures the evolution of sufficiently over-parametrized Res-Nets trained by Gradient Descent. Further-
more, the neural feature flow reaches a globally optimal solution after it converges. We hope our
new analytical tool pioneers better understandings for DNN training.

There are many interesting questions under our framework to be further investigated. First, the
current work only focuses on the training part of NNs, and it still remains to study generalization.
The generalization error in the mean-field regime has been studied for two-level NNs, e.g., Wei
et al. (2018). Using our modeling, there are two potential directions: we may incorporate suitable
regularizers on the DNNs to control the model complexity; implicit regularization is often observed
in practice, which is hopefully preserved in our neural feature flow. However, a full treatment is
left as a future study. Second, although our mean-field framework is applicable to standard DNNs
(see Appendix E), it is still not answered how to prove that Gradient Descent can achieve the global
minimum. Third, the implications of our theory in practice can be studied empirically as separate
works. For example, this paper proposes a new interesting initialization strategy for DNNs and
uses the scaled Gradient Descent to optimize DNNs. In Appendix F, we perform a toy simulation
to validate the feasibility of this new training strategy. It is interesting to design new practical
algorithms based on our learning strategy for large-scale data.

5. Remark: for `2 loss, i.e. φ(y′, y) = ‖y′ − y‖2, as an example, Theorem 8 indicates converging to 0 loss.
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Appendix A. Overview

The appendix is sketched as follows. Appendix B provides the key proofs of this paper. Especially,
we will show how the initial condition (Theorem 7) and Assumption 2 (Lemma 3) can be realized.
Besides, we will prove Theorem 8. Appendix C presents the rest proofs. Especially, we will follow
the technique of Picard iterations to prove Theorem 4 and a continuity argument for neural feature
flow (Theorem 13). Note that the latter will be used in Theorem 8. Moreover, we will follow
a “propagation of chaos” argument (Sznitman, 1991) to prove Theorem 6. Appendix D presents
some basic properties for sub-gaussian distributions. Finally, Appendix E introduces the extension
of our mean-field framework to fully-connected DNNs.

In our proofs, we fix a set of training data and treat the parameters in the assumptions as con-
stants. We use C to denote a generic constant; the value of C may change from line to line.

Appendix B. Key Proofs

B.1. Proof of Theorem 7

In this subsection, we prove Theorem 7 which states that Algorithm 2 produces an ε1-independent
initial discrete Res-Net with ε1 ≤ Õ(1/

√
m). By Definition 5, this entails the construction of

an initial distribution p, weight functions {v`}L+1
`=2 , and an ideal discrete Res-Net satisfying the

properties in Definition 5. We specify p, {v`}L+1
`=2 , and the ideal discrete Res-Net below, and then

we verify the properties in Theorem 7.
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Initial distribution. We first define the distribution p:

(1) At the first layer, β1 ∼ pβ1 = N
(
0N , σ2

1K0

)
, whereK0 := 1

dXX
>.

(2) At the layer ` ∈ [L− 1], let Kβ
` :=

∫
ḣ1 (β`) ḣ1 (β`)

> dpβ` (β`). We define the distribution of
the residuals at layer `+ 1 as

pα`+1 = N
(
0N , σ2

1K
β
`

)
. (17)

Defining the mapping f̃`+1 (β`,α`+1) := β` + ḣ2(α`+1), the features at layer `+ 1 is defined
as the pushforward measure by f̃`+1:

pβ`+1 = f̃`+1#
(
pβ` × p

α
`+1

)
.

Finally, let p be a multivariate Gaussian distribution of the form

p (v1,α1,α2, . . . ,αL) := pv1 (v1)× pα2 (α2)× pα3 (α3)× · · · × pαL(αL). (18)

Weight functions. Now we define the weight functions {v`}L+1
`=2 . Note that those gram matrices

Kβ
` are all positive definite under Assumption 2 (see Lemma 9) and thus are invertible. For Θ =

(v1,α2, . . . ,αL), Θ′ = (v′1,α
′
2, . . . ,α

′
L), we define the connecting weights between consecutive

layers by

v`(Θ,Θ′) = ḣ1 (β`−1(Θ))>
[
Kβ
`−1

]−1
α′`, ` ∈ [2 : L], (19)

where β`(Θ) = 1
dXv1 +

∑`
i=2 ḣ2(αi) will satisfy (9). The weights at the output layer are initial-

ized as a constant c. The forward propagation constraint (8) will also be satisfied by (19) and the
definitions ofKβ

` . Therefore ({v`}L+1
`=2 , p) constitutes a feasible continuous Res-Net.

Ideal discrete Res-Net. Finally we construct the initialization (v̄, ᾱ, β̄) of the ideal discrete Res-
Net. Recall Algorithm 2 that the corresponding variables are initialized as (v̂, α̂, β̂). Let v̄1,i := v̂i,1
for i ∈ [m]. For ` ∈ [L− 1], define the empirical Gram matrix as

K̂β
` =

1

m

m∑
i=1

ḣ1

(
β̂`,i

)
ḣ>1

(
β̂`,i

)
.

Let ᾱ`+1,j :=
(
Kβ
`

)1/2 (
K̂β
`

)−1/2
α̂`+1,j for all j ∈ [m] when K̂β

` is invertible, and otherwise

let ᾱ`+1,j
i.i.d.∼ pα`+1. We use Definition 5 (2) for the values of β̄` for ` ∈ [L] and v̄` for all in [2 : L+1].

Proof [Proof of Theorem 7] We first show that the continuous Res-Net satisfies Assumptions 3. By

definition p is a multivariate Gaussian distribution. By Lemma 9, we have
∥∥∥∥(Kβ

`

)−1
∥∥∥∥

2

≤ C for

a constant C. Since the activation function h1 is bounded and Lipschitz continuous, the continuity
conditions in Assumption 3 are all satisfied.

Now we consider the ideal discrete Res-Net. We first verify the independence. By definition,
ᾱ`+1,j are determined by the outputs of previous layer β̂`,i and the connecting weights v̂`+1,i,j .
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Thus they are conditionally independent of v̄1,i and ᾱ2,i, . . . , ᾱ`,i for i ∈ [m] given {β̂`,i}i∈[m].
Since v̂`+1,i,j are independent Gaussian, α̂`+1,j and thus ᾱ`+1,j are conditionally independent
Gaussian given {β̂`,i}i∈[m]. Furthermore, the conditional distribution of ᾱ`+1,j given {β̂`,i}i∈[m]

is N
(
0N , σ2

1K
β
`

)
= pα`+1. Therefore, marginally ᾱ`+1,j

i.i.d.∼ pα`+1 and they are independent of

v̄1,i and ᾱ2,i, . . . , ᾱ`,i for i ∈ [m]. So {Θ̄i}i∈[m]
i.i.d.∼ p. Since p is a product distribution, all

v̄1,i, ᾱ2,i, . . . , ᾱL,i are all mutually independent.
Lastly we show the Õ(1/

√
m)-closeness specified in Definition 5 (3). By Lemma 10 we have

the following events with probability 1− δ:

‖ᾱ`+1,i‖2 ≤ Õ(1), (20)∥∥∥K̂β
` −K

β
`

∥∥∥
2
≤ ε2, (21)

‖ᾱ`+1,i − α̂`+1,i‖2 ≤ ε2

∥∥Θ̄i

∥∥
2
, (22)∥∥∥β̄`+1,i − β̂`+1,i

∥∥∥
2
≤ ε2

∥∥Θ̄i

∥∥
2
, (23)

where ε2 ≤ Õ(1/
√
m). Under (21) the matrix K̂β

` is invertible, and it follows from Lemma 11 that

v̂`+1,i,j = α̂>`+1,j

[
K̂β
`

]−1
ḣ1(β̂`,i), ` ∈ [L− 1], i, j ∈ [m].

By the triangle inequality,

|v̄`+1,i,j − v̂`+1,i,j |

=

∥∥∥∥ᾱ>`+1,j

[
Kβ
`

]−1
ḣ1(β̄`,i)− α̂>`+1,j

[
K̂β
`

]−1
ḣ1(β̂`,i)

∥∥∥∥
2

≤ ‖ᾱ`+1,j‖2
∥∥∥∥[Kβ

`

]−1
∥∥∥∥

2

∥∥∥ḣ1(β̄`,i)− ḣ1(β̂`,i)
∥∥∥

2
+ ‖ᾱ`+1,j‖2

∥∥∥∥[Kβ
`

]−1
−
[
K̂β
`

]−1
∥∥∥∥

2

∥∥∥ḣ1(β̂`,i)
∥∥∥

2

+ ‖ᾱ`+1,j − α̂`+1,j‖2
∥∥∥∥[K̂β

`

]−1
∥∥∥∥

2

∥∥∥ḣ1(β̂`,i)
∥∥∥

2
.

We upper bound three terms separately. By the Lipschitz continuity of h1 and (23), the first term
is at most Õ(1/

√
m)‖Θ̄j‖2; the second term is also at most Õ(1/

√
m)‖Θ̄j‖2 since ‖ᾱ`+1,j‖2 ≤

‖Θ̄j‖2, ∥∥∥∥[Kβ
`

]−1
−
[
K̂β
`

]−1
∥∥∥∥

2

≤
∥∥∥∥[Kβ

`

]−1
∥∥∥∥

2

∥∥∥Kβ
` − K̂

β
`

∥∥∥
2

∥∥∥∥[K̂β
`

]−1
∥∥∥∥

2

≤ Cε2,

and h1 is bounded; the third term is at most Õ(1/
√
m)‖Θ̄j‖2 by (22).

B.1.1. PROOF OF ADDITIONAL LEMMAS

Lemma 9 min`∈[L−1] λmin(Kβ
` ) ≥ C > 0.
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Proof Fix ` ∈ [L− 1]. For (v1,α2, . . . ,αL) ∈ supp(p), given α2, . . . ,αL, we have Θ = Θ(v1)
and ∥∥∥∥β`(Θ)− 1

d
Xv1

∥∥∥∥
∞

=

∥∥∥∥∥∥
∑̀
`1=2

ḣ2(α`1)

∥∥∥∥∥∥
∞

≤ LL1. (24)

Note that v1 is independent of α2, . . . ,αL, and v1 ∼ N
(
0, dσ2

1I
d
)

which is equivalent to the
standard Gaussian distribution. By Assumption 2 with f2(v1) ≡

∑`
`1=2 ḣ2(α`1) and the constant

CB = LL1, we have

E
[
ḣ1 (β`(Θ)) ḣ>1 (β`(Θ)) | α2, . . . ,αL

]
� CIN .

Taking full expectation, we obtain Lemma 9.

In the sequel, we set λ̄1 := min`∈[L−1] λmin(Kβ
` ) that is strictly bounded away from zero.

Lemma 10 Let ε2 ≤ Õ(1/
√
m). With probability 1− δ, for all ` ∈ [L− 1] and i ∈ [m],∥∥∥K̂β

` −K
β
`

∥∥∥
2
≤ ε2, ‖ᾱ`+1,i − α̂`+1,i‖2 ≤ ε2

∥∥Θ̄i

∥∥
2
,

‖ᾱ`+1,i‖2 ≤ Õ(1),
∥∥∥β̄`+1,i − β̂`+1,i

∥∥∥
2
≤ ε2

∥∥Θ̄i

∥∥
2
.

Proof In the proof of Lemma 7 we verified that v̄1,i, ᾱ2,i, . . . , ᾱL,i for all i ∈ [m] are independent.

Therefore, β̄`,i
i.i.d.∼ pβ` by the definitions of β̄`,i and pβ` . Consider auxiliary random matrices

K̄β
` :=

1

m

m∑
i=1

ḣ1(β̄`,i)ḣ
>
1 (β̄`,i),

Since h1 is bounded, by the matrix Bernstein inequality (Tropp, 2015), with probability 1− δ
3 ,

max
`∈[L−1]

∥∥∥K̄β
` −K

β
`

∥∥∥
2
≤ ε3 = Õ(1/

√
m). (25)

Due to the sub-gaussianness of p, we have ‖ᾱ`+1,i‖2 ≤ C
√

log(m/δ) = Õ(1) with probability
1−δ/3 (see Lemma 27 (1)) We will also use the following upper bound that happens with probability
1− δ/3 by the sub-gaussianness of p:

1

m

m∑
i=1

‖Θ̄i‖2 ≤ β1 = Õ(1), (26)

which can be obtained by the concentration inequality in Lemma 28).
Next we inductively prove that, for ` ∈ [L− 1],∥∥∥Kβ

` − K̂
β
`

∥∥∥
2
≤ (Cβ1)`−1Cε3, (27)

‖α̂`+1,i − ᾱ`+1,i‖2 ≤ (Cβ1)`−1Cε3

∥∥Θ̄i

∥∥
2
, (28)∥∥∥β̂`+1,i − β̄`+1,i

∥∥∥
2
≤ (Cβ1)`−1Cε3

∥∥Θ̄i

∥∥
2
. (29)
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For ` = 1, by definition K̄β
1 = K̂β

1 . The upper bound of
∥∥∥∥[K̂β

1

]1/2
−
[
Kβ

1

]1/2
∥∥∥∥

2

is achieved

by matrix calculus (Bhatia, 2013, Section V.3). Since
∥∥∥K̂β

1 −K
β
1

∥∥∥
2
≤ λ̄1

2 , then the eigenvalues

of K̂β
1 are at least λ̄12 . Let f(x) :=

√
x. Then |f ′(x)| ≥ 1√

2λ̄1
when x is the eigenvalue of K̂β

1 .

Applying (Bhatia, 2013, (V.20)) yields that∥∥∥∥[K̂β
1

]1/2
−
[
Kβ

1

]1/2
∥∥∥∥

2

≤ N√
2λ̄1

∥∥∥K̂β
1 −K

β
1

∥∥∥
2
≤ Cε3, (30)

and

‖α̂2,i − ᾱ2,i‖2 =

∥∥∥∥([K̂β
1

]1/2 [
Kβ

1

]−1/2
− IN

)
ᾱ2,i

∥∥∥∥
2

≤ Cε3‖ᾱ2,i‖2 ≤ Cε3‖Θ̄i‖2. (31)

Then by the Lipschitz continuity of h2, we have∥∥∥β̂2,i − β̄2,i

∥∥∥
2

=
∥∥∥[ḣ2(α̂2,i)− ḣ2(ᾱ2,i)

]∥∥∥
2
≤ Cε3‖Θ̄i‖2. (32)

For ` ∈ [2 : L− 1], suppose that∥∥∥β̂`,i − β̄`,i∥∥∥
2
≤ (Cβ1)`−2Cε3

∥∥Θ̄i

∥∥
2
. (33)

Then, by the boundedness of h1 and the triangle inequality, we have∥∥∥K̂β
` − K̄

β
`

∥∥∥
2
≤ C

m

m∑
i=1

∥∥∥ḣ1(β̄`,i)− ḣ1(β̂`,i)
∥∥∥

2
.

Applying the Lipschitz continuity of h1 and (33) yields that∥∥∥K̂β
` − K̄

β
`

∥∥∥
2
≤ (Cβ1)`−2Cε3

m

m∑
i=1

∥∥Θ̄i

∥∥
2
≤ (Cβ1)`−1Cε3. (34)

where in the last inequality we used (26). Then we obtain (27) by triangle inequality from (25) and
(34). The upper bound in (28) for ` + 1 follows from a similar argument of (30) and (31). Finally
(29) for `+ 1 follows from (28) and

∥∥∥β̂`+1,i − β̄`+1,i

∥∥∥
2

=

∥∥∥∥∥∥
`+1∑
j=2

[
ḣ2(α̂j,i)− ḣ2(ᾱj,i)

]∥∥∥∥∥∥
2

≤ C(Cβ1)`−1ε3

∥∥Θ̄i

∥∥
2
.

We finish the induction. Since β = Õ(1) and ε3 = Õ(1/
√
m), we complete the proof.

Lemma 11 If K̂β
` is invertible, then

v̂`+1,i,j = α̂>`+1,j

[
K̂β
`

]−1
ḣ1(β̂`,i), ` ∈ [L− 1], i, j ∈ [m].
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Proof For a given layer ` and j, the `2-regression problem in Algorithm 2 can be equivalently
written as

min
v̂

1

2
‖v̂‖2 (35)

s.t.
1

m
Ĥv̂ = α̂`+1,j ,

where v̂ = (v̂`+1,1,j , . . . , v̂`+1,m,j)
> and Ĥ =

[
ḣ1(β̂`,1), . . . , ḣ1(β̂`,m)

]
. Decompose v̂ as

v̂ = Ĥ>z + v̂′,

where z ∈ Rm and Ĥv̂′ = 0. Then (35) is equivalent to

min
z, v̂′

1

2

∥∥∥Ĥ>z∥∥∥2

2
+

1

2

∥∥v̂′∥∥2

2

s.t.
1

m
ĤĤ>z = α̂`+1,j .

Since 1
mĤĤ

> = K̂β
` is invertible, the optimal solution is z =

[
K̂β
`

]−1
α̂`+1,j and v̂′ = 0N .

B.2. Proof of Theorem 8

Proof [Proof of Theorem 8] In the proof we use the following abbreviated notations: for t ∈ [0,∞)
and Θ ∈ supp(p), let

βt`(Θ) = Φβ∗,`(Θ)(t), ` ∈ [L],

αt`(Θ) = Φα∗,`(Θ)(t), ` ∈ [2 : L],

vt1(Θ) = Φv∗,1(Θ)(t),

vtL+1(Θ) = Φv∗,L+1(Θ)(t).

From the convergence assumptions, it is clear that βtL+1 converges as t → ∞. Indeed, the conver-
gence assumptions imply that, for any ε2 > 0, there exists T , for any t ≥ T ,∥∥βtL(Θ)− β∞L (Θ)

∥∥
∞ ≤ ε2 (36)

holds p-almost surely and ∫ ∣∣vtL+1(Θ)− v∞L+1(Θ)
∣∣ p(Θ) ≤ ε2. (37)

Then, since h1 is bounded and Lipschitz continuous, we have∥∥βtL+1 − β∞L+1

∥∥
∞

=

∥∥∥∥∫ vtL+1(Θ) ḣ1

(
βtL(Θ)

)
− v∞L+1(Θ) ḣ1 (β∞L (Θ)) dp(Θ)

∥∥∥∥
∞

≤
∫ ∣∣v∞L+1(Θ)

∣∣ ∥∥∥ḣ1

(
βtL(Θ)

)
− ḣ1 (β∞L (Θ))

∥∥∥
∞
dp(Θ)

+

∫ ∣∣vtL+1(Θ)− v∞L+1(Θ)
∣∣ ∥∥∥ḣ1(βtL(Θ))

∥∥∥
∞
dp(Θ)

≤ Cε2. (38)
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The goal of the proof is to show that ∥∥∥φ̇′1 (β∞L+1

)∥∥∥
2

= 0. (39)

To this end, for any ε > 0, we will construct a function

fε(v1) := φ̇′1
(
β∞L+1

)>
ḣ1

(
1

d
Xv1 + gε(v1)

)
, (40)

where the functions gε is uniformly bounded, such that |fε(v1)| < ε. Then it follows from (40) that

φ̇′1
(
β∞L+1

)
= K−1

∫
fε(v1) ḣ1

(
1

d
Xv1 + gε(v1)

)
dp̃1(v1),

where p̃1 = N (0d, Id) andK :=
∫
ḣ1

(
1
dXv1 + gε,η(v1)

)
ḣ>1
(

1
dXv1 + gε,η(v1)

)
dp̃1(v1) whose

minimum eigenvalue is at least λ̄1 > 0 by Assumption 2. The boundedness of h1 yields that∥∥∥φ̇′1 (β∞L+1

)∥∥∥
2
≤ Cλ̄−1

1 ε.

Since λ̄1 is independent of ε, by letting ε→ 0, we obtain (39).
Next we construct gε and fε in (40). Let T be the time such that (36) and (37) hold with ε2 ≤ cε

for a constant c to be specified. Note that vT1 is surjective by Lemma 12. Let g̃ : Rd → supp(p) be
the inverse function such that vT1 (g̃(v1)) = v1. Define

gε(v1) =

L∑
`=2

ḣ2

(
αT` (g̃(v1))

)
, fε(v1) = φ̇′1

(
β∞L+1

)>
ḣ1

(
βTL(g̃(v1))

)
,

where gε is uniformly bounded by the boundedness of h2. Suppose on the contrary that there exists
v′1 such that |fε(v′1)| > ε. Let Θ′ = g̃(v′1). Since Θ 7→ φ̇′1

(
β∞L+1

)>
ḣ1

(
βTL(Θ)

)
is continuous by

Theorem 13 (see Appendix C.1), there exists a ball around Θ′ denoted by S such that p(S) > 0 and
|φ̇′1
(
β∞L+1

)>
ḣ1

(
βTL(Θ)

)
| > ε/2 with the same sign for all Θ ∈ S. However, for t > T ,∫ ∣∣vtL+1(Θ)− vTL+1(Θ)

∣∣ dp(Θ)

≥ 1

N

∫
IS
∣∣∣∣∫ t

T
φ̇′1
(
βtL+1

)>
ḣ1

(
βtL(Θ)

)
dt

∣∣∣∣ dp(Θ)

≥ 1

N

∫
IS
(∣∣∣∣∫ t

T
φ̇′1
(
β∞L+1

)>
ḣ1

(
βTL(Θ)

)
dt

∣∣∣∣− ∫ t

T
Cε2dt

)
dp(Θ), (41)

where in the last step we used ‖βtL(Θ) − βTL(Θ)‖∞ ≤ 2ε2 from (36), (38), and the boundedness
and Lipschitz continuity of φ′1 and h1. Let c = 1

4C . The lower bound in (41) diverges with t, which
contradicts (37).

Finally from (39) we show the convergence statement. Since φ is convex on the first argument,
we obtain

N∑
n=1

φ
(
β∞L+1(n), yn

)
=

N∑
n=1

[
min
y′

φ
(
y′, yn

)]
.
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Since βtL+1 → β∞L+1 and φ is continuous, we obtain that

lim
t→∞

Lt =

N∑
n=1

φ(β∞L+1(n), yn) =

N∑
n=1

[
min
y′

φ
(
y′, yn

)]
,

which completes the proof.

Lemma 12 The function t <∞, vt1 : supp(p)→ Rd is a surjection.

Proof Recall that at the initialization let Θ(v) = (v,0D−d) ∈ RD = supp(p), where the equality
follows from Assumption 3 that p has a full support. Given t <∞, consider ft : Rd → Rd as

ft(v) = vt1 (Θ(v)) .

It suffices to show that ft is surjective. Note that ft is continuous since Θ 7→ vt1(Θ) is continuous
by Theorem 13. Furthermore, for any v ∈ Rd, by Lemma 21 which states that the gradient of the
weights Gv1 is bounded (see Appendix C.1), we have

‖ft(v)− v‖∞ =

∫ t

0

∥∥∥Gv1 ([v; 0D−d
]
,Φ∗, s

)∥∥∥
∞
ds ≤ Ct.

For any x ∈ Rd, consider g(v) := x − (ft(v) − v) which continuously maps B∞(x, Ct) to
itself. By the Brouwer’s fixed-point theorem (see, e.g. Granas and Dugundji (2013)), there exists
v∗ ∈ B∞(x, Ct) such that g(v∗) = v∗; equivalently, we have ft(v∗) = x.

B.3. Proof of Lemma 3

Proof [Proof of Lemma 3] We first note the following results in Du et al. (2019a, Lemma F.1):
suppose that CB = 0 and the support of a random vector V ∈ Rd denoted by R has positive
Lebesgue measure. Moreover, h is an analytic non-polynomial function on R. Then

min
‖a‖2=1

E

∥∥∥∥∥
N∑
i=1

aih(xi ◦ V )

∥∥∥∥∥
2

2

= λ > 0,

where a = (a1, . . . , aN ). Lemma 3 shows that, for V ′ ∼ p = N
(
0d, Id

)
, the same result holds

with a constant perturbation of the functions h1; namely, by letting gi(v) = h1(xi ◦ v + Ci(v))
where ‖Ci‖∞ ≤ CB ,

min
‖a‖2=1

E

∥∥∥∥∥
N∑
i=1

aigi(V
′)

∥∥∥∥∥
2

2

= λ′ > 0, (42)

where λ′ is uniform over all perturbations ‖Ci‖∞ ≤ CB . It suffices to prove (42) for V ′ ∼
q = Uniform(R′) where R′ is determined by h and CB , as the Radon–Nikodym derivative dq

dp
is bounded.
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We first prove (i). Consider a compact region R such that, for V ∼ Uniform(R) and any unit
vector a,

E

∥∥∥∥∥
N∑
i=1

aig(xi ◦ V )

∥∥∥∥∥
2

2

≥ λR > 0.

Then for β > 0, since g is bounded and Lipschitz continuous, we have

E

∥∥∥∥∥
N∑
i=1

aig (xi ◦ V + βCi(V /β))

∥∥∥∥∥
2

2

≥ λR − CCBβ ≥
λR
2
,

when β ≤ λR
2CBC

. Let h1(x) = g(βx). Then E‖
∑N

i=1 aih1 (xi ◦ V /β + Ci(V /β))‖22 ≥
λR
2 . We

achieve (42) by letting V ′ = V /β.
For (ii), consider R = {v : 1/2 ≤ ‖v‖2 ≤ 1}. Then, for V ∼ Uniform(R) and any unit vector

a,

E

∥∥∥∥∥
N∑
i=1

aih1(xi ◦ V )

∥∥∥∥∥
2

2

≥ λR > 0.

Since h1(βx) = βαx for any β > 0, then we have E‖
∑N

i=1 aih1(xi ◦ βV )‖22 ≥ β2αλR. Note that
|xi ◦ βV | = Θ(β). For x = Θ(β), we have |h1(x)| ≤ Cβα and h1 is Cβα−1-Lipschitz continuous
for a constant C. Therefore,

E

∥∥∥∥∥
N∑
i=1

aih1(xi ◦ βV + Ci(βV ))

∥∥∥∥∥
2

2

≥ β2αλR − C ′β2α−1CB ≥ (C ′CB)2α

(
2

λR

)2α−1

.

for a constant C ′ when β = 2C′CB
λR

. We achieve (42) by letting V ′ = βV .
For (iii), we only consider h1(x) = c|x|−α. The case for h1(x) = c(x)−α+ can be obtained by a

similar argument. We first show that there exists a compact set R such that, for all v ∈ R and xi,

|xi ◦ v| ≥ c′. (43)

This can be done by a simple probabilistic argument. Let v be drawn from the uniform distribution
on Sd−1, for any fixed x ∈ Rd, we have

P{|v>x| < t‖x‖2} =
2π

d−1
2 /Γ(d−1

2 )

2π
d
2 /Γ(d2)

∫ t

−t
(1− u2)

d−3
2 du < t

√
d.

By a union bound, we have |xi ◦ v| ≥ ‖xi‖2
2N
√
d

with probability 0.5. Denote this set of v ∈ Sd−1 by

S′. Since mini ‖xi‖2 := Cmx > 0, we obtain (43) with R = {tv : v ∈ S′, 2c′N
√
d

Cmx
≤ t ≤ 4c′N

√
d

Cmx
}.

Then, for V ∼ Uniform(R) and any unit vector a,

E

∥∥∥∥∥
N∑
i=1

aih1(xi ◦ V )

∥∥∥∥∥
2

2

≥ λR > 0.
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Then, for any β > 0, we have E‖
∑N

i=1 aih1(xi ◦ βV )‖22 ≥ β−2αλR. For x = Θ(β) we have
|h1(x)| ≤ Cβ−α and h1 is Cβ−α−1-Lipschitz continuous for a constant C. Therefore,

E

∥∥∥∥∥
N∑
i=1

aih1(xi ◦ βV + Ci(βV ))

∥∥∥∥∥
2

2

≥ β−2αλR − C ′β−2α−1CB ≥ (C ′CB)−2α

(
2

λR

)−2α−1

.

for a constant C ′ when β = 2C′CB
λR

. We achieve (42) by letting V ′ = βV .

Appendix C. Rest Proofs

C.1. Proofs of Theorems 4 and 13

We first demonstrate Theorem 13 which shows that the neural feature flow Φ∗ is a continuous
mapping on Θ given time t.

Theorem 13 (Property of Φ∗) Under Assumptions 1 and 3, let Φ∗ be the neural feature flow, there
exist constants C,C ′ ≥ 0 such that for all t ∈ [0, T ], Θ1 ∈ supp(p) and Θ̃1 ∈ supp(p) ∩
B∞ (Θ, 1), Θ2 ∈ supp(p), and Θ̃2 ∈ supp(p) ∩ B∞ (Θ2, 1), we have∥∥∥Φβ∗,`

(
Θ1

)
(t)− Φβ∗,`

(
Θ̃1

)
(t)
∥∥∥
∞
≤ CeC′t (‖Θ1‖∞ + 1)

∥∥∥Θ1 − Θ̃1

∥∥∥
∞
, ` ∈ [L],∥∥∥Φα∗,`

(
Θ1

)
(t)− Φα∗,`

(
Θ̃1

)
(t)
∥∥∥
∞
≤ CeC′t (‖Θ1‖∞ + 1)

∥∥∥Θ1 − Θ̃1

∥∥∥
∞
, ` ∈ [2 : L],∥∥∥Φv∗,1

(
Θ1

)
(t)− Φv∗,1

(
Θ̃1

)
(t)
∥∥∥
∞
≤ CeC′t (‖Θ1‖∞ + 1)

∥∥∥Θ1 − Θ̃1

∥∥∥
∞
,∣∣∣Φv∗,`(Θ1,Θ2

)
(t)− Φv∗,`

(
Θ̃1,Θ2

)
(t)
∣∣∣ ≤ CeC′t (‖Θ1‖∞ + ‖Θ2‖∞ + 1)

∥∥∥Θ1 − Θ̃1

∥∥∥
∞
, ` ∈ [2 : L],∣∣∣Φv∗,`(Θ1,Θ2

)
(t)− Φv∗,`

(
Θ1, Θ̃2

)
(t)
∣∣∣ ≤ CeC′t (‖Θ1‖∞ + ‖Θ2‖∞ + 1)

∥∥∥Θ2 − Θ̃2

∥∥∥
∞
, ` ∈ [2 : L],∣∣∣Φv∗,L+1

(
Θ1

)
(t)− Φv∗,L+1

(
Θ̃1

)
(t)
∣∣∣ ≤ CeC′t (‖Θ1‖∞ + 1)

∥∥∥Θ1 − Θ̃1

∥∥∥
∞
.

In the proof, we fix the initial continuous Res-Net ({v`}L+1
`=2 , p), which is assumed to satisfy the

Assumption 3.

C.1.1. PROOF OF THEOREM 4

We first show that our neural feature flow in Definition 2 necessarily satisfies several continuity
properties in Lemma 15, which allows us to narrow down the search space for the solution. Then we
construct a contraction mapping (also known as Picard iteration) to show the existence of uniqueness
of solution in that search space. Recall that a trajectory Φ consists of trajectories of weights Φv` for
` ∈ [L + 1], features Φβ` for ` ∈ [L], and residuals Φα` for ` ∈ [2 : L]. For Θ, Θ̄ ∈ supp(p), we
also abbreviate the notations for individual trajectories as

Φv` (u`)(t) = vt`(u`), Φβ` (Θ)(t) = βt`(Θ), Φα` (Θ)(t) = αt`(Θ),

where u` stands for Θ, (Θ, Θ̄), Θ for ` = 1, 2 ≤ ` ≤ L, ` = L+ 1, respectively.
Throughout the proof, we fix T as a constant. We define the set of continuous restricted trajec-

tories below.
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Definition 14 (C-Continuous Restricted Trajectory) GivenC := (C1, . . . ,CL+1) ∈ RL+1
+ , we

say Φ is a C-continuous restricted trajectory if Φv` (u`)(t) is C`-Lipschitz continuous in t ∈ [0, T ]

for ` ∈ [L+ 1], and Φα` (u`)(t) and Φβ` (u`)(t) are determined by the forward-propagation process,
i.e., βt1(Θ) = 1

dXvt1(Θ), αt`+1(Θ) =
∫
vt`+1(Θ, Θ̄)ḣ1

(
βt`(Θ̄)

)
dp(Θ̄), βt`+1(Θ) = βt`(Θ) +

ḣ2

(
αt`+1(Θ)

)
for ` ∈ [L−1] and Θ ∈ supp(p). The set of allC-continuous restricted trajectories

is denoted as ΦC .

We can find that given the trajectories of weights, the trajectories of residuals and features are
determined by the forward-propagation process. Lemma 15 below shows that it suffices to consider
a restricted search space.

Lemma 15 There exists a constant vector C ∈ RL+1
+ such that every solution Φ of the neural

feature flow is a C-continuous restricted trajectory.

In the remaining of the proof we let C be the constant vector in Lemma 15, and let Φ := ΦC ,
which will serve as the search space. The solution can be equivalently characterized as the fixed-
point of a mapping from Φ to itself that we introduce next:

Definition 16 Define F : Φ→ Φ as follows: for all t ∈ [0, T ],

(1) for all ` ∈ [L+ 1] and all u`,

F (Φ)v` (u`)(t) = v`(u`)−
∫ t

0
Gv` (u`; Φ, s)ds,

(2) for all Θ,

F (Φ)β1 (Θ)(t) =
1

d
[XF (Φ)v1 (Θ)(t)] ,

(3) for all ` ∈ [L− 1] and Θ,

F (Φ)α`+1(Θ)(t) =

∫
F (Φ)v`+1(Θ, Θ̄)(t) ḣ1

(
Φβ` (Θ̄)(t)

)
dp(Θ̄),

F (Φ)β`+1(Θ)(t) = ḣ2

(
F (Φ)α`+1(Θ)(t)

)
+ F (Φ)β` (Θ)(t).

Following the same argument as Lemma 15, we have that the image of Φ under F is indeed
contained in Φ. We then show in Lemma 18 the contraction property of F under an appropriate
metric defined below:

Definition 17 For a pair Φ1,Φ2 ∈ Φ, we define the normalized distance between each trajectories
over [0, t] as

D[0,t](Φ1,Φ2) := sup
s∈[0,t], `∈[L+1], u`

‖Φv1,`(u`)(s)− Φv2,`(u`)(s)‖∞
1 + ‖u`‖∞

.

Lemma 18 There exists a constant C such that

D[0,t](F (Φ1), F (Φ2)) ≤ C
∫ t

0
D[0,s](Φ1,Φ2)ds.
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Proof [Proof of Theorem 4] Firstly, Φ contains the constant trajectory and thus is nonempty. Ap-
plying Lemma 18, the proof of existence and uniqueness follows from a similar argument of Pi-
card–Lindelöf theorem. Specifically, iteratively applying Lemma 18 yields that

D[0,T ](Fm(Φ1), Fm(Φ2)) ≤ (CT )m

m!
D[0,T ](Φ1,Φ2).

Let Φ be the constant trajectory, for any Φ̃ ∈ Φ, by the upper bounds of Gv` in Lemma 21 and the
Definition of D[0,T ] in Definition 17, there is a constant C such that

D[0,T ](F (Φ̃),Φ) ≤ CT <∞.

We first show the uniqueness. For two fixed points of F denoted by Φ1 and Φ2, we have

D[0,T ](Φ1,Φ2) = D[0,T ](Fm(Φ1), Fm(Φ2)) ≤ (CT )m−1

(m− 1)!
D[0,T ](F (Φ1), F (Φ2)),

By the triangle inequality D[0,T ](F (Φ1), F (Φ2)) ≤ D[0,T ](F (Φ1),Φ) + D[0,T ](F (Φ2),Φ) < ∞,
hence the right-hand side of the above inequality vanishes as m diverges. For the existence, we can
consider the sequence {F i2(Φ) : i ≥ 0} that satisfies

D[0,T ](Fm+1
2 (Φ), Fm2 (Φ)) ≤ (CT )m

m!
D[0,T ](F (Φ),Φ),

Because D[0,T ](F (Φ),Φ) <∞, {F i(Φ) : i ≥ 0} is a Cauchy sequence. Since Φ is complete under
D[0,T ] by Lemma 22, the limit point Φ∗ ∈ Φ, which is a fixed-point of F . Finally, by dominated
convergence theorem, we can directly verify that Φ∗ is the solution of neural feature flow.

C.1.2. PROOF OF THEOREM 13

Theorem 13 is a Grönwall-type of result. However, it is not straightforward to directly derive a
simple differential inequality due to the involved relations among the parameters of deep neural
networks. Again we turn to the technique of Picard iterations used in the proof of Theorem 4. This
approach has also been used to prove the abstract Grönwall inequality in Turinici (1986).

Recall the set Φ in the proof of Theorem 4, and the mapping F : Φ 7→ Φ in Definition 16. It
is shown that F is a contraction mapping and thus there exists a unique solution Φ∗ ∈ Φ. We will
construct a closed nonemtpy subset Φ̃ ⊆ Φ with the desired properties in Theorem 13 such that
F (Φ̃) ⊆ Φ̃. Then by the same argument as the proof of Theorem 4, the Picard iteration guarantees
the solution in Φ̃, thereby proving Φ∗ ∈ Φ̃.

We introduce the set of b-locally Lipschitz trajectories with the desired properties in Theorem
13. We use similar notations as in the proof of Theorem 4 by letting u` denote Θ, (Θ, Θ̄), Θ for
` = 1, 2 ≤ ` ≤ L, ` = L+ 1, respectively.

Definition 19 (b-Locally Lipschitz Trajectory) Recall the constants C2 and C4 in Assumption 3
for the locally Lipschitz continuity at t = 0. We say Φ is b-locally Lipschitz if for all t ∈ [0, T ], Θ1,
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Θ̄1 ∈ B∞(Θ1, 1), Θ̄2, and Θ̄2 ∈ B∞(Θ̄2, 1), we have∥∥Φv1 (Θ1)(t)− Φv1 (Θ̄1)(t)
∥∥
∞ ≤ e

bt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞, (44a)∣∣ΦvL+1(Θ1)(t)− ΦvL+1(Θ̄1)(t)
∣∣ ≤ (1 + C4)ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞, (44b)∣∣Φv` (u`)(t)− Φv` (Θ̄1,Θ2)(t)
∣∣ ≤ (1 + C2)ebt(‖u`‖∞ + 1)‖Θ1 − Θ̄1‖∞, (44c)∣∣Φv` (u`)(t)− Φv` (Θ1, Θ̄2)(t)
∣∣ ≤ (1 + C2)ebt(‖u`‖∞ + 1)‖Θ2 − Θ̄2‖∞, (44d)

for ` ∈ [2 : L]. Denote the set of all b-locally Lipschitz trajectories as Φb.

Lemma 20 There exists a constant b∗ such that F (Φ ∩Φb∗) ⊆ Φb∗ .

Proof [Proof of Theorem 13] Let b∗ be the constant in Lemma 20 and Φ′ := Φ ∩ Φb∗ ⊆ Φ,
which clearly contains the constant trajectory and thus is nonempty. It follows from Lemma 20 that
F (Φ′) ⊆ Φ′. Since F is a contraction mapping by Lemma 18 and Φ′ is a closed set by Lemma 23,
by the same argument as the proof of Theorem 4, there exists a unique solution in Φ′, which is
necessarily Φ∗ by the uniqueness of the solution in Theorem 4.

C.1.3. PROOFS OF LEMMAS

Proof [Proof of Lemma 15] We first prove the Lipschitz continuity of Φ for weight. It suffices to
show upper bounds of Gv` for each layer `. We use the backward equations to inductively upper
bound Dβ` and Dα` , which immediately yield upper bounds ‖Gv` ‖∞ ≤ C` for constants C`.

For the top layer ` = L+ 1, by Assumption 1 that |φ′1| ≤ L4, we have

‖DL+1(Φ, t)‖∞ ≤ L4 := C̃L+1.

At layer ` = L, since |h′1| ≤ L2,∥∥∥DβL(Θ; Φ, t)
∥∥∥
∞
≤
∥∥∥ḣ′1 (βtL(Θ)

)∥∥∥
∞︸ ︷︷ ︸

≤L2

∥∥DL+1(Φ, t)
∥∥
∞︸ ︷︷ ︸

≤C̃L+1

∣∣vtL+1(Θ)
∣∣︸ ︷︷ ︸

≤C3+TCL+1

≤ C̃L, (45)

where C̃L := (C3 + CL+1T )L2C̃L+1 and |vtL+1| ≤ C3 + CL+1T by the upper bound of initial-
ization in Assumption 3 and the CL+1 := L1C̃L+1-Lipschitz continuity of vtL+1 in t. For each
` = L − 1, . . . , 1, suppose Dβ`+1 is uniformly bounded by C̃`+1. Then it follows from (11c) and
(12b) that∥∥Dα`+1(Θ; Φ, t)

∥∥
∞ ≤

∥∥∥Dβ`+1(Θ; Φ, t)
∥∥∥
∞

∥∥∥ḣ′2 (αt`+1(Θ)
)∥∥∥
∞
≤ C̃`+1L2 := C̃ ′`+1,

and ∣∣∣Gv`+1(Θ, Θ̄; Φ, t)
∣∣∣ ≤ ∥∥Dα`+1(Θ; Φ, t)

∥∥
∞

∥∥∥ḣ1

(
βt`(Θ)

)∥∥∥
∞
≤ L1C

′
`+1 := C`+1.
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We then similarly apply the upper bounds of initialization in Assumption 3 and the C`+1-Lipschitz
continuity of vt`+1 in t and obtain that∥∥∥∥∫ vt`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ, t) dp(Θ̄)

∥∥∥∥
∞

(46)

≤ C̃ ′`+1

∫ ∣∣vt`+1(Θ, Θ̄)
∣∣ dp(Θ̄)

≤ C̃ ′`+1

(
C`+1t+

∫
|v`+1(Θ`,Θ`+1)|dp`+1(Θ`+1)

)
≤ C̃`+1(C`+1T + C ′),

for a constant C ′, where in the last inequality we used the upper bound of v`+1 in (15), the sub-
gaussian property of p, and Corollary 31. Consequently,∥∥∥Dβ` (Θ; Φ, t)

∥∥∥
∞

(47)

≤
∥∥∥Dβ`+1(Θ; Φ, t)

∥∥∥
∞

+

∥∥∥∥ḣ′1 (βt`(Θ)
)
◦
∫
vt`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ, t) dp(Θ̄)

∥∥∥∥
∞

≤ C̃`+1 + (C̃`+1(C`+1T + C ′))L2 := C̃`.

Finally, denoting the infinity norm of the dataX byCx, (12c) gives the upper bound of
∣∣Gv1 (Θ; Φ, t)

∣∣
by CxC̃1 := C1.

Now we turn to the forward steps. We prove that there is a constant C such that for ` ∈ [L] and
Θ, ∥∥∥Gβ` (Θ; Φ, t)

∥∥∥
∞
≤ C (‖Θ‖∞ + 1) , (48)

and for all ` ∈ [2 : L] and Θ,∥∥Gα` (Θ; Φ, t)
∥∥
∞ ≤ C (‖Θ‖∞ + 1) . (49)

Once we obtain (48) and (49), because p has bounded finite moment (Corollary 31), the dominated
convergence theorem directly implies that Φα and Φβ satisfy the forward equations in Definition
14, which is our desired result.

For the first layer ` = 1, sinceX is bounded, it follows from (13a) that∥∥∥Gβ1 (Θ; Φ, t)
∥∥∥
∞
≤ C ′′1 ≤ C ′′1 (‖Θ‖∞ + 1) .

Suppose that at layer ` ∈ [L − 1], we have
∥∥∥Gβ` (Θ; Φ, t)

∥∥∥
∞
≤ C ′′` (‖Θ‖∞ + 1). By a similar

argument to (47), we have∥∥∥∥∫ vt`+1(Θ, Θ̄) Gβ` (Θ̄; Φ, t) dp(Θ̄)

∥∥∥∥
∞

≤ C ′′`

∫ (
C`+1T +

∣∣v`+1(Θ, Θ̄)
∣∣) (‖Θ̄‖∞ + 1)dp(Θ̄)

(15)
≤ C ′′` (C`+1T + C1(‖Θ‖∞ + 1))

∫
(‖Θ̄‖∞ + 1)dp(Θ̄)

≤ C̃ ′′`+1(‖Θ‖∞ + 1),
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for some constant C̃ ′′`+1. Therefore, applying (13b) yields that∥∥∥Gα`+1(Θ; Φ, t)
∥∥∥
∞
≤ L2C̃

′′
`+1(‖Θ‖∞ + 1) +

∫ ∥∥∥ḣ1

(
βt`
)∥∥∥
∞︸ ︷︷ ︸

≤L1

∣∣∣Gv`+1(Θ, Θ̄; Φ, t)
∣∣∣︸ ︷︷ ︸

≤C`

dp(Θ̄)

≤ C̄`+1(‖Θ‖∞ + 1), (50)

for some constant C̄`+1. We obtain∥∥∥Gβ`+1(Θ; Φ, t)
∥∥∥
∞

≤
∥∥∥ḣ′2 (αt`+1(Θ)

)
◦ Gα`+1(Θ; Φ, t)

∥∥∥
∞

+
∥∥∥Gβ` (Θ; Φ, t)

∥∥∥
∞

≤ (L2C̄`+1 +C ′′` ) (‖Θ‖∞ + 1) ,

which suggests to pick C ′′`+1 = (L2C̄`+1 +C ′′` ). We achieve Lemma 15.

Before proving Lemma 18, we first present in Lemma 21 properties of Φ ∈ Φ that will be used
to prove the contraction lemma. The proof is exactly the same as Lemma 15 and is omitted.

Lemma 21 (Property of Φ) There exists a generic constant C such that, for any Φ ∈ Φ, we have

• ‖DL+1(Φ, t)‖∞ ≤ C and ‖Dβ` (Θ; Φ, t)‖∞ ≤ C for ` ∈ [L];

• ‖Dα` (Θ; Φ, t)‖∞ ≤ C for ` ∈ [2 : L];

• ‖Gv` (u`; Φ, t)‖∞ ≤ C and ‖vt`(u`)‖∞ ≤ ‖v0
` (u`)‖∞ + C t for ` ∈ [L+ 1];

• ‖Gβ` (Θ; Φ, t)‖∞ ≤ C (‖Θ‖∞ + 1) for ` ∈ [L];

• ‖Gα` (Θ; Φ, t)‖∞ ≤ C (‖Θ‖∞ + 1) for ` ∈ [2 : L].

Proof [Proof of Lemma 18] The proof entails upper bounds of the gradient differences ‖Gv` (u`; Φ1, t)−
Gv` (u`; Φ2, t)‖∞ in terms of the differences |vt1,`− vt2,`| for ` ∈ [L+ 1], which can be further upper
bounded in terms of dt := D[0,t](Φ1,Φ2), that is by Definition 17:∥∥vt1,`(u`)− vt2,`(u`)∥∥∞ ≤ (‖u`‖∞ + 1)dt, ` ∈ [L+ 1]. (51)

We will use the forward equations to inductively upper bound the differences between β` and α`.
Especially, for some constant C, we prove∥∥βt1,`(Θ)− βt2,`(Θ)

∥∥
∞ ≤ C (‖Θ‖∞ + 1) dt, ` ∈ [L], (52)∥∥αt1,`(Θ)−αt2,`(Θ)
∥∥
∞ ≤ C (‖Θ‖∞ + 1) dt, ` ∈ [2 : L]. (53)

We then use the backward equations to upper bound the difference between Dβ` , Dα` , Gv` . Namely,
we prove ∥∥∥Dβ` (Θ; Φ1, t)−Dβ` (Θ; Φ2, t)

∥∥∥
∞
≤ C(1 + ‖Θ‖∞)dt, ` ∈ [L], (54)

‖Dα` (Θ; Φ1, t)−Dα` (Θ; Φ2, t)‖∞ ≤ C(1 + ‖Θ‖∞)dt, ` ∈ [2 : L], (55)∥∥Gv` (u`; Φ1, t)− Gv` (u`; Φ2, t)
∥∥
∞ ≤ C(1 + ‖u`‖∞)dt, ` ∈ [L+ 1], (56)
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Then the conclusion,i.e., Lemma 18 directly follows from (56), and the definitions of F and D[0,t]

in Definitions 16 and 17, respectively.
We consider forward steps. When ` = 1, because X is bounded, by the Definition 16 (2)

and (51), we have
∥∥βt1,1(Θ)− βt2,1(Θ)

∥∥
∞ ≤ C (‖Θ‖∞ + 1) dt. Consider at layer ` ∈ [L − 1],

we obtain
∥∥∥βt1,`(Θ)− βt2,`(Θ)

∥∥∥
∞
≤ C (‖Θ‖∞ + 1) dt. For layer ` + 1, by the boundedness and

Lipschitz continuity of h1, we have∥∥αt1,`+1(Θ)−αt2,`+1(Θ)
∥∥
∞

≤
∥∥∥∥∫ ḣ1

(
βt1,`(Θ̄)

)
vt1,`+1(Θ̄,Θ) − ḣ1

(
βt2,`(Θ̄)

)
vt2,`+1(Θ̄,Θ)dp(Θ̄)

∥∥∥∥
∞

≤
∫ ∥∥∥ḣ1

(
βt1,`(Θ̄)

)
− ḣ1

(
βt2,`(Θ̄)

)∥∥∥
∞︸ ︷︷ ︸

≤L2C(‖Θ̄‖+1)dt

∣∣vt1,`+1(Θ̄,Θ)
∣∣ dp(Θ̄)

+

∫ ∥∥∥ḣ1

(
βt2,`(Θ̄)

)∥∥∥
∞︸ ︷︷ ︸

≤L1

∣∣vt1,`+1(Θ̄,Θ)− vt2,`+1(Θ̄,Θ)
∣∣︸ ︷︷ ︸

≤(‖Θ̄‖∞+‖Θ‖∞+1)dt

dp(Θ̄)

≤ C ′ (‖Θ‖∞ + 1) dt,

for a constantC ′, where the last step is due to the sub-gaussianness of p, Corollary 31, and the upper
bound of vt`+1 in Lemma 21. Consequently, the Lipschitz continuity of L2 gives that∥∥βt1,`+1(Θ)− βt2,`+1(Θ)

∥∥
∞

≤
∥∥∥ḣ2

(
αt1,`+1(Θ)

)
− ḣ2

(
αt2,`+1(Θ)

)∥∥∥
∞

+
∥∥βt1,`(Θ)− βt2,`(Θ)

∥∥
∞

≤ C ′′ (‖Θ‖∞ + 1) dt

for a constant C ′′. We achieve (52) and (53).
We turn to the backward steps. We focus on the upper bound of the difference between Dα`

and Dβ` . Since both h1 and X are bounded, h1 is Lipschitz continuous, and Dα` is bounded by
Lemma 21, the upper bound of the difference between Gv` follows immediately. To begin with, we
introduce

Dγ` (Θ; Φ, t) :=

∫
vt`(Θ, Θ̄) Dα` (Θ̄; Φ, t)dp(Θ̄) ◦ ḣ′1

(
βt`−1(Θ)

)
, ` ∈ [2 : L]. (57)

Then we have
Dβ`−1(Θ; Φ, t) = Dβ` (Θ; Φ, t) +Dγ` (Θ; Φ, t), ` ∈ [2 : L].

For the top layer ` = L+ 1, the Lipschitz continuity of φ′1 in Assumption 1 implies that,

‖DL+1(Φ1, t)−DL+1(Φ2, t)‖∞ (58)

≤ L5‖βt1,L+1 − βt2,L+1‖∞

≤ L5

∫
‖h1(βt1,L)vt1,L+1(Θ)− h1(βt2,L)vt2,L+1(Θ)‖∞dp(Θ).
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Since h1 is bounded and Lipschitz continuous, vti,L+1 is bounded for t ≤ T by Lemma 21, and (52),
we have

‖DL+1(Φ1, t)−DL+1(Φ2, t)‖∞ ≤ Cdt,

for a constant C. At layer ` = L, recall that

DL(Θ; Φ, t) = vtL+1(Θ) DL+1(Φ, t) ◦ ḣ′1
(
βtL
)
.

Since the three terms in the product are all bounded, and h′1 is L3-Lipschitz continuous, we have

‖DβL(Θ; Φ1, t)−DβL(Θ; Φ2, t)‖∞ ≤ C ′(1 + ‖Θ‖∞)dt, (59)

for a constant C ′. For each ` = L− 1, . . . , 1, suppose there is a constant C, such that∥∥∥Dβ`+1(Θ; Φ1, t)−Dβ`+1(Θ; Φ2, t)
∥∥∥
∞
≤ C (‖Θ‖∞ + 1) dt.

As h′2 is L3-Lipschitz continuous, the boundednesses of h2 and Dβ`+1 in Lemma 21 and (53) give
that ∥∥Dα`+1(Θ; Φ1, t)−Dα`+1(Θ; Φ2, t)

∥∥
∞ ≤ C

′ (‖Θ‖∞ + 1) dt,

for a constant C ′. Moreover,∫
‖vt1,`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ1, t)− vt2,`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ2, t)‖∞dp(Θ̄)

≤
∫ ∣∣vt1,`+1(Θ, Θ̄)− vt2,`+1(Θ, Θ̄)

∣∣︸ ︷︷ ︸
≤(‖Θ‖∞+‖Θ̄‖∞+1)dt

∥∥Dα`+1(Θ̄; Φ1, t)
∥∥
∞

+
∣∣vt2,`+1(Θ, Θ̄)

∣∣ ∥∥Dα`+1(Θ̄; Φ1, t)−Dα`+1(Θ̄; Φ2, t)
∥∥
∞︸ ︷︷ ︸

≤C̃′(‖Θ̄‖∞+1)dt

dp(Θ̄)

≤ C ′′(‖Θ‖∞ + 1)dt, (60)

for a constant C ′′, where the last step is due to the sub-gaussianness of p, Corollary 31, and the
upper bounds of Dα`+1 and vt`+1 in Lemma 21. Consequently,∥∥Dγ`+1(Θ; Φ1, t)−Dγ`+1(Θ; Φ2, t)

∥∥
∞ ≤ C̄ (‖Θ‖∞ + 1) dt,

for a constant C̄, which further implies∥∥∥Dβ` (Θ; Φ1, t)−Dβ` (Θ; Φ2, t)
∥∥∥
∞

≤
∥∥∥Dβ`+1(Θ; Φ1, t)−Dβ`+1(Θ; Φ2, t)

∥∥∥
∞

+
∥∥Dγ`+1(Θ; Φ1, t)−Dγ`+1(Θ; Φ2, t)

∥∥
∞

≤ C̄ ′ (‖Θ‖∞ + 1) dt,

for a constant C̄ ′. We finish the proof.

Lemma 22 Φ is complete under D[0,T ].
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Proof Let {Φn : n ≥ 0} be a Cauchy sequence under D[0,T ]. Then
Φv
n,`(u`)(t)

1+‖u`‖∞ converges uniformly
under the `∞-norm. Let Φv∗,`(u`)(t) = limn→∞Φvn,`(u`)(t) for ` ∈ [L + 1]. Since the Lipschitz
continuity is preserved under the pointwise convergence, we have Φv∗,` is C-Lipschitz continuous
in t. Let

Φβ∗,1(Θ)(t) =
1

d
XΦv∗,1(Θ)(t),

Φα∗,`+1(Θ)(t) =

∫
Φv∗,`+1(Θ, Θ̄)(t) ḣ1

(
Φβ∗,`(Θ̄)(t)

)
dp(Θ̄), ` ∈ [L],

Φβ∗,`+1(Θ)(t) = Φβ∗,`(Θ)(t) + ḣ2

(
Φα∗,`+1(Θ)(t)

)
, ` ∈ [L].

By the dominated convergence theorem, we have Φβ∗,`(Θ)(t) = limn→∞Φβn,`(Θ)(t) and Φα∗,`(Θ)(t) =

limn→∞Φαn,`(Θ)(t). Then Φ∗ is a limit point of {Φn : n ≥ 0} under D[0,T ] and Φ∗ ∈ Φ.

Next we prove lemmas for Theorem 13.
Proof [Proof of Lemma 20] Analogous to the notation of u`, for the convenience of presenting
continuity of Φv` , we introduce notations ū and ū′` by letting

ū` =


Θ̄1,

(Θ̄1,Θ2),

Θ̄1

ū′` =


Θ̄1, ` = 1,

(Θ1, Θ̄2), ` ∈ [2 : L],

Θ̄1 ` = L+ 1.

We also abbreviate the notations for the individual trajectories as:

Φv` (u`)(t) = vt`(u`), Φv` (ū`)(t) = vt`(ū`), Φv` (ū′`)(t) = vt`(ū
′
`),

Φβ`1(Θ1)(t) = βt`1(Θ1), Φβ`1(Θ̄1)(t) = βt`1(Θ̄1), Φα`2(Θ1)(t) = αt`2(Θ1), Φα`2(Θ̄1)(t) = αt`2(Θ̄1),

for ` ∈ [L+ 1], `1 ∈ [L], and `2 ∈ [2 : L], respectively.
We first investigate the set F (Φ ∩Φb) for a general b. We follow similar steps as the proof of

Lemma 18. We first consider forward steps and inductively show upper bound for the differences
between β` and α`. Namely, we prove for any Φ ∈ Φ ∩Φb,∥∥βt`(Θ1)− βt`(Θ̄1)

∥∥
∞ ≤ Ce

bt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞, ` ∈ [L], (61)∥∥αt`(Θ1)−αt`(Θ̄1)
∥∥
∞ ≤ Ce

bt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞, ` ∈ [2 : L], (62)

for a constantC. Then we study the backward steps, and prove that there is a constant C̃ independent
of b such that for any Φ ∈ Φ ∩Φb,

‖Dβ` (Θ1; Φ, t)−Dβ` (Θ̄1; Φ, t)‖∞ ≤ C̃ebt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞, ` ∈ [L], (63)

‖Dα` (Θ1; Φ, t)−Dα` (Θ̄1; Φ, t)‖∞ ≤ C̃ebt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞, ` ∈ [2 : L], (64)

‖Gv` (u`; Φ, t)− Gv` (ū`; Φ, t)‖∞ ≤ C̃ebt (1 + ‖u`‖∞) ‖u` − ū`‖∞, ` ∈ [L+ 1], (65)

‖Gv` (u`; Φ, t)− Gv` (ū′`; Φ, t)‖∞ ≤ C̃ebt (1 + ‖u`‖∞) ‖u` − ū′`‖∞, ` ∈ [L+ 1]. (66)

In forward steps, we prove (61) and (62). For the 1-st layer, because X is bounded, applying
(44a) with the formula ofβt1 as Definition 16 (2) yields (61) with ` = 1. Suppose at layer ` ∈ [L−1],
we have ∥∥βt`(Θ1)− βt`(Θ̄1)

∥∥
∞ ≤ C

′ebt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞
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for a constant C ′. It follows that∥∥αt`+1(Θ2)−αt`+1(Θ̄2)
∥∥
∞ ≤

∫ ∥∥∥ḣ1

(
βt`(Θ1)

)∥∥∥
∞︸ ︷︷ ︸

≤L1

∣∣vt`+1(Θ1,Θ2)− vt`+1(Θ1, Θ̄2)
∣∣︸ ︷︷ ︸

(1+C2)ebt(‖Θ1‖∞+‖Θ2‖∞+1)‖Θ2−Θ̄2‖∞

dp(Θ1)

≤ C ′′ebt(‖Θ2‖∞ + 1)‖Θ2 − Θ̄2‖∞,

for a constant C ′′, where we use sub-gaussianness of p and Corollary 31. We conclude that∥∥βt`+1(Θ1)− βt`+1(Θ̄1)
∥∥
∞ ≤

∥∥∥ḣ2

(
αt`+1(Θ1)

)
− ḣ2

(
αt`+1(Θ̄1)

)∥∥∥
∞

+
∥∥βt`(Θ1)− βt`(Θ̄1)

∥∥
∞

≤ C ′′′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞.

Therefore, (61) and (62) is achieved.
We turn to backward process. Again, we focus on the difference between Dβ` and Dα` , i.e.,

(63) and (64). Then the upper bound for the difference between Gv` , i.e., (65) and (66) follows
immediately. For example, for the top layer ` = L + 1, because of the boundedness of h1, DL+1,
applying (63) with the formula of GvL+1 (12a) gives that∣∣∣GvL+1(Θ1; Φ, t)− GvL+1(Θ̄1; Φ, t)

∣∣∣ ≤ Cebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞.

Other layers can be analogously obtained. At layer ` = L, recall that

DL(Θ; Φ, t) = vtL+1(Θ) DL+1(Φ, t) ◦ ḣ′1
(
βtL
)
.

For, Φ ∈ Φb, the upper bound for |vtL+1(Θ1) − vtL+1(Θ̄1)| is given in (44b). Then applying the
Lipschitz continuity of h′1, (63), and the boundednesses of vtL+1, DL+1 in Lemma 21 and h′1 yields∥∥∥DβL(Θ1; Φ, t)−DβL(Θ̄1; Φ, t)

∥∥∥
∞
≤ C ′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞, (67)

for a constant C ′.
For each ` = L− 1, L− 2, · · · , 1, suppose we have∥∥∥Dβ`+1(Θ1; Φ, t)−Dβ`+1(Θ̄1; Φ, t)

∥∥∥
∞
≤ Cebt (‖Θ1‖∞ + 1) ‖Θ1 − Θ̄1‖∞,

for a constant C. Combining the Lipschitz continuity of h′2 with the boundednesses of h′2, Dβ`+1 in
Lemma 21 gives that∥∥Dα`+1(Θ1; Φ, t)−Dα`+1(Θ̄1; Φ, t)

∥∥
∞

=
∥∥∥ḣ′2 (αt`+1(Θ1)

)
◦ Dβ`+1(Θ1; Φ, t)− ḣ′2

(
αt`+1(Θ̄1)

)
◦ Dβ`+1(Θ̄1; Φ, t)

∥∥∥
∞

≤ C ′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞,

for a constant C ′. Moreover,∫ ∣∣vt`+1(Θ1,Θ2)− vt`+1(Θ̄1,Θ2)
∣∣︸ ︷︷ ︸

≤Cebt(‖Θ1‖∞+‖Θ2‖∞+1)‖Θ1−Θ̄1‖∞

∥∥Dα`+1(Θ2; Φ, t)
∥∥
∞ dp(Θ2)

≤ C ′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞, (68)
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where in the last step we used the sub-gaussianness of p, Corollary 31, and upper bound of Dα`+1

in Lemma 21. Then, by the upper bound in (46), boundedness and Lipschitz continuity of h′1, we
obtain from (57) that∥∥Dγ`+1(Θ1; Φ, t)−Dγ`+1(Θ̄1; Φ, t)

∥∥
∞ ≤ C

′′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞,

for a constant C ′′, which further yields∥∥∥Dβ` (Θ1; Φ, t)−Dβ` (Θ̄1; Φ, t)
∥∥∥
∞
≤ C ′′′ebt(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞.

We achieve (63) and (64).
Finally, let b∗ = C̃ in (65) and (66). It remains to verify that F (Φ) ∈ Φb∗ for any Φ ∈ Φ∩Φb∗ ,

that is, to verify the conditions in Definition 19. For F (Φ)v1 , we have∥∥F (Φ)v1 (Θ1)(t)− F (Φ)v1 (Θ̄1)(t)
∥∥
∞

≤
∥∥Θ1 − Θ̄1

∥∥
∞ +

∫ t

0

∥∥Gv1 (Θ1; Φ, s)− Gv1 (Θ̄1; Φ, s)
∥∥
∞ ds

≤
∥∥Θ1 − Θ̄1

∥∥
∞ +

∫ t

0
C̃(‖Θ1‖∞ + 1)eb∗s

∥∥Θ1 − Θ̄1

∥∥
∞ ds

≤ eb∗s(‖Θ1‖∞ + 1)‖Θ1 − Θ̄1‖∞. (69)

The verification of other cases are entirely analogous and is omitted. Thus we obtain Lemma 20.

Lemma 23 Φ ∩Φb is a closed set.

Proof Given a convergent sequence {Φn : n ≥ 0} ⊆ Φ ∩Φb, it follows from Lemma 22 that the
limit point Φ∗ ∈ Φ. Since Lipschitz property is preserved under pointwise convergence, we also
have Φ∗ ∈ Φb.

C.2. Proof of Theorem 6

In the proof, we fix Φ∗ and the initialization {Θ̄i}mi=1. We first write down the exact formula for
the gradient of the actual discrete DNN, i.e. Ĝk`,i,j . Especially, define intermediate variables in the
back-propagation as

D̂kL+1,1 := N
∂L̂k

∂β̂L+1

=
[
φ′1

(
β̂kL+1(1), y1

)
, φ′1

(
β̂kL+1(2), y2

)
, . . . , φ′1

(
β̂kL+1(N), yN

)]>
,

D̂β,kL,i := N
∂L̂k

∂β̂L,i
=

1

m

[
v̂kL+1,i,1 D̂kL+1,1

]
◦ ḣ′1

(
β̂kL,i

)
, i ∈ [m],

D̂α,kL,i := N
∂L̂k

∂α̂L,i
= D̂β,kL,i ◦ ḣ

′
2

(
α̂kL,i

)
, i ∈ [m],

D̂β,k`,i := N
∂L̂k

∂β̂`,i
=

1

m

 m∑
j=1

v̂k`+1,i,j D̂
α,k
`+1,j

 ◦ ḣ′1 (β̂k`,i)+ D̂β,k`+1,i, ` ∈ [L− 1], i ∈ [m],

D̂α,k`,i := N
∂L̂k

∂α̂`,i
= D̂β,k`,i ◦ ḣ

′
2

(
α̂k`,i

)
, ` ∈ [2 : L− 1], i ∈ [m].
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We have

ĜkL+1,i,1 =
1

Nm

[
D̂kL+1

]>
ḣ1

(
β̂k`,i

)
, i ∈ [m],

Ĝk`+1,i,j =
1

Nm

[
D̂α,k`+1,j

]>
ḣ1

(
β̂k`,i

)
, ` ∈ [L− 1], i, j ∈ [m],

Ĝk1,i,j =
1

Nd

[
D̂β,k1,j

]>
β̂0,i, i ∈ [d], j ∈ [m].

To compare the discrete and continuous trajectories on the same time scale, we normalize discrete
gradients by

N̂D
α,k

`,i = [m] D̂α,k`,i , ` ∈ [2 : L], N̂D
β,k

`,i = [m] D̂β,k`,i , ` ∈ [L]

and
N̂G

k

`,i,j = [m`−1m`] Ĝk`,i,j , ` ∈ [L+ 1].

Moreover, recalling the definition of Dγ` in (57), we also introduce

N̂D
γ,k

`,i =
1

m

m∑
j=1

[
v̂k`,i,j N̂D

k,α

`,i

]
◦ ḣ′1

(
β̂k`−1,i

)
, ` ∈ [2 : L],

For the ideal process, similar to the notation u` in the proof of Theorem 4, we introduce the
notations ū`,i,j that stands for Θ̄j , (Θ̄i, Θ̄i), Θ̄i for ` = 1, 2 ≤ ` ≤ L, ` = L+ 1, respectively.

We also abbreviate the gradients of the ideal process as

Dβ,t`,i := Dβ` (Θ̄i,Φ∗, t), Dα,t`,i := Dα` (Θ̄i,Φ∗, t),

Dγ,t`,i := Dγ` (Θ̄i,Φ∗, t), Gv`,i,j = Gv` (ū`,i,j ; Φ∗, t).

We use a common notation v̄t`,i,j to the weights at layer `; for ` = 1 let v̄t1,i,j = v̄t1,j .
When m is finite, the forward and backward propagation for the ideal process is no long ex-

act. Nevertheless, for sufficiently large m, those propagations relations approximately holds by the
following events that happen with high probability:∥∥∥∥∥ 1

m

m∑
i=1

[
v̄kη`+1,i,j ḣ1

(
β̄kη`,i

)]
− ᾱkη`+1,j

∥∥∥∥∥
∞

≤
(
‖Θ̄j‖∞ + 1

)
ε1, ` ∈ [L− 1], k ∈ [0 : K], j ∈ [m],

(70)∥∥∥∥∥∥ 1

m

m∑
j=1

[
v̄kη`,i,j D

α,kη
`,j

]
◦ ḣ′1

(
β̄kη`−1,i

)
−Dγ,kη`,i

∥∥∥∥∥∥
∞

≤ ε1, ` ∈ [2 : L], k ∈ [0 : K], i ∈ [m], (71)

∥∥Θ̄i

∥∥
∞ ≤ C

√
log(

m

δ
), i ∈ [m], (72)

1

m

m∑
i=1

‖Θ̄i‖j∞ ≤ C, j ∈ [2], (73)

for a constant C. In the proofs of this section, we condition on those events.
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Lemma 24 The events (70) – (73) happen with probability 1− δ.

The proof consists of the deviation of the actual discrete trajectory from the ideal trajectory over
the iteration k ∈ [0 : K]. We will upper bound the deviation by induction on k. For k = 0, we have
the deviation of weights ‖v̄0

`,i,j − v̂0
`,i,j‖∞ from the initial conditions in Definition 5. The induction

proceeds as follows. In Lemma 25, we first upper bound the deviation of features using the forward
propagation, and then upper bound the deviation of gradients using the backward propagation. Note
that ∥∥∥v̄(k+1)η

`,i,j − v̂k+1
`,i,j

∥∥∥
∞
≤ ‖v̄kη`,i,j − v̂

k
`,i,j‖∞ +

∫ (k+1)η

kη

∥∥∥Gs`,i,j − N̂Gk`,i,j∥∥∥∞ ds. (74)

Combining with the Lipschitz continuity of Gt`,i,j in Lemma 26, we complete the inductive step.

Lemma 25 Given k ∈ [0 : K] and ε < 1. Suppose∥∥∥v̄kη`,i,j − v̂k`,i,j∥∥∥∞ ≤ (‖ū`,i,j‖∞ + 1)ε, ∀ ` ∈ [L+ 1], i ∈ [m`−1], j ∈ [m`]. (75)

Then there exists a constant C such that∥∥∥β̄kηL+1,1 − β̂
k
L+1,1

∥∥∥
∞
≤ C (ε+ ε1) , (76)∥∥∥β̄kη`,i − β̂k`,i∥∥∥∞≤ C (∥∥Θ̄i

∥∥
∞ + 1

)
(ε+ ε1) , ∀ ` ∈ [L], i ∈ [m], (77)∥∥∥ᾱkη`,i − α̂k`,i∥∥∥∞≤ C (∥∥Θ̄i

∥∥
∞ + 1

)
(ε+ ε1) , ∀ ` ∈ [2 : L], i ∈ [m], (78)∥∥∥Gkη`,i,j − N̂Gk`,i,j∥∥∥∞≤ C (‖ū`,i,j‖∞ + 1) (ε+ ε1) , ∀ ` ∈ [L+ 1], i ∈ [m`−1], j ∈ [m`]. (79)

Lemma 26 There exists a constant C such that, for all ` ∈ [L+ 1], t1, t2 ∈ [0, T ], and u`,∥∥∥Gt1`,i,j − Gt2`,i,j∥∥∥∞ ≤ C(‖ū`,i,j‖∞ + 1)|t1 − t2|.

Proof [Proof of Theorem 6] By Lemma 24, the events in (70) – (73) happen with probability 1− δ.
Conditioned on those events, we prove by induction on k ∈ [0 : K] that∥∥∥v̄kη`,i,j − v̂k`,i,j∥∥∥∞ ≤ (‖ū`,i,j‖∞ + 1) eCkηε1, ∀ ` ∈ [L+ 1], i ∈ [m`−1], j ∈ [m`], (80)

for some constant C to be specified. The base case k = 0 follows from Definition 5. Suppose that
(80) holds for k ∈ [0 : K − 1]. By Lemmas 25 and 26, for s ∈ [kη, (k + 1)η],∥∥∥Gs`,i,j − N̂Gk`,i,j∥∥∥∞ ≤ C ′ (‖ū`,i,j‖∞ + 1)

(
eCkηε1 + ε1 + s− kη

)
.

Applying (74) yields that∥∥∥v̄(k+1)η
`,i,j − v̂k+1

`,i,j

∥∥∥
∞
≤
∥∥∥v̄kη`,i,j − v̂k`,i,j∥∥∥∞ +

∫ (k+1)η

kη

∥∥∥Gs`,i,j − N̂Gk`,i,j∥∥∥∞ ds
≤ (‖ū`,i,j‖∞ + 1)

(
eCkηε1 + 2C ′eCkηε1η + C ′

η2

2

)
≤ (‖ū`,i,j‖∞ + 1) eCkηε1(1 + C ′′η),

for a constant C ′′. By letting C = C ′′, we arrive at (80) for k + 1 using 1 + Cη ≤ eCη. Note that
kη ≤ T for k ∈ [0 : K], ε1 ≤ Õ(1/

√
m), and ‖ū`,i,j‖∞ ≤ O(log(m)) from (72). The conclusion

follows from Lemma 25 and the Lipschitz continuity of φ..
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C.2.1. PROOFS OF LEMMAS

Proof [Proof of Lemma 24] We prove each of the four events happens with probability 1 − δ
4

by standard concentration inequalities. Both (72) and (73) happen with probability 1 − δ
4 by the

concentration of sub-gaussian random variables; in particular, (72) follows from Lemma 27 and
(73) follows from Lemmas 28 and 29.

For (70) with a given k, `, j, n, consider random vectors

ζi :=
v̄kη`,i,jh1

(
β̄kη`−1,i(n)

)
∥∥Θ̄j

∥∥
∞ + 1

,

which are bounded by a constant C ′ due to the upper bound of v̄` in Lemma 21. Conditioned on

Θ̄j , when i 6= j, ζi are independent and E[ζi|Θ̄j ] =
ᾱkηj (n)

‖Θ̄j‖∞+1
. By Hoeffding’s inequality, we have∣∣∣∣∣∣ 1

m− 1

m∑
i=1, i 6=j

ζi −
ᾱkη`,j(n)

‖Θ̄j‖∞ + 1

∣∣∣∣∣∣ < ε1/2,

with probability 1− δ
4mL(K+1)N . On the other hand, when i = j, we also have

1

m

∣∣∣∣∣ζj − ᾱkη`,j(n)

‖Θ̄j‖∞ + 1

∣∣∣∣∣ ≤ C̃ ′ε2
1 ≤ ε1/2,

where we use the upper bound of ᾱ` in Lemma 21. Therefore, applying the union bound over
k ∈ [0 : K], ` ∈ [L], j ∈ [m] and n ∈ [N ], we have (70) with probability 1− δ

4 .
For (71) with a given k, `, i, n, consider the random vectors

ζ ′j := [v̄kη`+1,i,j D
α,kη
`+1,j(n)] h′1

(
βkη`,i (n)

)
.

Conditioned on Θi, when i 6= j, ζ ′j are independent and E[ζ ′j |Θ̄i] = Dγ,kη`+1,i(n). By the boundedness
of h′1 and the upper bound of Dα`+1 in Lemma 21, we have ζ ′j

|ζ ′j | ≤ C ′|v̄
kη
`+1,i,j | ≤ C(1 + ‖Θj‖∞),

and thus ξ′j is sub-gaussian. Applying Lemma 28, we obtain that∣∣∣∣∣∣ 1

m− 1

m∑
j=1, j 6=i

ζ ′j −D
γ,kη
`+1,i(n)

∣∣∣∣∣∣ < ε1/2,

with probability 1− δ
4mL(K+1)N . On the other hand, under event (72), we have

1

m

∣∣∣ζ ′i −Dγ,kη`+1,i(n)
∣∣∣ ≤ Õ(ε2

1) ≤ ε1/2

Therefore, applying the union bound again over k ∈ [0 : K], ` ∈ [L], j ∈ [m], and n ∈ [N ], we
have (71) with probability 1− δ

4 .
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Proof [Proof of Lemma 25] We first consider the forward propagation and prove (76), (77) and (78).
For ` = 1, sinceX is bounded,∥∥∥β̄kη1,i − β̂

k
1,i

∥∥∥
∞
≤ C‖v̄kη1,i − v̂

k
1,i‖∞ ≤ C(‖Θ̄i‖∞ + 1)ε.

For ` ∈ [2 : L], by the triangle inequality,∥∥∥ᾱkη`+1,j − α̂
k
`+1,j

∥∥∥
∞

(81)

≤

∥∥∥∥∥ᾱkη`+1,j −
1

m

m∑
i=1

[
v̄kη`+1,i,j ḣ1

(
β̄kη`,i

)]∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

m

m∑
i=1

[
v̄kη`+1,i,j ḣ1

(
β̄kη`,i

)
− v̂k`+1,i,j ḣ1

(
β̂k`,i

)]∥∥∥∥∥
∞

.

The first term is approximately the forward propagation that is at most (‖Θ̄‖∞ + 1)ε1 by (70).
For the second term, since h1 is bounded and Lipschitz continuous and the weights v̄`,i,j are upper
bounded by Lemma 21 and Assumption 3, we have a further upper bound

1

m

m∑
i=1

∣∣∣v̄kη`+1,i,j

∣∣∣︸ ︷︷ ︸
≤C(‖Θ̄j‖∞+1)

∥∥∥ḣ1

(
β̄kη`,i

)
− ḣ1

(
β̂k`,i

)∥∥∥
∞

+
1

m

m∑
i=1

∣∣∣v̄kη`+1,i,j − v̂
k
`+1,i,j

∣∣∣︸ ︷︷ ︸
(75)

∥∥∥ḣ1(β̂k`,i)
∥∥∥
∞

≤ C(‖Θ̄j‖∞ + 1)(ε+ ε1),

where in the last step we used (73). We have∥∥∥ᾱkη`+1,i − α̂
k
`+1,i

∥∥∥
∞
≤ C ′(‖Θ̄i‖∞ + 1)ε,

for a constant C ′, which gives that∥∥∥β̄kη`+1,i − β̂
k
`+1,i

∥∥∥
∞

≤
∥∥∥β̄kη`,i − β̂k`,i∥∥∥∞ +

∥∥∥ḣ2

(
ᾱkη`+1,i

)
− ḣ2

(
α̂k`+1,i

)∥∥∥
∞

≤ C ′′(‖Θ̄i‖∞ + 1)ε.

The output layer ` = L+ 1 is similar by applying the upper bound of vL+1 in Assumption 3.
Next we consider the backward propagation and prove (79). SinceX is bounded, h1 is bounded

and Lipschitz continuous, and Dα` is bounded by Lemma 21, it suffices to prove that∥∥∥DL+1(Φ∗, kη)− D̂kL+1,1

∥∥∥
∞
≤ Cε,∥∥∥Dβ,kη`,i − N̂D

β,k

`,i

∥∥∥
∞
≤ C

(
1 +

∥∥Θ̄i

∥∥
∞
)
ε, ` ∈ [L], i ∈ [m],∥∥∥Dα,kη`,i − N̂D

α,k

`,i

∥∥∥
∞
≤ C

(
1 +

∥∥Θ̄i

∥∥
∞
)
ε, ` ∈ [2 : L], i ∈ [m],

(82)

for a constant C.
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At the output layer ` = L+ 1, since φ′1 is Lipschitz continuous on the first argument,∥∥∥DL+1(Φ∗, kη)− N̂D
k

L+1,1

∥∥∥
∞
≤ L5

∥∥∥β̄kηL+1,1 − β̂
k
L+1,1

∥∥∥
∞
≤ C ′ (ε+ ε1) ,

for a constant C ′. At layer ` = L, since h′1 is bounded and Lipschitz continuous and DL+1 is
bounded by Lemma 21, applying (77) yields that∥∥∥DkηL+1,1 h

′
1

(
β̄kηL,i

)
− N̂D

k

L+1,1 h
′
1

(
β̂kηL,i

)∥∥∥
∞
≤ C

(∥∥Θ̄i

∥∥
∞ + 1

)
(ε+ ε1) .

Moreover, applying (75) and the upper bound of v̄L,i in Lemma 21, we obtain that∥∥∥Dβ,kηL,i − N̂D
β,k

L,i

∥∥∥
∞
≤ C

(
1 +

∥∥Θ̄i

∥∥
∞
)
ε,

for a constant C.
For each layer ` from L− 1 to 1, suppose we have∥∥∥Dβ,kη`+1,i − N̂D

β,k

`+1,i

∥∥∥
∞
≤ C

(
1 +

∥∥Θ̄i

∥∥
∞
)
ε.

Since h′2 is bounded and Lipschitz continuous and Dβ`+1 is bounded by Lemma 21, by (78), we
further have ∥∥∥Dα,kη`+1,i − N̂D

α,k

`+1,i

∥∥∥
∞

(83)

≤
∥∥∥Dβ,kη`+1,i ◦ ḣ

′
2

(
ᾱkη`+1,i

)
− N̂D

β,k

`+1,i ◦ ḣ′2
(
α̂k`+1,i

)∥∥∥
∞

≤ C ′
(
1 +

∥∥Θ̄i

∥∥
∞
)
ε,

for a constant C ′. By the triangle inequality,∥∥∥Dγ,kη`+1,i − N̂D
γ,k

`+1,i

∥∥∥
∞

(84)

≤

∥∥∥∥∥∥Dγ,kη`+1,i −
1

m

m∑
j=1

v̄kη`+1,i,j D
α,kη
`+1,j ◦ ḣ

′
1

(
β̄kη`+1,i

)∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

m

m∑
j=1

v̄kη`+1,i,j

[
Dα,kη`+1,j ◦ ḣ

′
1

(
β̄kη`,i

)]
− 1

m

m∑
j=1

v̂k`+1,i,j

[
N̂D

α,k

`+1,j ◦ ḣ′1
(
β̂kη`,i

)]∥∥∥∥∥∥
∞

.

The first term is approximately backward propagation and is at most ε1 by (71). For the second
term, note that h′1 is bounded and Lipschitz continuous, v̄`+1,i,j and Dα`,j are upper bounded by
Lemma 21. Applying (75), (77), and (83) at layer `+ 1 yields that∥∥∥Dα,kη`+1,j ◦

[
v̄kη`+1,i,j ḣ

′
(
β̄kη`,i

)]
− N̂D`+1,j ◦

[
v̂k`+1,i,j ḣ

′
1

(
β̂kη`,i

)]∥∥∥
∞

≤ C(‖Θ̄j‖∞ + 1)
(
‖Θ̄j‖∞ + ‖Θ̄i‖∞ + 1

)
(ε+ ε1) .

Therefore, by (73), we have∥∥∥Dγ,kη`+1,i − N̂D
γ,k

`+1,i

∥∥∥
∞
≤ C ′′

(
1 +

∥∥Θ̄i

∥∥
∞
)
ε,
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for a constant C ′′. We conclude∥∥∥Dβ,kη`,i − N̂D
β,k

`,i

∥∥∥
∞

≤
∥∥∥Dγ,kη`+1,i − N̂D

γ,k

`+1,i

∥∥∥
∞

+
∥∥∥Dβ,kη`+1,i − N̂D

β,k

`+1,i

∥∥∥
∞

≤ C ′′′
(
1 +

∥∥Θ̄i

∥∥
∞
)
ε,

for a constant C ′′′ and obtain (82).

Proof [Proof of Lemma 26] It suffices to prove Gv` (u`; Φ∗, t) is continuous on t for all u`. The proof
is similar to the backward steps in Lemma 25. Recalling boundedness of Gβ` and Gα` in Lemma 21,
for any fix Θ, we have

∥∥βt1` − βt2` ∥∥ ≤ C (‖Θ‖∞ + 1) |t1 − t2|, ` ∈ [L], (85)∥∥αt1` −αt2` ∥∥ ≤ C (‖Θ‖∞ + 1) |t1 − t2|, ` ∈ [2 : L],

where βt` = Φβ∗,` (Θ) (t) and αt` = Φα∗,` (Θ) (t).

By the boundedness of h1 and X , it suffices to prove the Lipschitz continuity for Dβ` for ` = 1
and Dα` for ` ∈ [2 : L]. We prove

∥∥DL+1(Φ∗, t1)−DL+1(Φ∗, t2)
∥∥
∞ ≤ C

′ |t1 − t2|, (86)∥∥∥Dβ` (Θ; Φ∗, t1)−Dβ` (Θ; Φ∗, t2)
∥∥∥
∞
≤ C ′ (1 + ‖Θ‖∞) |t1 − t2|, ` ∈ [L], (87)

‖Dα` (Θ; Φ∗, t1)−Dα` (Θ; Φ∗, t2)‖∞ ≤ C ′ (1 + ‖Θ‖∞) |t1 − t2|, ` ∈ [2 : L]. (88)

At the output layer ` = L+ 1, by the Lipschitz continuity of φ′, we have

∥∥DL+1 (Φ∗, t1)−DL+1 (Φ∗, t2)
∥∥
∞ (89)

≤ L5

∥∥βt1L+1 − β
t2
L+1

∥∥
∞

≤ L5

∥∥∥∥∫ vt1L+1 ḣ1

(
βt1L
)
− vt2L+1 ḣ1

(
βt2L
)
dp(Θ)

∥∥∥∥
∞
.

By the upper bound and Lipschitz continuity of vL+1 in Lemma 21, we obtain (86). At layer ` = L,
using (11b), we obtain (87) from the upper bounds and the Lipschitz continuity of DL+1(Θ,Φ∗, t),
vtL+1(Θ), and ḣ′1

(
βtL
)
.

For each layer ` from L − 1 to 1, suppose we have (87) at layer ` + 1. From the upper bounds
and the Lipschitz continuity of Dβ`+1 and ḣ′2(ᾱt`+1), we have

∥∥Dα`+1(Θ; Φ∗, t1)−Dα`+1(Θ; Φ∗, t2)
∥∥
∞ ≤ C

′′ (1 + ‖Θ‖∞) |t1 − t2|, (90)
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for a constant C ′′. Moreover,∫ ∥∥vt1`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ∗, t1)−vt2`+1(Θ, Θ̄) Dα`+1(Θ̄; Φ∗, t2)
∥∥
∞ dp(Θ̄)

≤
∫ ∣∣vt1`+1(Θ, Θ̄)− vt2`+1(Θ, Θ̄)

∣∣︸ ︷︷ ︸
≤C|t1−t2|

∥∥Dα`+1(Θ̄; Φ∗, t)
∥∥
∞ dp(Θ̄)

+

∫ ∣∣vt2`+1(Θ, Θ̄)
∣∣ ∥∥Dα`+1(Θ̄; Φ∗, t1)−D`+1(Θ̄; Φ∗, t2)

∥∥
∞︸ ︷︷ ︸

≤C(‖Θ̄‖∞+1) |t1−t2|

dp(Θ̄)

≤ C ′|t1 − t2|, (91)

where in the last step we used the upper bounds of v`+1 and Dα`+1 in Lemma 21, sub-gaussianness
of p, and Corollary 31. Combing the above results with∥∥∥ḣ1(βt1` )− ḣ1(βt2` )

∥∥∥ ≤ C (‖Θ‖∞ + 1) |t1 − t2|, ` ∈ [L]

from (85), we obtain∥∥Dγ`+1(Θ; Φ∗, t1)−Dγ`+1(Θ; Φ∗, t2)
∥∥
∞ ≤ C

′′′ (1 + ‖Θ‖∞) |t1 − t2|, (92)

for a constant C ′′′. Combining (90) and (92), we can achieve (87) at `.

C.3. Proof of Proposition 1

Proof [Proof of Proposition 1] Explicitly shown in (Nguyen and Pham, 2020, Corollary 25), in the
mean-field limit that m → ∞, the weights remain mutually independent and follow a common
distribution that only depends on time t in the intermediate layers. Therefore, by the law of large
numbers, the features are the same. We have Proposition 1.

Appendix D. Preliminary of Proofs

In this paper, we adopt the definition of sub-gaussian distributions in Vershynin (2010). Below we
present properties of sub-gaussian distributions. The equivalence among those properties are given
in (Vershynin, 2010, Lemma 5.5).

Lemma 27 Let ξ be an univariate random variable that follows a σ-sub-gaussian distribution.
Then there exists an absolute constant C such that

(1) Tails P(|ξ| > t) ≤ exp(1− t2/(Cσ)2) for all t ≥ 0;

(2) Moments: (E|ξ|q)1/q ≤ Cσ√q for all q ≥ 1;

(3) If E[ξ] = 0, then E[exp(tξ)] ≤ exp(t2(Cσ)2) for all t ∈ R.
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Lemma 28 (Concentration Inequality for Sub-gaussian Distributions (Vershynin, 2010, Proposition 5.10))
Let {ξi}mi=1 be independent centered σ-sub-gaussian random variables. Then, for an absolute con-
stant C,

P

(∣∣∣∣∣ 1

m

m∑
i=1

ξi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− mε2

4(Cσ)2

)
.

We say a random variable ξ is sub-exponential if

sup
q≥1

q−1(E|ξ|q)1/q <∞.

A sub-exponential random variable is equivalent to the a squared sub-gaussian random variable
(Vershynin, 2010, Lemma 5.14). It satisfies the following concentration inequality:

Lemma 29 (Bernstein’s Inequality for Sub-Exponential Distributions (Vershynin, 2010, Corollary 5.17))
Let {ξi}mi=1 be independent centered sub-exponential random variables such that (E|ξ|q)1/q ≤ Kq
for all q ≥ 1. Then, for an absolute constant c,

P

(∣∣∣∣∣ 1

m

m∑
i=1

zi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

[
−cmmin

(
ε2

K2
,
ε

K

)]
.

Lemma 30 For a d-dimensional random vector ξ ∈ Rd, we have:

(1) ‖ξ‖∞ is σ-sub-gaussian =⇒ ξ is (σ
√
d)-sub-gaussian;

(2) ξ is σ-sub-gaussian =⇒ ‖ξ‖∞ is O(σ
√

log d)-sub-gaussian.

Proof (1) For any u ∈ Sd−1, we have |u>ξ| ≤
√
d‖ξ‖∞.

(2) Note that ‖ξ‖∞ = maxi∈[d] |e>i ξ|, where ei denotes the unit vector with i-th coordinate
being one. Applying Lemma 27 (1) and the union bound yields that

P[‖ξ‖∞ > t] ≤ min

{
de

1− t2

(Cσ)2 , 1

}
= e
−
(

t2

(Cσ)2
−log(ed)

)
+ ≤ e

1− t2

(Cσ
√

log(ed))2 ,

where we used the fact that ( t
2

a − b)+ ≥ t2

ab − 1 when b ≥ 1. Therefore, ‖ξ‖∞ is O(σ
√

log d)-
sub-gaussian by the equivalent definition of sub-gaussian distributions in (Vershynin, 2010, Lemma
5.5).

Corollary 31 For a σ-sub-gaussian random vector ξ ∈ Rd, we have

(E‖ξ‖q∞)1/q ≤ O(σ
√
q log d), q ≥ 1.

Proof From Lemma 30, ‖ξ‖∞ is O(σ
√

log d)-sub-gaussian. Applying Lemma 27 (2), we achieve
the desired result.
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Appendix E. Extensions on Fully-connected DNNs

E.1. Discrete Fully-connected DNN

We first introduce the standard DNN. Letm` denote the number of units at layer ` for ` ∈ [0 : L+1].
Let m0 = d and node i outputs the value of i-th coordinate of the training data for i ∈ [d]. Let
mL+1 = 1 that is the unit of the final network output. For ` ∈ [L + 1], the output, i.e. features, of
node i in layer ` is denoted by θ̂`,i ∈ RN ; the weight that connects the node i for the N training
samples at layer `− 1 to node j at layer ` is denoted by ŵ`,i,j ∈ R.

(1) At the input layer, for i ∈ [d], let

θ̂0,i :=
[
x1(i),x2(i), . . . ,xN (i)

]>
. (93)

(2) We recursively define the upper layers (` ∈ [L]) as below.

θ̂`,j :=

{
1
m0

∑m0
i=1 ŵ1,i,j θ̂0,i, j ∈ [m1], ` = 1,

1
m`−1

∑m`−1

i=1 ŵ`,i,j ḣ
(
θ̂`−1,i

)
, j ∈ [m`], ` ∈ [2 : L],

(94)

where h is the activation function.

(3) At the output layer,

θ̂L+1,1 :=
1

mL

mL∑
i=1

ŵL+1,i ḣ
(
θ̂L,i

)
. (95)

We collect the weights at the `-th layer (` ∈ [L+ 1]) into a single vector denoted by ŵ` and all the
weights into a single vector denoted by ŵ. Similarly, we aggregate features at `-th layer (` ∈ [L])
into a single vector denoted by θ̂` and all the features into a single vector denoted by θ̂.

E.2. Continuous Fully-connected DNN

We introduce our continuous DNN formulation using similar forward propagation of the the discrete
DNN in Section E.1.

(1) At the input layer, letX =
[
x1,x2, . . . ,xN

]> ∈ RN×d.

(2) At the first layer, each hidden node (before the activation function) is computed by a linear
mapping of the input data, so each node can be indexed by the weights connecting it to the
input. We introduce a probability measure p1 (w1) ∈ P

(
Rd
)

for the weights to describe the
states of first layer and let6

θ1 (w1) :=
1

d
(Xw1) . (96)

6. The state of the first layer can be equivalently characterized by either the output or the weight that are related by a
linear mapping.
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Algorithm 3 Scaled Gradient Descent for Training a DNN

1: Input the data {xi, yi}Ni=1, step size η, and initial weights ŵ0.
2: for k = 0, 1, . . . ,K − 1 do
3: Perform forward-propagation (94) and (95) to compute θ̂kL+1,1.

4: Perform backward-propagation to compute the gradient Ĝk`,i,j = ∂L̂N
∂ŵk`,i,j

.

5: Perform scaled Gradient Descent:

ŵk+1
`,i,j = ŵk`,i,j −

[
ηm`−1m`

]
Ĝk`,i,j , ` ∈ [L+ 1], i ∈ [m`−1], j ∈ [m`].

6: end for
7: Output the weights ŵK .

(3) At the second layer, recall that the output of each node, i.e., the feature, for the training samples
is a N -dimensional vector. We use the features θ2 ∈ RN to index those nodes. We introduce
a probability measure p2(θ2) ∈ P(RN ) to describe the overall states of the second layer and
function w2 : supp(p1) × supp(p2) → R to denote the weights on the connections from layer
1 to 2. We have for any θ2 ∈ supp(p2), we have the constraint for w2 and p1 that∫

w2 (w1,θ2) ḣ (θ1(w1)) dp1 (w1) = θ2. (97)

(4) Similarly, for ` ∈ [3 : L], let θ` ∈ RN be the index of nodes according to the features.
We introduce a probability measure p`(θ`) ∈ P(RN ) to describe the states the `-th layer and
function w` : supp(p`−1)× supp(p`)→ R to denote the weights on the connections from layer
`− 1 to `. We have any all θ` ∈ supp(p`), we have the constraint for w` and p`1 that:∫

w` (θ`−1,θ`) ḣ (θ`−1) dp`−1 (θ`−1) = θ`. (98)

(5) Finally, let wL+1 : supp(p)→ R be the weights in the layer L+1 and θL+1 be the final output,
and we have the constraint for wL+1 and pL that∫

wL+1 (θL) ḣ (θL) dpL (θL) = θL+1. (99)

Finally, a loss is imposed on the top layer and our target is to minimize the objective
1
N

∑N
n=1 φ (θL+1(n), yn). We can find that a static continuous DNN in our formulation is charac-

terized by {w`}L+1
`=2 and {p`}L`=1.

E.3. Scaled Gradient Descent for Training Fully-connected DNN

We still consider the scaled Gradient Descent algorithm to optimize the DNN. Given an initial
weights ŵ0, the meta algorithm of the scaled Gradient Descent is shown in Algorithm 3, where the
gradients Ĝk`,i,j can be obtained by the standard backward-propagation algorithm.
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E.4. Neural Feature Flow for Training Continuous Fully-connected DNN

We derive the evolution of the Gradient Descent algorithm on a continuous DNN
(
{w`}L+1

`=2 , {p`}
L
`=1

)
.

We first introduce the notations for the trajectories of w1, {w`}L`=2, and {θ`}L`=2:

• Ψθ` : supp(p`)→ C
(
[0, T ],RN

)
is the trajectory of θ` for ` ∈ [2 : L];

• Ψw1 : supp(p1) → C([0, T ],Rd) and ΨwL+1 : supp(pL) → C([0, T ],R) are the trajectories
of w1 and wL+1, respectively;

• Ψw` : supp(p`−1)× supp(p`)→ C([0, T ],R) is the trajectory of w` for ` ∈ [2 : L];

• Let Ψ be the collection of these trajectories.

The continuous gradient for the weight can be obtained from the backward-propagation algo-
rithm. Especially, we define

θL+1 (Ψ, t) :=

∫
ΨwL+1 (θL) (t) ḣ

(
ΨθL (θL) (t)

)
dpL (θL) , (100a)

DL+1(Ψ, t) :=
[
φ′1
(
θtL+1(1), y1

)
, φ′1

(
θtL+1(2), y2

)
, . . . , φ′1

(
θtL+1(N), yN

)]>
,

DL (θL; Ψ, t) :=
[
ΨwL+1 (θL)(t) DL+1(Ψ, t)

]
◦ ḣ′

(
ΨθL (θL) (t)

)
, (100b)

D` (θ`; Ψ, t) :=

[∫
Ψw`+1(θ`,θ`+1)(t) D`+1 (θ`+1; Ψ, t) dp`+1(θ`+1)

]
◦ḣ′
(
Ψθ` (θ`) (t)

)
, (100c)

D1 (w1; Ψ, t) :=

[∫
Ψw2

(
w1,θ2)(t) D2(θ2; Ψ, t

)
dp2 (θ2)

]
◦ ḣ′
(
θ1

(
Ψw1 (w1)(t)

))
, (100d)

where in (100b), θL ∈ supp(pL), in (100c), ` ∈ [2 : L − 1] and θ` ∈ supp(p`), and in (100d),
w1 ∈ supp(p1) and θ1(·) is defined by (96). Then the gradient of the weights can be written as
below.

GwL+1 (θL; Ψ, t) :=
1

N

[
DL+1(Ψ, t)

]>
ḣ
(

ΨθL (θL) (t)
)
, (101a)

Gw` (θ`−1,θ`; Ψ, t) :=
1

N

[
D`(θ`; Ψ, t)

]>
ḣ
(

Ψθ`−1 (θ`−1) (t)
)
, (101b)

Gw2 (w1,θ2; Ψ, t) :=
1

N

[
D2 (θ2; Ψ, t)

]>
ḣ
(
θ1

(
Ψw1 (w1)(t)

))
, (101c)

Gw1 (w1; Ψ, t) :=
1

N
X>

[
D1 (w1; Ψ, t)

]
, (101d)

where in (101a), θL ∈ supp(pL), in (101b), ` ∈ [3 : L], θ`−1 ∈ supp(p`−1), and θ` ∈ supp(p`), in
(101c), w1 ∈ supp(p1) and θ2 ∈ supp(p2), and in (101d), w1 ∈ supp(p1).

Moreover, we expect that the features satisfy the constraints:∫
Ψw2 (w1,θ2) (t) ḣ

(
θ1

(
Ψw1 (w1)(t)

))
dp1 (w1) = Ψθ2 (θ2) (t), θ2 ∈ supp(p2),∫

Ψw` (θ`−1,θ`) (t) ḣ
(

Ψθ`−1 (θ`−1) (t)
)
dp`−1 (θ`−1) = Ψθ` (θ`) (t), ` ∈ [3 : L], θ` ∈ supp(p`).
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So the drift term for the features can be obtained by the chain rule:

Gθ1 (w1; Ψ, t) :=
1

d

[
X Gw1 (w1; Ψ, t)

]
, (102a)

Gθ2 (θ2; Ψ, t) :=

∫
Ψw2 (w1,θ2) (t)

[
ḣ′
(
θ1

(
Ψw1 (w1)(t)

))
◦ Gθ1 (w1; Ψ, t)

]
dp1 (w1)

+

∫
ḣ
(
θ1

(
Ψw1 (w1)(t)

))
◦ Gw2 (w1,θ2; Ψ, t) dp1 (w1) , (102b)

Gθ` (θ`; Ψ, t) :=

∫
Ψw` (θ`−1,θ`) (t)

[
ḣ′
(

Ψθ`−1 (θ`−1) (t)
)
◦ Gθ`−1 (θ`−1; Ψ, t)

]
dp`−1 (θ`−1)

+

∫
ḣ
(

Ψθ`−1 (θ`−1) (t)
)
◦ Gw` (θ`−1,θ`; Ψ, t) dp`−1 (θ`−1) , (102c)

where in (102a), w1 ∈ supp(p1), in (102b), θ2 ∈ supp(p2), and in (102c), ` ∈ [3 : L] and
θ` ∈ supp(p`). Now we define the process of a continuous DNN trained by Gradient Descent, i.e.,
neural feature flow. It characterizes the evolution of both weights and features.

Definition 32 (Neural Feature Flow for DNN) Given an initial continuous DNN(
{w`}L+1

`=2 , {p`}
L
`=1

)
that satisfies (96) – (99) and T < ∞, we say a trajectory Ψ∗ is a neural

feature flow if for all t ∈ [0, T ],

(1) for all ` ∈ [2 : L] and θ` ∈ supp(p`),

Ψθ∗,` (θ`) (t) = θ` −
∫ t

s=0
Gθ` (θ`; Ψ∗, s) ds,

(2) for all w1 ∈ supp(p1),

Ψw∗,1 (w1) (t) = w1 −
∫ t

s=0
Gw1 (w1; Ψ∗, s) ds,

(3) for all w1 ∈ supp(p1) and θ2 ∈ supp(p2),

Ψw∗,2 (w1,θ2) (t) = w2 (w1,θ2)−
∫ t

s=0
Gw2 (w1,θ2; Ψ∗, s) ds,

(4) for all ` ∈ [2 : L− 1], θ` ∈ supp(p`), and θ`+1 ∈ supp(p`+1),

Ψw∗,`+1 (θ`,θ`+1) (t) = w`+1 (θ`,θ`+1)−
∫ t

s=0
Gw`+1 (θ`,θ`+1; Ψ∗, s) ds,

(5) for all θL ∈ supp(pL),

Ψw∗,L+1 (θL) (t) = wL+1 (θL)−
∫ t

s=0
GwL+1 (θL; Ψ∗, s) ds.
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Algorithm 4 Initializing a Discrete DNN.

1: Input the data {θ̂0,i}di=1 in (93), variance σ1 > 0, and a constant C3.
2: Independently draw ŵ1,i,j ∼ p0 = N

(
0, dσ2

1

)
for i ∈ [d] and j ∈ [m].

3: Set θ̂1,j = 1
d

∑d
i=1 ŵ1,i,j θ̂0,i where j ∈ [m]. � Standard Initialization for layer 1

4: for ` = 2, . . . , L do
5: Independently draw w̃`,i,j ∼ N

(
0,mσ2

1

)
for i, j ∈ [m].

6: Set θ̂`,j = 1
m

∑m
i=1 w̃`,i,j ḣ(θ̂`−1,i) where j ∈ [m]. � Standard Initialization for layer `

7: end for
8: Set ŵL+1,i,1 = C where i ∈ [m]. � Simply initialize {ŵL+1,i,1}mi=1 by a constant
9: for ` = 2, . . . , L do

10: for j = 1, . . . ,m do
11: Solve convex optimization problem: � Perform `2-regression to reduce redundancy

min
{ŵ`,i,j}mi=1

1

m

m∑
i=1

(ŵ`,i,j)
2 , s.t. θ̂`,j =

1

m

m∑
i=1

ŵ`,i,j ḣ(θ̂`−1,i).

12: end for
13: end for
14: Output the discrete DNN parameters (ŵ, θ̂).

E.5. Informal Result

We still consider the DNN initialized by a standard initialization with an additional regression pro-
cedure, shown in Algorithm 4. We show in Theorem 6 that there is a neural feature flow that can
capture the evolution of a DNN that is initialized by Algorithm 4 and trained by Gradient Descent,
i.e, Algorithm 3.

Theorem 33 (Informal) Under suitable conditions, there is an initialization ({w`}L+1
`=2 , {p`}

L
`=1)

such that the continuous DNN has the following properties.

(1) For any T <∞, there exists an unique neural feature flow Ψ∗ satisfying Definition 32.

(2) Suppose ε ≤ Õ(1), δ ≤ 1, m ≥ Ω̃(ε−2), the step size η ≤ Õ(ε). Let T be a constant
and K := bT/ηc. Let L̂kN := 1

n

∑N
n=1 φ(θ̂kL+1,1(n), yn) be the loss of running scaled Gra-

dient Descent Algorithm 3 on a DNN initialized by Algorithm 4 at k-th step, and LtN :=
1
N

∑n
n=1 φ (θL+1(Ψ∗, t)(n), yn) be the loss of neural feature flow at time t. Then, with proba-

bility 1− δ,
sup

k∈[0:K]

∣∣∣L̂kN − LkηN ∣∣∣ ≤ Õ(ε).

Appendix F. Simulations

In this section, we perform a toy simulation to validate our theory. We consider a synthetic 1-D
regression task: f(x) = sin(x). We randomly generate N = 100 training samples uniformly from
[−π, π] and experiment on a four-hidden-layer (L = 4) NN. We choose the activation function h1

and h2 as tanh(x) and apply `2 loss, i.e., φ(y′, y) = |y′ − y|2. The weights are initialized by a
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Figure 1: The experimental results on the synthetic data. m denotes the number of hidden units.

standard strategy (Glorot and Bengio, 2010) with an additional `2 regression in Algorithm 2. We
see that the scaled GD in Algorithm 3 from the initialization achieves the global optimal solution
for overparamterized DNNs.

The experimental result is shown Fig. 1. From the experiments, we can conclude that (1) the
initialization and scaled GD are workable; (2) with the growth of the number of hidden units m,
scaled GD achieves the global minimum.
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