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Abstract
For many learning problems one may not have access to fine grained label information; e.g., an
image can be labeled as husky, dog, or even animal depending on the expertise of the annotator.
In this work, we formalize these settings and study the problem of learning from such coarse data.
Instead of observing the actual labels from a set Z , we observe coarse labels corresponding to a
partition of Z (or a mixture of partitions).

Our main algorithmic result is that essentially any problem learnable from fine grained labels
can also be learned efficiently when the coarse data are sufficiently informative. We obtain our
result through a generic reduction for answering Statistical Queries (SQ) over fine grained labels
given only coarse labels. The number of coarse labels required depends polynomially on the infor-
mation distortion due to coarsening and the number of fine labels |Z|.

We also investigate the case of (infinitely many) real valued labels focusing on a central prob-
lem in censored and truncated statistics: Gaussian mean estimation from coarse data. We provide
an efficient algorithm when the sets in the partition are convex and establish that the problem is
NP-hard even for very simple non-convex sets. 1
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1. Introduction

Supervised learning from labeled examples is a classical problem in machine learning and statistics:
given labeled examples, the goal is to train some model to achieve low classification error. In
most modern applications, where we train complicated models such as neural nets, large amounts
of labeled examples are required. Large datasets such as Imagenet, Russakovsky et al. (2015),
often contain thousands of different categories such as animals, vehicles, etc., each one of those
containing many fine grained subcategories: animals may contain dogs and cats and dogs may be
further split into different breeds etc. In the last few years, there have been many works that focus
on fine grained recognition, Guo et al. (2018); Chen et al. (2018); Touvron et al. (2020); Qin et al.
(2020); Lei et al. (2017); Jiao et al. (2019, 2020); Bukchin et al. (2020); Taherkhani et al. (2019).
Collecting a sufficient amount of accurately labeled training examples is a hard and expensive task
that often requires hiring experts to annotate the examples. This has motivated the problem of

1. The full version is available on arXiv with the same title and contains the proofs of all results discussed in this paper.
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learning from coarsely labeled datasets, where a dataset is not fully annotated with fine grained
labels but a combination of fine, e.g., cat, and coarse labels, e.g., animal, is given, Deng et al.
(2013); Ristin et al. (2015).

Inference from coarse data naturally arises also in unsupervised, i.e., distribution learning set-
tings: instead of directly observing samples from the target distribution, we observe “representative”
points that correspond to larger sets of samples. For example, instead of observing samples from a
real valued random variable, we round them to the closest integer. An important unsupervised prob-
lem that fits in the coarse data framework is censored statistics, Cohen (2016); Wolynetz (1979);
Breen et al. (1996); Schneider (1986). Interval censoring, that arises in insurance adjustment appli-
cations, corresponds to observing points in some interval and point masses at the endpoints of the
interval instead of observing fine grained data from the whole real line. Moreover, the problem of
learning the distribution of the output of neural networks with non-smooth activations (e.g., ReLU
networks, Wu et al. (2019)) also fits in our model of distribution learning with coarse data, see
Figure 1(c).

Even though the problem of learning from coarsely labeled data has attracted significant at-
tention from the applied community, from a theoretical perspective little is known. In this work,
we provide efficient algorithms that work in both the supervised and the unsupervised coarse data
settings.

1.1. Our Model and Results

We start by describing the generative model of coarsely labeled data in the supervised setting. We
model coarse labels as subsets of the domain of all possible fine labels. For example, assume we hire
an expert on dog breeds and an expert on cat breeds to annotate a dataset containing images of dogs
and cats. With probability 1/2, we get samples labeled by the dog expert, i.e., labeled according
to the partition {cat = {persian cat, bengal cat, . . .}, {maltese dog}, {husky dog}, . . . }. On the
other hand, the cat expert will provide a fine grained partition over cat breeds and will group together
all dog breeds. Our coarse data model captures exactly this mixture of different label partitions.

Definition 1 (Generative Process of Coarse Data with Context) Let X be an arbitrary domain,
and let Z = {1, . . . , k} be the discrete domain of all possible fine labels. We generate coarsely
labeled examples as follows:

1. Draw a finely labeled example (x, z) from a distribution D on X × Z .

2. Draw a coarsening partition S (of Z) from a distribution π.

3. Find the unique set S ∈ S that contains the fine label z.

4. Observe the coarsely labeled example (x, S).

We denote Dπ the distribution of the coarsely labeled example (x, S).

In the supervised setting, our main focus is to answer the following question.

Question 2 Can we train a model, using coarsely labeled examples (x, S) ∼ Dπ, that classifies
finely labeled examples (x, z) ∼ D with accuracy comparable to that of a classifier that was trained
on examples with fine grained labels?
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Definition 1 does not impose any restrictions on the distribution over partitions π. It is clear that
if partitions are very rough, e.g., we split Z into two large disjoint subsets, we lose information
about the fine labels and we cannot hope to train a classifier that performs well over finely labeled
examples. In order for Question 2 to be information theoretically possible, we need to assume that
the partition distribution π preserves fine-label information. The following definition quantifies this
by stating that reasonable partition distributions π are those that preserve the total variation distance
between different distributions supported on the domain of the fine labels Z . We remark that the
following definition does not require D to be supported on pairs (x, S) but is a general statement
for the unsupervised version of the problem, see also Definition 9.

Definition 3 (Information Preserving Partition Distribution) Let Z be any domain and let α ∈
(0, 1]. We say that π is an α-information preserving partition distribution if for every two distribu-
tions D1,D2 supported on Z , it holds that TV(D1

π,D2
π) ≥ α TV(D1,D2), where TV(D1,D2) is

the total variation distance of D1 and D2.

For example, the partition distribution defined in the dog/cat dataset scenario, discussed before
Definition 1, is 1/2-information preserving, since we observe fine labels with probability 1/2. In
this case, it is easy, at the expense of losing the statistical power of the coarse labels, to combine the
finely labeled examples from both experts in order to obtain a dataset consisting only of fine labels.
However, our model allows the partitions to have arbitrarily complex combinatorial structure that
makes the process of “inverting” the partition transformation computationally challenging. For
example, specific fine labels may be complicated functions of coarse labels: “medium sized” and
“pointy ears” and “blue eyes” may be mapped to the “husky dog” fine label.

Our first result is a positive answer to Question 2 in essentially full generality: we show that
concept classes that are efficiently learnable in the Statistical Query (SQ) model, Kearns (1998), are
also learnable from coarsely labeled examples. Our result is similar in spirit with the result of Kearns
(1998), where it is proved that SQ learnability implies learnability under random classification noise.

Informal Theorem 1 (SQ Learnability implies Learnability from Coarse Examples) Any con-
cept class C that is efficiently learnable with M statistical queries from finely labeled examples
(x, z) ∼ D, can be efficiently learned from O(poly(k/α)) ·M coarsely labeled examples (x, S) ∼
Dπ under any α-information preserving partition distribution π.

Statistical Queries are queries of the form E(x,z)∼D[q(x, z)] for some query function q(x, z). It
is known that almost all known machine learning algorithms Aslam and Decatur (1998); Blum et al.
(1998, 2005); Dunagan and Vempala (2008); Balcan and Feldman (2015); Feldman et al. (2017a)
can be implemented in the SQ model. In particular, in Feldman et al. (2017b), it is shown that
(Stochastic) Gradient Descent can be simulated by statistical queries. This implies that our result
can be applied, even in cases where it is not possible to obtain formal optimality guarantees, e.g.,
training deep neural nets. We can train such models using coarsely labeled data and guarantee the
same performance as if we had direct access to fine labels. As another application, we consider the
problem of multiclass logistic regression with coarse labels. It is known, see e.g., Friedman et al.
(2001), that given finely labeled examples (x, z) ∼ D, the likelihood objective for multiclass logistic
regression is concave with respect to the weight matrix. Even though the likelihood objective is no-
longer concave when we consider coarsely labeled examples (x, S) ∼ Dπ, our theorem bypasses
this difficulty and allows us to efficiently perform multiclass logistic regression with coarse labels.
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Formally, we design an algorithm (Algorithm 1) that, given coarsely labeled examples (x, S),
efficiently simulates statistical queries over finely labeled examples (x, z). Surprisingly, the run-
time and sample complexity of our algorithm do not depend on the combinatorial structure of the
partitions, but only on the number of fine labels k and the information preserving parameter α of
the partition distribution π.

Theorem 4 (SQ from Coarsely Labeled Examples) Consider a distributionDπ over coarsely la-
beled examples in Rd × [k], (see Definition 1) with α-information preserving partition distribution
π. Let q : Rd × Z → [−1, 1] be a query function, that can be evaluated on any input in time T ,
and τ, δ ∈ (0, 1). There exists an algorithm (Algorithm 1), that drawsN = Õ(k4/(τ3α2) log(1/δ))
coarsely labeled examples fromDπ and, in poly(N,T ) time, computes an estimate r̂ such that, with
probability at least 1− δ, it holds

∣∣E(x,z)∼D[q(x, z)]− r̂
∣∣ ≤ τ .

Learning Parametric Distributions from Coarse Samples. In many important applications, in-
stead of a discrete distribution over fine labels, a continuous parametric model is used. A popular
example is when the domain Z of Definition 1 is the entire Euclidean space Rd, and the distri-
bution of finely labeled examples is a Gaussian distribution whose parameters possibly depend on
the context x. Such censored regression settings are known as Tobit models Tobin (1958); Mad-
dala (1986); Gourieroux (2000). Lately, significant progress has been made from a computational
point of view in such censored/truncated settings in the distribution specific setting, e.g., when the
underlying distribution is Gaussian Daskalakis et al. (2018); Kontonis et al. (2019), mixtures of
Gaussians Nagarajan and Panageas (2019), linear regression Daskalakis et al. (2019); Ilyas et al.
(2020); Daskalakis et al. (2020). In this distribution specific setting, we consider the most funda-
mental problem of learning the mean of a Gaussian distribution given coarse data.

Definition 5 (Coarse Gaussian Data) Consider the Gaussian distributionN (µ?), with meanµ? ∈
Rd and identity covariance matrix. We generate a sample as follows:

1. Draw z from N (µ?).

2. Draw a partition S (of Rd) from π.

3. Observe the set S ∈ S that contains z.

We denote the distribution of S as Nπ(µ?).

We first study the above problem, from a computational viewpoint. For the corresponding problems
in censored and truncated statistics no geometric assumptions are required for the sets: in Daskalakis
et al. (2018) is was shown that an efficient algorithm exists for arbitrarily complex truncation sets. In
contrast in our more general model of coarse data we show that having sets with geometric structure
is necessary. In particular we require that every set of the partition is convex, see Figure 1(b,c). We
show that when the convexity assumption is dropped, learning from coarse data is a computationally
hard problem even under a mixture of very simple sets.

Theorem 6 (Hardness of Matching the Observed Distribution with General Partitions) Let π
be a general partition distribution. Unless P = NP, no algorithm with sample access to Nπ(µ?),
can compute, in poly(d) time, a µ̃ ∈ Rd such that TV(Nπ(µ̃),Nπ(µ?)) < 1/dc for some absolute
constant c > 1.
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We prove our hardness result using a reduction from the well known MAX-CUT problem, which
is known to be NP-hard, even to approximate Håstad (2001). In our reduction, we use partitions
that consist of simple sets: fat hyperplanes, ellipsoids and their complements: the computational
hardness of this problem is rather inherent and not due to overly complicated sets.

On the positive side, we identify a geometric property that enables us to design a computa-
tionally efficient algorithm for this problem: namely we require all the sets of the partitions to be
convex, e.g., Figure 1(b,c). We remark that having finite or countable subsets, is not a requirement
of our model. For example, we can handle convex partitions of the form (c) that correspond to the
output distribution of a ReLU neural network, see Wu et al. (2019). We continue with our theorem
for learning Gaussians from coarse data.

Theorem 7 (Gaussian Mean Estimation with Convex Partitions) Let ε, δ ∈ (0, 1). Consider
the generative process of coarse d-dimensional Gaussian data Nπ(µ?). Assume that the partition
distribution π is α-information preserving and is supported on convex partitions of Rd. There exists
an algorithm, that draws Õ(d/(ε2α2) log(1/δ)) samples from Nπ(µ?), runs in time polynomial in
the number of samples, and computes an estimate µ̃ that satisfies TV(N (µ̃),N (µ?)) ≤ ε with
probability at least 1− δ.

Our algorithm for mean estimation of a Gaussian distribution relies on the likelihood being concave
when the partitions are convex. We remark that, similar to our approach, one can use the concavity
of likelihood to get efficient algorithms for regression settings, e.g., Tobit models, where the mean
of the Gaussian is given by a linear function of the contextAx for some unknown matrixA.

(a) (b) (c)

Figure 1: (a) is a very rough partition, that makes learning the mean impossible: Gaussians
N ((0, z)) centered along the same vertical line (0, z) assign exactly the same probability to all
cells of the partitions and therefore, TV(Nπ((0, z1)),Nπ((0, z2))) = 0: it is impossible to learn
the second coordinate of the mean. (b) is a convex partition of R2, that makes recovering the
Gaussian possible. (c) is the convex partition corresponding to the output distribution of one layer
ReLU networks. When both coordinates are positive, we observe a fine sample (black points cor-
respond to singleton sets). When exactly one coordinate (say x1) is positive, we observe the line
Lz = {x : x2 < 0,x1 = z > 0} that corresponds to the ReLU output (x1, 0). If both coordinates
are negative, we observe the set {x : x1 < 0,x2 < 0}, that corresponds to the point (0, 0).

1.2. Related Work

Our work is closely related to the literature of learning from censored-truncated data and learning
with noise. There has been a large number of recent works dealing inference with truncated data
from a Gaussian distribution Daskalakis et al. (2018); Kontonis et al. (2019), mixtures of Gaus-
sians Nagarajan and Panageas (2019), linear regression Daskalakis et al. (2019); Ilyas et al. (2020);
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Daskalakis et al. (2020), sparse Graphical models Bhattacharyya et al. (2021) or Boolean product
distributions Fotakis et al. (2020). A significant feature of our work is that it can capture the closely
related field of censored statistics Cohen (2016); Breen et al. (1996); Wolynetz (1979).

The area of robust statistics Huber (2004) is also very related to our work as it also deals with
biased data-sets and aims to identify the distribution that generated the data. Recently, there has
been a large volume of theoretical work for computationally-efficient robust estimation of high-
dimensional distributions Diakonikolas et al. (2016); Charikar et al. (2017); Lai et al. (2016); Di-
akonikolas et al. (2017a, 2018); Klivans et al. (2018); Hopkins and Li (2019); Diakonikolas et al.
(2019); Cheng et al. (2020); Bakshi et al. (2020) in the presence of arbitrary corruptions to a small
ε fraction of the samples.

The line of research dealing with statistical queries Kearns (1998); Blum et al. (1998); Feldman
et al. (2015, 2017b); Feldman (2017); Feldman et al. (2017a); Diakonikolas et al. (2017b, 2020b) is
closely related to one of our main results (Theorem 4). It is generally believed that SQ algorithms
capture all reasonable machine learning algorithms Aslam and Decatur (1998); Blum et al. (1998,
2005); Dunagan and Vempala (2008); Feldman et al. (2017a); Balcan and Feldman (2015); Feldman
et al. (2017b) and there is a rich line of research indicating SQ lower-bounds for these classes
of algorithms Feldman et al. (2017a); Diakonikolas et al. (2017b); Shamir (2018); Vempala and
Wilmes (2019); Diakonikolas et al. (2020b,a); Goel et al. (2020a,b).

2. Notation and Preliminaries

We let [n] = {1, . . . , n}. We use lowercase bold letters x to denote vectors and capital bold let-
ters X for matrices. We let xi be the i-th coordinate of x. We let ‖x‖p denote the Lp norm
of x. The probability simplex is denoted by ∆n and discrete distributions D supported on [n]
will usually be represented by their associated probability vectors p ∈ ∆n. For any distribution
D, we overload the notation and we use the same notation for the corresponding density and de-
note D(S) =

∑
x∈S D(x) for any S ⊆ [n]. The d-dimensional Gaussian distribution will be

denoted by N (µ,Σ). When the covariance matrix is known, we simplify to N (µ). We denote Φ
(resp. φ) the cdf (resp. pdf) of the standard Normal distribution. The total variation distance of
p, q ∈ ∆n is TV(p, q) = maxS⊆[n] p(S) − q(S) = ‖p − q‖1/2. For a random variable x, we
let E[x],V(x),Cov(x) be the expected value, the variance and the covariance of x. For a joint
distribution D of two random variables x and z over the space X × Z , we let Dx (resp. Dz) be the
marginal distribution of x (resp. z). Let D be a joint distribution over labeled examples X × Z ,
with X be the input space and Z the label space. A statistical query (SQ) oracle STAT(D, τ) with
tolerance parameter τ ∈ [0, 1] takes as input a statistical query defined by a real-valued function
q : X × Z → [−1, 1] and outputs an estimate of E(x,z)∼D[q(x, z)] that is accurate to within an
additive ±τ .

3. Supervised Learning from Coarse Data

In this section, we consider the problem of supervised learning from coarse data. In this setting,
there exists some underlying distribution over finely labeled examples,D. However, we have sample
access only to the distribution associated with coarsely labeled examples Dπ, see Definition 1. As
discussed in Section 1, under this setting, even problems that are naturally convex when we have
access to examples with fine labels, become non-convex when we introduce coarse labels (e.g.,
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multiclass logistic regression). The main result of this section is Theorem 4, which allows us to
compute statistical queries over finely labeled examples.

3.1. Overview of the Proof of Theorem 4

In order to simulate a statistical query we take a two step approach. Our first building block con-
siders the unsupervised version of the problem, see Definition 9, i.e., we marginalize the context
x and try to learn the distribution of the fine labels z given coarse samples S. This can be viewed
as learning a general discrete distribution supported on Z = {1, . . . , k} given coarse samples, i.e.,
subsets of Z . We show that, when the partition distribution π is α-information preserving, this
can be done efficiently, see Proposition 10. Our algorithm (Algorithm 1) exploits the fact that even
though in general having coarse data results in non-concave likelihood objectives, when we consider
parametric models, this is not true when we maximize over all discrete distributions. In Proposi-
tion 10, we show that Õ(k/(εα)2) samples are sufficient for this step. For the details of this step,
see Subsection 3.2.

Using the above algorithm, one could try to separately learn the marginal distribution over x,Dx
and the distribution of the fine labels z conditional on some fixed x; let us denote this distribution
as Dxz . Then one could generate finely labeled examples (x, z) and use them to estimate the query
E(x,z)∼D[q(x, z)]. The reason that this naive approach fails is that it requires many coarse examples
(x, S) with exactly the same value of x. Unless the domain X is very small, the probability that we
observe samples with the same value of x is going to be tiny. In order to overcome this obstacle, at
a high level, our approach is to split the domain X into larger sets and then, learn the conditional
distribution of the labels, not on a fixed point x, but on these larger sets of non-trivial mass.

Intuitively, in order to have an effective partition of the domain X , we want to group together
points x whose values q(x, z) are close. Since z belongs in a discrete domain Z = [k], we can
decompose the query q(x, z) as q(x, z) =

∑k
i=1 q(x, i)1{z = i}. We estimate the value of

E(x,z)∼D[q(x, i)1{z = i}] separately. To find a suitable reweighting of the domain X , we per-
form rejection sampling, accepting a pair (x, S) ∼ D with probability q(x, i) 2: points x that have
small value q(x, i) contribute less in the expectation and are less likely to be sampled. After we
perform this rejection sampling process based on x, we have pairs (x, S), conditional that x was
accepted. Now, using our previous maximum likelihood learner of Proposition 10 we learn the
marginal distribution over fine labels and use it to answer the query. We provide the details of this
rejection sampling step in the full proof of Theorem 4, see Subsection 3.3.

For a description of the corresponding algorithm that simulates statistical queries, see Algo-
rithm 1. To keep the presentation simple we state the algorithm for the case where the query function
q(x, y) is positive. It is straightforward to generalize it for general queries, see Subsection 3.3.

Remark 8 (Empirical Likelihood Approach) One could try to use the empirical likelihood di-
rectly over the coarsely labeled data (as defined in Owen (2001)). However, in general, these
empirical likelihood objectives are non-convex when the data are coarse and therefore it is compu-
tationally hard to optimize them directly. Our approach for simulating statistical queries consists
of two ingredients: reweighting the feature space via rejection sampling in order to group together
points and learning discrete distributions from coarse data. To learn the discrete distributions (see
Section 3.2), we use a (direct) empirical likelihood approach similar to that of Owen (1988); Owen

2. It is easy to handle the case where this function takes negative values, see the proof of Theorem 4.
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et al. (1990); Owen (2001). Our main contribution is the use of rejection sampling to reduce the
initial non-convex problem to the special case of learning a discrete distribution (with small sup-
port) from coarse data which, as we prove, is a tractable (convex) problem. For more connections
with censored statistics techniques, we refer the reader to Thomas and Grunkemeier (1975); Owen
(1988); Gill et al. (1997); Owen (2001).

Algorithm 1 Statistical Queries from Coarse Labels.

1: Input: Query q : X × Z 7→ (0, 1], accuracy τ ∈ [0, 1], confidence δ ∈ [0, 1].
2: Oracle: Access to coarsely labeled samples (x, S) ∼ Dπ.
3: Output: Estimate r̂ such that

∣∣E(x,z)∼D[q(x, z)]− r̂
∣∣ ≤ τ with probability at least 1− δ.

4: procedure STATQUERY(q, τ, δ)
5: Compute r̂i ← SQ(q, i, O(τ/k), δ).
6: Output r̂ ←

∑k
i=1 r̂i.

7: procedure SQ(q, i, ρ, δ)
8: Draw N1 = Θ̃

( log(1/δ)
ρ2

)
samples (xj , Sj) from Dπ.

9: Compute µ̂i ← 1
N1

∑N1
j=1 q(xj , i).

10: if µ̂i ≤ ρ do
11: Output r̂i ← 0.
12: end
13: Draw N2 = Θ̃

(k log(1/δ)
ρ3α2

)
samples (xj , Sj) from Dπ. . Θ̃

(k4 log(1/δ)
τ3α2

)
examples overall.

14: Taccept ← ∅. . Training set of accepted samples.
15: Add Sj in Taccept with probability q(xj , i), ∀j ∈ [N2]. . Rejection Sampling Process.
16: Compute D̃ using Proposition 10 with input (Taccept, ρ, δ).

17: Output r̂i ← µ̃i D̃(i).

3.2. Learning Marginals Over Fine Labels

In this subsection, we deal with unsupervised learning from coarse data in discrete domains. Al-
though this is an ingredient of our main result for simulating statistical queries in a supervised
setting where labeled data (x, S) are given, the result of this section does not depend on the points
x and concerns the unsupervised version of the problem. To keep the notation simple, we will use
D to denote a distribution over finite labels Z .

Definition 9 (Generative Process of Coarse Data) Let Z be a discrete domain and D be a distri-
bution supported on Z . Moreover, let π be a distribution supported on partitions of Z . We consider
the following generative process:

1. Draw z from D.

2. Draw a partition S from the distribution over all partitions π.

3. Observe the set S ∈ S that contains z.

We denote the distribution of S as Dπ.

8
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The assumption that we require is that the partition distirbution π is α-information preserving, see
Definition 3. At this point we give some examples of information preserving partition distributions.
We first observe that α = 0 if and only if the problem is not identifiable. For instance, if π is
supported only on the partition S = {{1, 2}, {3, . . . , k}}, the problem is not identifiable, since, for
example, the fine label 1 is indistinguishable from the fine label 2. The value α = 1 is attained when
the partition totally preserves the distribution distance. Intuitively, the value 1 − α corresponds to
the distortion that the coarse labeling introduces to a fine-labeled dataset.

In many cases most fine labels may be missing. Consider two data providers that use different
methods to round their samples. The rounding’s uncertainty can be viewed as a coarse labeling of
the data. Assume that we add discrete (balanced Bernoulli) noise ξ to some true value x ∈ [0..k].
Consider two partitions {S1,S2} with S1 = {{0, 1}, {2, 3}, . . . , {k − 1, k}, {k + 1}} and S2 =
{{0}, {1, 2}, . . . {k− 1, k}}. Observe that, when x+ ξ is odd, we can think of the rounded sample,
as a draw from S1 and when x + ξ is even, as a draw from S2. This example shows that we can
capture the problem of deconvolution of two distributions D1,D2, where one of them is known and
we observe samples x1 + x2, xi ∼ Di.

The following proposition establishes the sample complexity of unsupervised learning of dis-
crete distributions with coarse data. Our goal is to compute an estimate of the discrete distribution
D? with probability vector p? ∈ ∆k from N coarse samples S1, . . . , SN drawn from the distribu-
tionD?π. Our algorithm maximizes the empirical likelihood. Analyzing the empirical log-likelihood
objective LN (p) = 1

N

∑N
n=1 log

(∑
i∈Sn

pi
)
, where p ∈ ∆k is a guess probability vector, we

observe that the problem is concave and, therefore, can be efficiently optimized (e.g., by gradient
descent).

Proposition 10 Let Z be a discrete domain of cardinality k and let D be a distribution supported
on Z . Moreover, let π be an α-information preserving partition distribution for some α ∈ (0, 1].
Then, with N = Õ(k/(ε2α2) log(1/δ)) samples from Dπ and in time polynomial in the number of
samples N , we can compute a distribution D̃ supported on Z such that TV(D̃,D) ≤ ε.

3.3. The Proof of Theorem 4

In this subsection, we prove Theorem 4. Recall that we have sample access only to coarsely labeled
examples (x, S) ∼ Dπ. The key idea is to perform rejection sampling on each coarse sample (x, S)
with acceptance probability q(x, j) for any fine label j ∈ Z . Because of the rejection sampling
process, this marginal distribution is not the marginal of D on the fine labels Z , but the marginal
of D on the fine labels, conditional on the accepted samples. However, the task of estimating from
this marginal distribution can be still reduced to the unsupervised problem, see Proposition 10 of
the previous section. Consider an arbitrary query function q : X × Z → [−1, 1] and, without loss
of generality, let Z = [k]. Recall that D is the joint probability distribution on the finely labeled
examples (x, z). We have that

E
(x,z)∼D

[q(x, z)] =

k∑
j=1

E
(x,z)∼D

[
q(x, j)1{z = j}

]
=

k∑
j=1

E
(x,z)∼D

[
qj(x)1{z = j}

]
. (1)

Since we would like to estimate the expectation of the query q(x, z) with tolerance τ, it suffices to
estimate the expectation of each query qj(x)1{z = j} with tolerance τ/k for any j ∈ [k]. Hence,
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it suffices to estimate expectations of the form E(x,z)∼D[f(x)1{z = j}] for arbitrary functions
f : X → [0, 1]3 and j ∈ [k].

Let Dx denote the marginal distribution of the examples x ∈ X . The algorithm performs rejec-
tion sampling. Each coarsely labeled example (x, S) ∼ Dπ is accepted with probability f(x), that
does not depend on the coarse label S. Hence, the rejection sampling process induces a distribution
Df over finely labeled examples (x, z) ∈ X × Z with density

Df (x, z) =
f(x)

Ex∼Dx [f(x)]
D(x, z) .

We remark that, we do not have sample access to Df because we do not have sample access to the
distribution D of the fine examples; we introduced the above notation for the purposes of the proof.
Similarly, to Dx, we define Dfx to be the marginal distribution of x conditional on its acceptance,
i.e.,

Dfx(x) =
f(x)

Ex∼Dx [f(x)]
Dx(x) . (2)

Let Dz denote the marginal distribution of the fine labels [k] and let Dz(·|x) be the marginal distri-
bution conditional on the example x. We have that

E
(x,z)∼D

[
f(x)1{z = j}

]
=

∫
X
f(x)D(x, j)dx =

∫
X
f(x)Dx(x)Dz(j|x)dx .

The above expectation can be equivalently written, by multiplying and dividing by Dfx ,

E
(x,z)∼D

[
f(x)1{z = j}

]
=

∫
X

(f(x)Dx(x)

Dfx(x)

)(
Dfx(x)Dz(j|x)

)
dx .

The first term in the integral is equal to Ex∼Dx [f(x)], by substituting Equation (2) and, hence, is
constant. The second term corresponds to the probability of observing the fine label j, given an
example x, that has been accepted from the rejection sampling process. Similarly, to the marginal
Dz , we define Dfz to be the marginal distribution of the fine labels z conditional on acceptance.
Hence, we can write

E
(x,z)∼D

[
f(x)1{z = j}

]
= E

x∼Dx

[f(x)] Pr
z∼Df

z

[z = j] . (3)

The decomposition of the expectation of Equation (3) is a key step: we now only have to learn
the marginal distribution of fine labels conditional on acceptance Dfz . Since we can draw samples
(x, S), it is a straightforward of concentration inequalities, to estimate Ex∼Dx [f(x)]. Moreover,
using Proposition 10 we can learn the distribution Dfz . For the detailed proof, we refer to the full
version of the paper.

3. Any function f : X → [−1, 1] can be decomposed into f = f+ − f− with f+, f− ≥ 0 and, by linearity of
expectation, it suffices to work with functions f with image in [0, 1].

10
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3.4. Training Models from Coarse Data

Consider a parameterized family of functions x → f(x;w), where the parameters w lie in some
parameter space W ⊆ Rp. For instance, the family may correspond to a feed-forward neural net-
work with L layers. Given a finely labeled training sample (x1, y1), . . . , (xN , yN ) ∈ X × Y , the
parameters w are chosen using a gradient method in order to minimize the empirical risk,

LN (w) =
1

N

N∑
i=1

`(f(xi;w), yi) ,

for some loss function ` : Y × Y → R and the goal of this optimization task is to minimize
the population risk function L(w) = E(x,y)∼D(w?)[`(f(x;w), y)] (where the distribution D(w?)
is unknown). For simplicity, let us focus on differentiable loss functions. Performing the SGD
algorithm, we can circumvent the lack of knowledge of the population risk function L. Specifically,
instead of computing the gradient of L(w), the algorithm steps towards a random direction v with
the constraint that the expected value of v is equal to the negative of the true gradient, i.e., it is an
unbiased estimate of −∇L(w). Such a random vector v can be computed without knowing D(w?)
using the interchangeability between the expectation and the gradient operators. Assume that the
algorithm is at iteration t ≥ 1. Let (x, y) ∼ D(w?) be a fresh sample and define vt be the gradient
of the loss function with respect to w, at the point wt, i.e.,

E[vt|wt] = E
(x,y)∼D(w?)

[∇`(f(x;wt), y)] = ∇ E
(x,y)∼D(w?)

[`(f(x;wt), y)] = ∇L(wt) .

Hence, an algorithm that has query access to a SQ oracle can implement a noisy version of
the above iterative process (with inexact gradients, see e.g., d’Aspremont (2008); Devolder et al.
(2014); Feldman et al. (2017b)) using the query functions qi(x, y) = (∇`(f(x;wt), y))i for any
i ∈ [p]. Note that the algorithm knows the loss function `, the parameterized functions’ family
{f(· ;w) : w ∈ W} and the current guess wt. Specifically, the algorithm performs p queries (one
for each coordinate of the parameter vector) and the oracle returns to the algorithm a noisy gradient
vector rt that satisfies ‖rt −∇L(wt)‖∞ ≤ τ .

In our setting, we do not have access to the SQ oracle with finely labeled examples. Our main
result of this section (Theorem 4) is a mechanism that enables us to obtain access to such an oracle
using a few coarsely labeled examples. Hence, we can still perform the noisy gradient descent of
the previous paragraph with an additional overhead on the sample complexity, due to the reduction.

4. Learning Gaussians from Coarse Data

In this section, we focus on an unsupervised learning problem with coarse data. Recall that we have
already solved such a problem in the discrete setting as an ingredient of our supervised learning
result, see Subsection 3.2. In this section, we study the fundamental problem of learning a Gaus-
sian distribution given coarse data. In Subsection 4.1, we show that, under general partitions, this
problem is NP-hard. In Subsection 4.2, we show that we can efficiently estimate the Gaussian mean
under convex partitions of the space.

4.1. Computational Hardness under General Partitions

In this section, we consider general partitions of the d-dimensional Euclidean space, that may
contain non-convex subsets. For instance, a compact convex body and its complement define a

11
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non-convex partition of Rd. In order to get this computational hardness result, we reduce from
MAX-CUT and make use of its hardness of approximation (Håstad (2001)). Recall that MAX-CUT

can be viewed as a maximization problem, where the objective function corresponds to a partic-
ular quadratic function (associated with the Laplacian graph of the given graph instance) and the
constraints restrict the solution to lie in the Boolean hypercube (the constraints can be seen geomet-
rically as the intersection of bands, see Figure 2).

We first define MAX-CUT and a variant of MAX-CUT where the optimal cut score is given as
part of the input. Let G = (V,E) be a graph4 with d vertices. A cut is a partition of V into two
subsets S and S′ = V \ S and the value of the cut (S, S′) is c(S, S′) =

∑
u,v∈E 1{u ∈ S, v ∈ S′}.

The goal of the problem is find the maximum value cut in G, i.e., to partition the vertices into two
sets so that the number of edges crossing the cut is maximized. We can define MAX-CUT as the
following maximization problem for the graph G = (V,E) with |V | = d:

max
∑
i,j∈E

(xi − xj)2 , subj. to xi ∈ {−1,+1} ∀i ∈ [d] .

The objective function is the quadratic xTLGx, where LG is the Laplacian matrix of the graph
G. We may also assume that the value of the optimal cut is known and is equal to opt.5 Before
proceeding with the overview of the proof, we state a key result of Håstad (2001) about the inap-
proximability of MAX-CUT .

Lemma 11 (Inapproximability of MaxCut Håstad (2001)) It is NP-hard to approximate MAX-
CUT to any factor higher than 16/17.

(a)

x1

x2

(b)

x1

x2

Figure 2: The mixture of partitions corresponding to MAX-CUT .

Sketch of the Proof of Theorem 6 The first step of the proof is to construct the distribution
over partitions of Rd. The MAX-CUT problem can be viewed as a collection of d + 1 non-convex
partitions of the d-dimensional Euclidean space. Consider an instance of MAX-CUT with |V | = d
and optimal cut value opt. Consider the collection of d + 1 partitions B = {S1, . . . ,Sd, T }. We
define the partitions as follows: for any i = 1, . . . , d, we let Si = {x : −1 ≤ xi ≤ 1} be the sets
that correspond to fat hyperplanes of Figure 2(a) and the partitions Si = {Si, Sci }, i.e., pairs of fat

4. We are going to work with graphs with unit weights.
5. Observe that this problem is still hard, since the maximum value of a cut is bounded by d2 and, hence, if this problem

could be solved efficiently, one would be able to solve MAX-CUT by trying all possible values of opt.
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hyperplanes and their complements. These d partitions will simulate the MAX-CUT constraints, i.e.,
that the solution vector lies in the hypercube {−1, 1}d. It remains to construct T , which intuitively
corresponds to the quadratic objective of MAX-CUT . Fix the covariance matrix Σ = L−1G opt 6 ,
i.e., Σ is the inverse of the Laplacian normalized by opt. We let T = {x : xTΣ−1x ≤ q} for
some positive value q to be defined later (see Figure 2(b)). Then, we let T = {T, T c}. We construct
a mixture π of these partitions by picking each one uniformly at random, i.e., with probability
1/(d+ 1).

Let us assume that there exists an algorithm that, given access to samples fromNπ(µ?,Σ), with
known covariance Σ, computes, in time poly(d), a mean vector µ so that the output distributions
are matched, i.e., TV(Nπ(µ,Σ),Nπ(µ?,Σ)) is upper bounded by 1/dc for some absolute constant
c > 1. Equivalently this means that the mass that N (µ,Σ) assigns to each set Si and T is within
poly(1/d) of the corresponding mass that Nπ(µ?,Σ) assigns to the same set. There are two main
challenges in order to prove the reduction:

1. How can we generate coarse samples from Nπ(µ?,Σ) since µ? is the solution of the MAX-
CUT problem and therefore is unknown?

2. Given opt, is it possible to pick the threshold q of the ellipsoid T = {x ∈ Rd : xTΣ−1x ≤ q}
so that any vectorµ (rounded to belong in {−1, 1}d), that achievesN (µ,Σ;T ) ≈ N (µ?,Σ;T )
andN (µ,Σ;Si) ≈ N (µ?,Σ;Si), also achieves an approximation ratio better than 16/17 for
the MAX-CUT objective ?

The key observation to answer the first question is that, by the rotation invariance of the Gaussian
distribution, the probability N (µ?,Σ;T ) = Prx∼N (µ?,Σ)

[
xTΣ−1x ≤ q

]
is a constant p that

only depends on the value opt of the MAX-CUT problem. Therefore, having this value p, we can
flip a coin with this probability and give the coarse sample T if we get heads and T c otherwise.
Similarly, the value ofN (µ?,Σ;Si) is an absolute constant that does not depend on µ? ∈ {−1, 1}d
and therefore we can again simulate coarse samples by flipping a coin with probability equal to
N (µ?,Σ;Si).

To resolve the second question, we first show that any vector µ that approximately matches the
probabilities of the d fat halfspaces, lies very close to a corner of the hypercube. Therefore, by
rounding this guess µ, we obtain exactly a corner of the hypercube without affecting the probability
assigned to the ellipsoid constraint by a lot. We then show that any vector of the hypercube that
almost matches the probability of the ellipsoid achieves large cut value. In particular, we prove that
there exists a value for the threshold q of the ellipsoid xTΣ−1x ≤ q that makes the probability
N (µ,Σ;T ) very sensitive to changes of µ. Therefore, the only way for the algorithm to match the
observed probability is to find a µ that achieves large cut value. We show the following lemma:

Lemma 12 (Sensitivity of Gaussian Probability of Ellipsoids) Let N (µ?,Σ), N (µ,Σ) be d-
dimensional Gaussian distributions. Let v? = Σ−1/2µ?, v = Σ−1/2µ and assume that ‖v‖2 ≤
‖v?‖2 = 1. Denote q = d + ‖v?‖22 +

√
2d+ 4‖v?‖22. Then, assuming d is larger than some

sufficiently large absolute constant, it holds that∣∣∣ Pr
x∼N (µ?,Σ)

[
xTΣ−1x ≤ q

]
− Pr
x∼N (µ,Σ)

[
xTΣ−1x ≤ q

]∣∣∣ ≥ ‖v?‖22 − ‖v‖22
6
√

2d+ 4
− o(1/

√
d) .

6. In fact, LG has zero eigenvalue with eigenvector (1, . . . , 1): we have to project the Laplacian to the subspace
orthogonal to (1, . . . , 1) to avoid this. We ignore this technicality here for simplicity.
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Notice that with Σ = L−1G opt, in the above lemma, we have ‖v?‖22 = 1, since µ? achieves cut
value opt. By assumption, we know that the learning algorithm can find a guess µ that makes the
left hand side of the inequality of Lemma 12 smaller than poly(1/d). Thus, we obtain that, for d
large enough, it must be that ‖v‖22 = µTLGµ/opt ≥ 16/17. Therefore, µ achieves value greater
than (16/17)opt.

Remark 13 The transformation π used in the above hardness result is not information preserving.
In Theorem 6, we prove that it is computationally hard to find a vector µ ∈ Rd that matches in total
variation the observed distribution over coarse labels. In contrast, as we will see in the upcoming
Section 4.2, when the sets of the partitions are convex, we show that there is an efficient algorithm
that can solve the same problem and compute someµ ∈ Rd such that TV(Nπ(µ?),Nπ(µ)) is small
regardless of whether the transformation π is information preserving. When the transformation is
information preserving, we can further show that the vector µ that we compute will be close to µ?.

4.2. Computationally Efficient Mean Estimation under Convex Partitions

In this section, we discuss Theorem 7, which is stated in Section 1. This theorem deals with efficient
Gaussian mean estimation in the case of convex partitions. In order to prove this result, our strategy
is to maximize the empirical log-likelihood objective LN (µ) = 1

N

∑N
i=1 logN (µ;Si) , where the

N (convex) sets S1, . . . , SN are drawn from the coarse Gaussian generative process Nπ(µ?). The
proof of Theorem 7 is decomposed into two structural lemmata, that are stated below. Lemma 14
states that the empirical log-likelihood objective is concave with respect to µ ∈ Rd. In order to
prove that the Hessian matrix of this objective is negative semi-definite, we use (a variant of) the
Brascamp-Lieb inequality for log-concave functions.

Lemma 14 (Concavity of Log-Likelihood (Mean)) Let S ⊆ Rd be a convex set. The function
logN (µ,Σ;S) is concave with respect to the mean vector µ ∈ Rd.

Having established the concavity of the empirical log-likelihood, Lemma 15 comes into play. This
lemma states that, given roughly Õ(d/(ε2α2)) samples from Nπ(µ?), we can guarantee that the
maximizer µ̃ of the empirical log-likelihood achieves a total variation gap at most ε against the
true mean vector µ?, i.e., TV(N (µ̃),N (µ?)) ≤ ε. In fact, thanks to the concavity of the em-
pirical log-likelihood objective, it suffices to show that Gaussian distributions N (µ), that satisfy
TV(N (µ),N (µ?)) > ε, will also be significantly sub-optimal solutions of the empirical log-
likelihood maximization.

Lemma 15 (Sample Complexity of Empirical Likelihood) Let ε, δ ∈ (0, 1) and consider a gen-
erative process for coarse d-dimensional Gaussian data Nπ(µ?) (see Definition 5). Also, assume
that every S ∈ supp(π) is a convex partition of the Euclidean space. LetN = Ω̃(d/(ε2α2) log(1/δ)).
Consider the empirical log-likelihood objective LN (µ) = 1

N

∑N
i=1 logN (µ;Si). Then, with prob-

ability at least 1−δ, we have that for any Gaussian distributionN (µ) with TV(N (µ),N (µ?)) ≥ ε,
it holds that maxµ̃∈Rd LN (µ̃)− LN (µ) ≥ Ω(ε2α2) .
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