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Abstract
In this paper, we examine the Nash equilibrium convergence properties of no-regret learning in

general N -player games. For concreteness, we focus on the archetypal “follow the regularized leader”
(FTRL) family of algorithms, and we consider the full spectrum of uncertainty that the players may
encounter – from noisy, oracle-based feedback, to bandit, payoff-based information. In this general
context, we establish a comprehensive equivalence between the stability of a Nash equilibrium and
its support: a Nash equilibrium is stable and attracting with arbitrarily high probability if and only
if it is strict (i.e., each equilibrium strategy has a unique best response). This equivalence extends
existing continuous-time versions of the “folk theorem” of evolutionary game theory to a bona fide
algorithmic learning setting, and it provides a clear refinement criterion for the prediction of the
day-to-day behavior of no-regret learning in games.

In more detail, we address the following questions: Is there a class of Nash equilibria that
consistently attract no-regret processes? Conversely, are all Nash equilibria equally likely to emerge
as outcomes of a no-regret learning process? To address them in a general setting, we focus on the

“follow the regularized leader” (FTRL) algorithm and we prove the following result

x∗ is a strict Nash equilibrium ⇐⇒ x∗ is stochastically asymptotically stable under FTRL

Formally, we get the following precise statements for a range of specific feedback models:

Theorem 1. Let x∗ ∈ X be a strict Nash equilibrium of the game under study. If FTRL is run
with inexact payoff vector estimates with vanishing bias and moderately increasing variance, x∗ is
stochastically asymptotically stable.

Theorem 2. Let x∗ be a mixed Nash equilibrium of a generic game. If FTRL is run with in-
exact payoff vector estimates with vanishing bias and moderately increasing variance, x∗ is not
stochastically asymptotically stable.

These results – and, in particular, the implications for the bandit case – provide a learning
justification to the abundance of arguments that have been made in the refinement literature against
selecting mixed Nash equilibria [3, 6] and strengthen existing results on continuous-time game
dynamics [1, 2, 5], sometimes referred to as the “folk theorem” of evolutionary game theory [4].
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