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Abstract

In this work, we study the problem of answering k queries with (e, §)-differential privacy, where
each query has sensitivity one. We give an algorithm for this task that achieves an expected
error bound of O(%, [ klog %) which is known to be tight (Steinke and Ullman, 2016).

A very recent work by Dagan and Kur (2020) provides a similar result, albeit via a com-
pletely different approach. One difference between our work and theirs is that our guarantee holds
even when § < 2-2(k/(0gk)®) \hereas theirs does not apply in this case. On the other hand,
the algorithm of Dagan and Kur (2020) has a remarkable advantage that the ¢, error bound of
0(5 / klog %) holds not only in expectation but always (i.e., with probability one) while we can
only get a high probability (or expected) guarantee on the error.

Keywords: Differential privacy, Multiple queries, ¢, error.

1. Introduction

One of the most ubiquitous—as well as one of the first—differentially private (DP) algorithm is the
Laplace mechanism (Dwork et al., 2006b) where, to answer some query ¢ on a sensitive dataset X,
we simply compute the true answer ¢(X) and then add to it a noise term sampled from the Laplace
distribution, where the parameter of the distribution is calibrated to the desired privacy level and the
sensitivity of q. For e-DP and when the query ¢ has sensitivity at most one, this algorithm yields an
expected error of O(2), which is known to be tight (Ghosh et al., 2012).

In real-world applications, however, it is rarely the case that only a single query is performed
on the dataset X. A more realistic scenario is when we are given multiple queries q1, ..., qx to
the dataset and are asked to compute private answers ay, . . ., aj to these queries. While there are
several measures of error that can be used, one of the most common is the /., error (aka maximum
error), which is defined as max;¢ (i) |¢;(X) —a;|. Note that a special case of this scenario is privately
computing the mean of vectors or privately releasing the one-way marginals of a table, which is a
basic primitive used in machine learning tasks such as gradient estimation and hypothesis testing.
Private mean estimation has been extensively studied in the ¢ error (Kamath et al., 2020; Bun et al.,
2019; Kamath et al., 2019; Bun and Steinke, 2019; Karwa and Vadhan, 2018; Biswas et al., 2020;
Feldman and Steinke, 2018) and in the ¢, error (Steinke and Ullman, 2016; Girgis et al., 2021).

When the Laplace mechanism is applied in this multiple query setting, the privacy budget has to
be split over the k queries, i.e., each query has a budget of 7. However, this does not result in an /o,
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error of O(%) because one has to apply a union bound over all the k queries, which instead results in
the expected /o, error of O(@Egk ). Remarkably, Steinke and Ullman (2016) showed that this bound
is not tight, by giving an algorithm with expected ¢, error of O(%) In other words, their algorithm
“avoids the union bound” in the error. Furthermore, this error is known to be asymptotically tight
for e-DP (Hardt and Talwar, 2010).

For (e, §)-DP algorithms (Dwork et al., 2006a), the situation is more complicated. For simplic-
ity, throughout the paper, we use the following definition:

1 1
erf.cs 1= - klog 5

It is known that the expected /., error must be at least 2(erry, . 5) for any! k=00 > § > 2-k/) (Steinke
and Ullman, 2016). However, the Laplace mechanism, together with the advanced composition the-
orem (Dwork et al., 2010b), only gives a bound of O(erry s - log k), where the log k factor once
again comes from applying the union bound over all k coordinates. The Gaussian mechanism (see,

e.g., Dwork and Roth, 2014) gives an improved bound of O(erry . s - y/log k) due to a better tail
behavior of the noise distribution. Steinke and Ullman (2016) once again showed that this is not
optimal, by giving an algorithm with expected (o, error of only O(err 5 - v/loglogk). This has
recently been improved by Ganesh and Zhao (2020) to O(erry (s - v/logloglogk)). Even more
recently, Dagan and Kur (2020) reduce this expected ¢+, error to the optimal O(erry, . 5) although

their algorithm only works when § is at least 2~ (%/(log k)®)
the case 2~ < § < 9= (k/(log k)®)

, thereby leaving open the question in

1.1. Our Contributions

In this work, we resolve the question of Steinke and Ullman (2016) by presenting an (e, d)-DP
algorithm with tight expected (o error for any 0.5 > § > 0, including the regime 2~ 9*) < § <
2-Q(k/(0gk)®) not covered by Dagan and Kur (2020). Our main result is the following.

Theorem 1 For any k € N,e € (0,1] and 6 € (0,0.5], there exists an (¢, d)-DP algorithm that
can answer k queries, each of sensitivity at most one, with expected {, error O(erry, . 5).

Differences from Dagan and Kur (2020). We stress that the techniques used in our work and Da-
gan and Kur (2020) are completely different. Specifically, they arrived at their result by designing a
new noise distribution and analyzing the algorithm that adds such independent noise to each query’s
answer. On the other hand, our approach, which is detailed in the next section, is based on the
sparse vector technique (Dwork et al., 2009; Hardt and Rothblum, 2010; Roth and Roughgarden,
2010; Dwork et al., 2010a), similar to that of Steinke and Ullman (2016).

In terms of the guarantees, we reiterate that our algorithm works for any § < 0.5, whereas the
current analysis of the algorithm of Dagan and Kur (2020) does not apply for § < 2~ $(k/(log kS,
On the other hand, the algorithm of Dagan and Kur (2020) has a remarkable advantage that the ¢,
error bound of O(erry, ¢ 5) holds not only in expectation but always (i.e., with probability one). In
contrast, we can only get a high probability guarantee that the /., error does not exceed this bound
(see Theorem 13).

1. Note that the lower bound on § is necessary, as the e-DP algorithm mentioned in the previous paragraph already
yields an O(%) expected (o error.
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1.2. Proof Overview

In this section, we describe the high-level technical ideas of our algorithm. We will sometimes be
informal here, but all the details will be formalized in subsequent sections.

Our algorithm is inspired by the work of Steinke and Ullman (2016). Their algorithm works
by first adding Gaussian noise to the queries. Then, they use the so-called sparse vector tech-
nique (Dwork et al., 2009; Hardt and Rothblum, 2010; Roth and Roughgarden, 2010; Dwork et al.,
2010a) to “correct” the answers that are too far away from the true answers. The procedure they
employed in this correction step is encapsulated in the following theorem; its proof can be found,
e.g., in Dwork and Roth (2014).2

Theorem 2 Forevery k > 1,csy < k, €5y, Osv, Bsv > 0, and

k
gy > O <errcsv,esv,ésv : IOg ) s
Bsv
there exists an (€sy, Osy)-DP algorithm that takes as input queries g1, . . . , g each of sensitivity one
and if there are at most csy indices i € [k] such that |g;(X)| > asy/2, then, with probability at least
1 — Bgv, it answers all the queries with U~ error no more than Qugy.

Note here that g; should be thought of as the difference between the true answer g; and the
estimate output in the first step. The above algorithm can be used to “correct” the g;’s that are too
large, if there are not too many of them. Specifically, notice that the error agy is O(erry . 5) only
when the number of “very incorrect” answers cgy is at most O(k/ log? k). This is indeed the reason
why Steinke and Ullman (2016) achieve an error of O(erry, ¢ 5 - v/Ioglog k), as they need to ensure
(using the tail bound for Gaussian noise) that at most O(k/ log? k) coordinates are “very incorrect”.

This brings us to the main technical question we explore in this work: can we still apply the
correction procedure when w(k/ log? k) coordinates are “very incorrect”? How about even at Q(k)?
In other words, can we apply a sparse vector-based correction in the dense regime?

In a specific sense, we show that this is possible, by carefully applying the sparse vector tech-
nique iteratively and ensuring that (with high probability) some progress is made each time.

To be more specific, we have to understand how the poly log(k) factor appears in the first
place. Roughly speaking, the main primitive used in Theorem 2 is the following AboveThreshold
algorithm, which allows us to identify a single “incorrect” coordinate.

Algorithm 1: AboveThreshold?.
Imput: g1,...,91; X

begin
p < Lap(2/e)
fori=1,...,kdo
v; < Lap(4/e)
if 9;(X) +v; > T + p then
L return ¢

Its privacy guarantee is well-known (see, e.g., Dwork and Roth, 2014, Theorem 3.23):

2. See also (Ganesh and Zhao, 2020, Theorem 18) for a more detailed explanation.
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Theorem 3 If each of g1, . . ., gi has sensitivity at most one, Algorithm 1 is e-DP.

It turns out that the log k factor in asy comes from a rather extreme situation: suppose that
g1, - - -, gk /2 are the “correct” coordinates, e.g., g1 = -+ = gg/2 = 0. To make sure that we do not
output these coordinates we have to make sure that all of v1, . .. , vy /o are smaller than the threshold.

Thus, the threshold has to be at least 2(log k). We end by noting that the  /csy log i factor in agy

then shows up because of cgy-fold advanced composition (see Theorem 6).

Now, the above example is extreme. In fact, suppose that there is a -y fraction of the coordinates
that we would like to correct. If we randomly permute the coordinates, at least one of these coordi-
nates will appear, with a constant probability, in the first 1/ coordinates. As a result, we only have
to ensure that p, v1, . .., vy, are small, meaning that we should be able to get away with a threshold
of log % instead of log k.

Our algorithm formalizes this idea. Specifically, it works in stages. In stage ¢, we have a target
number m, of items that we would like to “correct”. This number will be (slowly) geometrically
decreasing. The €’s for (the permuted version of) the AboveThreshold algorithm in each stage on
the other hand geometrically increase, but slower than m, so that the entire algorithm in the end
remains (¢, 0)-DP.

The actual analysis is more involved than the above outline, because some of the “correction”
operations can also flip a “correct” coordinate to an “incorrect” one, and as such we have to track
this number as well in order to ensure that we make progress. Another technical point is that while
we can analyze the algorithm until no “incorrect” coordinates remain at all, it turns out to be more
complicated as we need finer concentration inequalities. Instead, we analyze our iterative algorithm
until the number of “incorrect” coordinates is sufficiently small that we can apply Theorem 2. Fi-
nally, even after doing so, it only gives a high probability bound over the /., error, so we then devise
a simple extension that roughly takes the best of the current output and the output of another appli-
cation of the Gaussian mechanism, which helps us bound the expected £, error, which eventually
yields Theorem 1.

Organization. We provide necessary background in Section 2. Then, we start by analyzing the
“permuted” variant of the AboveThreshold algorithm in Section 3. We continue in Section 4 by
presenting our iterative correction algorithm and give an upper bound on the number of “incorrect”
coordinates. In Section 5, we use this together with Theorem 2 to obtain a high-probability ¢, error
bound. We then use this to obtain the expected error bound in Section 6. Finally, we discuss some
open questions in Section 7.

2. Preliminaries

Definition 4 (Differential Privacy (Dwork et al., 2006b,a)) For ¢,6 > 0, we say that an algo-
rithm A is (e, §)-differentially private (or (€, §)-DP for short) if the following holds for any set S of
outputs and any neighboring datasets X, X':

Pr[A(X) € S] < e -Pr[A(X') € S] + 0.
When § = 0, we may simply say that the algorithm is e-DP.

The sensitivity of a real-valued function f is defined to be maxx x| f(X) — f(X')| where the
maximum is taken over all pairs of neighboring datasets X, X’. For the purpose of this work, it
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does not matter how the neighboring relationship is defined; as long as we measure the sensitivity
and differential privacy under the same neighboring notion, the results hold.

For brevity, we will assume henceforth that any query considered has sensitivity at most one
and we may not state this assumption explicitly. Note that all results extend to the case where the
sensitivity is bounded by A, with the (necessary) multiplicative A factor in the expected error.

We also recall the following composition theorems for DP:

Theorem 5 (Basic Composition Theorem) An algorithm that applies a sequence of (€1,01)-DP,
.« oy (€m, Om )-DP (possibly adaptive) algorithms is (€1 + - -+ + €y, 01 + - -+ + 0y )-DP.

Theorem 6 (Advanced Composition Theorem (Dwork et al., 2010b)) An algorithm that applies
an e-DP (possibly adaptive) algorithm m times is (¢',8')-DP for any §' > 0 with

1
¢ = \/Zmlogy-e—l—me(ee— 1).

3. Permuted AboveThreshold Algorithm

We start by analyzing the variant of the AboveThreshold algorithm where the coordinates are
randomly permuted, as presented in Algorithm 2.

Algorithm 2: PermutedAboveThreshold?.
Imput: fi,..., fi; X

begin
7 < random permutation on [k]

i < AboveThreshold%(fr(1y, - - -, fr(r); X)

return 71 (i)

Since the only step in Algorithm 2 that depends on the input dataset is Step 3, we can apply the
privacy guarantee of AboveThreshold (from Theorem 3) to arrive at the following similar guarantee
for Permuted AboveThreshold.

Observation 7 If each of f1, ..., fr has sensitivity at most one, Algorithm 2 is e-DP.

Next, we analyze its utility. Let ¢* be the output index of PermutedAboveThreshold%. Our
goal here is to ensure that, with some non-trivial constant probability, f;x(X) > T + w for some
parameter w > 0. Similar to the known analyses of the vanilla AboveThreshold algorithm, we
will have to assume that there are not too many “bad” coordinates i with f;(X) € (T — w, T 4+ w).
The difference in our analysis below is that we additionally assume that there are many, i.e., v - k
“good” coordinates ¢ that satisfy f;(X) > T + w. This turns out to help us reduce the w parameter;
specifically, we get w to be as small as O(% log %) comparing to the vanilla analysis that would

have required w to be at least O(? log k).

Lemma 8 Letr y,w > 0 be any real numbers. Define Iyooq == {i € [k] | fi(X) > T + w} and
Ivaa :={i € [k] | fi(X) € (T —w, T + w)}. Suppose that the following conditions all hold:
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(l) |Ig00d‘ Z v k.

. 1 400
(ii) w 28~E-10g7.
(iii) |Igo0d| > 2 - [Tpadl-

Then, Pri«[i* € Iyo0q] > 0.55.

Proof For a permutation 7, let jyo0q4 € [k] denote the smallest index such that 7(jgo0d) € Igood-
Similarly, let jhaq € [k] denote the smallest index such that 7(jhaq) € Ipaq. Furthermore, let us
define the following three events:

e Event Fpefore: jgood < Jbad-

e Event Esma]l—index: jgood < 5/'7

e Event Emalinoise: |o|, V1], - -+ ]y[5/ﬂ | < w/2 (where p,v1,..., V[5/~) are the random vari-
ables sampled in the call to Algorithm 1).

It is simple to see that, when the three events occur together, we have that i* = 7( jgood) € Igoo0d as
desired. Furthermore, we may bound the probability of each event as follows:

e Event Fiefore: this happens with probability exactly %, which is at least 2/3 from
goo a

condition (iii).

e Event Egpan-index: the probability that this event does not occur is at most

N
<1 _ ’gkd|> < (1-)"7 <et <0.02,

where the first inequality follows from condition (i).

e Event Emalinoise: Notice that each of [p), [v1], ..., [v]5/4]| is at least w/2 with probability at

most
w/2 gl g
2exp [~ L=} <o L) = L
eXp( 4/e>— (400) 200’

where the first inequality follows from condition (ii). From a union bound, we have that
Emall-noise holds with probability at least 0.95.

Applying a union bound over all the three events, we can conclude that they all simultaneously hold
with probability at least 0.55. This concludes our proof. |
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4. Iterative Sparse Vector Algorithm

Our iterative version of the correction algorithm via the sparse vector technique is presented in Al-
gorithm 3. As stated earlier, the algorithm performs the correction in multiple stages. In stage ¢, we
use €y to denote the privacy parameter for each correction, my to denote the number of corrections
made, and 7} to denote the threshold used. These parameters will be set below. Before doing so, let
us state the guarantee that this algorithm achieves:

Theorem 9 Forany k € N, e € (0,1] and § € (0,0.5], there exists an (€, §)-DP algorithm that
given queries q1, - . . , Qi each of sensitivity at most one, outputs ay, . . . , aj, that satisfy

[{i € [K] | lgi — ai] > Olerry )} < O(k/(log k)'°),
with probability 1 — 2~$(k/(log k)10).

Notice that this guarantee does not give the ¢, error bound yet, as there can still be as many as
O(k/(log k)°) coordinates that have error larger than the desired bound of O(erry  5). However,
as we will see in the next section, this already suffices for us to apply Theorem 2 at the end and get
a high probability bound on the ¢, error.

We remark that it is possible to select parameters in such a way that the final application of Theo-
rem 2 is not needed, i.e., by adding one more stage that essentially imitates Theorem 2. Nonetheless,
since this does not seem to help clarify the analysis, we choose to not include it.

Algorithm 3: TterativeSVT, " . .
Input: ¢1,...,qx

1 begin

2 (a1,...,a) < (00,...,00)

3 for/=1,...,Ldo

4 forj=1,...,mydo

5 i* PermutedAboveThresholdg;fE‘(]ql —ail,..., g — arl)
6 ai <= ¢i=(X) + Lap(2/e()

7 | return (ai,...,ax)

Our selection of parameters is as follows:
e x=0.9and A =0.95
e L =[10log,, logk]
® ¢ = m

For ¢ > 1, we define

e my=rt-k

__ € 1
o ¢y =L
¢ \/E( e,\/—')
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1001og(500k/my)

[ ] U)Z: <

o Tp=4(wy+ - +wp_1) + 3w + 2wpyq

Finally, we define Ty = 2w; and wy = 0.
Throughout this section, we always assume that the parameters are as specified above and we
will not mention this again. We also assume that m, defined above is an integer for every ¢ € [L].

This is without loss of generality since we may simply replace k with k' := 1010810 k1 where
Qk+1, - - - » Qg are constants; when k is sufficiently large, this ensures that my is an integer for all
¢ e [L].

The proof of Theorem 9 is broken down into two parts: the privacy proof and the utility proof.
4.1. Privacy Analysis
We will start by proving the privacy guarantee of the algorithm.

Theorem 10 (Privacy Guarantee) For e € (0, 1] and 6 € (0,0.5], Algorithm 3 is (€, 0)-DP.

Proof From Observation 7 and the privacy of the Laplace mechanism, we can conclude that a single
execution of Lines 5 and 6 is €,-DP. Hence, for a fixed outer iteration ¢ € [L]|, we may apply
advanced composition (Theorem 6) to conclude that it is (€}, §,)-DP where &), = 0.5¢ - § and

€y = 1/2mylog(2¢/5) - €p + myep(e” — 1)

< y/2mylog(2¢/6) - € + 2myel

T

() (5 ()
<o 5

< deo (/i) 10501/ )

= 1/2my log(2¢/5)

€

< ¢z,
< 200 /N

Finally, we apply basic composition (Theorem 5) over all ¢ € [L], which implies that the entire
algorithm is (¢’, §")-DP for

€ €
- eez[gl - ¢elL] 200 (R/AV < 200(1 — (k/A)*°) =6
and
7= 5=y (0.5‘5) <,
Le(L] Le(L)
as desired. |
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4.2. Utility Analysis

We will next prove the utility guarantee, as restated below.

Theorem 11 (Utility Guarantee) With probability at least 1—2~4(k/(log K the output (ay, ..., ax)
of Algorithm 3 satisfies

{i € [k] | a: — ail > Oerrye6)}| < O(k/(log k)').

Our utility analysis crucially relies on tracking the set of indices ¢ such that |¢; — a;| is above
a certain threshold. Specifically, for every ¢ € [L],j € [my] and t € {0, ..., L}, we define If 7 to
be the set of indices ¢ = 1,...,k such that, after the (¢, j)th iteration, |¢; — a;| > T} + wy. For
notational convenience, we define I} := If’m’f, = [k, If’o = It and 7 := T + wy.

The high-level idea of the proof is to consider two cases, based on whether the number of indices
at the end of the (¢ — 1)th iteration whose errors exceed 7y, i.e., |I f‘l , is small. Now, if this is
already small (i.e., noticeably smaller than my,), then we can use a concentration inequality to show
that the number of additional indices that are “flipped” from below 7, to above 7, is small; from
this, we can conclude that |If| is small. On the other hand, if |/ f_1| is large, then we know that after
the (¢ — 1)th iteration the number of indices whose errors belong to (741, 7¢) is small. Roughly
speaking, this allows us to apply Lemma 8, which ensures that a significant fraction of selected
coordinates indeed have errors at least 7,. This means that |/, 5| must be significantly smaller than
\If_l |, which ultimately gives us the desired bound in the second case.

We will show that with high probability |/, f | is small, as formalized in our main lemma below.

Lemma 12 Let ¢ € [L]. Conditioned on |I}_{| < 2my_y, we have that
Pr[|I{]| < 2my] > 1 — 27 %Mo),

Proof Consider the /th (outer) iteration of the algorithm. Let Z; denote the Laplace random variable
drawn on Line 6 in the jth inner iteration. Notice that from our setting of parameters ¢;, 74_1, and
wyp, We have

Pr(|Z;| > 7_1] < Pr[|Z;] > wq] < 0.0009.

From this and from the independence of the Z;’s, we may apply the Chernoff bound, which implies
that the following holds with probability at least 1 — 2~ 2(7):

{7 € [me | Zj > e-1}| < 0.001m,. (1)

Thus, we may hence forth assume that (1) holds.
We will next consider two cases:

1. Case I [I; '] < 1.999m,. From (1), it follows that [If| < |[I;~!| + 0.001m, < 2my as
desired.
2. Case IL: [I[1] > 1.999m,.

In this case, we would like to apply Lemma 8. To do this, we will check that each of condition
of Lemma 8 is satisfied with T = Ty, w = wy,y = 0.9my/k, and € = €.



GHAZI KUMAR MANURANGSI

We can bound the number of “good” indices ¢ such that |¢; — a;| > 7 by
1107 > [I57Y = § > 1.999my — my > 0.999my, 2)

which is at least v - k as desired.
The second condition of Lemma 8 holds simply by our choice of wy.

Finally, let us bound the number of indices 7 such that a; € [ry_1, 7¢) as follows. Notice that
TN\ I < myq — 0.999my = (1/6 — 1.999)my, < 0.23my,

where the first inequality follows from our assumption on I, 5:11. We may now use (1) to
conclude that, for any j € [my], we have

1107\ I59| < 0.23my + 0.001my < 0.3my. 3)

In other words, in the ¢th outer loop, the number of indices i with a; € [1y_1,7¢) is always
at most 0.3my. Since Ty = 7y — wy > 7Ty—1 + wy, this also implies that the number of “bad”
indices ¢ with a; € [Ty — wy, Ty + wy) is at most 0.3my. Together with (2), this implies that
the last condition of Lemma 8 holds.

Thus, we may apply Lemma 8, which implies that Pr[a;« > 74] > 0.5 for each call on Line 5.
Hence, by the Chernoff bound, we can conclude that, with probability 2~ (™) at least 0.4n,
of the ¢*’s returned satisfy a;« > 7p. When this holds, it (together with (1)) implies that

|IE] < [T = 0.4my + 0.001my
< |42} = 0.4my + 0.001m,

< 2my_1 — 0.4my + 0.001my
< 2my.

Hence, in both cases, we have |/, f[ < 2my with probability at least 1 — 27%("¢) as desired. MW
Theorem 11 now follows easily from the above lemma.
Proof [of Theorem 11] By applying Lemma 12 for each ¢ € [L] and a union bound, we have that
Pr(|IE| > 2m;] <1- Z 9= Ume) < _ 9= Uk/(logk)™?)
Le(L]

where the latter follows from my > --- > my = O(k/(log k)'°). Finally, notice that

te[L+1]
1001
_4 Z 00 log(500k /my)
€
Le[L+1]

10
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:4@ > 1001og(500(1/k)") - VX

€
0 Le[L+1]

<OWkfeo)- | Y 632\

Le[L+1]
= O(Vk/eo)
= O(errgcs).
This means that 1L = {i € [k] | |¢i — a;| > O(errgs)} as desired. [

5. Obtaining High Probability Error Bound

In this section, we use our bound in the previous section together with Theorem 2 to obtain the
following high probability ¢, error guarantee:

Theorem 13 For any k € N,e € (0,1] and 6 € (0,0.5], there exists an (€,9)-DP algorithm
that can provide answers to k queries such that, with probability 1 — O(1/k1°), the lo, error is
O(errges)

Proof First, we apply the (¢/2,/2)-DP algorithm from Theorem 9 to get the answers aq, ..., ax
to the queries. From Theorem 9, there exist constants C7,Cy > 0 such that, with probability
2—$(k/(log k)w), we have that

{i € (k] | lg; — ail > C1-errp s} < Co-k/(log k)™

We then apply Theorem 2 with €5y = €/2, 05y = 0/2, Bsy = 1/k10, csy = Oz - k/(log k)0, g; =
¢i — a;, and let agy, = 2C7 - errp 5. Let by, ..., by be its output. Our algorithm then outputs
ai +bi,...,a + bg.

It is simple to verify that the condition on as, in Theorem 2 holds for any sufficiently large k.
As a result, Theorem 2 implies that, with probability 1 — O(1/k'Y), the £o erroris O(err . 5). W

6. From High Probability to Expected Error Bound

Finally, we will transform our high probability error bound into an expected error bound (Theo-
rem 1). To do so, we need the following well-known theorem, which follows from the Gaussian
mechanism (see, e.g., Dwork and Roth, 2014; Steinke and Ullman, 2016).

Theorem 14 (Gaussian Mechanism) Forany k € N, ¢, € (0,1] and 64 € (0,0.5), there exists an
(€g,94)-DP algorithm that can answer k queries such that, for any t > 0, the {, error is at least
O(t - erry.c, 5,) with probability at most k - e~ U,

Proof [of Theorem 1] The entire algorithm is as follows:

e First, we apply (¢/3,0/3)-DP algorithm from Theorem 13 to get the answers ay, ..., aj to
the input queries.

11
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e Secondly, we apply (¢/3,0/3)-DP algorithm from Theorem 13 to get the answers by, . .., by
to the input queries.

e Then, we apply (¢/3, 5/3)-DP algorithm from Theorem 14 to the queries |q1 — a1, . . ., |qx —
ay| to get the answers ¢y, ..., ¢k

o If max{ci,...,cr} < k' erry s, then we output (as, ..., ax).

e Otherwise, if max{cy,...,cx} > k' - errg . 5, then we output (by, . .., by).

By basic composition (Theorem 5), the entire algorithm is (e, 0)-DP as desired.

We next analyze the expected ¢, error of the algorithm. To do this, notice first that, regardless
of ay,...,ag, the £ error of the output is at most the sum of k10 . erry .5 and the two /o, errors
of the two runs of the Gaussian mechanism. As such, we still have that the /., error of the entire
algorithm is at least k10 - erry .5 + O(t - erry ( 5) with probability at most & - e %),

Furthermore, the guarantee from Theorem 13 ensures that the ¢, error of the answers ay, . . . , ax
is at most O(erry, . 5) with probability 1 — O(1/k'°). When this event holds, we may apply the tail
bound from Theorem 14, which implies that the output of the entire algorithm has error h :=
O(erry..s) with probability 1 — O(1/k10).

Let v denote the £, error of the entire algorithm. Combining the bounds from the previous two
paragaphs, we get

E[v] = /OOO Prjv > z]dz

oo

h 2k10~errk7€75
= / Pr[v > z]dz +/ Pr[v > z]dz +/ Pr[v > z]dz
0 h

2k10.erry, . 5
< h+01/kY) - (2K - erry . 5) + Oferry c.s) - / e~ ) gy
10
< O(errges),

which concludes our proof. |

7. Conclusions and Open Questions

In this work, we give an (¢, §)-DP algorithm that can answer k queries, each of sensitivity one, with
U~ error O(erry, . 5). This resolves the question posed by Steinke and Ullman (2016).

An immediate open question is if one can get the best of both our work and that of Dagan and
Kur (2020), namely, to devise an (e, 0)-DP algorithm for answering & queries (of sensitivity one)
such that the error is always (i.e., with probability one) O(erry, ¢ 5) for any value of § > 0.

Finally, we note that the main focus of this line of works has been mostly on the theoretical
front; it would be interesting to achieve a practical algorithm for which the advantage of ©(y/log k)
can be actually observed compared to the widely used Gaussian mechanism.

12
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