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Abstract
Given a real-valued hypothesis class H, we investigate under what conditions there is a differen-
tially private algorithm which learns an optimal hypothesis from H given i.i.d. data. Inspired by
recent results for the related setting of binary classification (Alon et al., 2019; Bun et al., 2020),
where it was shown that online learnability of a binary class is necessary and sufficient for its
private learnability, Jung et al. (2020) showed that in the setting of regression, online learnability
of H is necessary for private learnability. Here online learnability of H is characterized by the
finiteness of its η-sequential fat shattering dimension, sfatη(H), for all η > 0. In terms of suffi-
cient conditions for private learnability, Jung et al. (2020) showed that H is privately learnable if
limη↓0 sfatη(H) is finite, which is a fairly restrictive condition. We show that under the relaxed
condition lim infη↓0 η · sfatη(H) = 0, H is privately learnable, establishing the first nonparamet-
ric private learnability guarantee for classes H with sfatη(H) diverging as η ↓ 0. Our techniques
involve a novel filtering procedure to output stable hypotheses for nonparametric function classes.
Keywords: differential privacy, nonparametric regression, sequential fat-shattering dimension

1. Introduction

In recent years there has been an increased focus on the importance of protecting the privacy of po-
tentially sensitive users’ data on which machine learning algorithms are trained (Roth and Kearns,
2019; Nissim et al., 2018). The model of differentially private learning (Dwork et al., 2006; Dwork
and Roth, 2013; Vadhan, 2017) provides a way to formalize the accuracy-privacy tradeoffs encoun-
tered. The vast majority of work in this area focuses on the setting of private classification, namely
where we must predict a {0, 1}-valued label for each data point x (Kasiviswanathan et al., 2008;
Beimel et al., 2014; Bun et al., 2015; Feldman and Xiao, 2014; Beimel et al., 2013; Bun et al., 2018;
Beimel et al., 2019; Alon et al., 2019; Kaplan et al., 2020; Bun et al., 2020; Neel et al., 2019; Bun,
2020). Many natural machine learning problems, however, in application domains ranging from
ecology to medicine (Dua and Graff, 2017), are phrased more naturally as regression problems,
where for each data point x we must predict a real-valued label. In this paper we study this problem
of differentially private regression for nonparametric function classes.

In the setting of differentially private binary classification, a major recent development (Alon
et al., 2019; Bun et al., 2020) is the result that a hypothesis class F consisting of binary classifiers
is learnable with approximate differential privacy (Definition 3) if and only if it is online learnable,
which is known to hold in turn if and only if the Littlestone dimension of F is finite (Littlestone,
1987; Ben-David et al., 2009). Such an equivalence, however, remains open for the setting of dif-
ferentially private regression (this question was asked in Bun et al. (2020)). The combinatorial
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parameter characterizing online learnability for regression is the sequential fat-shattering dimen-
sion (Rakhlin et al., 2015b) (Definition 6), which may be viewed as a scale-sensitive analogue of
the Littlestone dimension. In one direction, Jung et al. (2020) recently showed that if a class F con-
sisting of bounded real-valued functions is privately learnable, then it is online learnable, i.e., the
sequential fat-shattering dimension of F is finite at all scales. The other direction, namely whether
online learnability of F in the regression setting implies private learnability, remains open.

1.1. Results

In this paper, we make progress towards the question of whether online learnability in the regression
setting implies private learnability by exhibiting a sufficient condition for private learnability in
terms of the growth of the sequential fat-shattering dimension of a class. For input space X , a class
H consisting of hypotheses h : X → [−1, 1], and η > 0, let sfatη(H) denote the η-sequential
fat-shattering dimension of H (Definition 6). As in Jung et al. (2020); Rakhlin et al. (2015b), we
work with the absolute loss to measure the error of a hypothesis h : X → [−1, 1]: for a distribution
Q supported on X × [−1, 1], write errQ(h) := E(x,y)∼Q [|h(x)− y|]. Our main result is as follows:

Theorem 1 (Private nonparametric regression; informal version of Theorem 44) Let H be a
class of hypotheses h : X → [−1, 1]. For any ε, δ, η ∈ (0, 1), for some n = 2Õ(sfatη(H))

εη4 , there is
an (ε, δ)-differentially private algorithm which, given n i.i.d. samples from any distribution Q on
X × [−1, 1], with high probability outputs a hypothesis ĥ : X → [−1, 1] so that

errQ(ĥ) ≤ inf
h∈H

errQ(h) +O (η · sfatη(H)) .

As an immediate consequence, we obtain the following sufficient condition for private learn-
ability (Definition 4) of a real-valued hypothesis class:

Corollary 2 SupposeH is a class of hypotheses h : X → [−1, 1] satisfying lim infη↓0 η·sfatη(H) =
0. ThenH is privately learnable.

Prior to our work, essentially the strongest private learnability guarantee for a nonparametric
real-valued function class was (Jung et al., 2020, Theorem 15), which established that if the sequen-
tial pseudo-dimension of a class H is finite, then H is privately learnable. However, the sequential
pseudo-dimension of H is lower-bounded by sfatη(H) for all η > 0 (and in fact may be defined as
limη↓0 sfatη(H)), and thus its boundedness implies that sfatη(H) is bounded uniformly over η > 0.
Thus Corollary 2 is the first result to establish a private learnability result for a nonparametric family
of classesH with the property that sfatη(H) can diverge as η ↓ 0. Even very simple function classes
may have sfatη(H) diverging as η ↓ 0: for instance, the class of all single-dimensional linear func-
tionsH = {x 7→ ax+b : x, a, b ∈ R, |x| ≤ 1, |a| ≤ 1, |b| ≤ 1} satisfies sfatη(H) = Θ(log(1/η)).

Techniques: new filtering procedure The proof of Theorem 1 proceeds in two stages. The
first, fairly straightforward, step extends the algorithm ReduceTree of Ghazi et al. (2020a) which
was used to construct a private learner in the setting of binary classification for a class of finite
Littlestone dimension; our analogue for regression is ReduceTreeReg (Algorithm 3). From a
technical standpoint, this involves extending the notion of irreducibility to real-valued classes (Sec-
tion 3). However, unlike for the case of classification, ReduceTreeReg alone is not sufficient for
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our purposes. In particular, ReduceTreeReg leads, roughly speaking, to the following guaran-
tee, which we informally call weak stability. Given any distribution Q on X × [−1, 1], there is a
hypothesis σ? : X → [−1, 1] with low error on Q so that given some number n0 of i.i.d. samples
from Q, we can output a collection of hypotheses ĝ1, . . . , ĝM so that for some 1 ≤ j ≤M we have
‖ĝj − σ?‖∞ ≤ η with some not-to-small probability. Here η > 0 is a small value representing a
lower bound on the desired error. In the setting of classification Ghazi et al. (2020a) showed the
stronger guarantee (which we informally call strong stability) that ĝj = σ? for some j. The guar-
antee of strong stability allowed them to perform multiple draws of n0 samples and use a private
sparse selection procedure (an analogue of the stable histograms procedure of Bun et al. (2016) for
the selection problem; see Section 2.4) to privately output a hypothesis with low population error.

The guarantee of weak stability is, however, insufficient to apply the sparse selection procedure.
Thus we introduce a new procedure, called SOAFilter (Algorithm 2) to upgrade the guarantee of
weak stability provided by ReduceTreeReg to one of strong stability; this is our main technical
contribution. At a high level, SOAFilter first “filters out” many candidate hypotheses h : X →
[−1, 1] which are well-approximated by some hypothesis which is not filtered out (FilterStep,
Algorithm 1). It then assigns each hypothesis ĝj , 1 ≤ j ≤ M , as above, to some not-too-large
collection of hypotheses which are not filtered out in a careful way that can ensure strong stability.
Further details are provided in Section 5.

1.2. Related work

Differentially private regression As discussed in the previous sections, the most closely related
work to ours is Jung et al. (2020), which showed that finiteness of sequential pseudo-dimension
(namely, limη↓0 sfatη(H)) is sufficient for private learnability. A number of other papers have stud-
ied special cases of regression: for instance, Chaudhuri and Monteleoni (2009) studied differentially
private logistic regression, Chaudhuri et al. (2011); Kifer et al. (2012); Bassily et al. (2014) proved
upper and lower bounds on the minimax rate of empirical misk minimization, which includes linear
regression with general loss functions as a special case, Wang (2018) showed improved adaptive lin-
ear regression algorithms, Cai et al. (2019) showed improved bounds on the minimax rate of linear
regression with `2 loss, Bernstein and Sheldon (2019) studied differentially private Bayesian linear
regression, and Alabi et al. (2020) studied differentially private linear regression in one dimension
with the goal of optimizing performance on certain empirical datasets. Our work may be viewed
as orthogonal to these papers, which study linear models in finite-dimensional spaces. While the
growth condition limη↓0 η · sfatη(H) = 0 is generally satisfied for such models,1 Theorem 1 does
not improve upon any existing sample complexity bounds in these specialized settings (where in
most cases optimal minimax rates are known). On the other hand, these existing works do not
address the nonparametric setting where essentially no structure is imposed on the hypothesis class.

Online learnability for nonparametric classes The sequential fat-shattering dimension was in-
troduced by Rakhlin et al. (2015b) and shown to characterize online learnability of a real-valued
hypothesis class in Rakhlin et al. (2015a). It is a sequential analogue of the fat-shattering dimen-
sion, which was introduced in Alon et al. (1997); Kearns and Schapire (1994) and was shown to
characterize learnability in the i.i.d. setting. A substantial amount of work has established bounds

1. For instance, if X is the unit ball in Rd with respect to the `2 norm, and H = {x 7→ 〈w, x〉 : ‖w‖2 ≤ 1}, then
sfatη(H) ≤ O(d log 1/η) since H has a pointwise (i.e., sup-norm) η-cover of size O(1/ηd), i.e., pointwise metric
entropy O(d log 1/η).
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on the complexity of various learning tasks in terms of the fat-shattering dimension in the i.i.d. set-
ting (e.g., Anthony and Bartlett (2009); Mendelson (2002); Bartlett et al. (1996)), and in terms of
the sequential fat-shattering dimension and related complexity measures in the online setting (e.g.,
Rakhlin and Sridharan (2014a, 2017); Foster and Krishnamurthy (2018)). Our work begins such a
study in the setting of differentially private learning (with i.i.d. data).

Overview of the paper In Section 2 we give preliminaries. In Section 3 we introduce the notion
of irreducibility for the setting of regression. In Section 4 we state the weak stability guarantee of
the ReduceTreeReg algorithm, which we then upgrade to one of strong stability in Section 5
using our “filtering” algorithm. Section 6 describes how to combine the components of the previous
sections to prove Theorem 1. Finally, we discuss some directions for future work in Section 7.
Several lemma statements in the main body are stated informally; full and rigorous statements and
proofs of all lemmas and theorems are given in the appendix.

2. Preliminaries

2.1. PAC learning & discretization of hypothesis classes

For a positive integer K, let [K] := {1, 2, . . . ,K}. Let X denote an input space and Y denote
an output space, which will always be a subset of the real line. We let YX denote the space of
hypotheses on X , namely functions h : X → Y . We are given a known hypothesis class H ⊂ YX .
For a distribution Q on X × Y and h ∈ YX , let errQ(h) := E(x,y)∼Q[|h(x) − y|] denote the
population error of h.2 A dataset Sn ∈ (X ×Y)n is a tuple of n elements of X ×Y; forQ as above,
letQn be the distribution of Sn ∈ (X×Y)n consisting of n i.i.d. draws fromQ. For (x, y) ∈ X×Y ,
let δ(x,y) denote the point measure at (x, y), and for a dataset Sn write Q̂Sn := 1

n

∑n
i=1 δ(xi,yi) to

denote the empirical measure for Sn. The empirical error of a hypothesis h with respect to a dataset
Sn is defined to be errQ̂Sn

(h). To avoid having to make technical measurability assumptions on
H,X , we will assume throughout the paper thatH,X are countable (or finite).

Ultimately we aim to solve the following problem: for Y = [−1, 1] and some small error η0,
find some ĥ so that errQ(ĥ) ≤ infh∈H {errQ(h)} + η0 given a sample Sn ∼ Qn. To streamline
the analysis, though, we will often work with the discretization of the class H at scale η, for some
η < η0: it is denoted bHcη and is obtained by dividing the interval [−1, 1] into d2/ηe intervals each
of length 2/d2/ηe ≤ η, and rounding h(x), for each h ∈ H, x ∈ X , to the interval containing h(x).
A formal definition of bHcη is as follows: first, for a real number y ∈ [−1, 1], define bycη ∈ [d2/ηe]
as follows: bycη := 1 +

⌊
(y+1)

2 · d2/ηe
⌋

for y < 1 and bycη := d2/ηe for y = 1.

Next, for h ∈ H, define bhcη ∈ [d2/ηe]X by bhcη(x) = bh(x)cη, for x ∈ X . Then the
discretization bHcη ⊂ {1, 2, . . . , d2/ηe}X is defined as bHcη := {bhcη : h ∈ H}. Moreover, the
discretization of a distribution Q on X × [−1, 1] at scale η, denoted bQcη, is defined to be the
distribution of (x, bycη), where (x, y) ∼ Q. In Appendix A.2, we show that for h ∈ [−1, 1]X ,
errQ(h) is roughly η times errbQcη(bhcη), up to an additive error of ±O(η) (see (3)), and that we
have the bound sfat2(bHcη) ≤ sfatη(H) on the sequential fat-shattering dimension of bHcη at scale
2 (Lemma 23). We will often write K := d2/ηe when considering the discretization of classes.

For any h ∈ RX write ‖h‖∞ := supx∈X |h(x)|.

2. Following Jung et al. (2020); Rakhlin et al. (2015a), we work with the absolute loss; the results may readily be
generalized to any other Lipschitz loss function.
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2.2. Differential privacy

In this paper we study algorithms which satisfy approximate differential privacy, defined as follows:

Definition 3 (Differential privacy, Dwork et al. (2006)) Fix sets Z,W , n ∈ N, ε, δ ∈ (0, 1), and
suppose W is countable. A randomized algorithm A : Zn → W is (ε, δ)-differentially private if
the following holds: for any datasets Sn, S′n ∈ Zn differing in a single example3 and for all subsets
E ⊂ W , Pr[A(Sn) ∈ E ] ≤ eε · Pr[A(S′n) ∈ E ] + δ.

Our goal is to solve the PAC learning problem (as introduced in Section 2.1) with an algorithm that
is (ε, δ)-differentially private as a function of Sn. Typically in the differential privacy literature it is
assumed that δ = n−ω(1). To this end, we make the following definition:

Definition 4 (Private learnability) A class H ⊂ [−1, 1]X is privately (PAC) learnable if for all
ε, δ, η, β ∈ (0, 1), there is a bound n = nH(ε, δ, η, β) so that the following holds:
• There is an (ε, δ)-differentially private algorithm A that takes as input a dataset Sn ∈ (X ×

[−1, 1])n and outputs some A(Sn) ∈ [−1, 1]X so that: for any distribution Q on X × [−1, 1],
with probability at least 1− β over Sn ∼ Qn, errQ(A(Sn)) ≤ infh∈H {errQ(h)}+ η.
• For fixed ε, η, β, the mapping δ 7→ nH(ε, δ, η, β) is δ−o(1), i.e., for any constant c > 0 there

is δ0 > 0 so that for 0 < δ < δ0 we have nH(ε, δ, η, β) ≤ 1/δc.

Our algorithms will satisfy the stronger guarantee that for fixed η and H, the bound nH(ε, δ, η, β)
grows polynomially in 1/ε, log(1/δ), log(1/β).

2.3. Sequential fat-shattering dimension

For a positive integer K, we begin by defining K-ary X -valued trees. For a positive integer t and a
sequence k1, k2, . . . ,∈ [K], write k1:t = (k1, . . . , kt). Let k1:0 denote the empty sequence.

Definition 5 (X -valued tree) For d,K ∈ N, a K-ary X -valued tree of depth d is a collection of
partial functions xt : [K]t−1 → X , for 1 ≤ t ≤ d, each with nonempty domain, so that for all k1:t

that lie in the domain of xt+1:
1. The sequence k1:t−1 lies in the domain of xt (i.e., a node’s parent is a node);
2. For all k′t ∈ [K] the sequence (k1, . . . , kt−1, k

′
t) lies in the domain of xt+1 (i.e., each non-root

node has K − 1 siblings).
We write x := (x1, . . . ,xd). We say that the tree x is complete if for each t the domain of xt is all
of [K]t−1. The tree x is binary if it is 2-ary (i.e., K = 2 in the above).

Associated with each sequence k1:t ∈ [K]t for which k1:t−1 is in the domain of xt, for some
1 ≤ t ≤ d, is a node of the tree. We say that this node is a leaf if k1:t is not in the domain of xt+1

(or if t = d). Moreover, for any non-leaf node associated with k1:t ∈ [K]t, we say that it is labeled
by the point xt+1(k1:t) ∈ X . For any such node v, the nodes associated with (k1, . . . , kt, k

′
t+1), for

each choice of k′t+1 ∈ [K] are the children of v; we say that the coresponding edge between v and
each child is labeled by k′t+1. Note that a node is a leaf if and only if it has no children. Note also
that any non-leaf node has exactly K children.

3. Written out, we have Sn = (z1, . . . , zn) and S′n = (z1, . . . , zn−1, z
′
n) for some z1, . . . , zn, z

′
n ∈ Z .
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Fix α > 0. A complete binary (i.e., 2-ary) X -valued tree x of depth d is α-shattered by a class
F ⊂ RX if there is a complete R-valued binary tree s of depth d so that for all k1:d ∈ {1, 2}d, there
is some f ∈ F so that (3− 2kt) · (f(xt(k1:t−1))− st(k1:t−1)) ≥ α/2 for all 1 ≤ t ≤ d. The tree s
is called the witness to shattering.

Definition 6 (Sequential fat-shattering dimension) The α-sequential fat shattering dimension of
a class F , denoted sfatα(F), is the greatest positive integer d so that there is an X -valued binary
tree of depth d which is α-shattered by X . As a convention, if F is empty, we write sfatα(F) = −1.

2.4. Sparse selection procedure

A key building block in our private learning protocols is a differentially private algorithm for the
following sparse selection problem from Ghazi et al. (2020b). For m, s ∈ N, the (m, s)-sparse
selection problem is defined as follows: there is some (possibly infinite) universe U , and m users.
Each user i ∈ [m] is given some set Si ⊂ U of size |Si| ≤ s. An algorithm is said to solve the
(m, s)-sparse selection problem with additive error η > 0 if, given as input the sets S1, . . . ,Sm,
it outputs some universe element û ∈ U so that |{i : û ∈ Si}| ≥ maxu∈U |{i : u ∈ Si}| − η.
We will use the following proposition, which shows that the sparse selection problem can be solved
privately with error independent of the size of the universe U :

Proposition 7 (Ghazi et al. (2020b), Lemma 36) For ε, δ, β ∈ (0, 1), there is an (ε, δ)-differentially
private algorithm that, given an input dataset to the (m, s)-sparse selection problem, outputs a uni-
verse element û such that with probability at least 1−β, the (additive) error of û isO

(
1
ε log

(
ms
εδβ

))
.

In our application of Proposition 7, the universe U will be the set of hypotheses [K]X and so the
output of the sparse selection procedure will be a private hypothesis; see Section 6.

3. Irreducibility for real-valued classes

In this section we introduce the concept of irreducibility in the context of regression, extending the
work of Ghazi et al. (2020a), which defined irreducibility for {0, 1}-valued classes in the context of
classification. Throughout this section, we will fix a positive integer K and an input space X , and
consider a class F ⊂ [K]X so that sfat2(F) is finite. As discussed in Section 2.1, F will arise in the
proof of Theorem 1 as the η-discretization of a real-valued classH ⊂ [−1, 1]X , where K = d2/ηe.
We begin with the following definition which will simplify our notation.

Definition 8 (Ancestor set, depth of a node) Let x be a X -valued tree of depth d, and v be a node
of x corresponding to the tuple (k1, . . . , kt) ∈ [K]t. The ancestor set of v, denoted A(v), is the
subset of X × [K] given by A(v) := {(x1, k1), (x2(k1), k2), . . . , (xt(k1:t−1), kt)}. The integer t is
referred to as the depth of the node v and is denoted as t = depth(v).

In the context of the above definition, note that t is an upper bound on the size of A(v). It is possible
that for some distinct s, s′ we could have (xs(k1:s−1), ks) = (xs′(k1:s′−1), ks′) and hence the size
of A(v) could be strictly less than t. Note that A(v) depends on the tree x, though we do not
explicitly notate this dependence since the tree x will always be clear from the node v.

For any x ∈ X , k ∈ [K], setF|(x,k) := {f ∈ F : f(x) = k}. For a set S = {(x1, k1), . . . , (x`, k`)},
similarly set F|S :=

⋂
i∈[`]F|(xi,ki) = {f ∈ F : f(xi) = ki ∀i ∈ [`]}.
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Definition 9 (Irreducibility) For an integer ` ≥ 1, a classF ⊂ [K]X is `-irreducible if for anyK-
ary X -valued tree x of depth at most `, the tree x has some leaf v so that sfat2(F|A(v)) = sfat2(F).

We say F is irreducible if it is 1-irreducible. For convenience we will say that all classes are 0-
irreducible (i.e., 0-irreducibility is vacuous); thus `-irreducibility makes sense for all non-negative
integers `. Note that `-irreducibility implies `′-irreducibility for `′ < `. The following simple,
though fundamental, lemma forms the basis of a number of the stability-type results we show:

Lemma 10 Suppose G ⊂ [K]X is irreducible. Then there are at most 2 values of k ∈ [K] so that
sfat2(G|(x,k)) = sfat2(G), and if there are 2 values, they differ by 1.

Using Lemma 10, we next define the SOA hypothesis associated to an irreducible hypothesis class
G ⊂ [K]X , which assigns to each x some element k ∈ [K] maximizing sfat2(G|(x,k)). Such SOA
hypotheses were crucial in the development of private learning algorithms for classification (Ghazi
et al., 2020a; Bun et al., 2020), and they will likewise play a major role in this paper.

Definition 11 (SOA hypothesis) Fix an irreducible class G ⊂ [K]X . Define SOAG ∈ [K]X as
follows: for each x ∈ X , SOAG(x) is equal to some k ∈ [K] so that sfat2(G|(x,k)) = sfat2(G). By
Lemma 10, there are at most 2 such values of k. If there are 2 such values of k, i.e., there is some
k ∈ [K − 1] so that sfat2(G|(x,k)) = sfat2(G|(x,k+1)) = sfat2(G), the tie is broken as follows:
• If there is some ` so that G|(x,k) is `-irreducible but G|(x,k+1) is not, then set SOAG(x) = k;

vise versa, if G|(x,k+1) is `-irreducible but G|(x,k) is not, then SOAG(x) = k + 1.
• If the previous item does not hold, then set SOAG(x) = k.

Lemma 12 below is similar to (Ghazi et al., 2020a, Lemma 4.3) proved in the setting of classi-
fication and is the basis for the “weak stability” results presented in Section 4. The key difference
between Lemma 12 and (Ghazi et al., 2020a, Lemma 4.3) is that in the setting of classification, it can
be established that SOAH = SOAG , whereas for the setting of regression we only get “approximate
equality”, i.e., ‖ SOAH−SOAG ‖∞ ≤ 1.

Lemma 12 Suppose H ⊂ G, sfat2(H) = sfat2(G), and that H is irreducible. Then it holds that
‖ SOAH−SOAG ‖∞ ≤ 1.

Following Ghazi et al. (2020a), we say that G ⊂ F is a finite restriction subclass if it holds that G =
F|(x1,y1),...,(xM ,yM ) for some (x1, y1), . . . , (xM , yM ) ∈ X×[K]. Note that ifX is countable, the set
of finite restriction subclasses ofF is countable. (The set of all subclasses ofF may be uncountable;
thus, by considering finite restriction subclasses we avoid having to deal with uncountable sets.)

4. The ReduceTreeReg algorithm: obtaining weak stability

In this section we state the weak stability guarantee afforded by the algorithm ReduceTreeReg
(Algorithm 3). Overall the algorithm and its analysis is very similar to that of the ReduceTree
algorithm of Ghazi et al. (2020a), so all details are given in the appendix. (Some modifications from
Ghazi et al. (2020a) are necessary, though, for instance because a class with finite sequential fat-
shattering dimension does not immediately give rise to one of comparable Littlestone dimension;
thus we cannot use the results of Ghazi et al. (2020a) in a black-box manner.) As in Section 3 we
work with the discretized problem: given X ,K a class F ⊂ [K]X with d := sfat2(F) � K,
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n ∈ N, and a distribution P on X × [K], the algorithm ReduceTreeReg receives a dataset
Sn ∈ (X × [K])n drawn from Pn. It also takes as input a parameter α1, for which it is assumed that
α1− 3d ≥ inff∈F errP (f). The guarantee of ReduceTreeReg is stated (informally) as follows:

Lemma 13 (Weak stability; informal version of Lemmas 34 and 35) SupposeF , P, α1 are given
as described above. Then there are d + 1 hypotheses σ?1, . . . , σ

?
d+1 : X → [K], depending only

on F , P ,4 so that, for sufficiently large n, given as input a dataset Sn ∼ Pn, ReduceTreeReg
outputs a set Ŝ ⊂ [K]X of size |Ŝ| ≤ K2Õ(d)

so that:
• With high probability, for some t ∈ [d+ 1] and ĝ ∈ Ŝ, it holds that ‖ĝ − σ?t ‖∞ ≤ 5.
• With high probability, all ĝ ∈ Ŝ satisfy errP (ĝ) ≤ α1.

Note that Lemma 13 only guarantees that ‖ĝ−σ?t ‖∞ ≤ 5 with high probability, which we informally
refer to as weak stability; in order to apply Proposition 7 to obtain a private learning algorithm, we
would need that ‖ĝ− σ?t ‖∞ = 0 (which we refer to as strong stability). In the following section we
discuss how to upgrade the guarantee of weak stability to one of strong stability.

5. The algorithm SOAFilter: from weak to strong stability

In this section we introduce the algorithm SOAFilter and state its main guarantee. As in Section
3, we continue on working with the discretized version of the problem, i.e., X ,K are fixed, X is
countable, and we are given some countable hypothesis class F ⊂ [K]X , known to the algorithm,
distribution P on X × [K], unknown to the algorithm, and the goal is to find f ∈ F minimizing
errP (f). We will write d := sfat2(F) throughout this section. The error bounds we establish in this
section will grow asO(d) (see, e.g., item 1 below); thus, ifF arises as a discretizationF = bHcη, in
order to ensure the error in the non-discretized version of the problem, which is O(d)/K, is small,
we work in the regime d� K. Recalling that K = d2/ηe for a discretization scale η (Section 2.1)
and so d/K = O(η · d) ≤ O(η · sfatη(H)) (Lemma 23), the growth condition O(sfatη(H) · η)→ 0
arises as a sufficient condition for d/K → 0.

We address the following problem: suppose there is some class G ⊂ F which is `-irreducible
for some large ` ∈ N, and for which errP (SOAG) is known to be small. Unfortunately, the al-
gorithm does not know SOAG ; instead, we only know of some procedure (formalized as part of
ReduceTreeReg described in Section 4) to produce, given i.i.d. samples from P , a collection
of hypotheses ĝ1, ĝ2, . . . , ĝM ∈ [K]X , so that with some positive probability (lower bounded by
1/O(d)) at least one such hypothesis ĝi satisfies ‖ SOAG −ĝi‖∞ ≤ χ for some small positive con-
stant χ.5 Recall that we call this guarantee weak stability. We can repeat this procedure many times
with disjoint samples from P , thus generating many hypotheses ĝi satisfying ‖SOAG −ĝi‖∞ ≤ χ,
with the goal of applying the sparse selection procedure of Proposition 7. However, in order to do
so, we would need that for a given draw of (ĝ1, . . . , ĝM ), some hypothesis ĝi is equal to SOAG
with positive probability, i.e., χ = 0. Since we wish to avoid dependence on |X | in our sample
complexity bounds (e.g., if X is infinite), given only the guarantee that ‖SOAG −ĝi‖∞ ≤ χ for
some χ > 0, it is nontrivial to privately output some hypothesis close to SOAG .

In this section we overcome this challenge as follows: given G as above and ĝ ∈ [K]X with
‖ SOAG −ĝ‖∞ ≤ χ, we introduce an algorithm, SOAFilter (Algorithm 2), which outputs some
set Rĝ consisting of many subclasses L ⊂ [K]X , of size bounded above as a function of d andK (in

4. Each of the hypotheses σ?i is of the form SOAG for some G ⊂ F which is `′-irreducible for sufficiently large `′.
5. We were able to establish such a guarantee for χ = 5 in Section 4 (see Lemma 13).
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particular, |Rĝ| ≤ KdO(d)
), so that the following two properties hold, which we refer to informally

as strong stability (see Lemma 18 for a formal statement):
1. Each L ∈ Rĝ is irreducible and satisfies ‖ SOAL−ĝ‖∞ ≤ O(χ · d).
2. For some irreducible L? ⊂ F depending only on G, we have L? ∈ Rĝ.

Given a collection of hypotheses ĝ1, . . . , ĝM ∈ [K]X as above, if we run SOAFilter on each
of the hypotheses ĝi, then the set R̂ := Rĝ1 ∪ · · · ∪ RĝM is of bounded size (namely, at most
M · KdO(d)

), and as long as ‖SOAG −ĝi‖∞ ≤ χ for some i ∈ [M ] we have that L? ∈ R̂ (item
2) and ‖ SOAL? −SOAG ‖∞ ≤ O(χ · d) (item 1). These properties (in particular, that R̂ contains
exactly the class L?) are sufficient to apply the sparse selection procedure of Proposition 7, and thus
obtain a private learning algorithm for F . In Section 5.1, we describe a subroutine of SOAFilter,
which we call FilterStep; we then describe SOAFilter in Section 5.2.

5.1. FilterStep algorithm

A challenge in achieving a strong stability guarantee as explained in the above paragraphs is that the
class F could consist of too many functions with small oscillatory behavior: in particular, suppose
that F = {f : f(x) ∈ {1, 2} ∀x ∈ X}, so that sfat2(F) = 0. Suppose that SOAG and ĝ are
arbitrary functions taking values in {1, 2}; then ‖ĝ − SOAG ‖∞ ≤ 1. Moreover, each irreducible
subclass L ⊂ F satisfies ‖SOAL−ĝ‖∞ ≤ 1. Since we aim to have |Rĝ| ≤ KdO(d)

, and yet the
number of irreducible subclasses L ⊂ F could be much larger than this quantity, we will have
to narrow down the set of subclasses L which can be added to Rĝ; this is done in the algorithm
FilterStep, which “filters out” many H ⊂ F , and assigns to each H which is filtered out some
L ⊂ F which is not filtered out that is a good `∞ approximation ofH.

To describe the algorithm FilterStep, fix a class F ⊂ [K]X . For ` ≥ 0 and 0 ≤ b ≤ d, set

I`,b(F) :=
{
H ⊂ F : H is a finite restriction subclass of F

which is `-irreducible, and sfat2(H) = b

}
.

The algorithm FilterStep is presented in Algorithm 1. For an input positive integer rmax and

Algorithm 1: FilterStep
Input: A class F with d := sfat2(F), and a sequence (`r,t)r,t≥0 of positive integers that is non-

decreasing in r, a parameter rmax.
1. For each t ∈ {0, 1, . . . , d}, set Lt ← ∅.
2. For 0 ≤ t ≤ d and 0 ≤ r ≤ rmax, define Ir,t := I`r,t,d−t(F). Also set Irmax+1,t := ∅

for 0 ≤ t ≤ d.
3. For t ∈ {0, 1, . . . , d}:

(a) For r ∈ {rmax, rmax − 1, . . . , 0}:
i. For each H ∈ Ir,t\Ir+1,t: (Since the sequence `r,t is non-decreasing in r, we

have Ir+1,t ⊂ Ir,t for all r, t. Note that this step makes sense since Ir,t is
countable; an arbitrary enumeration of Ir,t may be used.)
A. If there is some L ∈ Ld−t and A ⊂ X × [K] with |A| ≤ `r,t − 1 so that

sfat2(F|A) = d − t and for all (x, y) ∈ A, SOAL(x) = SOAH(x) = y,
then set Lrep(H)← L.

B. Else, addH to Ld−t, and set Lrep(H)← H.
4. Output the sets Lt, 0 ≤ t ≤ d, as well as the mapping Lrep(·).

9
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a sequence (`r,t)r,t defined for 0 ≤ r ≤ rmax, 0 ≤ t ≤ d, the algorithm defines a mapping Lrep(·),
which maps each H ∈ I`r,t,d−t(F), for 0 ≤ r ≤ rmax and 0 ≤ t ≤ d, into some “filtered set”
Ld−t. For H ∈ I`r,t,d−t(F), the class Lrep(H) should be interpreted as a representative of H
which approximates it well, in the sense of the following lemma:

Lemma 14 Fix inputs F , (`r,t)r,t≥0, rmax to FilterStep. For any 0 ≤ r ≤ rmax, 0 ≤ t ≤ d,
and anyH ∈ I`r,t,d−t(F), we have that ‖ SOAH−SOALrep(H) ‖∞ ≤ 1.

The algorithm FilterStep is designed so that its output sets Ld−t, 0 ≤ t ≤ d, satisfy the
following sparsity-type property:

Lemma 15 Fix inputsF , (`r,t)r,t≥0, rmax to FilterStep. For any 0 ≤ t ≤ d and 0 ≤ r ≤ rmax,
and any A ⊂ X × [K] with |A| ≤ `r,t− 1 so that sfat2(F|A) = d− t, there is at most one element
L ∈ Ld−t ∩I`r,t,d−t(F) so that for all (x, y) ∈ A, SOAL(x) = y.

5.2. Reducing trees and SOAFilter

In this section we describe the algorithm SOAFilter in full; before doing so, we introduce the
notion of reducing tree in the following two definitions:

Definition 16 (Augmented tree) For d ≥ 1,K ∈ N, an augmented K-ary X -valued tree of depth
d is defined exactly the same as a K-ary X -valued tree (Definition 5), with the exception that there
is a unique value of k1 ∈ [K] so that the sequence (k1) lies in the domain of x2 (in particular,
requirement 2 in Definition 5 is dropped for t = 1). Moreover, the only node associated with a
sequence of length 1 is the node associated with (k1). We will say that the augmented tree x is
rooted by the pair (x1, k1).

One should think of an augmented X -labeled tree x of depth d which is rooted by the pair (x, k) as
an X -labeled tree x′ of depth d− 1 for which we created a new root labeled by x and attached to it
a single child (labeled by k), which is the root of the tree x′. (Note that we have x1 = x here.)

Definition 17 (Reducing tree) Suppose H ⊂ [K]X , and let d := sfat2(H). Fix an increasing
sequence (`t)t≥0 of positive integers. Given a point (x, y) ∈ X × [K] so that sfat2(H|(x,y)) <
sfat2(H), we say that an augmented K-ary X -labeled tree x rooted by the pair (x, y) is a reducing
tree for the pair (x, y) and the sequence (`t)t≥0 if any leaf v of the tree satisfies:
• H|A(v) is either empty or is `t-irreducible, where t := d− sfat2(H|A(v)).
• depth(v) ≤

∑t−1
t′=0 `t′ . Moreover, for any 1 ≤ t̃ < t, there is some node v′ which is an

ancestor of v so that sfat2(H|A(v′)) ≤ d− t̃ and depth(v′) ≤
∑t̃−1

t′=0 `t′ .

Lemma 36 in the appendix shows that reducing trees exist.
The algorithm SOAFilter is presented in Algorithm 2. It takes as input some hypothesis

ĝ : X → [K] and a class F ⊂ [K]X , as well as parameters τmax, rmax ∈ N. Its output is a set
Rĝ, consisting of sub-classes of F . The set Rĝ should be interpreted as a set of “representatives”
of ĝ in the sense that for L ∈ Rĝ, under appropriate conditions, we will have that SOAL is a good
`∞-approximation of ĝ (i.e., ‖ SOAL−ĝ‖∞ is small); see Lemma 18 below.

The algorithm SOAFilter proceeds as follows. It first runs the algorithm FilterStep for
the class F , which produces “filtered sets” Ld−t, 0 ≤ t ≤ d, of sub-classes of F ; each element
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of Rĝ will belong to some set Ld−t. SOAFilter then tries to find finite sets A ⊂ X × [K] so
that both (a) ‖SOAF|A −ĝ‖∞ is small and (b) so that for some L in one of the “filtered sets” Ld−t
produced by FilterStep, it holds that SOAL(x) = y for each (x, y) ∈ A; such sets L will be
added to Rĝ (step 4(a)ii). The sets A are built up gradually as follows: if some set A in the process
of being built up is so that ‖ SOAF|A −ĝ‖∞ is large, then we may choose some xA ∈ X so that
|SOAH(xA)− ĝ(xA)| is large (step 4(a)iii). For y not too far from ĝ(xA), it will follow that we can
construct a reducing tree with respect to the class F|A at the point (xA, y) (step 4(a)ivA). For some
of the leaves v of this reducing tree, we will then add A(v) to A to create a new set A′ (one for each
such leaf v), and continue to process each of these new sets A′ (step 4(a)ivB). Intuitively, adding
A(v) to A “restricts” the class of functions F|A under consideration so that all functions in it (and
therefore its SOA hypothesis SOAF|A) well-approximates ĝ(xA) at xA. Since for all leaves v of
the reducing tree we must have that sfat2(F|A(v)∪A) < sfat2(F|A), this process must eventually
terminate. We will show that some sequence of restrictions, corresponding to a choice of leaf of
the reducing tree created at each step, will create some set A with our desired properties (a) and (b)
above. All rigorous details of the algorithm are presented in Algorithm 2. Lemma 18 provides the
main guarantee for SOAFilter.

Lemma 18 (“Strong stability”) Fix any positive integer ¯̀. Suppose that G ⊂ F is nonempty,
ĝ ∈ [K]X , that ‖ SOAG −ĝ‖∞ ≤ χ for some χ > 0, and that G is (¯̀ · (d + 3)d)-irreducible.
Then there is some ¯̀-irreducible L? ⊂ F , depending only on G, so that ‖ SOAL? −SOAG ‖∞ ≤
(2 + 2χ)(d + 1) + 1 and so that L? ∈ Rĝ, where Rĝ is the output of SOAFilter when given as
inputs F , ĝ, rmax = (d + 1), τmax = (2 + 2χ)(d + 1) and the sequence `r,t := ¯̀ · (r + 2)t for
0 ≤ r ≤ (d+ 1), 0 ≤ t ≤ d.

Moreover, all L ∈ Rĝ satisfy ‖ SOAL−ĝ‖∞ ≤ (2 + 2χ)(d+ 1) and are ¯̀-irreducible.

We provide a brief sketch of the proof of Lemma 18; the full proof is given in the appendix. The final
statement of the lemma follows from step 5 of SOAFilter. To prove the remainder of the lemma,
for 0 ≤ τ ≤ (2 + 2χ)(d + 1) and 2 ≤ r ≤ (d + 1), define µ(r, τ) := max(H,`)∈Gr,τ {sfat2(H)} ,
where

Gr,τ :=
{

(H, `r,t) :
H ⊂ F is `r,t-irreducible and a finite restriction subclass of F ,

where t = d− sfat2(H), and ‖ SOAH− SOAG ‖∞ ≤ τ .

}
.

Since G is `(d+1),d-irreducible, and for all t, r we have `r,t ≤ `(d+1),d, we have that (G, `r,t) ∈ Gr,τ
for t = d − sfat2(G) and all 0 ≤ r ≤ (d + 1), 0 ≤ τ ≤ (2 + 2χ)(d + 1), i.e., Gr,τ is nonempty
and so µ(r, τ) is well-defined. It is straightforward to show, using that µ is non-decreasing in τ
and non-increasing in r, that we can find some r?, τ? so that µ(r?, τ?) = µ(r? − 1, τ? + 2 + 2χ).
Informally, this property of r?, τ? provides a source of “stability” which may be exploited to find
some L? and show that it satisfies the claimed properties in Lemma 18.

We next explain how L? is defined: choose some (H?, `?) which achieves the maximum in (29)
for r = r?, τ = τ?; letting t? = d − sfat2(H?), we have `? = `r?,t? . Let Lrep(·) be the mapping
defined as the output of FilterStep with the input class F , the sequence (`r,t)0≤r≤rmax,0≤t≤d,
and rmax = d + 1 (these are the parameters used in Step 1 of SOAFilter). Now set L? =
Lrep(H?) ∈ Ld−t? ∩ I`r?,t? ,d−t?(F); this is well-defined since H? ∈ I`r?,t? ,d−t?(F). It can be
shown that L? satisfies the claimed properties of Lemma 18; full details are given in the appendix.

Finally, in Lemma 42 we show that |Rĝ| ≤ K
¯̀·(d+4)d for the parameter settings in Lemma 18.
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Algorithm 2: SOAFilter
Input: Class F ⊂ [K]X , d := sfat2(F), sequence (`r,t)r,t≥0, rmax ∈ N, tolerance parameter

τmax ∈ N, χ ∈ N, ĝ ∈ [K]X . It is assumed that rmax, τmax are multiples of d + 1; let
r0 := rmax/(d+ 1), τ0 := τmax/(d+ 1). Initialize Rĝ ← ∅.

1. Run the algorithm FilterStep (Algorithm 1) with F , (`r,t)r,t≥0, and rmax as input, and
let the output sets be denoted (Lt)0≤t≤d.

2. For each 0 ≤ s ≤ d, 0 ≤ j ≤ d, set Qj,s ← ∅. (Qj,s will be a collection of finite subsets
A ⊂ X × [K] defined for each index pair s, j.)

3. Set Qj,0 ← {∅} for each j (i.e., Qj,0 has a single element, which is the empty set).
4. For j ∈ {0, 1, . . . , d}: let r ← rmax − jr0 − 1, τ ← jτ0 + 2 + χ:

(a) For s ∈ {0, 1, . . . , d}:
• For each A ∈ Qj,s, lettingH := F|A :

i. IfH is empty, continue on with the next A ∈ Qj,s.
ii. If ‖ SOAH−ĝ‖∞ ≤ τ :

– If there is some L ∈ I`r,t,d−t(F) ∩ Ld−t so that for all (x, y) ∈ A,
SOAL(x) = y, then add any such L to Rĝ.

– Continue (i.e., go to step 4(a)i with the next A ∈ Qj,s).
iii. Else, we have ‖ SOAH−ĝ‖∞ > τ ; then choose some xA ∈ X so that
|SOAH(xA)− ĝ(xA)| ≥ τ + 1.

iv. Let k ← ĝ(xA). For y ∈ {k− τ + 1∨0, k− τ + 2∨0, . . . , k+ τ −1∧K}:
A. Let tA := d − sfat2(H), and let x(H,(xA,y)) be a reducing tree with re-

spect to H for the point (xA, y) and the sequence (`r,t+tA)0≤t≤d−tA , as
constructed per Lemma 36. (Note that the reducing tree is well-defined
since |k − SOAH(xA)| ≥ τ + 1 and so any y with |y − k| ≤ τ − 1 must
satisfy sfat2(H|(xA,y)) < sfat2(H).)

B. For each leaf v of the tree x(H,(xA,y)), if it is the case that (a) F|A∪A(v) is
nonempty, and (b) for each (x, y) ∈ A(v), |ĝ(x)− y| ≤ τ − 1, then add
A ∪A(v) to Qj,s+1.

5. Remove all L ∈ Rĝ from Rĝ with ‖ SOAL−ĝ‖∞ > (2 + 2χ)(d+ 1), then output Rĝ.

6. Putting it all together with RegLearn: on the proof of Theorem 1

Theorem 1 may be obtained as a reasonably straightforward consequence of the results presented
in the previous sections; the full algorithm (RegLearn; Algorithm 4) is presented in the appendix.
For positive integers n0,m, we will draw n := n0m samples (x, y) from some distributionP onX×
[K], and partition them into m groups of n0 samples. For 1 ≤ j ≤ m, the jth group of n0 samples
will be fed to the algorithm ReduceTreeReg, which outputs some {ĝ(j)

1 , . . . , ĝ
(j)
Mj
} of candidate

hypotheses, satisfying the weak stability guarrantee of Lemma 13. Then each of ĝ(j)
1 , . . . , ĝ

(j)
Mj

will
be fed to SOAFilter, which produces an output set R

ĝ
(j)
i

for each 1 ≤ i ≤ Mj , consisting of
hypotheses all of which have low population error. The combination of Lemma 13 and the strong
stability property of Lemma 18 gives that there is some hypothesis h? : X → [K], depending only
on F , P , so that with probability 1/O(d) over the n0 samples, h? ∈ R̂(j) :=

⋃Mj

i=1 R
ĝ

(j)
i

. We will

also be able to bound |R(j)| by K2Õ(d)
. Then we will apply Proposition 7 with m users whose sets
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are R̂(1), . . . , R̂(m). By choosing the number of groups m to be large enough, we may ensure that
some h? occurs in a number of groups greater than the additive error in Proposition 7, which ensures
that the private sparse selection algorithm outputs some such h? with high probability. Full details
of the proof are presented in Appendix E.

7. Conclusion and future work

In this paper we showed that the condition lim infη↓0 η · sfatη(H) = 0 is sufficient for the class
H ⊂ [−1, 1]X to be privately learnable. A natural question is whether this growth condition can
be relaxed; it seems that new techniques will be required even to prove that all classes H with
η · sfatη(H) ≤ 1 for all η > 0 are privately learnable, if this is even true (such classes are all
online learnable since sfatη(H) is necessarily finite). An example of a natural hypothesis class for
which our growth condition is not satisfied is infinite-dimensional `2 regression: in particular, set
X = `∞2 = {(x1, x2, . . .) : xi ∈ R,

∑∞
i=1 x

2
i ≤ 1} and H = `∞2 = {(w1, w2, . . .) : wi ∈

R,
∑∞

i=1w
2
i ≤ 1}, and then for h = (w1, w2, . . .) and x = (x1, x2, . . .), define h(x) := 〈w, x〉 =∑∞

i=1wixi. It can be shown that sfatη(H) � 1/η2 � 1/η as η → 0.
Another interesting question is whether the sample complexity bound of Theorem 1 can be

improved to one that is polynomial in sfatη(H); for the setting of binary classification, it is possible
to obtain sample complexity bounds polynomial in the appropriate complexity parameter for online
learnability, namely the Littlestone dimension (Ghazi et al., 2020a).
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Appendix A. Additional preliminaries

In this section we introduce some additional preliminaries which will be useful in our proofs.

A.1. Fat-shattering dimension and uniform convergence

In this section we overview some uniform convergence properties of real-valued classes and their
discretizations. For a classH ⊂ RX and η > 0, the η-fat shattering dimension ofH is defined as the
largest positive integer d so that there are d points x1, . . . , xd ∈ X and real numbers s1, . . . , sd ∈ R
so that for each b = (b1, . . . , bd) ∈ {0, 1}d, there is a function h ∈ H so that, for 1 ≤ i ≤ d,
h(xi) ≥ si + η if bi = 1, and h(xi) ≤ si − η if bi = 0.

We will use the following result showing that finiteness of the fat-shattering dimension of H ⊂
[−1, 1]X implies that it exhibits uniform convergence.

Theorem 19 (Uniform convergence; Mendelson and Vershynin (2003)) There are constantsC0 ≥
1 and 0 < c0 ≤ 1 so that the following holds. For any H ⊂ [−1, 1]X , any distribution Q on
X × [−1, 1], and any γ ∈ (0, 1), it holds that

Pr
Sn∼Qn

[
sup
h∈H

∣∣∣errQ(h)− errQ̂Sn
(h)
∣∣∣ > C0 ·

(
inf
η≥0

{
η +

1√
n

∫ 1

η

√
fatc0η′(H) log(1/η′) dη′

}
+

√
log(1/γ)

n

)]
≤ γ.

(1)

The specific form of Theorem 19 may be derived from (Rakhlin and Sridharan, 2014b, Corollary
12.8) (which is a corollary of (Mendelson and Vershynin, 2003, Theorem 1)) by applying the sym-
metrization lemma together with McDiarmid’s inequality (see the proof of Theorem 8 in Bartlett
and Mendelson (2003)). By upper bounding the integral in (1) by

√
fatc0η(H) log(1/η) for some

choice of η ∈ (0, 1), we obtain the following consequence, which only depends on the fat-shattering
dimension ofH at a single scale c0η, yet may be weaker than Theorem 19.

Corollary 20 (Uniform convergence, simplified) There are constants C0 ≥ 1 and 0 < c0 ≤ 1
so that the following holds. For any H ⊂ [−1, 1]X , any distribution Q on X × [−1, 1], and any
γ ∈ (0, 1/2), η ∈ (0, 1/2), it holds that, for any

n ≥ C0 ·
fatc0η(H) log(1/η) + log(1/γ)

η2
,

we have

Pr
Sn∼Qn

[
sup
h∈H

∣∣∣errQ(h)− errQ̂Sn
(h)
∣∣∣ > η

]
≤ γ. (2)
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A.2. Uniform convergence for discretized classes

Recall that we defined discretized classes and distributions in Section 2.1. In this section we state
(straightforward) consequences of Corollary 20 for such discretized classes.

For y, y′ ∈ [−1, 1], note that

d2/ηe · |y − y′|
2

− 1 ≤
∣∣bycη − by′cη∣∣ ≤ d2/ηe · |y − y′|

2
+ 1,

Therefore, forH ⊂ [−1, 1]X , a distribution Q on X × [−1, 1], and any h ∈ H, we have that

d2/ηe · errQ(h)

2
− 1 ≤ errbQcη(bhcη) ≤

d2/ηe · errQ(h)

2
+ 1. (3)

Using (3), we have the following corollary of Corollary 20 showing a uniform convergence result
for the discretized class corresponding to a class of finite fat-shattering dimension.

Corollary 21 There are constants C0 ≥ 1 and 0 < c0 ≤ 1 so that the following holds. For any
H ⊂ [−1, 1]X , any distribution Q on X × [−1, 1], and any γ ∈ (0, 1/2), α ∈ (0, 1/2), it holds that,
for any

n ≥ C0 ·
fatc0α(H) log(1/α) + log(1/γ)

α2
, (4)

we have

Pr
Sn∼Qn

[
sup
h∈H

∣∣∣errbQcα(bhcα)− errbQ̂Sncα
(bhcα)

∣∣∣ > 3

]
≤ γ. (5)

Proof [Proof of Corollary 21] Suppose first that errbQcα(bhcα)− errbQ̂Sncα
(bhcα) > 0. Then, with

probability at least 1− γ over Sn ∼ Qn, as long as C0 and c0 in (4) are sufficiently large and small,
respectively,

errbQcα(bhcα)− errbQ̂Sncα
(bhcα)

≤
(
d2/αe · errQ(h)

2
+ 1

)
−

(
d2/αe · errQ̂Sn

(h)

2
− 1

)
(6)

=
d2/αe

2
· (errQ(h)− errQ̂Sn

(h)) + 2

≤ d2/αe
2
· 2/d2/αe+ 2 (7)

= 3, (8)

where (6) follows from (3), and (7) follows from Corollary 20 with η = 2/d2/αe = Θ(α) (and
holds with probability at least 1−γ over Sn ∼ Qn). The case that errbQcα(bhcα)−errbQ̂Sncα

(bhcα) <

0 is handled similarly.

The following result, also a consequence of Corollary 20, is similar to Corollary 21, but it states
the sample complexity bound in terms of the quantity sfat2(F) of a discretized class F , at the
expense of having a larger constant in (9) (not explicitly computed here; compare to (5)). Strictly
speaking, Corollary 21 is not necessary for our purposes, but we use it to improve certain constants
in our bounds.
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Corollary 22 There are constant C0, C1 ≥ 1 so that the following holds. For any K ∈ N, F ⊂
[K]X , any distribution P on X × [K], and any γ ∈ (0, 1/2), it holds that, for any

n ≥ C0K
2 · (fat2(F) log(K) + log(1/γ)) ,

we have

Pr
Sn∼Pn

[
sup
f∈F

∣∣∣errP (f)− errP̂Sn
(f)
∣∣∣ > C1

]
≤ γ. (9)

Proof Define the class F̃ ⊂ [−1, 1]X as follows: for each f ∈ F , there is a function f̃ ∈ F̃ , defined
as f̃(x) := 2

K f(x)−1. Note that fat2(F) = fat1/K(F̃). Let c0, C0 be the constants of Corollary 20.
Using Corollary 20 with η = 1

c0K
, we have that for n ≥ K2C0

c20
· (fat2(F) log(C0K) + log(1/γ)), it

holds that for any distribution Q on X × [−1, 1],

Pr
Sn∼Qn

[
sup
f̃∈F̃

∣∣∣errQ(f̃)− errQ̂Sn
(f̃)
∣∣∣ > 1

c0K

]
≤ γ.

The claimed statement (9) follows by setting C1 = 1/(2c0) and increasing C0 by a sufficiently large
amount.

We may upper bound the fat-shattering dimension and the sequential fat-shattering dimension
of bHcη in terms of the corresponding quantities forH:

Lemma 23 Suppose H ⊂ [−1, 1]X , and η > 0. Then it holds that fat2(bHcη) ≤ fatη(H), and
sfat2(bHcη) ≤ sfatη(H).

Proof This follows from the fact that for any bhcη ∈ bHcη and any s ∈ R, if it holds that |bhcη(x)−
s| ≥ 1, then since ∣∣∣∣(2(bhcη(x)− 1)

d2/ηe
− 1

)
− h(x)

∣∣∣∣ ≤ η/2
for all x ∈ X , and ∣∣∣∣(2(bhcη(x)− 1)

d2/ηe
− 1

)
−
(

2(s− 1)

d2/ηe
− 1

)∣∣∣∣ ≥ 2

d2/ηe
≥ η,

we must have that ∣∣∣∣(2(s− 1)

d2/ηe
− 1

)
− h(x)

∣∣∣∣ ≥ η/2.

A.3. Attaching a tree via a node

The following definition will be useful when arguing about trees in the context of irrecucibility:
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Definition 24 (Attaching a tree via a node) Suppose that x,x′ areK-aryX -valued trees of depths
d and d′ ≥ 1, respectively, and that v is a leaf of x, corresponding to some tuple (k̄1, . . . , k̄t0) ∈
[K]t (in particular, the depth of v is t0). We say that the tree x′′ is obtained by attaching the tree x′

to x via the leaf v, where x′′ is the depth-(d′ + t0) tree defined as follows: for all 1 ≤ t ≤ d′ + t0,
and k1, . . . , kt−1 ∈ [K],

x′′t (k1, . . . , kt−1) =

{
xt(k1, . . . , kt−1) : t ≤ t0 or (k1, . . . , kt−1) 6= (k̄1, . . . , k̄t−1)

x′t−t0(kt0+1, kt0+2, . . . , kt−1) : t > t0 and (k1, . . . , kt−1) = (k̄1, . . . , k̄t−1).

(If, in either case above, either xt(k1, . . . , kt−1) or x′t−t0(kt0+1, . . . , kt−1) is not defined, then
x′′t (k1, . . . , kt−1) is not defined, i.e., (k1, . . . , kt−1) is not in the domain of x′′t .)

In words, x′′ is obtained as follows: the node v is given the label of x′1, and the sub-tree of x′′

rooted at v is identical to x′ (and otherwise is identical to x).

A.4. Laplace distribution

For a positive real number b > 0, write Lap(b) to denote the random variable X ∈ R with proba-
bility density function Pr[X = x] = 1

2b exp(−|x|/b). A straightforward computation gives that for
any t > 0, Pr[|X| ≥ t · b] = exp(−t).

Appendix B. Proofs for Section 3: irreducibility

This section presents basic properties of the notion of irreducibility from Definition 9. Some of the
results are analogous to those in the setting for classification (Ghazi et al., 2020a); this is indicated
where it is the case.

B.1. Basic properties of irreducibility

Lemma 10 Suppose G ⊂ [K]X is irreducible. Then there are at most 2 values of k ∈ [K] so that
sfat2(G|(x,k)) = sfat2(G), and if there are 2 values, they differ by 1.

Proof Let d := sfat2(G), and suppose without loss of generality that k > k′. Suppose for the
purpose of contradiction that for some k, k′ ∈ [K] with |k − k′| ≥ 2, we have sfat2(G|(x,k)) =
sfat2(G|(x,k′)) = sfat2(G) = d. Let x,y be complete binary trees of depth d shattered by G|(x,k),G|(x,k′),
respectively, witnessed by trees s, t, respectively. We construct a tree z of depth d + 1 shat-
tered by G, as follows: for any k2, . . . , kd+1 ∈ {1, 2}, set zt+1(1, k2, . . . , kt) = xt(k2, . . . , kt),
zt+1(2, k2, . . . , kt) = yt(k2, . . . , kt) for 1 ≤ t ≤ d and z1 = x. (In words, we are setting
x,y to be the left and right subtrees of a node labeled by x.) We claim that z is 2-shattered by
G: indeed, a witness r may be defined as follows: define rt+1(1, k2, . . . , kt) = st(k2, . . . , kt),
rt+1(2, k2, . . . , kt) = tt(k2, . . . , kt) for 1 ≤ t ≤ d, and r1 = k+k′

2 . (In words, r is the tree rooted
by a node labeled by k+k′

2 , whose left and right subtrees are given by s, t, respectively.) That r wit-
nesses the shattering follows from the fact that s, t are witnesses to the shattering of G|(x,k),G|(x,k′)
by x,y, respectively, and the fact that for any f ∈ G|(x,k), f

′ ∈ G|(x,k′), we have that f(z1)−r1 ≥ 1
and −(f ′(z1)− r1) ≥ 1.

Lemma 25 Suppose G ⊂ [K]X has sfat2(G) = 0. Then G is `-irreducible for all ` ∈ N.
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Proof Let x be a K-ary X -valued tree of depth `. Since
⋃

leaves v of x G|A(v) = G, the tree x must
have some leaf v so that G|A(v) is nonempty. For such v, we must have that sfat2(G|A(v)) ≥ 0, and
since G|A(v) ⊂ F , we have sfat2(G|A(v)) = 0, as desired.

Lemma 26 Suppose G ⊂ [K]X is `-irreducible for ` ≥ 1. Then for any x ∈ X , there is some
k ∈ [K] so that G|(x,k) is (`− 1)-irreducible and sfat2(G|(x,k)) = sfat2(G).

Proof The statement of the lemma follows immediately from Definition 9 if ` = 1, so we may
assume from here on that ` ≥ 2.

Fix any x ∈ X . Our goal is to show that there is some k ∈ [K] so that the following holds:
for any K-ary X -valued tree x, of depth ` − 1, x has some leaf v so that sfat2(G|{(x,k)}∪A(v)) =
sfat2(G). We now consider two cases:

Case 1. There is a unique k′ ∈ [K] so that sfat2(G|(x,k′)) = sfat2(G). In this case, we set
k = k′. Now consider any K-ary X -valued tree x of depth `−1. Let x̃ be the tree of depth ` whose
root is given by x and so that each child of the root is a copy of the tree x; formally, for k1, . . . , k` ∈
[K], x̃t+1(k1, . . . , kt) = xt(k2, . . . , kt) for 1 ≤ t ≤ ` − 1, and x̃1 = x. The `-irreducibility of G
guarantees the existence of some tuple k1, . . . , k` so that sfat2(G|(x,k1),(x̃2(k1),k2),...,(x̃`(k1:`−1),k`)) =
sfat2(G). Since for all k′ 6= k, we have sfat2(G|(x,k′)) < sfat2(G), it holds that k1 = k. Letting v
be the leaf of x associated to the tupe (k2, . . . , k`), we see that sfat2(G|{(x,k)}∪A(v)) = sfat2(G), as
desired.

Case 2. For some k0 ∈ [K], it holds that sfat2(G|(x,k0)) = sfat2(G|(x,k0+1)) = sfat2(G),
and for all k′ 6= k0, sfat2(G|(x,k′)) < sfat2(G) (see Lemma 10). Suppose for the purpose of
contradiction that there did not exist a choice of k ∈ {k0, k0+1} so that G|(x,k) is (`−1)-irreducible.
Then for each k ∈ {k0, k0 + 1}, there is some tree x(k) of depth ` − 1 so that for any choice of
k2, . . . , k` ∈ [K] we have sfat2(G|

(x,k),(x
(k)
1 ,k2),...,(x

(k)
`−1(k2:`−1),k`−1)

) < sfat2(G|(x,k)) = sfat2(G).

Now let x̃ be the tree of depth ` whose root is given by x, so that the k′-th child of the root, for
k′ 6= k0 + 1, is a copy of the tree x(k0), and so that the (k0 + 1)-th child of the root is a copy of the
tree x(k0+1). (The k′-th children of the root for k′ ∈ {k0, k0 + 1} can in fact be arbitrary.) Formally,
for k1, . . . , k` ∈ [K], we have x̃1 = x and

x̃t+1(k1, . . . , kt) =

{
x(k0)(k2, . . . , kt) : k1 6= k0 + 1

x(k0+1)(k2, . . . , kt) : k1 = k0 + 1.

Now consider any sequence (k1, . . . , k`), and let its associated leaf in x̃ be denoted v. If k1 6∈
{k0, k0 + 1}, then sfat2(G|A(v)) ≤ sfat2(G|(x,k1)) < sfat2(G). If k1 ∈ {k0, k0 + 1}, then

sfat2(G|A(v)) = sfat2(G|
(x,k1),(x

(k1)
1 ,k2),...,(x

(k1)
`−1 (k2:k`−1),k`)

) < sfat2(G|(x,k1)) = sfat2(G).

This contradicts the `-irreducibility of G, completing the proof.

The following lemma is analogous to (Ghazi et al., 2020a, Lemma 4.2):

Lemma 27 SupposeH ⊂ G ⊂ [K]X , and that sfat2(G) = sfat2(H). IfH is `-irreducible, then so
is G.
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Proof The `-irreducibility of H implies that for any K-ary X -valued tree x of depth `, there is
some choice of k1, . . . , k` ∈ [K] so that

sfat2(G|(x1,k1),...,(x`(k1:`−1),k`)) ≥ sfat2(H|(x1,k1),...,(x`(k1:`−1),k`)) = sfat2(H) = sfat2(G).

But since G|(x1,k1),...,(x`(k1:`−1),k`) ⊂ G, the inequality above must be an equality, and this ensures
that G is `-irreducible.

B.2. Properties of SOA hypotheses

Lemma 12 SupposeH ⊂ G, sfat2(H) = sfat2(G), and thatH is irreducible. Then for all x ∈ X ,
|SOAH(x)− SOAG(x)| ≤ 1.

Proof Fix any x ∈ X , and let k := SOAH(x). Then sfat2(G|(x,k)) ≥ sfat2(H|(x,k)) = sfat2(H) =
sfat2(G), and so sfat2(G|(x,k)) = sfat2(G). By Lemma 10 and Definition 11, we have that SOAG(x) ∈
{k − 1, k, k + 1}, as desired.

Lemma 28 Suppose G ⊂ [K]X is `-irreducible. Consider any `′ ≤ `, and any set A ⊂ X × [K]
of size |A| ≤ `′, so that each (x, y) ∈ A satisfies y = SOAG(x). Then G′ := G|A is (` − `′)-
irreducible and satisfies sfat2(G′) = sfat2(G).

Proof We first prove the statement for the case `′ = 1. Consider some (x, y) ∈ X × [K], so that
y = SOAG(x). By Definition 11, for G′ := G|(x,y), we have sfat2(G′) = sfat2(G). By Lemma 26,
there is some y′ ∈ [K] so that sfat2(G|(x,y′)) = sfat2(G) and so that G|(x,y′) is (`− 1)-irreducible.
By Definition 11 we must have y ∈ {y′ − 1, y′, y′ + 1} and G|(x,y) is (`− 1)-irreducible as well.

We now prove the statement for general `′ by induction. Suppose the statement holds for some
value `′ < `. Consider some set A ⊂ X × [K] of size |A| = `′ + 1, and write A = Ã ∪ {(x, y)},
for |Ã| = `′ and some (x, y) ∈ X × [K]. By the inductive hypothesis we have that G|Ã is (`− `′)-
irreducible and satisfies sfat2(G|Ã) = sfat2(G). By the case `′ = 1 proven above we have that
(G|Ã)|(x,y) = G|A is (`− `′ − 1)-irreducible and satisfies sfat2(G|A) = sfat2(G|Ã) = sfat2(G), as
desired.

The below lemma is analogous to (Ghazi et al., 2020a, lemma 4.4).

Lemma 29 For a class F ⊂ [K]X with sfat2(F) = d, set

F̃d+1 := {SOAG : G ⊂ F , G is nonempty and (d+ 1)-irreducible} .

Then sfat2(F̃d+1) = d as well.

Proof Note that F ⊂ F̃d+1, since for any f ∈ F , {f} is `-irreducible for all ` ∈ N, and SOA{f} =

f . Thus sfat2(F̃d+1) ≥ d. To see the upper bound on sfat2(F̃d+1), suppose for the purpose of
contradiction that F̃d+1 shatters an X -valued binary tree x of depth d + 1. Let s be a witness tree
to this shattering. We will show that F also shatters x (witnessed by s), which leads to the desired
contradiction.
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Fix any sequence (k1, . . . , kd+1) ∈ {1, 2}d+1. Since x is shattered by F̃d+1, there must be some
G ⊂ F that is (d+ 1)-irreducible so that for 1 ≤ t ≤ d+ 1,

(3− 2kt) · (SOAG(xt(k1:t−1))− st(k1:t−1)) ≥ 1.

For 1 ≤ t ≤ d+ 1, set yt := SOAG(xt(k1:t−1)). Since G is (d+ 1)-irreducible, by Lemma 28, we
have that

sfat2(G|(x1,y1),(x2(k1),y2),...,(xd+1(k1:d),yd+1)) = sfat2(G) ≥ 0.

Thus there must be some f ∈ G ⊂ F so that for 1 ≤ t ≤ d + 1, f(xt(k1:t−1)) = yt. Since the
above argument holds for any choice of (k1, . . . , kd+1) ∈ {1, 2}d+1, it follows that x is shattered
by F , witnessed by s.

Appendix C. Proofs for the ReduceTreeReg algorithm (Section 4)

In this section we introduce the ReduceTreeReg algorithm reference in Section 4 and state its
main guarantee of weak stability reference in Lemma 13 (the informal version of Lemmas 34 and
Lemma 35). The algorithm and its analysis is very similar to that in Ghazi et al. (2020a); we
provide all proofs for completeness, but indicate the corresponding results in Ghazi et al. (2020a)
where appropriate.

Suppose F ⊂ RX (e.g., F ⊂ [K]X ); for each α > 0, and a distribution P on X × R, define

FP,α := {f ∈ F : errP (f) ≤ α}.

For a dataset Sn ∈ (X × R)n, note that, under the event supf∈F

∣∣∣errP (f)− errP̂Sn
(f)
∣∣∣ ≤ α0,

for each α ∈ [0, 1] it holds that

FP̂Sn ,α−2α0
⊂ FP,α−α0 ⊂ FP̂Sn ,α. (10)

The below lemma is analogous to Lemma 4.7 of Ghazi et al. (2020a); the proof is almost iden-
tical to that in Ghazi et al. (2020a), but we provide it for completeness.

Lemma 30 Fix some `, `′ ∈ N with ` > `′ and hypothesis classes H ⊂ G ⊂ [K]X . Suppose we
are given S? ∈ (X × [K])`−`

′
so thatH|S? is `-irreducible, and that

sfat2(G|S?) = sfat2(H|S?) =: q? ≥ 0. (11)

Suppose that x is a K-ary X -valued tree of depth at most ` − `′, and that for all leaves v of x,
sfat2(G|A(v)) ≤ q?. Then there is some leaf v̂ of x so that ‖ SOAJ |S? −SOAJ ′|A(v̂)

‖∞ ≤ 4 for all
hypothesis classes J ′,J satisfyingH ⊂ J ′ ⊂ G andH ⊂ J ⊂ G.

Moveover, the leaf v̂ satisfies:
1. sfat2(G|A(v̂)) = sfat2(H|A(v̂)) = q?.
2. H|A(v̂) is `′-irreducible.

Proof The fact that H|S? is `-irreducible together with (11) and Lemma 27 gives that G|S? and
J |S? are `-irreducible for any J satisfyingH ⊂ J ⊂ G.
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We now define a leaf v̂ of x as follows: first choose k1 := SOAH|S? (x1), then for t > 2, if the
node corresponding to the sequence (k1, . . . , kt−1) is not a leaf of x, set kt := SOAH|S? (xt(k1:t−1)).
This process will stop (i.e., the node corresponding to (k1, . . . , kt) will be a leaf for some t) af-
ter at most ` − `′ steps (since depth(x) ≤ ` − `′), and we let the resulting leaf be v̂. Since
|A(v̂)| ≤ depth(x) ≤ `− `′ and for each (x, y) ∈ A(v̂) we have y = SOAH|S? (x), by Lemma 28,
it holds thatH|S?∪A(v̂) is `′-irreducible and satisfies sfat2(H|S?∪A(v̂)) = sfat2(H|S?) = q?.

Next, using the assumption that sfat2(H|S?) = q? ≥ sfat2(G|A(v̂)) (as v̂ is a leaf of x) together
with the `′-irreducibility ofH|S?∪A(v̂), we see that for any K-ary X -valued tree y of depth at most
`′, there is some leaf u of y so that

sfat2(H|A(v̂)∪A(u)) ≥ sfat2(H|S?∪A(v̂)∪A(u)) (12)

= sfat2(H|S?∪A(v̂))

= sfat2(H|S?) (13)

≥ sfat2(G|A(v̂)) ≥ sfat2(H|A(v̂)). (14)

SinceH|A(v̂)∪A(u) ⊂ H|A(v̂), it follows that the inequalities in (12) and (14) are equalities. For any
x ∈ X , interpret it as a depth-0 tree y whose root node is labeled by x, set k(x) ∈ [K] to be the
value ensuring that (12) through (14) holds. It then follows from Lemma 10 that

| SOAH|A(v̂)
(x)− k(x)| ≤ 1 (15)

for all x ∈ X .
From equalities (12) through (13), we have that for all x ∈ X (again letting the tree y be the

depth-0 tree whose root is labeled by x), sfat2(H|S?) = sfat2(H|S?∪{(x,k(x))}). Thus

|SOAH|S? (x)− k(x)| ≤ 1 (16)

for all x ∈ X .
SinceH|S? is irreducible, by Lemma 12, we have that for all x ∈ X and J satisfyingH ⊂ J ⊂

G,

| SOAH|S? (x)− SOAJ |S? (x)| ≤ 1. (17)

From (15), (16), (17) and the triangle inequality we see that ‖ SOAJ |S? −SOAH|A(v̂)
‖∞ ≤ 3. This

establishes the desired closeness of SOA hypotheses for J ′ = H. Before establishing this for all
H′ satisfyingH ⊂ J ′ ⊂ G, we first show items 1 and 2.

Using (13) and (14) (which, as we argued above, are all equalities) gives that sfat2(H|A(v̂)) =
sfat2(G|A(v̂)) = q?, establishing item 1. Item 2 is a consequence of the fact that H|S?∪A(v̂) is
`′-irreducible, sfat2(H|S?∪A(v̂)) = sfat2(H|A(v̂)) (by (12) through (14)), and Lemma 27.

Items 1 and 2 together with Lemma 12 imply that for any hypothesis class J ′ satisfying H ⊂
J ′ ⊂ G, we have that

‖SOAJ ′|A(v̂)
−SOAH′|A(v̂)

‖∞ ≤ 1. (18)

Then (15), (16), (17), and (18) together with the triangle inequality give that ‖SOAJ ′|A(v̂)
−SOAJ |S? ‖∞ ≤

4 for all J ′,J satisfyingH ⊂ J ′ ⊂ G, H ⊂ J ⊂ G.
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Algorithm 3: ReduceTreeReg
Input: Parameters n, `′ ∈ N, α∆, α1 ∈ R+. Distribution P̂Sn over X . Hypothesis class F , with

d := sfat2(F).
1. Initialize a counter t = 1 (t counts the depth of the tree constructed at each step of the

algorithm).
2. For 1 < t ≤ d+ 1, set αt := α1 − (t− 1) · α∆.
3. For 1 ≤ t ≤ d, set `t := `′ · 2t.
4. Initialize x̂(0) = {v0} to be a tree with a single (unlabeled) leaf v0. (In general x̂(t) will be

the tree produced by the algorithm after step t is completed.)
5. Initialize L̂1 = {v0}. (In general L̂t will be the set of leaves of the tree before step t is

started.)
6. For t ∈ {1, 2, . . . , d}:

(a) For each leaf v ∈ L̂t and α ≥ 0, set Ĝ(α, v) := FP̂Sn ,α|A(v). (Note that since
the only way the tree changes from round to round is by adding children to existing
nodes, A(v) will never change for a node v that already exists.)

(b) Let ŵ?t := maxv∈L̂t sfat2(Ĝ(αt, v)) be the maximum sequential fat-shattering di-
mension of any of the classes Ĝ(αt, v).
Also let L̂′t := {v ∈ L̂t : sfat2(Ĝ(αt, v)) = ŵ?t }.

(c) If ŵ?t < 0, halt and output ERROR. (We show that this never occurs under appropri-
ate assumptions in Lemma 31.)

(d) If there is some v ∈ L̂′t so that sfat2(Ĝ(αt − α∆, v)) = sfat2(Ĝ(αt, v)) ≥ 0 and
Ĝ(αt − α∆, v) is `t-irreducible, then break out of the loop and go to step 7.

(e) Else, for each node v ∈ L̂′t:
i. If Ĝ(αt, v) is empty or sfat2(Ĝ(αt − α∆, v)) < sfat2(Ĝ(αt, v)), move on to the

next v.
ii. Else, we must have that Ĝ(αt − α∆, v) is not `t-irreducible. Let `v be chosen

as small as possible so that Ĝ(αt − α∆, v) is not `v-irreducible; then `v ≤ `t.
Then there is some K-ary X -valued tree x of depth `v, so that for any choice of
k1, . . . , k`v ∈ [K], we have

sfat2(Ĝ(αt − α∆, v)|(x1,k1),...,(x`v (k1:`v−1),k`v )) < sfat2(Ĝ(αt − α∆, v)).
(19)

iii. Attach the tree x to x̂(t−1) via the leaf v (per Definition 24).
(f) Let the current tree (with the additions of the previous step) be denoted by x̂(t), and

let L̂t+1 be the list of the leaves of x̂(t), i.e., the nodes which have not (yet) been
assigned labels or children.

7. Let tfinal be the final value of t the algorithm completed the loop of step 6e for before
breaking out of the above loop (i.e., if the break at step 6d was taken at step t, then tfinal =
t − 1; if the break was never taken, then tfinal = d). Let ŵ?tfinal+1 and L̂′tfinal+1 be defined
as in Step 6b.

8. Output the set L̂′ := L̂′tfinal+1 of leaves of the tree x̂(tfinal), and the tree x̂ := x̂(tfinal).
Finally, output the set

Ŝ := {SOAĜ(αtfinal+1−2α∆/3,v) : v ∈ L̂′ and Ĝ(αtfinal+1 − 2α∆/3, v) is `′-irreducible & nonempty}.
(20)
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C.1. ReduceTreeReg algorithm

Throughout this section we fix a positive integer K, a distribution P on X × [K], a function class
F ⊂ [K]X , and write d := sfat2(F). The algorithm ReduceTreeReg takes as input some
parameters k′ ∈ N, α1, α∆ > 0, as well as some dataset Sn ∈ (X × [K])n consisting of n samples
(x, k) ∈ X × [K], which is accessed through its empirical distribution P̂Sn . Given these parameters,
define the event Egood to be

Egood :=

{
sup
f∈F

∣∣∣errP (f)− errP̂Sn
(f)
∣∣∣ ≤ α∆

6

}
. (21)

Though the algorithm ReduceTreeReg is well-defined regardless of whether Egood holds, sev-
eral of the lemmas in this section regarding correctness of ReduceTreeReg will rely on Egood

holding; in Section E we will show that when the dataset Sn is drawn according to an appropriate
distribution, Egood will hold with high probability with respect to this draw.

The below lemma is analogous to Lemma 5.1 of Ghazi et al. (2020a).

Lemma 31 Suppose the inputs Sn, α1, α∆ of ReduceTreeReg are chosen so thatFP̂Sn ,α1−(d+1)·α∆

is nonempty. Then ReduceTreeReg never halts and outputs ERROR at step 6c. Moreover, the set
L̂′ output by ReduceTreeReg satisfies the following property: letting t = tfinal + 1 ∈ [d + 1],
there is some leaf v ∈ L̂′ so that sfat2(Ĝ(αt − α∆, v)) = sfat2(Ĝ(αt, v)) ≥ 0 and Ĝ(αt − α∆, v)
is `t-irreducible.

Proof If, for some t, the algorithm ReduceTreeReg breaks at step 6d, then the inclusion of the
lemma is immediate: the condition to break in step 6d gies that for some v ∈ L̂′t = L̂′tfinal+1, we
have that sfat2(Ĝ(αt − α∆, v)) = sfat2(Ĝ(αt, v)) ≥ 0 and Ĝ(αt − α∆, v) is `t-irreducible.

Next we show that the algorithm never halts and outputs ERROR at step 6c. Note that for each
1 ≤ t ≤ d+ 1, the tree x̂(t−1) has the property that each non-leaf node has exactly K children, one
corresponding to each label in [K] (this is by Definition 5); thus, we have that, for each t, and each
α ≥ 0,

FP̂Sn ,α =
⋃
v∈L̂t

FP̂Sn ,α|A(v) =
⋃
v∈L̂t

Ĝ(α, v). (22)

Since FP̂Sn ,α1−(d+1)·α∆
is nonempty (by assumption), FP̂Sn ,αt ⊃ FP̂Sn ,α1−(d+1)·α∆

is nonempty

for 1 ≤ t ≤ d + 1. Thus there is some v ∈ L̂t so that Ĝ(αt, v) is nonempty, i.e., ŵ?t =
maxv∈L̂t sfat2(Ĝ(αt, v)) ≥ 0.

Otherwise, the algorithm performs a total of d iterations. We claim that ŵ?d+1 = 0. We first
show that for all t ≥ 1, ŵ?t+1 < ŵ?t . To see this, note that each leaf v in L̂t+1 belongs to one of the
following categories:
• v ∈ L̂t\L̂′t. (This includes the case that Ĝ(αt, v) is empty.) In this case, we have

sfat2(Ĝ(αt+1, v)) ≤ sfat2(Ĝ(αt, v)) < ŵ?t .

• v ∈ L̂′t and sfat2(Ĝ(αt − α∆, v)) < sfat2(Ĝ(αt, v)). Using that αt+1 = αt − α∆, we obtain

sfat2(Ĝ(αt+1, v)) = sfat2(Ĝ(αt − α∆, v)) < sfat2(Ĝ(αt, v)) ≤ ŵ?t .
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• v corresponds to some leaf u of some K-ary X -valued tree x which is attached to x̂(t−1)

via some leaf v0 of x̂(t−1) (as constructed in steps 6(e)ii and 6(e)iii of the algorithm). Then
A(v) = A(v0) ∪A(u), and so

sfat2(Ĝ(αt+1, v)) ≤ sfat2(FP̂Sn ,αt−α∆
|A(v))

= sfat2(FP̂Sn ,αt−α∆
|A(v0)∪A(u))

< sfat2(FP̂Sn ,αt−α∆
|A(v0))

≤ ŵ?t ,

where the strict inequality follows from (19) (the set {(x1, k1), . . . , (x`v(k1:`v−1), k`v)} is
exactly A(u)), and the last inequality follows from the fact that v0 ∈ L̂t.

Thus all leaves v in L̂t+1 satisfy sfat2(Ĝ(αt+1, v)) < ŵ?t , i.e., ŵ?t+1 < ŵ?t . Since ŵ?1 ≤ d as
Ĝ(αt, v) ⊂ F , we obtain that ŵ?d+1 ≤ 0. We have already shown that ŵ?d+1 ≥ 0, and so ŵ?d+1 = 0.

By assumption, FP̂Sn ,αd+1−α∆
= FP̂Sn ,α1−(d+1)·α∆

is nonempty, and therefore, by (22), and

therefore, for some leaf v ∈ L̂′d+1 = L̂′, we have sfat2(Ĝ(αd+1, v)) = sfat2(Ĝ(αd+1 − α∆, v)) =

0. Moreover, Ĝ(αd+1 − α∆, v) is `d+1-irreducible since a class with sequential fat-shattering di-
mension 0 is `-irreducible for all ` ∈ N (Lemma 25).

The below lemma is analogous to Lemma 5.2 of Ghazi et al. (2020a).

Lemma 32 For all t the tree x̂(t) of Algorithm 3 has depth at most `t+1− `′. In particular, the tree
x̂ has depth at most `tfinal+1 − `′.

Proof We prove by induction that the depth of x̂(t), denoted depth(x̂(t)), satisfies depth(x̂(t)) ≤
`t+1− `′ = `′ · 2t+1− `′. For the base case, note that depth(x̂(0)) = 0 < 2`′− `′ = `′ · 2t− `′. For
any t > 0, The only step of ReduceTreeReg at which x̂(t−1) is modified (to produce x̂(t)) is step
6(e)ii, when some trees of depth at most `t are attached to x̂(t−1) via some leaves. Thus we have

depth(x̂(t)) ≤ depth(x̂(t−1)) + `t ≤ `t − `′ + `t = `t+1 − `′.

For each α > 0 and t ∈ [d+ 1], define the set:

Mα,t :=
{
S ∈ (X × [K])≤(`t−`′) :

FP,α−α∆/3
|S is `t-irreducible and nonempty,

and sfat2(FP,α−α∆/3
|S) = sfat2(FP,α+α∆/3

|S)

}
. (23)

Notice thatMα,t depends on F , P . The below lemma is analogous to Lemma 5.3 of Ghazi et al.
(2020a).

Lemma 33 Suppose that Egood holds. Then for t = tfinal + 1, the setMαt−α∆/2,t is nonempty.

Proof Set t = tfinal + 1. Let v be a node in the set L̂′ (so that v is a leaf of x̂(tfinal) = x̂(t−1))
produced by ReduceTreeReg as guaranteed by Lemma 31, i.e., so that sfat2(Ĝ(αt − α∆, v)) =
sfat2(Ĝ(αt, v)) ≥ 0 and so that Ĝ(αt − α∆, v) is `t-irreducible. Since the event Egood holds,

Ĝ(αt − α∆, v) = FP̂Sn ,αt−α∆
|A(v) ⊂ FP,αt−5α∆/6|A(v) ⊂ FP,αt−α∆/6|A(v) ⊂ FP̂Sn ,αt |A(v) = Ĝ(αt, v).
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It follows from Lemma 27 thatFP,αt−5α∆/6|A(v) is `t-irreducible and that sfat2(FP,αt−α∆/6|A(v)) =

sfat2(FP,αt−5α∆/6|A(v)) ≥ 0. Since the depth of the tree x̂(t−1) = x̂(tfinal) is at most `t−`′ (Lemma
32), it follows that the number of tuples in A(v) is at most `t − `′; thus A(v) ∈Mαt−α∆/2,t.

For any α > 0, t ∈ [d+ 1] for whichMα,t is nonempty, define:

S?α,t ∈ arg max
S∈Mα,t

{sfat2(FP,α|S)} , q?α,t := max
S∈Mα,t

{sfat2(FP,α|S)} ≥ 0. (24)

Also set
σ?α,t := SOAFP,α|S?α,t

. (25)

The below lemma is analogous to Lemma 5.4 of Ghazi et al. (2020a).

Lemma 34 (“Weak stability”) Suppose thatEgood holds andFP̂Sn ,α1−d·α∆
= FP̂Sn ,αd+1

is nonempty.

Then the following holds: for t = tfinal + 1 ∈ [d+ 1] and some leaf v̂ ∈ L̂′, we have ‖σ?αt−α∆/2,t
−

SOAĜ(αt−2α∆/3,v̂) ‖∞ ≤ 5. (In particular, for this t, σ?αt−α∆/2,t
is well-defined, i.e.,Mαt−α∆/2,t

is nonempty.)
Moreover, Ĝ(αt − 2α∆/3, v̂) is `′-irreducible and nonempty, and sfat2(Ĝ(αt − 2α∆/3, v̂)) =

q?αt−α∆/2,t
≥ 0.

Proof By Lemma 31, for t := tfinal+1 ∈ [d+1], there is some leaf v′ ∈ L̂′ so that sfat2(Ĝ(αt − α∆, v)) =
sfat2(Ĝ(αt, v)) ≥ 0 and Ĝ(αt − α∆, v) is `t-irreducible. Since the eventEgood holds, for each node
v of the tree x̂ output by ReduceTreeReg, we have that

FP̂Sn ,αt−α∆
|A(v) ⊂ FP,αt−5α∆/6|A(v) ⊂ FP̂Sn ,αt−4α∆/6

|A(v)

⊂ FP,αt−3α∆/6|A(v) ⊂ FP̂Sn ,αt−2α∆/6
|A(v) ⊂ FP,αt−α∆/6|A(v) ⊂ FP̂Sn ,αt |A(v). (26)

Now we apply Lemma 30 with J = J ′ = FP,αt−α∆/2,H = FP,αt−5α∆/6,G = FP,αt−α∆/6, ` =

`t, `
′ = `′, x equal to the tree x̂ = x̂(tfinal) output by ReduceTreeReg, and S? = S?αt−α∆/2,t

.
Since t = tfinal + 1, Lemma 33 guarantees that S?αt−α∆/2,t

is well-defined (i.e., Mαt−α∆/2,t is
nonempty). We check that the preconditions of Lemma 30 hold: First, note that (11) holds by defi-
nition ofMαt−α∆/2,t in (23) and since S? ∈Mαt−α∆/2,t. Moreover,H|S? = FP,αt−α∆/2−α∆/3|S?
is `t-irreducible, again by (23) and since S? ∈Mαt−α∆/2,t. By definition of q?α,t in (24), we have

q?αt−α∆/2,t
= sfat2(FP,αt−5α∆/6|S?) = sfat2(FP,αt−α∆/6|S?).

Lemma 32 establishes that the depth of x̂ is at most `t−`′, so |A(v′)| ≤ `t−`′. Next, from the guar-
antee on v′ in Lemma 31 (i.e., that Ĝ(αt − α∆, v

′) = FP̂Sn ,αt−α∆
|A(v′) is `t-irreducible), the fact

thatFP̂Sn ,αt−α∆
|A(v′) ⊂ FP,αt−5α∆/6|A(v′) (by (26)), and Lemma 27, we have thatFP,αt−5α∆/6|A(v′)

is `t-irreducible. (To apply Lemma 27 here, we need that sfat2(FP,αt−5α∆/6|A(v′)) = sfat2(FP̂Sn ,αt−α∆
|A(v′)),

which follows from sfat2(FP̂Sn ,αt−α∆
|A(v′)) = sfat2(FP̂Sn ,αt−α∆

|A(v′)) and (26).) Since also
sfat2(FP,αt−5α∆/6) = sfat2(FP,αt−α∆/6), we have that A(v′) ∈ Mαt−α∆/2,t, so the definition of
q?α,t gives

q?αt−α∆/2,t
≥ sfat2(FP,αt−α∆/2|A(v′)).
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Moreover, for any other leaf u of the tree x̂, we have, by definition of L̂′ = L̂′tfinal+1,

sfat2(FP,αt−α∆/6|A(u)) ≤ sfat2(FP̂Sn ,αt |A(u)) ≤ sfat2(FP̂Sn ,αt |A(v′)) = sfat2(FP,αt−α∆/2|A(v′)) ≤ q?αt−α∆/2,t
,

(The first inequality above holds due to (26), the second inequality is due to the fact that v′ ∈
L̂′tfinal+1 (see step 6b of ReduceTreeReg), and the equality holds due to (26) and sfat2(FP̂Sn ,αt−α∆

|A(v′)) =

sfat2(FP̂Sn ,αt |A(v′)).) This completes the verification that all hypotheses of Lemma 30 hold. Then
Lemma 30 with J ′ = J = FP,αt−α∆/2, we get that for some leaf v̂ of x̂, we have

‖ SOAFP,αt−α∆/2
|S? −SOAFP,αt−α∆/2

|A(v̂)
‖ = ‖σ?αt−α∆/2,t

− SOAFP,αt−α∆/2
|A(v̂)
‖ ≤ 4.

Moreover, item 1 of Lemma 30 gives that sfat2(FP,αt−5α∆/6|A(v̂)) = sfat2(FP,αt−α∆/6|A(v̂)) =
q?αt−α∆/2,t

, and item 2 gives that FP,αt−5α∆/6|A(v̂) is `′-irreducible. From (26), it follows that
sfat2(FP̂Sn ,αt−4α∆/6

|A(v̂)) = sfat2(FP,αt−α∆/2|A(v̂)) = sfat2(FP̂Sn ,αt−2α∆/6
|A(v̂)) = q?αt−α∆/2,t

≥
0, and that FP̂Sn ,αt−4α∆/6

|A(v̂) = Ĝ(αt − 2α∆/3, v̂) is `′-irreducible (from Lemma 27). Then by
(26) and Lemma 12, we have

‖σ?αt−α∆/2,t
− SOAĜ(αt−2α∆/3,v̂) ‖∞

≤ ‖σ?αt−α∆/2,t
− SOAFP,αt−α∆/2|A(v̂)

‖∞ + ‖ SOAFP,αt−α∆/2
|A(v̂) − SOAĜ(αt−2α∆/3,v̂) ‖∞ ≤ 4 + 1 = 5.

Finally, we check that v̂ ∈ L̂′ = L̂′t = L̂′tfinal+1, i.e., all leaves u of the tree x̂ satisfy sfat2(FP̂Sn ,αt |A(u)) ≤
sfat2(FP̂Sn ,αt |A(v̂)). This is a consequence of the fact that for all such u,

sfat2(FP̂Sn ,αt |A(v̂)) ≥ sfat2(FP̂Sn ,αt−2α∆/6
|A(v̂)) = q?αt−α∆/2,t

≥ sfat2(FP̂Sn ,αt |A(v′)) ≥ sfat2(FP̂Sn ,αt |A(u)),

since v′ ∈ L̂′ (by definition).

Lemma 35 The set Ŝ output by ReduceTreeReg has size |Ŝ| ≤ K`′·2d+1
.

Proof We show that for t ∈ [d], the tree x̂(t) has at most
∏t
t′=1K

`t′ leaves. This statement is a
simple consequence of the fact that x(0) has a single leaf, and the tree x̂(t) is formed by attaching
a trees of depth at most `t to some of the leaves of x̂(t−1). Thus the number of leaves of x̂(t) is at
most

d∏
t′=1

K`t′ = K`1+···+`d ≤ K`′·2d+1
.

Appendix D. Proofs for Section 5: the algorithm SOAFilter

In this section we give proofs for all results in Section 5, and state several additional lemmas which
will be useful in our proofs. Throughout we suppose that we are given a hypothesis class F ⊂ [K]X

and write d := sfat2(F).
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D.1. Existence of reducing trees

Recall the definition of reducing tree from Definition 17. Lemma 36 shows that such trees exist.

Lemma 36 For any classH ⊂ [K]X with d := sfat2(H), any sequence (`t)t≥0 of positive integers,
and any (x, y) ∈ X × [K] for which sfat2(H|(x,y)) < sfat2(H), there is a reducing tree x (of depth
at least 1) for the pair (x, y), the sequence (`t), and the classH.

Moreover, x may be chosen so that for each 1 ≤ t ≤ d, x has at most K
∑t−1
t′=0

`t′ leaves v so
that sfat2(H|A(v)) = d− t.

Proof We define a sequence x(0),x(1), . . . of augmented X -labeled trees. We begin by defining
the tree x(0), which is of depth 1 and consists of a root, labeled by x, together with a single child
(which is its only leaf), for which the edge to the root is labeled by y. Now, suppose we are given
the tree x(s), for some s ≥ 0. To define the tree x(s+1), we begin with the tree x(s), and then add
some subtrees below some of the leaves of x(s); we will say that each node of x(s) corresponds to
its copy in this copy of x(s) in x(s+1), as well as to its copies in x(s+2),x(s+3), . . .. In particular, for
each leaf v of x(s):
• If H|A(v) is empty or `t-irreducible, where t = d − sfat2(H|A(v)), we move onto the next

leaf.
• Otherwise, by the definition of irreducibility, there is some K-ary X -valued tree x′ of depth

at most `t (again, with t = d − sfat2(H|A(v))) so that for each leaf v′ of x′, it holds that
sfat2(H|A(v)∪A(v′)) < sfat2(H|A(v)). Then we attach x′ to x via the leaf v, i.e., we label the
leaf v with x′1 and add a copy of the tree x′ to x rooted at the leaf v (Definition 24).

We claim that x(d) = x(d−1), namely that for any leaf v of x(d−1), we have that H|A(v) is `t-
irreducible, where t = d − sfat2(H|A(v)). To do this, we introduce the following notation: for
s ≥ 0, let B(s) denote the set of leaves of x(s) so that H|A(v) is not empty or `t-irreducible for
t = d− sfat2(H|A(v)). We now prove the following claim:

Claim 37 For 0 ≤ s ≤ d− 1, for each leaf v ∈ B(s), sfat2(H|A(v)) ≤ d− s− 1.

Proof [Proof of Claim 37] We use induction on s. The base case s = 0 is immediate since the tree
x(0) has a single leaf v which satisfies A(v) = {(x, y)}, and sfat2(H|(x,y)) < sfat2(H) = d is
assumed.

To establish the inductive step, note that any leaf v ∈ B(s+1) does not correspond to a leaf
v′ of x(s). Rather, there is some leaf ṽ of x(s) and some tree x′, as well as some leaf ṽ′ of x′

so that v is the leaf ṽ′ attached to x(s) via ṽ. In particular, we have A(v) = A(ṽ) ∪ A(ṽ′) and
sfat2(H|A(ṽ)∪A(ṽ′)) < sfat2(H|A(ṽ)). By the inductive hypothesis, sfat2(H|A(ṽ)) ≤ d−s−1, and
so sfat2(H|A(v)) ≤ d− s− 2, completing the inductive step.

We now set x = x(d−1). It follows from Claim 37 that for all leaves v of x, either v 6∈ B(s), in
which caseH|A(v) is empty or `t-irreducible for t = d− sfat2(H|A(v)), or sfat2(H|A(v)) ≤ 0, i.e.,
H|A(v) is empty or `-irreducible for all ` ∈ N (Lemma 25).

To establish that x is a reducing tree, we need to establish the second item in Definition 17
regarding depth(v) for leaves v of x. To do so, we establish the following claim:

Claim 38 Fix any 0 ≤ s ≤ d− 1. For each leaf v of x(s), letting t = d− sfat2(H|A(v)), we have
that depth(v) ≤

∑t−1
t′=0 `t′ .
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Proof We establish the claim using induction on s. For the base case s = 0, the only leaf v
of x(0) satisfies depth(v) = 1, which is bounded above by

∑t−1
t′=0 `t′ (Note that we have t =

d− sfat2(H|A(v)) ≥ 1 here.)
To establish the inductive step, consider any leaf v of x(s+1) for some 0 ≤ s ≤ d − 2, and let

t = d−sfat2(H|A(v)). If v corresponds to some leaf v′ of x(s) then certainly depth(v) ≤
∑t−1

t′=0 `t′ ,
by the inductive hypothesis. Otherwise (as in the proof of Claim 37), there is some leaf ṽ of x(s),
some tree x′ of depth at most `t̃ (where t̃ := d − sfat2(H|A(ṽ))), as well as some leaf ṽ′ of x′,
so that v is the leaf ṽ′ attached to x(s) via ṽ. Moreover, it holds that sfat2(H|A(v)) = d − t <
sfat2(H|A(ṽ)) = d− t̃, i.e., t > t̃. It follows that

depth(v) ≤ depth(ṽ) + `t̃ ≤
t̃−1∑
t′=0

`t′ + `t̃ ≤
t−1∑
t′=0

`t′ , (27)

as desired.

Applying Claim 38 for s = d − 1, we get that for each leaf v of x, depth(v) ≤
∑t−1

t′=0 `t′ for
t = d − sfat2(H|A(v)). Moreover, again fixing a leaf v of x, let sv denote the minimum value of
s′ ≥ 0 so that v corresponds to a leaf v′ in x(s′). For each 0 ≤ s′ < sv, there is a unique leaf ws′
of x(s′) (in fact, ws′ ∈ B(s′)) so that ws′ is an ancestor of the leaf v′ in x(s′). Also let wsv = v. For
any given 1 ≤ t̃ < t, choose s′ ≤ sv as small as possible so that sfat2(H|A(ws′ )

) ≤ d− t̃. We must
have sfat2(H|A(ws′−1)) > d − t̃, and so, letting t̂ := d − sfat2(H|A(ws′−1)), (similarly to (27)) it
follows that

depth(ws′) ≤ depth(ws′−1) + `t̂ ≤
t̂−1∑
t′=0

`t′ + `t̂ ≤
t̃−1∑
t′=0

`t′ ,

which completes the verification that x is a reducing tree.
To establish the last claim of the lemma, note that Claim 38 with s = d − 1 implies that to

specify a leaf v of x with sfat2(H|A(v)) = d− t, we need to specify a sequence of at most
∑t−1

t′=0 `t′

integers in [K] (as the tree x is K-ary). Moreover, the set of such sequences, taken over all leaves
v with sfat2(H|A(v)) = d− t, must be prefix-free (as a leaf cannot be an ancestor of another leaf).

Thus the number of leaves v with sfat2(H|A(v)) = d− t is at most K
∑t−1
t′=0

`t′ .

D.2. Proofs for the FilterStep algorithm

Lemma 39 Suppose F ⊂ [K]X and A ⊂ X × [K] is a subset of X × [K] of size at most ` − 1,
for some positive integer `. Suppose G,G′ ⊂ F are `-irreducible and satisfy, for each (x, y) ∈ A,
SOAG(x) = SOAG′(x) = y. If also sfat2(G) = sfat2(G′) = sfat2(F|A), then

‖SOAG′ −SOAG‖∞ ≤ 1. (28)

Proof By Lemma 28 applied to the classes G,G′, it holds that G|A and G′|A are 1-irreducible and
satisfy sfat2(G|A) = sfat2(G′|A) = sfat2(G) = sfat2(G′) = sfat2(F|A).

If there were some x ∈ X together with k, k′ ∈ [K] so that |k − k′| ≥ 2 so that

sfat2(G|A∪{(x,k)}) = sfat2(G), sfat2(G′|A∪{(x,k′)}) = sfat2(G′),

31



GOLOWICH

and since G,G′ ⊂ F , we would have that

sfat2(F|A∪{(x,k)}) = sfat2(F|A∪{(x,k′)}) = sfat2(F|A),

which is a contradiction to Lemma 10.

Lemma 14 uses Lemma 39 to show that any class H belonging to one of the sets I`r,t,d−t(F)
constructed in FilterStep is close in `∞ norm to its representative Lrep(H).

Lemma 14 Fix inputs F , (`r,t)r,t≥0, rmax to FilterStep. For any 0 ≤ r ≤ rmax, 0 ≤ t ≤ d,
and anyH ∈ I`r,t,d−t(F), we have that ‖ SOAH−SOALrep(H) ‖∞ ≤ 1.

Proof [Proof of Lemma 14] Fix someH ∈ I`r,t,d−t(F) so that either r = rmax orH 6∈ I`r+1,t,d−t(F),
and recall that d − t = sfat2(H). If, in the iteration of the for loop in step 3(a)i when the given H
is considered (which corresponds to the value r), the branch in step 3(a)iB is taken, then we have
‖ SOAH−SOALrep(H) ‖∞ = 0. The nontrivial case is that the branch in step 3(a)iA is taken: in
this case, choose L ∈ Ld−t and A ⊂ X × [K] so that |A| ≤ `r,t − 1, sfat2(F|A) = d − t and so
that for all (x, y) ∈ A, SOAL(x) = SOAH(x) = y.

Certainly H is `r,t-irreducible. The same holds for L, since the only classes that have been
added to Ld−t at the time when H is reached in step 3(a)i must belong to I`r′,t,d−t(F) for some
r′ ≥ r, and for all r′ ≥ r, we have `r′,t ≥ `r,t. We also have sfat2(L) = sfat2(H) = d − t since
this is the case for all elements of Ld−t.

By Lemma 39 with G = H,G′ = L, ` = `r,t, it follows that since `r,t − 1 ≥ |A|, we have that

‖ SOAH−SOAL ‖∞ ≤ 1,

as desired.

Lemma 15 Fix inputsF , (`r,t)r,t≥0, rmax to FilterStep. For any 0 ≤ t ≤ d and 0 ≤ r ≤ rmax,
and any A ⊂ X × [K] with |A| ≤ `r,t− 1 so that sfat2(F|A) = d− t, there is at most one element
L ∈ Ld−t ∩I`r,t,d−t(F) so that for all (x, y) ∈ A, SOAL(x) = y.

Proof [Proof of Lemma 15] Suppose for the purpose of contradiction there were two distinctL,L′ ∈
Ld−t ∩ I`r,t,d−t(F) so that for all (x, y) ∈ A, SOAL(x) = SOAL′(x) = y. By construction all
elements of Ld−t are elements of I`r,t,d−t(F) for some r. Suppose (without loss of generality)
that L′ is considered after L in the for loop in step 3(a)i of FilterStep. Since |A| ≤ `r′,t − 1
for all r′ ≥ r, when L′ is considered in the for loop in step 3(a)i of FilterStep, we would not
add L′ to Ld−t and could instead set Lrep(L′)← L.

D.3. Proofs for the SOAFilter algorithm

Lemma 40 Fix F ⊂ [K]X , and in the context of the algorithm SOAFilter, consider any 0 ≤
j ≤ d and 1 ≤ s ≤ d, and set r = rmax − jr0 − 1. For any A ∈ Qj,s, letting t := d− sfat2(F|A),
it holds that F|A is `r,t-irreducible.
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Proof Given A ∈ Qj,s, let H := F|A. There is some A′ ∈ Qj,s−1 so that, letting H′ := F|A′ ,
there is some y ∈ [K] and leaf v of the tree x(H′,(xA′ ,y)) so that A = A′ ∪A(v) (see step 4(a)ivB
of SOAFilter). Let t′ := d − sfat2(H′). Since the tree x(H′,(xA′ ,y)) is a reducing tree with
respect to H′ for the pair (xA′ , y) and the sequence (`r,t+t′)0≤t≤d−t′ , we have that H′|A(v) = F|A
is `r,(sfat2(H′)−sfat2(H))+t′-irreducible, i.e., `r,t-irreducible (see Definition 17).

Lemma 41 Fix F ⊂ [K]X , and in the context of the algorithm SOAFilter consider any 0 ≤
j ≤ d and 1 ≤ s ≤ d, and let r = rmax − jr0 − 1. Then the following statements hold:

1. For any A ∈ Qj,s, let t := d− sfat2(F|A); then |A| ≤
∑t−1

t′=0 `r,t′ .
2. For any A ∈ Qj,s, let H := F|A, t := d− sfat2(H), and consider any of the reducing trees

x(H,(xA,y)) constructed in step 4(a)ivA of SOAFilter, and any leaf v of x(H,(xA,y)). Then
for any t < t̃ ≤ d− sfat2(H|A(v)), there is some node v′ of x(H,(xA,y)) which is an ancestor

of v (or is v itself) and so that sfat2(H|A(v′)) ≤ d− t̃ and |A ∪A(v′)| ≤
∑t̃−1

t′=0 `r,t′ .

Proof Fix any j, let r = rmax − jr0 − 1, and write Qj :=
⋃

0≤s≤d Qj,s. We begin with the proof
of item 1, which we establish via induction on t; the base case t = 0 is immediate since the only
element A ∈ Qj with sfat2(F|A) = d is A = ∅. Suppose the statement of the lemma holds for all
A ∈ Qj with sfat2(F|A) > d − t0, for any t0 ≥ 0. Now, for any 0 ≤ s ≤ d, fix any A ∈ Qj,s

with sfat2(F|A) = d − t0. By construction of Qj,s, there is some A′ ∈ Qj,s−1, together with
some (xA′ , y) ∈ X × [K], so that the following holds. Let us set H := F|A, H′ := F|A′ and
t′0 := d − sfat2(H′) < t0; then for some leaf v of the reducing tree x(H′,(xA′ ,y)) (which is defined
with respect to the sequence (`r,t′0+t′)0≤t′≤d−t′0), we have that H = H′|A(v). By definition of a
reducing tree, we have that

|A(v)| ≤
(d−t′0)−(d−t0)−1∑

q=0

`r,q+t′0 =

t0−1∑
t′=t′0

`r,t′ .

By the inductive hypothesis, it holds that |A′| ≤
∑t′0−1

t′=0 `r,t′ . Then

|A′ ∪A(v)| ≤
t0−1∑
t′=0

`r,t′ ,

which establishes part 1.
Next we establish part 2. Fix A,x(H,(xA,y)), v as in the statement of the lemma, and consider any

t < t̃ ≤ d− sfat2(H|A(v)). By the definition of a reducing tree there is some node v′ of x(H,(xA,y))

which is an ancestor of v so that sfat2(H|A(v′)) ≤ d − t̃ and so that depth(v′) ≤
∑t̃−t−1

t′=0 `r,t′+t.
(If t̃ = d− sfat2(H|A(v)) we may just choose v′ = v.) Using part 1, we obtain that

|A ∪A(v′)| ≤
t−1∑
t′=0

`r,t′ +

t̃−t−1∑
t′=0

`r,t′+t =

t̃−1∑
t′=0

`r,t′ .

Finally we are ready to establish the main strong stability result of SOAFilter.
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Lemma 18 Fix any positive integer ¯̀. Suppose that G ⊂ F is nonempty, ĝ ∈ [K]X , that ‖ SOAG −ĝ‖∞ ≤
χ for some χ > 0, and that G is (¯̀· (d+3)d)-irreducible. Then there is some ¯̀-irreducible L? ⊂ F ,
depending only on G, so that ‖ SOAL? −SOAG ‖∞ ≤ (2 + 2χ)(d + 1) + 1 and so that L? ∈ Rĝ,
where Rĝ is the output of SOAFilter when given as inputs F , ĝ, rmax = (d + 1), τmax =
(2 + 2χ)(d+ 1) and the sequence `r,t := ¯̀· (r + 2)t for 0 ≤ r ≤ (d+ 1), 0 ≤ t ≤ d.

Moreover, all L ∈ Rĝ satisfy ‖ SOAL−ĝ‖∞ ≤ (2 + 2χ)(d+ 1) and are ¯̀-irreducible.

Proof The final statement of the lemma follows from step 5 of SOAFilter.
We proceed to prove the remainder of the lemma. For 0 ≤ τ ≤ (2 + 2χ)(d + 1) and 2 ≤ r ≤

(d+ 1), define
µ(r, τ) := max

(H,`)∈Gr,τ
{sfat2(H)} , (29)

where

Gr,τ :=

{
(H, `r,t) :

H ⊂ F is `r,t-irreducible and a finite restriction subclass of F ,
where t = d− sfat2(H), and ‖SOAH−SOAG ‖∞ ≤ τ .

}
. (30)

Since G is `(d+1),d-irreducible, and for all t, r we have `r,t ≤ `(d+1),d, we have that (G, `r,t) ∈ Gr,τ
for t = d − sfat2(G) and all 0 ≤ r ≤ (d + 1), 0 ≤ τ ≤ (2 + 2χ)(d + 1), i.e., Gr,τ is nonempty
and so µ(r, τ) is well-defined. Thus, for all r, τ in this range, it holds that for fixed r, τ 7→ µ(r, τ)
is a non-decreasing function of τ , and for fixed τ , r 7→ µ(r, τ) is a non-increasing function of
r (since for any t, r 7→ `r,t is an increasing function). By Lemma 43, there is some r?, τ? with
r? = (d+1)−j?, τ? = (2+2χ)j? for some 0 ≤ j? ≤ d, so that µ(r?, τ?) = µ(r?−1, τ?+2+2χ).

Now choose some (H?, `?) which achieves the maximum in (29) for r = r?, τ = τ?; letting
t? = d − sfat2(H?), we have that `? = `r?,t? . Let Lrep(·) be the mapping defined as the output
of FilterStep with the input class F , the sequence (`r,t)0≤r≤rmax,0≤t≤d, and rmax = d + 1
(these are exactly the parameters used in Step 1 of SOAFilter). Now set L? = Lrep(H?) ∈
Ld−t? ∩I`r?,t? ,d−t?(F); note that this is well-defined sinceH? ∈ I`r?,t? ,d−t?(F).

By definition ofH? we have that

‖ SOAH? −SOAG ‖∞ ≤ τ?.

By Lemma 14, the fact that ‖ SOAG −ĝ‖∞ ≤ χ (by assumption), and the triangle inequality, it
follows that

‖ SOAL? −ĝ‖∞ ≤ τ? + 1 + χ. (31)

Next consider the execution of SOAFilter (Algorithm 2) in the iteration of the for loop in line 4
corresponding to j = j? (and with input ĝ and `r,t, rmax, τmax as in the lemma statement; note that
we have τ0 = 2 + 2χ, r0 = 1 in the context of SOAFilter). In particular, in this iteration of the
loop we have τ = τ? + 2 + χ, r = r? − 1. We define a particular sequence Â0 ∈ Qj?,0, Â1 ∈
Qj?,1, . . . , Âŝ ∈ Qj?,ŝ, for some ŝ ≤ d + 1 (to be defined below). First set Â0 = ∅. Given
the choice of Âs ∈ Qj?,s, for any s ≥ 0, define Âs+1 as follows: consider the iteration of the
for loop over Qj?,s (i.e., the bullet point in step 4a) for which A = Âs ∈ Qj?,s. If it holds that
‖ SOAF|Âs

−ĝ‖∞ ≤ τ? + 2 + χ, meaning that the branch in step 4(a)ii is taken, then set ŝ = s

(in which case Âs+1 is not defined). Otherwise, on step 4(a)iv on the iteration of the for loop
corresponding to A = Âs, choose y = SOAL?(xÂs

) (which is of distance at most τ? + 1 + χ =

(τ? + 2 + χ) − 1 from ĝ(xÂs
)). Then let v be the unique leaf of the reducing tree x(F|Âs ,(xÂs ,y))
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corresponding to SOAL? in the sense that for all (x′, y′) ∈ A(v), SOAL?(x
′) = y′. Now set

Âs+1 := Âs ∪ A(v) ∈ Qj?,s+1 (again we use that for each such pair (x′, y′), |ĝ(x′) − y′| ≤
(τ? + 2 + χ) − 1). Notice that the definition of Âs+1 from Âs above relies on the fact that F|Âs

is nonempty for each s; we will establish that this is case below, which will show that the Âs are
well-defined for 0 ≤ s ≤ ŝ. Finally, if there is no 0 ≤ s ≤ d so that ‖ SOAF|Âs

−ĝ‖∞ ≤ τ?+2+χ,
then define ŝ = d+ 1 (we will show that this will not be the case).

We claim that (a) for each 0 ≤ s ≤ ŝ, all Âs ∈ Qj?,s are well-defined, (b) ŝ ≤ d, and (c)
sfat2(F|Âŝ

) = d− t?. (Recall that d− t? = sfat2(L?) = sfat2(H?) = µ(r?, τ?) = µ(r?− 1, τ? +
4).) We show this in several steps:
• We begin by showing that for all s ≤ min{ŝ, d}, it holds that sfat2(F|Âs

) ≥ sfat2(L?).
This immediately implies that Âs is well-defined for all 0 ≤ s ≤ min{ŝ, d}, since the
fact that sfat2(F|Âs

) ≥ 0 implies that F|Âs
is nonempty. Suppose that this is not the

case; then choose s < ŝ as large as possible so that sfat2(F|Âs
) ≥ sfat2(L?) (in partic-

ular, Âs is well-defined and F|Âs
is nonempty). Let y = SOAL?(xÂs

). Let v be the

unique leaf of the tree x(F|Âs ,(xÂs ,y)) corresponding to SOAL? in the sense that for all
(x′, y′) ∈ A(v), we have SOAL?(x

′) = y′. By definition of s and of Âs+1 we must
have that sfat2(F|Âs∪A(v)) < sfat2(L?) ≤ sfat2(F|Âs

). By part 2 of Lemma 41 with

t̃ = t? + 1 = sfat2(L?) + 1 and A = Âs, there is some node v′ of the tree x(F|Âs ,(xÂs ,y))

which is an ancestor of v and satisfies sfat2(L?|Â∪A(v′)) ≤ sfat2(F|Â∪A(v′)) < sfat2(L?) as

well as |Âs ∪A(v′)| ≤
∑t?

t′=0 `r?−1,t′ . Now notice that for each pair (x′, y′) ∈ Âs ∪A(v′),
we have that SOAL?(x

′) = y′ by construction. But since L? is `r?,t?-irreducible, this is a
contradiction in light of Lemma 28 and the fact that

t?∑
t′=0

`r?−1,t′ ≤ `r?,t?

for all possible r? ≥ 1, t? ≥ 0 for our choice of `r,t = ¯̀· (r + 2)t.
• Next we show that ŝ ≤ d (which implies that ‖ SOAF|Âŝ

−ĝ‖∞ ≤ τ? + 2 + χ). To do

this we note that since the tree x(F|Âs ,(xÂs ,y)) used to define Âs+1 from Âs is a reducing
tree for the class F|Âs

, we must have that sfat2(F|Âs+1
) < sfat2(F|Âs

), and so for s ≤ ŝ,
sfat2(F|Âs

) ≤ d−s. If it is not the case that ŝ ≤ d (i.e., ŝ = d+1), then by the previous item
for s = d, we have that 0 ≥ sfat2(F|Âd

) ≥ sfat2(L?), which implies that sfat2(F|Âd
) =

sfat2(L?) = 0 since L? is nonempty. In particular, by Lemma 25, L?,F|Âd
are `-irreducible

for all ` ∈ N. By Lemma 39 with A = Âd, G = L?,G′ = F|Âd
, since for all (x′, y′) ∈ Âd,

we have SOAL?(x
′) = SOAF|Âd

(x′) = y′, it follows that ‖ SOAF|Âd
−SOAL? ‖∞ ≤ 1.

Together with the triangle inequality and (31), this gives ‖ SOAF|Âd
−ĝ‖∞ ≤ τ? + 2 + χ.

But this means that in step 4(a)ii of SOAFilter, it holds that ‖SOAF|Âd
−ĝ‖∞ ≤ τ =

τ? + 2 + χ, and thus the branch in that step is taken, i.e., we set ŝ = d. This shows it cannot
be the case that ŝ = d+ 1, as desired.
• Finally we show that sfat2(F|Âŝ

) ≤ µ(r?−1, τ?+2+2χ). By definition of µ(·, ·) it suffices
to show that F|Âŝ

∈ Gr?−1,τ?+2+2χ. By the definition of ŝ and the fact that ŝ ≤ d, we have
that ‖ SOAF|Âŝ

−ĝ‖∞ ≤ τ? + 2 + χ, and thus ‖ SOAF|Âŝ
−SOAG ‖∞ ≤ τ? + 2 + 2χ.
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By Lemma 40, we have that F|Âŝ
is `r?−1,t-irreducible for t = d − sfat2(F|Âŝ

). Hence
F|Âŝ

∈ Gr?−1,τ?+2+2χ, and thus µ(r? − 1, τ? + 2 + 2χ) ≥ sfat2(F|Âŝ
).

• From the first and second items above it follows that sfat2(F|Âŝ
) ≥ sfat2(L?), and the third

item above shows that sfat2(F|Âŝ
) ≤ µ(r?−1, τ?+2+2χ) = µ(r?, τ?) = sfat2(L?). Thus

sfat2(F|Âŝ
) = sfat2(L?) = d− t?.

Part 1 of Lemma 41 gives that |Âŝ| ≤
∑t?−1

t′=0 `r?−1,t′ < `r?−1,t? < `r?,t? . By Lemma 15, there
is at most one choice of L ∈ Ld−t? so that L is `r?,t?-irreducible and for each (x, y) ∈ Âŝ,
SOAL(x) = y. Notice that L? is one such choice of L. Thus L? must be added to Rĝ in step 4(a)ii
of SOAFilter when Âŝ is considered in the for loop.

By Lemma 39 with A = Âŝ, G = L?,G′ = F|Âŝ
, since |Âŝ| < `r?−1,t? , sfat2(L?) =

sfat2(F|Âŝ
), L? and F|Âŝ

are both `r?−1,t?-irreducible, and for all (x, y) ∈ Âŝ, SOAL?(x) =
SOAF|Âŝ

(x) = y, we have that ‖ SOAL? −SOAF|Âŝ
‖∞ ≤ 1. Together with ‖SOAF|Âŝ

−SOAG ‖∞ ≤
τ? + 2 + 2χ and τ? ≤ (2 + 2χ)d, we get that ‖SOAL? −SOAG ‖∞ ≤ (2 + 2χ)(d+ 1) + 1. More-
over, since ‖ SOAF|Âŝ

−ĝ‖∞ ≤ τ? + 2 + χ ≤ (2 + 2χ)(d + 1) − 1, we have that SOAL? is not
eliminated from Rĝ in step 5 of SOAFilter.

Lemma 42 In the algorithm SOAFilter, we have the following upper bound on the size of the
output set Rĝ:

|Rĝ| ≤
rmax∑
r=0

K
∑d−1
t′=0

`r,t′ .

In particular, for the choice rmax = (d+ 1) and `r,t = ¯̀· (r + 2)t (for any ¯̀∈ N), we get

|Rĝ| ≤ K
¯̀·(d+4)d .

Proof Fix any 0 ≤ j ≤ d considered in the for loop on step 4 of SOAFilter. Let τ = jτ0 +3, r =
rmax − jr0 − 1. For accounting purposes, we define the following tree T whose non-leaf nodes are
labeled by elements of X (the tree T does not satisfy the requirements of Definitions 5 or 16). The
root of the tree T is labeled by the point x∅ defined in step 4(a)iii of SOAFilter corresponding
to ∅ ∈ Qj,0 (in the event that this step is never reached, then at most a single element is added to
Rĝ in SOAFilter for the value of j under consideration). We will call some of the nodes of T
special; the root is special. Each special node of T is labeled by some xA corresponding to the
execution of step 4(a)iii in SOAFilter for some 0 ≤ s ≤ d and A ∈ Qj,s. For each special
node u we define its descendents inductively as follows. The (immediate) children of u in T are
defined as follows: u has at most 2τ − 1 ∧K children, corresponding to each of the elements y of
{k − τ + 1 ∨ 0, . . . , k + τ − 1 ∧K}, where k = ĝ(xA). Each such child corresponding to some
such y is labeled by the unique child of the root of the reducing tree x(F|A,(xA,y)). Then we append
the reducing tree x(F|A,(xA,y)) (except its root) to T via this child. The leaves of a reducing tree are
not labeled by elements of X , but we label some leaves v of x(F|A,(xA,y)) as follows. For any leaf
v of x(F|A,(xA,y)), if A ∪A(v) is not added to Qj,s+1 in step 4(a)ivB, then v (viewed as a node of
T ) is defined to be a leaf of T , in which case we do not assign it a label. Otherwise, we have that
A′ := A ∪A(v) ∈ Qj,s+1; if either of the branches in steps 4(a)i or 4(a)ii are taken when A′ is
considered in the for loop (for the value s+ 1), then v has no children in the tree T (i.e., is a leaf of
T ) and again is assigned no label. Otherwise, v is labeled by the element xA′ defined in step 4(a)iii,
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in which case we say that v is special and we repeat the process described above with A′ replacing
A. Notice that the construction of T maintains the following property: for each special node v of T
which is labeled by xA, the ancestor set of v in T is exactly A.

By construction of T , each element added to Rĝ in step 4(a)ii of SOAFilter for the value
of j under consideration corresponds to a distinct leaf of the tree T , whose ancestor set is given
by some A ∈ Qj,s for some 0 ≤ s ≤ d. So it suffices to bound the number of such leaves of
T . Note that each node of T has at most K children; indeed, the special nodes of T have at most
2τ − 1 ∧ K ≤ K children, and the remaining nodes are identified with nodes of various K-ary
reducing trees. Moreover, the depth (i.e., distance to the root) of any leaf of T whose ancestor set
is given by some A ∈ Qj,s for some s ≤ d is at most |A| ≤

∑d−1
t′=0 `r,t′ , by part 1 of Lemma 41.

Thus the number of leaves of T is at most K
∑d−1
t′=0

`r,t′ . Hence

|Rĝ| ≤
rmax∑
r=0

K
∑d−1
t′=0

`r,t′ ,

and for the choice `r,t = ¯̀· (r + 2)t and rmax = (d+ 1), this number is at most

d+1∑
r=0

K
¯̀·(r+2)d ≤ K ¯̀·(d+4)d .

Lemma 43 Fix positive integersA,B, d, and let µ : {0, 1, . . . , A(d+1)}×{0, 1, . . . , B(d+1)} →
Z be a function so that 0 ≤ µ(a, b) ≤ d for all a, b and so that for each fixed b, a 7→ µ(a, b) is
non-decreasing and for each fixed a, b 7→ µ(a, b) is non-decreasing. Then there is some 0 ≤ i ≤ d
so that the pair (a, b) := (Ai,Bi) satisfies µ(a, b) = µ(a+A, b+B).

Proof Consider the d + 1 pairs (0, 0), (A,B), (2A, 2B), . . . , (A(d + 1), B(d + 1)). If for each
0 ≤ i ≤ d+ 1, µ(Ai,Bi) 6= µ(A(i+ 1), B(i+ 1)), then we have 0 ≤ µ(0, 0) < µ(A,B) < · · · <
µ(A(d+1), B(d+1)) ≤ d, which is impossible since µ(a, b) is an integer for all a, b in the domain
of µ.

Appendix E. RegLearn: Private learning algorithm for regression

In this section we combine the procedures described in the previous sections to produce an algorithm
for privately learning a real-valued hypothesis class. At a high level, our algorithm RegLearn
(Algorithm 4) proceeds as follows: given a class H ⊂ [−1, 1]X and samples from a distribution Q
supported on X × [−1, 1], it first discretizesH as described in Section 2.1: to avoid confusion with
notation in other sections, we denote the discretization parameter as η̄ > 0. In particular, we set
F := bHcη̄ ⊂ [K]X (with K = d2/η̄e) and P := bQcη̄, so that P is a distribution over X × [K].
We then use Algorithm 3 applied to the class F to learn a hypothesis ĝ ∈ [K]X with low population
error with respect to bQcη̄ and which satisfies the “weak stability” guarantee of Lemma 34. Using
Algorithm 2 we then produce a set of hypotheses Rĝ, satisfying the “strong stability” guarantee
of Lemma 18. Repeating this procedure sufficiently many times using independent datasets drawn

37



GOLOWICH

Algorithm 4: RegLearn
Input: Parameters ε, δ, η̄, β ∈ (0, 1), irreducibility parameter ¯̀ ∈ N, i.i.d. samples (x, y) ∈ X ×

[−1, 1] from a distribution Q, hypothesis classH ⊂ [−1, 1]X .
1. Set F := bHcη̄, and write K := d2/η̄e, so that F ⊂ [K]X .

Set m ←
C ¯̀(2 sfat2(F)+6)sfat2(F)+4 log2

(
1

εδβη̄

)
εη̄2 , n0 ← C0 ·

fatc0η̄(H) log(1/η̄)+log(4m/β)

η̄2 , n ←
n0m, α∆ ← 18, whereC0, c0 are the constants of Corollary 21, andC > 0 is a sufficiently
large constant.
Also set `′ ← max

{
¯̀· (d+ 3)d, C0K

2(d logK + 1)
}

, whereC0 is the constant of Corol-
lary 22.

2. Let n1 =
C0·fatc0η̄(H) log(1/η̄)+log(8/β)

εη̄2 , where C0, c0 are the constants of Corollary 21. Set
Tn1 ∼ Qn1 to be an independent sample from the distribution Q of size n1. Set

η̂ := inf
f∈F

{
errbQ̂Tn1

cη̄(f)
}

+ Lap

(
2K

εn1

)
.

to be the sum of the smallest achievable empirical error on Tn1 and a Laplace random
variable with scale 2K/(εn1). (η̂ is a private estimate of the optimal error achievable by
a classifier in F , which is neededd to apply ReduceTreeReg.)
Then set α1 := η̂ + α∆/2 + d · α∆.

3. For 1 ≤ j ≤ m:
(a) Let Sn0 ∼ Qn0 be an independent sample from the distribution Q.
(b) Run the algorithm ReduceTreeReg with the class F , distribution bQ̂Sn0

cη̄, n =
n0 and the parameters α1, α∆, `

′ defined in steps 1 and 2.
Let its output set Ŝ (defined in (20)) be denoted by Ŝ (j).

4. For 1 ≤ j ≤ m:
(a) Set R(j) ← ∅. (R(j) will hold hypotheses of the form g : X → [K].)
(b) For each hypothesis ĝ ∈ Ŝ (j), apply the algorithm SOAFilter to the hypothesis

ĝ : X → [K], with the other inputs as follows: the hypothesis class isF , the sequence
`r,t is given by ¯̀·(r+2)t, parameters τmax = 12·(sfat2(F)+1), rmax = sfat2(F)+
1.

(c) Denote the output set of SOAFilter by Rĝ; for each L ∈ Rĝ, add SOAL to the set
R̂(j).

5. Run the (ε, δ)-differentially private (m, s)-sparse selection protocol of Proposition 7 with
sparsity s = KC ¯̀(2·sfat2(F)+6)sfat2(F)+2K2·sfat2(F) logK on the sets R̂(1), . . . , R̂(m); the
universe U for the sparse selection protocol is equal to the set of all SOAL, for L ⊂ F
irreducible. Denote its output by SOAL̂ : X → [K], for some L̂ ⊂ F . Output the class L̂,
as well as the function ĥ : X → [−1, 1], defined by

ĥ(x) := −1 +
2

K
· (SOAL̂(x)− 1).

38



DIFFERENTIALLY PRIVATE REGRESSION

from the distribution Q and using the sparse selection procedure of Proposition 7, we may finally
produce a regressor in [−1, 1]X which is differentially private.

The below theorem states the main guarantee for the algorithm RegLearn:

Theorem 44 There are constants c0 ≤ 1, C ≥ 1, C1 ≥ 1 so that the following holds.6 Suppose we
are givenH ⊂ [−1, 1]X , as well as ε, δ, η̄, β ∈ (0, 1) and ¯̀∈ N. For

n = C ·
¯̀· fatc0η̄(H) · (2 · sfatη̄(H) + 6)sfatη̄(H)+5 log3

(
sfatη̄(H)·¯̀
εδβη̄

)
εη̄4

,

if the algorithm RegLearn (Algorithm 4) takes as input n i.i.d. samples (x1, y1), . . . , (xn, yn) from
any distribution Q on X × [−1, 1], then it is (ε, δ)-differentially private and its output hypothesis ĥ
satisfies

Pr
(x1,y1),...,(xn,yn)

[
errQ(ĥ) ≤ inf

h∈H
{errQ(h)}+ 30(sfatη̄(H) + 2) · η̄ + 2C1η̄

]
≥ 1− β.

Moreover, under the same (1− β)-probability event, the class L̂ ⊂ [d2/η̄e]X output by RegLearn
is ¯̀-irreducible.

Proof In the proof we will often refer to the values n0,m, η̄, α∆, α1,K,F which are set in steps 1
through 2 of RegLearn. Throughout the proof we will write d := sfat2(F) ≤ sfatη̄(H) (Lemma
23). Since our choice of n0 satisfies

n0 ≥ C0 ·
fatc0η̄(H) log(1/η̄) + log(4m/β)

η̄2
,

where c0, C0 are the constants of Corollary 21, then by Corollary 21 and the choice of α∆ = 18,
we have that

Pr
Sn0∼Qn0

[
Egood holds for the dataset Sn0

and the distribution bQcη̄

]
= Pr

Sn0∼Qn0

[
sup
f∈F

∣∣∣errbQcη̄(f)− errbQ̂Sn0
cη̄(f)

∣∣∣ ≤ α∆/6

]
≥ 1− β

4m
.

(Recall the definition of Egood in (21).)
For 1 ≤ j ≤ m, let S(j)

n0 := {(x(j)
1 , y

(j)
1 ), . . . , (x

(j)
n0 , y

(j)
n0 )} be the dataset of size n0 drawn

i.i.d. from Q in the jth iteration of step 3 of RegLearn. For convenience of notation let Q̂(j) :=

Q̂
S

(j)
n0

= 1
n0

∑n0
i=1 δ(x

(j)
i ,y

(j)
i )

denote the empirical measure over S(j)
n0 . Then by the union bound the

probability that Egood holds for each of the datasets S(j)
n0 is at least 1− β/4, i.e.,

Pr

[
∀j ∈ [m] : sup

f∈F

∣∣∣errbQcη̄(f)− errbQ̂(j)cη̄(f)
∣∣∣ ≤ α∆/6

]
≥ 1− β

4
. (32)

Let E0 be the event inside the probability above, namely that Egood holds for each S(j)
n0 .

The bulk of the proof of Theorem 44 is to show the following claims:
The first, Claim 45, shows that α1 in step 2 in of RegLearn is differentially private and is with

high probability an upper bound on the optimal error with respect to the true distribution Q:

6. In particular, c0 is the corresponding constant of Corollary 21 and C1 is the corresponding constant of Corollary 22.
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Claim 45 (Privacy and accuracy of α1) The value α1 produced in step 2 of RegLearn is (ε, 0)-
differentially private as a function of the dataset Tn1 (and thus the entire dataset of n samples used
by RegLearn). Moreover, α1, satisfies the following:

Pr

[
inf
f∈F

{
errbQcη̄(f)

}
+ α∆ ≥ α1 − d · α∆ ≥ inf

f∈F

{
errbQcη̄(f)

}
+ α∆/6

]
≥ 1− β/4. (33)

Claim 46 There is an event E1 that occurs with probability at least 1− β/2 over the randomness
of the dataset and the algorithm, so that under E0 ∩ E1, RegLearn outputs a class L̂ ⊂ F which
is ¯̀-irreducible and satisfies L̂ ∈ R(j) for some 1 ≤ j ≤ m.

Claim 47 Let C0, C1 be the constants of Corollary 22. Suppose `′ ≥ C0K
2(d log(K) + 1). Under

the event E1 ∩ E0, the output ĥ of RegLearn satisfies

errQ(ĥ) ≤ inf
h∈H
{errQ(h)}+ 30(d+ 2)η̄ + 2C1η̄. (34)

Assuming Claims 45, 46 and 47, we complete the proof of Theorem 44. By Claim 47, under
the event E0 ∩E1 (which holds with probability at least 1− β), we have that the output hypothesis
ĥ : X → [−1, 1] of RegLearn satisfies (34). Moreover, by Claim 46, under E0 ∩ E1, the class L̂
output by RegLearn is ¯̀-irreducible.

Next we argue that the outputs (L̂, ĥ) of RegLearn are (ε, δ)-differentially private as a function
of its input dataset (which consists of the disjoint union of the datasets Tn1 , S

(1)
n0 , . . . , S

(m)
n0 , which

we denote as R). Let us consider two neighboring datasets R,R′. If they differ in a sample corre-
sponding to Tn1 , then we have that for any eventE, PrR[(L̂, ĥ) ∈ E] ≤ eε ·PrR′ [(L̂, ĥ) ∈ E] by the
(ε, 0)-differential privacy of α1 (Claim 45) and the post-processing lemma for differential privacy
(Dwork and Roth, 2013, Proposition 2.1) (since for fixed S(1)

n0 , . . . , S
(m)
n0 , (L̂, ĥ) are randomized

functions of α1). Otherwise, R,R′ differ in a sample corresponding to one of S(1)
n0 , . . . , S

(m)
n0 . Then

the (ε, δ)-differential privacy guarantee of the sparse selection protocol of Proposition 7 guarantees
that for any fixed α1, for any eventE, PrR[(L̂, ĥ) ∈ E] ≤ eε ·PrR′ [(L̂, ĥ) ∈ E]+δ. This establishes
that (L̂, ĥ) are differentially private as a function of R.

Summarizing, letting d = sfat2(F) ≤ sfatη̄(H) and d′ := fatc0η̄(H) (where c0 is the constant
of Corollary 21), the sample complexity of RegLearn is

n0 ·m+ n1 ≤ C ·
¯̀(2d+ 6)d+4 log2

(
1

εδβη̄

)
· (d′ log(1/η̄) + log(m/β))

εη̄4

≤ C ′ ·
¯̀d′(2d+ 6)d+5 log3

(
d¯̀

εδβη̄

)
εη̄4

,

where C,C ′ are sufficiently large constants.
It only remains to prove Claims 45, 46, and 47, which we do so below.

Proof [Proof of Claim 45] Let C0 ≥ 1, c0 ≤ 1 be the constants of Corollary 21; then by Corollary
21, as long as

n1 ≥ C0 ·
fatc0η̄(H) log(1/η̄) + log(8/β)

η̄2
, (35)
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we have

Pr
Tn1∼Qn1

[
sup
f∈F

∣∣∣errbQcη̄(f)− errbQ̂Tn1
cη̄(f)

∣∣∣ > α∆

6

]
≤ β/8.

Let Y denote the random variable drawn according to Lap(2K/(εn1)) in step 2 of RegLearn.
Then Pr[|Y | > 2Kt/(εn1)] = exp(−t) for all t > 0, and in particular, as long as

n1 ≥ C1 ·
log(1/β)

εη̄
(36)

for a sufficiently large constant C1, it holds that Pr
[
|Y | > α∆

6

]
≤ β/8.

Under the event that both supf∈F

∣∣∣errbQcη̄(f)− errbQ̂Tn1
cη̄(f)

∣∣∣ ≤ α∆/6 and |Y | ≤ α∆/6,

which holds with probability at least 1− β/4, we get that

inf
f∈F

{
errbQcη̄(f)

}
+

5α∆

6
≥ inf

f∈F

{
errbQ̂Tn1

cη̄(f)
}

+ Y +
α∆

2
≥ inf

f∈F

{
errbQcη̄(f)

}
+
α∆

6
.

Note that the choice of n1 in step 1 ensures that both (35) and (36) hold (as long as the constant C is
sufficiently large). Recalling that η̂ = inff∈F

{
errbQ̂Tn1

cη̄(f)
}

+ Y and α1 − d · α∆ = η̂ + α∆/2,
we get that (33) holds.

To see the differential privacy ofα1, note that the function that maps Tn1 = {(x1, y1), . . . , (xn1 , yn1)}
to inff∈F

{
errbQ̂Tn1

cη̄(f)
}

has sensitivity at most K/n1, since |f(x) − y| ≤ K for each (x, y) ∈
X × [K] and f ∈ F . Since Y ∼ Lap((K/n1) · (2/ε)), we get that α1 is (ε/2, 0)-differentially
private as a function of the dataset Tn1 .

Proof [Proof of Claim 46] Recall that F = bHcη̄ and P = bQcη̄, as well as d = sfat2(F) ≤
sfatη̄(H) (Lemma 23). For α > 0, t ∈ [d + 1], recall the definition ofMα,t in (23) (defined with
respect to F and P ), and for those α, t for whichMα,t is nonempty, the definition of σ?α,t in (25).
By definition of Ŝ (j) (see (20) and step 3 of RegLearn) and Lemma 34, as long as FbQ̂(j)cη̄ ,αd+1

is nonempty, then under the eventE0, each S (j) contains at least one hypothesis of the form SOAĜ ,
where ‖σ?αt−α∆/2,t

− SOAĜ ‖∞ ≤ 5. By the pigeonhole principle, some t satisfies this property for

at least dm/(d+ 1)e sets S (j); let us denote this t by t?. We must also verify that FdQ̂(j)eη̄ ,αd+1
is

nonempty; to do so, let E1,0 be the event that

inf
f∈F

{
errbQcη̄(f)

}
+ α∆ ≥ α1 − d · α∆ ≥ inf

f∈F

{
errbQcη̄(f)

}
+ α∆/6. (37)

By Claim 45, the probability that E1,0 holds (over the choices of the algorithm RegLearn) is at
least 1 − β/4. Then noting that αd+1 = α1 − d · α∆ and using (32), we get that FbQ(j)cη̄ ,αd+1

is
nonempty under the event E0 ∩ E1,0.

Since `t ≥ `′ for all t ≥ 1 (step 3 of ReduceTreeReg), it holds from (25) and (23) that
σ?αt?−α∆/2,t?

is of the form SOAG for some G ⊂ F which is `t?-irreducible, and thus `′-irreducible.
By Lemma 18 with χ = 5, as long as `′ ≥ ¯̀· (d+ 3)d, there is some L? ⊂ F which is ¯̀-irreducible,
depending only on G, so that for any ĝ satisfying ‖ĝ− σ?αt?−α∆/2,t?

‖∞ ≤ 5, L? ∈ Rĝ, where Rĝ is

as in step 4c of RegLearn. Thus, among the sets R(1), . . . ,R(m), there are at least dm/(d + 1)e
of them containing L?.
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By Lemma 35, we have that for each 1 ≤ j ≤ m, |Ŝ(j)| ≤ K`′·2d+1
. By Lemma 42, each

element ĝ ∈ S (j) gives rise to |Rĝ| ≤ K
¯̀·(d+4)d elements of Rĝ, all of which are added to R̂(j).

Thus, recalling the definition of `′ in step 1 of RegLearn, we have that

|R̂(j)| ≤ K`′·2d+1+¯̀·(d+4)d ≤ K ¯̀·(2d+6)d+2+CK2d logK ≤ KC ¯̀(2d+6)d+2K2d logK ,

where C > 0 is a sufficiently large constant.
Now choose ν > 0 so that the (m,KC ¯̀(2d+6)d+2K2d logK)-sparse selection protocol of Propo-

sition 7 (with universe U given by the family of all SOAG , where G ⊂ F is a finite restriction
subclass of F ; this family must include all elements of R(j), 1 ≤ j ≤ m), has error at most ν on
some event E1,1 with probability at least 1 − β/4. By (Ghazi et al., 2020b, Lemma 36), we may

choose ν = C
ε log

(
mKC ¯̀(2d+6)d+2K2d logK

εδβ

)
for a sufficiently large constant C.

Now set E1 = E1,0 ∩ E1,1. Then under the event E0 ∩ E1, as long as ν < dm/(d + 1)e, the
hypothesis L̂ output by the sparse selection protocol belongs to R̂(j) for some 1 ≤ j ≤ m. That
L̂ is ¯̀-irreducible follows from the fact R(j) is the union of output sets Rĝ of SOAFilter, for
various functions g : X → [K], and Rĝ consists of ¯̀-irreducible classes (Lemma 18).

To ensure ν < dm/(d+ 1)e, it suffices to have, for C ′ a sufficiently large constant,

m >
C ′d

ε
·
(

log(m) + log

(
1

εδβ

)
+ ¯̀(2d+ 6)d+3K2 log2K

)
,

for which it in turn suffices that

m ≥
C ′′ ¯̀(2d+ 6)d+4 log2

(
1

εδβη̄

)
εη̄2

,

where we have used that K = d2/η̄e, and C ′′ is a sufficiently large constant.

Proof [Proof of Claim 47] By Claim 46, under the event E1 ∩ E0, RegLearn outputs a class
L̂ ∈ R(j) for some 1 ≤ j ≤ m, which is ¯̀-irreducible. For the remainder of the proof we assume
that E1 ∩ E0 holds and fix such a j. By Lemma 18 (with χ = 5), there is some ĝ ∈ S (j) so
that ‖ SOAL̂−ĝ‖∞ ≤ 12(d + 1). Set P̂ (j) := bQ̂(j)cη̄. By definition, each element ĝ ∈ Ŝ (j) is
of the form SOAF

P̂ (j),αt−2α∆/3
|A(v)

for some 1 ≤ t ≤ d and some node v of the tree x̂ output by

ReduceTreeReg for which FP̂ (j),αt−2α∆/3
|A(v) is nonempty and `′-irreducible (see (20)). Fix

any such element, and write J := FP̂ (j),αt−2α∆/3
|A(v). By definition we have that each f ∈ J ⊂

FP̂ (j),αt−2α∆/3
satisfies, under the event E1 ∩ E0,

errbQcη̄(f) ≤ errP̂ (j)(f) + α∆/6 ≤ αt − α∆/2 ≤ α1 − α∆/2 ≤ inf
f∈F

{
errbQcη̄(f)

}
+ (d+ 1)α∆,

(38)
where the first inequality holds underE0 (see (32)) and the final inequality follows from (37), which
holds under E1 ∩ E0 (in particular, it holds under the event E1,0 defined in the proof of Claim 45,
which is included in E1).

42



DIFFERENTIALLY PRIVATE REGRESSION

Recall the definition of finite restriction subclasses of F from Section 3. Since X is countable,
the set of all finite restriction subclasses of X is countable; thus the set of all finite unions of finite
restriction subclasses of F is countable as well. Define

F̃ = F ∪ {SOAG : G ⊂ F , G is nonempty, (d+ 1)-irreducible,
and a finite union of finite restriction subclasses of F}.

Then F̃ is countable, and Lemma 29 gives that fat2(F̃) ≤ sfat2(F̃) = d.
Let C0, C1 be the constants of Corollary 22, and choose n2 ≥ C0K

2 · (d log(K) + 1) (recall
K = d2/η̄e). By Corollary 22 applied to the class F̃ , we have:

Pr
Sn2∼Qn2

[
sup
f̃∈F̃

∣∣∣errbQcη̄(f̃)− errbQ̂Sn2
cη̄(f̃)

∣∣∣ > C1

]
≤ 1/2.

Choose some dataset Sn2 ∈ (X × [−1, 1])n2 so that supf̃∈F̃

∣∣∣errbQcη̄(f̃)− errbQ̂Sn2
cη̄(f̃)

∣∣∣ ≤ C1

holds, and write P̂ := bQ̂Sn2
cη̄ as the discretization of the empirical distribution Q̂Sn2

. Then by
(38), each f ∈ J satisfies

errP̂ (f) ≤ inf
f∈F

{
errbQcη̄(f)

}
+ (d+ 1)α∆ + C1. (39)

We next claim that errP̂ (SOAJ ) ≤ inff∈F
{

errbQcη̄(f)
}

+ (d+ 1)α∆ + C1. Suppose for the
purpose of contradiction that this is not the case. Let us write Sn2 = {(x1, y1), . . . , (xn2 , yn2)}. For
1 ≤ i ≤ n2, write ỹi := SOAJ (xi). Since J is `′-irreducible and the definition of `′ in step 1 of
RegLearn ensures `′ ≥ n2, it holds that

sfat2(J |{(x1,ỹ1),...,(xn2 ,ỹn2 )}) = sfat2(J ) ≥ 0.

Thus there is some f ∈ J so that f(xi) = ỹi = SOAJ (x̃i) for 1 ≤ i ≤ n2. Thus errP̂ (SOAJ ) =

errP̂ (f) > inff∈F
{

errbQcη̄(f)
}

+ (d+ 1)α∆ +C1, which contradicts (39). Since SOAJ ∈ F̃ (as
`′ ≥ n2 ≥ d+ 1), it follows from the choice of Sn2 that

errbQcη̄(SOAJ ) ≤ inf
f∈F

{
errbQcη̄(f)

}
+ (d+ 1)α∆ + 2C1. (40)

Recalling that ‖ SOAL̂−SOAJ ‖∞ ≤ 12(d+ 1) and using (40), we get that

errbQcη̄(SOAL̂) ≤ errbQcη̄(SOAJ )+‖SOAL̂−SOAJ ‖∞ ≤ inf
f∈F

{
errbQcη̄(f)

}
+(d+1)(α∆+12)+2C1.

Finally, using (3) with η = η̄ and the definition of ĥ : X → [−1, 1] in step 5 of RegLearn (which
implies that SOAL̂ = bĥcη̄), we get

errQ(ĥ) ≤
2(1 + errbQcη̄(SOAL̂))

d2/η̄e

≤
2(1 + inff∈F

{
errbQcη̄(f)

}
+ (d+ 1)(α∆ + 12) + 2C1)

d2/η̄e

≤
2(1 + d2/η̄e

2 · infh∈H {errQ(h)}+ 1 + (d+ 1)(α∆ + 12) + 2C1)

d2/η̄e
≤ inf

h∈H
{errQ(h)}+ η̄ · (d+ 2)(α∆ + 12) + 2C1η̄

= inf
h∈H
{errQ(h)}+ 30(d+ 2)η̄ + 2C1η̄,
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where the last line follows from the choice of α∆ = 18.
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