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Abstract
Which classes can be learned properly in the online model? — that is, by an algorithm that on
each round uses a predictor from the concept class. While there are simple and natural cases where
improper learning is useful and even necessary, it is natural to ask how complex must the improper
predictors be in such cases. Can one always achieve nearly optimal mistake/regret bounds using
“simple” predictors?

In this work, we give a complete characterization of when this is possible, thus settling an
open problem which has been studied since the pioneering works of Angluin (1987) and Little-
stone (1988). More precisely, given any concept class C and any hypothesis class H we provide
nearly tight bounds (up to a log factor) on the optimal mistake bounds for online learning C using
predictors from H. Our bound yields an exponential improvement over the previously best known
bound by Chase and Freitag (2020).

As applications, we give constructive proofs showing that (i) in the realizable setting, a near-
optimal mistake bound (up to a constant factor) can be attained by a sparse majority-vote of proper
predictors, and (ii) in the agnostic setting, a near optimal regret bound (up to a log factor) can be
attained by a randomized proper algorithm. The latter was proven non-constructively by Rakhlin,
Sridharan, and Tewari (2015). It was also achieved by constructive but improper algorithms pro-
posed by Ben-David, Pal, and Shalev-Shwartz (2009) and Rakhlin, Shamir, and Sridharan (2012).

A technical ingredient of our proof which may be of independent interest is a generalization
of the celebrated Minimax Theorem (von Neumann, 1928) for binary zero-sum games with arbi-
trary action-sets: a simple game which fails to satisfy Minimax is “Guess the Larger Number”. In
this game, each player picks a natural number and the player who picked the larger number wins.
Equivalently, the payoff matrix of this game is infinite triangular. We show that this is the only ob-
struction: if the payoff matrix does not contain triangular submatrices of unbounded sizes then the
Minimax Theorem is satisfied. This generalizes von Neumann’s Minimax Theorem by removing
requirements of finiteness (or compactness) of the action-sets, and moreover it captures precisely
the types of games of interest in online learning: namely, Littlestone games.
Keywords: Online Learning, Equivalence Queries, Littlestone Dimension, Minimax Theorem,
Mistake Bound, VC Dimension
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1. Introduction

An improper learning algorithm is an algorithm that learns a class C using hypotheses h that are not
necessarily in C. While at a first sight this may seem like a counter-intuitive thing to do, improper
algorithms are extremely powerful and using them often circumvents computational issues and
sample complexity barriers (Srebro, Rennie, and Jaakkola, 2005; Candès and Recht, 2009; Anava,
Hazan, Mannor, and Shamir, 2013; Hazan, Livni, and Mansour, 2015; Hanneke, 2016; Hazan and
Ma, 2016; Hazan, Kale, and Shalev-Shwartz, 2017; Agarwal, Bullins, Hazan, Kakade, and Singh,
2019). In fact, there are extreme examples of learning tasks that can only be performed by improper
algorithms (Daniely and Shalev-Shwartz, 2014; Daniely, Sabato, Ben-David, and Shalev-Shwartz,
2015; Angluin, 1987; Montasser, Hanneke, and Srebro, 2019).

However, while many of the improper algorithms proposed in the theoretical literature use so-
phisticated representations (e.g., Haussler, Littlestone, and Warmuth, 1994; Littlestone, 1988), other
natural improper algorithms use “simple” hypotheses which often can be described as simple com-
binations of functions from C. For instance, many algorithms (e.g., boosting) use sparse weighted
majority-votes of concepts from the class. It is therefore natural to ask:

Can any given (learnable) class C be learned by algorithms which use “simple” hypotheses?

Online Classification. While the above question has been extensively studied (and answered1)
in the batch setting, in the online setting it remains largely open. Note that already in the realiz-
able mistake-bound model there are learnable classes which cannot be learned properly: one simple
example is the class of all singletons over N. Indeed, in each round any proper learner must use
a singleton 1{n}, and therefore the adversary can always force a mistake by presenting the exam-
ple (n, 0). Note however, that if the learner could use the all-zero function 1∅ (which is not in the
class), then she would only make one mistake before learning the target concept.

In general, the optimal mistake-bound for learning C is achieved by the Standard Optimal Al-
gorithm (SOA) of Littlestone, which is improper (as the above example shows). It is interesting to
note that it is not known whether the hypothesis space H used by the SOA is simple in any natural
sense: e.g., it is not known whether its Littlestone dimension is bounded in terms of the Littlestone
dimension of C, or even whether its VC dimension is. (In the above example, the SOA only uses the
class H = C∪ {1∅} which has the same Littlestone and VC dimensions as C.) One of the results in
this work provides a nearly optimal algorithm (up to a numerical multiplicative factor) which uses
hypotheses that are sparse majority votes of functions from C.

1.1. Our Contribution

In this section we survey the main contributions of this work. Some of the statements involve stan-
dard technical terms which are defined in Section 2, where we also give complete formal statements
of our results.

1. Indeed, by Uniform Convergence, any Empirical Risk Minimizer attains a near-optimal sample complexity in the PAC
model. (Vapnik and Chervonenkis, 1971)
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MAIN RESULT I: WHEN DO HYPOTHESES FROM H SUFFICE TO LEARN C?

Our first main result provides a complete combinatorial characterization of a near-optimal mistake
bound for online learning C using hypotheses from H. This settles an open problem which was
studied since the early days of Computational Learning Theory (Angluin, 1987; Littlestone, 1988;
Angluin, 1990; Hellerstein et al., 1996; Balcázar et al., 2001, 2002a,b; Hayashi et al., 2003; Angluin
and Dohrn, 2020; Chase and Freitag, 2020).

Two Basic Lower Bounds. The early works of Angluin (1987, 2004); Balcázar et al. (2002b) and
Littlestone (1988) presented two basic lower bounds for online learning C using H. In the seminal
work which introduced the mistake-bound model Littlestone (1988) defined the Littlestone2 dimen-
sion and noticed that it provides a lower bound on the number of mistakes, even if the algorithm is
allowed to use any hypothesis h : X → {0, 1} (i.e. H = {0, 1}X ).

The second (and less known) lower bound was rooted in the seminal work of Angluin (1987)
which introduced the equivalence-query model. This bound was later generalized by Hellerstein,
Pillaipakkamnatt, Raghavan, and Wilkins (1996); Balcázar, Castro, Guijarro, and Simon (2002b)
and today it is known as the strong consistency dimension (Balcázar, Castro, Guijarro, and Simon,
2002b) or the dual Helly number (Bousquet, Hanneke, Moran, and Zhivotovskiy, 2020). The idea
behind this lower bound can be seen as a generalization of the argument showing that singletons over
N are not properly learnable, which was discussed earlier. Assume there is a set S ⊆ X × {0, 1}
of labeled examples such that no function h ∈ H satisfies (∀(x, y) ∈ S) : h(x) = y, but for some
k ∈ N every (x1, y1), . . . , (xk, yk) ∈ S has some c ∈ C with (∀i ≤ k) : c(xi) = yi. In words, S is
not realizable by the hypothesis class H, but every subset of S of size k is realizable by the concept
class C. Given such a set S, the adversary can force k mistakes for any learner with hypothesis
class H, as follows. On each round, the learner proposes a hypothesis h ∈ H, and since S is not
realizable by H there must exist (x, y) ∈ S with h(x) 6= y, so that this counts as a mistake. Since
all subsets of S of size k are realizable by C, this adversary also guarantees that all k examples it
gives will still be consistent with some c ∈ C. However, if instead there exists a subset of S of size
k that is not realizable by C, then this strategy for the adversary might fail. The dual Helly number
K of C relative to H is the smallest k such that, for every set S not realizable by H, there exists a
subset of size at most k not realizable by C; K is defined to be infinite if no such k exists. Thus, the
above adversary can always force at least K− 1 mistakes.

We show in Theorem 1 that the Littlestone dimension and dual Helly number are the only
obstacles for learning C using H:

Main Result I (Theorem 1)
There exists a deterministic algorithm which online learns C with at most O(L · K · log(K))
mistakes while only using hypotheses from H, where L is the Littlestone dimension of C and
K is the dual Helly number of C relative to H.

This improves over the best previous result KL by (Chase and Freitag, 2020) who were the first
to show that C can be learned using hypotheses from H if and only if K,L <∞. Our result further
improves the upper bound to a polynomial dependence which is nearly tight in the sense that a lower
bound of max{L,K − 1} on the optimal mistake bound always holds, and there exist classes C,H

2. The name, Littlestone dimension, was later coined by Ben-David, Pál, and Shalev-Shwartz (2009).
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of any L and K for which the optimal number of mistakes is Ω(LK) (Angluin, 1987; Littlestone,
1988; Balcázar, Castro, Guijarro, and Simon, 2002b).

MAIN RESULT II: OPTIMAL MISTAKE-BOUNDS USING SPARSE-MAJORITIES

We have seen simple examples demonstrating that sometimes one has to use improper learners
in order to achieve non-trivial mistake bounds in online learning H. A natural question is “how
improper” must an optimal algorithm be? Is there an algorithm which is close to being proper?
Our second main result shows that it is possible to achieve a nearly optimal mistake-bound (up to a
universal constant factor), using predictors that are sparse majority votes of functions in the class.

Main Result II (Theorem 3)
There exists a deterministic algorithm which online learns C with at most O(L) mistakes while
only using hypotheses of the form Maj(h1, . . . , hp) for hi ∈ C, where L is the Littlestone
dimension of C, and p is a constant depending only on C (proportional to dual VC dimension).

This provides another demonstration to the usefulness of majority-votes/ensemble-methods in
classification and might be seen as a kind of online learning analogue of Hanneke’s result for optimal
PAC learning (Hanneke, 2016), which is also achievable by an algorithm based on majority votes
of concepts in C. A corollary of this result is that there exist randomized proper algorithms whose
expected mistake-bound is Õ(ε · T + L

ε ), where L is the Littlestone dimension of the class.

MAIN RESULT III: NEAR-OPTIMAL REGRET-BOUNDS USING RANDOMIZED PROPER

ALGORITHMS

In a fascinating result, Rakhlin, Sridharan, and Tewari (2015) have established the existence of op-
timal randomized proper algorithms in agnostic online learning (under some additional topological
restrictions). Interestingly, their result is non-constructive: they prove the existence of such an al-
gorithm by viewing online learning as a repeated game between the learner and the adversary, and
by analyzing the value of that game via a dual perspective, which involves an application of the
Minimax Theorem w.r.t. the repeated game. On the other hand, Rakhlin, Shamir, and Sridharan
(2012) and Ben-David, Pál, and Shalev-Shwartz (2009) gave constructive proofs of this fact, but the
implied algorithms are randomized improper algorithms. The following result achieves the best of
both worlds:

Main Result III (Theorem 5)
We give a constructive proof demonstrating that any class C can be online learned in the agnos-
tic setting by a randomized proper algorithm whose expected regret is Õ(

√
L · T ), where L is

the Littlestone dimension, and T is the horizon.

Note that in the agnostic setting randomization is essential (see e.g. Ben-David, Pál, and Shalev-
Shwartz, 2009; Cesa-Bianchi and Lugosi, 2006), and unlike the realizable setting, in the agnostic
setting nearly optimal randomized proper learners can exist. Another advantage of our proof com-
pared to the argument by Rakhlin, Sridharan, and Tewari (2015) is that their application of the
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Minimax Theorem required additional assumptions such as separability and compactness, which
are not needed in our proof.

One may view the above result as yet another demonstration of the benefits of randomized
algorithms. Moreover, if one views online learning as a repeated zero-sum game where the learner’s
pure strategies are the hypotheses in H, and the adversary’s pure strategies are labelled examples,
then a randomized proper online learner simply corresponds to a mixed strategy in the repeated
game, and so this can be interpreted as another manifestation of the benefits of mixed (randomized)
strategies in online learning.

In fact, the Minimax Theorem for zero-sum games is a key component in our derivation, and as
another technical contribution of this work, we prove a generalization of it to infinite games which
we discuss next.

MAIN RESULT IV: A GENERALIZATION OF THE MINIMAX THEOREM

Consider the following “guess the larger number” game between two players whom we call Alice
and Bob. Each of the players privately picks a natural number; then, Alice and Bob reveal the
numbers to each other, and the winner is the player who picked the larger number. Note that the
payoff matrix of this game is an N× N triangular matrix.

This game does not satisfy the Minimax theorem. Indeed, given any mixed strategy P of Alice,
namely a distribution over the natural numbers, Bob can pick a sufficiently large natural number n
such that the probability that a random numberm ∼ P chosen by Alice satisfiesm ≥ n is arbitrarily
small. Thus, for every mixed strategy played by Alice, Bob can find a response which wins with
probability arbitrarily close to 1. By symmetry, also the opposite holds: for every mixed strategy
played by Bob, Alice can find a response that wins with probability arbitrarily close to 1. We show
that this game is the only obstruction to the Minimax Theorem in the following sense:

Main Result IV (Theorem 6 and Theorem 7)
The Minimax Theorem applies to every (possibly infinite) binary-valued zero-sum game, pro-
vided that its payoff matrix does not contain triangular3sub-matrices of unbounded sizes.

Thus, this result identifies the size of a triangular submatrix as a combinatorial dimension which
replaces the assumption that the action-sets are finite in the classical Minimax Theorem of von
Neumann.

In the context of online learning, this implies that the Minimax Theorem applies to any game
which corresponds to agnostic online learning for a given Littlestone class C: i.e., the learner’s
strategies are hypotheses in C and the adversary’s strategies are labelled examples. This follows due
to the connection between the Littlestone dimension and the Threshold dimension, which implies
that the payoff matrix of this game does not contain triangular submatrices of unbounded sizes
(Shelah (1978), see Alon, Livni, Malliaris, and Moran (2019) for an elementary proof using learning
theoretic terminology).

3. We define a triangular matrix to be 1 above the diagonal and 0 below it. Also, the sub-matrix may re-order the rows
and columns to witness this triangular form.
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2. Formal Definitions and Main Results

2.1. Definitions and Notation

Fix any non-empty set X , known as the instance space. Also define Y = {0, 1}, the label space.
Our results will be expressed in terms of an abstract concept class C and hypothesis class H, which
can be any non-empty sets of concepts, that is, functions h : X → Y .

For any set H of concepts, and any sequence S ∈ (X × Y)∗ or set S ⊆ (X × Y), define
HS = {h ∈ H : ∀(x, y) ∈ S, h(x) = y}. We say S is H-realizable if HS 6= ∅, and otherwise we
say S is H-unrealizable. To simplify notation, also abbreviate H(x,y) = H{(x,y)} for (x, y) ∈ X ×Y .

For any sequence x1, x2, . . ., we use the notation x1:t=(x1, . . . , xt), or for (x1, y1), (x2, y2), . . .,
we write (x1:t, y1:t) = ((x1, y1), . . . , (xt, yt)). Also, generally define log(z) = max{ln(z), 1} for
z ≥ 1.

Online Learning. An online learning algorithm is formally defined as a function A : (X ×
Y)∗ × X → Y , with the interpretation that for a sequence of examples (x1, y1), (x2, y2), . . ., the
algorithm’s prediction at time t is

ŷt = A(x1:(t−1), y1:(t−1), xt),

and we say the algorithm makes a mistake at time t if ŷt 6= yt. We will also write

ĥt(·) = A(x1:(t−1), y1:(t−1), ·)

as the function X → Y such that ĥt(x) = A(x1:(t−1), y1:(t−1), x). Generally, for any concept class
C, learning algorithm A, and T ∈ N, define the algorithm’s hypothesis class

H(C,A, T ) = {A(S) : S ∈ (X × Y)t, 0 ≤ t ≤ T, S is C-realizable},

and also H(C,A) =
⋃
T H(C,A, T ).

We will also discuss online learning algorithms that produce randomized predictors. In this
case, the formal definition is a function A : (X × Y)∗ × X → [0, 1], with the interpretation that
A(x1:(t−1), y1:(t−1), xt) is the probability of predicting 1 at time t. Thus,∣∣A(x1:(t−1), y1:(t−1), xt)− yt

∣∣
represents the probability of a mistake at time t. Clearly, a deterministic predictor is just the special
case where A(x1:(t−1), y1:(t−1), xt) ∈ {0, 1} always. As above, h̄t = A(x1:(t−1), y1:(t−1)) denotes
the function X → [0, 1] such that h̄t(x) = A(x1:(t−1), y1:(t−1), x), the hypothesis class of A is

H(C,A, T ) = {A(S) : S ∈ (X × Y)t, 0 ≤ t ≤ T, S is C-realizable},

and H(C,A) =
⋃
T H(C,A, T ). Also define H(A, T ) = H(YX ,A, T ).

For any concept class C, learning algorithm A, and T ∈ N, define the algorithm’s mistake bound

MB(C,A,T )=max

{
T∑
t=1

1[A(x1:(t−1), y1:(t−1), xt) 6= yt] : (x1, y1), . . . ,(xT , yT ) is C-realizable

}
.

Also define MB(C,A) = supT MB(C,A, T ). For any hypothesis class H, define the optimal
mistake bound for learning C with H: MB(C,H, T ) = min{MB(C,A, T ) : H(C,A, T ) ⊆ H} and
MB(C,H) = supT MB(C,H, T ).
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Complexity Measures. We express our results in terms of well-known combinatorial complexity
measures from the learning theory literature. The main quantity appearing in most of our results is
the Littlestone dimension (Littlestone, 1988), denoted L(C), defined as the largest n ∈ N ∪ {0} for
which ∃{xy : y ∈ Yt, t ∈ {0, . . . , n − 1}} ⊆ X (interpreting Y0 = {()}) with the property that
∀y1, . . . , yn ∈ Y , ∃h ∈ C with (h(x()), h(xy1), h(xy1:2), . . . , h(xy1:(n−1)

)) = (y1, . . . , yn). If no
such largest n exists, define L(C) = ∞. Also define L(∅) = −1. When L(C) < ∞, one can show
that L can equivalently be defined inductively as maxx miny L(C(x,y)) + 1, with L(∅) = −1 as the
base case.

Another important quantity appearing in our results is the VC dimension (Vapnik and Cher-
vonenkis, 1971, 1974). For any set Z and any non-empty set F of functions Z → {0, 1}, the
VC dimension V(F) is defined as the largest n ∈ N ∪ {0} for which ∃z1, . . . , zn ∈ Z with
{(f(z1), . . . , f(zn)) : f ∈ F} = {0, 1}n: that is, every one of the 2n possible binary patterns
of length n can be realized by evaluating some function in F on the sequence z1, . . . , zn. Define
V(F) = ∞ if no such largest n exists. In particular, we will be interested both in V(C), the VC
dimension of the concept class, and also in the dual VC dimension, V∗(C), defined as the largest
n ∈ N ∪ {0} for which ∃h1, . . . , hn ∈ C with {(h1(x), . . . , hn(x)) : x ∈ X} = {0, 1}n, or
V∗(C) =∞ if no such largest n exists.

A final complexity measure appearing in our results is the dual Helly number (Bousquet, Han-
neke, Moran, and Zhivotovskiy, 2020). For any non-empty sets C and H of concepts, define the
dual Helly number, denoted K(C,H), as the minimum k ≥ 2 such that, for any H-unrealizable set
S ⊆ (X × Y), there exists a C-unrealizable S′ ⊆ S with |S′| ≤ k. If no such k exists, define
K(C,H) = ∞. The dual Helly number was used to characterize the sample complexity of proper
PAC learning by Bousquet, Hanneke, Moran, and Zhivotovskiy (2020). However, it also previously
appeared in the literature on learning from equivalence queries, where it is known as the strong
consistency dimension (Balcázar, Castro, Guijarro, and Simon, 2002b; Chase and Freitag, 2020).4

It has also appeared in the literature on distributed learning under the name co-VC dimension (Kane,
Livni, Moran, and Yehudayoff, 2019).

When C is clear from the context, we omit the argument C, writing V, V∗, and L for V(C),
V∗(C), and L(C), respectively, and when H is also clear from the context, we write K for K(C,H).
To avoid trivial cases, we always suppose V ≥ 1 and V∗ ≥ 1 in all results.

The SOA. We will make use of an online learning algorithm originally introduced by Littlestone
(1988), known as the standard optimal algorithm, denoted SOA. Specifically, for any hypothesis
class H, define a deterministic predictor SOAH : X → Y , which, for every x ∈ X , predicts
SOAH(x) = argmaxy∈Y L(H(x,y)). In particular, Littlestone (1988) proved that if L(H) < ∞,
then every x ∈ X has at least one y ∈ Y with L(H(x,y)) < L(H), and noted that this immediately
implies that the online learning algorithm AC,SOA which predicts SOAC{(xi,yi)}t−1

i=1

(xt), for each

t ≤ T , has mistake bound L(C).
The result of Littlestone (1988) implies MB(C,YX ) ≤ L(C). However, at present there is no

known simple description of the hypothesis class H(C,AC,SOA) of the SOA predictor. One of the
main contributions of the present work is to argue that there exists a learning algorithm A with a
simple hypothesis class H(C,A) which still achieves MB(C,A) = O(L(C)). In particular, we find

4. Technically, the strong consistency dimension requires the unrealizable set to be a partial function. The two defini-
tions only differ in the case the strong consistency dimension is 1, as the dual Helly number for |C| > 1 is never
smaller than 2 due to sets of the type {(x, 0), (x, 1)}.
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such an algorithm with H(C,A) contained in the set of majority votes of O(V∗) elements of C. For
instance, this has an important implication that the Littlestone and VC dimensions of H(C,A) can
be bounded in terms of L(C) and V(C): namely,

V(H(C,A)) = O(VV∗ log(V∗)) = O
(
V22V

)
and

L(H(C,A)) = O(LV∗ log(V∗)) = O
(
LV2V

)
.

These follow from composition theorems for the VC dimension (see Theorem 4.5 of Vidyasagar,
2003) and Littlestone dimension (Alon, Beimel, Moran, and Stemmer, 2020; Ghazi, Golowich,
Kumar, and Manurangsi, 2021), together with the relation V∗ < 2V+1 due to Assouad (1983).

2.2. Summary of Main Results for Online Learning

We briefly summarize the main results of this work. Their detailed statements, and proofs, are
presented in the sections below.

Theorem 1 Every pair of classes C,H ⊆ YX satisfy MB(C,H) = O(LK log(K)).

Remark 2 (Angluin, 1987; Littlestone, 1988; Balcázar, Castro, Guijarro, and Simon, 2002b) It
is known that we always have MB(C,H) ≥ max{L,K − 1}, and that there exist classes with
MB(C,H) = Ω(LK) and other classes with MB(C,H) = O(max{L,K}).

For any classifiers h1, . . . , hk, define

Maj(h1, . . . , hk)(x) = 1

∑
i≤k

hi(x) ≥
∑
i≤k

(1− hi(x))

 .
Define a hypothesis class Maj(Ck) = {Maj(h1, . . . , hk′) : 1 ≤ k′ ≤ k, h1, . . . , hk′ ∈ C}.

Theorem 3 Every class C satisfies MB(C,Maj(CcV∗)) = O(L), where c is a universal constant.

In fact, we prove a stronger result with margins. This can also be interpreted as a result about
randomized predictors based on a distribution over C. For any k ∈ N define

Vote(h1, . . . , hk)(x) =
1

k

∑
i≤k

hi(x),

and Vote(Ck) = {Vote(h1, . . . , hk′) : 1 ≤ k′ ≤ k, h1, . . . , hk′ ∈ C}.

Theorem 4 For any ε ∈ (0, 1/2), there is an algorithm A with H(C,A) ⊆ Vote(CcV∗) (for a uni-
versal constant c) such that, for any T ∈ N, running A on any C-realizable sequence {(x1, y1)}Tt=1,
there are at most O

(
L
ε log 1

ε

)
times t ≤ T where |h̄t(xt)− yt| > ε.

We also prove a result for agnostic online learning. In this case, rather than bounding the
number of mistakes, we are interested in the difference of the number of mistakes made by A and
the minimum number of mistakes made by any single h ∈ C. This is known as the regret of the
algorithm A. It is known that any algorithm whose regret is o(T ) as T → ∞ must be capable of
using randomized predictors. We establish the following result.
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Theorem 5 For any T ∈ N, there is an algorithm A with H(A, T ) ⊆ Vote(Cm), where m =

O
(

V∗T
L log(T/L)

)
, such that for any sequence (x1, y1), . . . , (xT , yT ) ∈ X × Y ,

T∑
t=1

∣∣h̄t(xt)− yt∣∣−min
h∈C

T∑
t=1

1[h(xt) 6= yt] = O
(√

LT log(T/L)
)
.

Note that A induces a randomized algorithm that on each round t interprets the hypothesis in
Vote(Cm) which A uses as a probability distribution πt on C having support size at most m, and
predicts ht(xt) for a randomly drawn ht ∼ πt. Then, the above theorem implies that the expected
regret of this randomized algorithm is at most O

(√
LT log(T/L)

)
. This strengthen a similar result

by Rakhlin, Sridharan, and Tewari (2015) who gave a non-constructive proof under further restric-
tions on the class C. It also matches the bounds by Ben-David, Pál, and Shalev-Shwartz (2009);
Rakhlin, Shamir, and Sridharan (2012) which were achieved by improper algorithms. Further, the
above bound is tight up to the log factor. The recent work of Alon, Ben-Eliezer, Dagan, Moran,
Naor, and Yogev (2021) used the non-constructive framework of Rakhlin, Sridharan, and Tewari
(2015) to get an optimal bound without this log. It remains open to prove the optimal bound con-
structively.

2.3. When Does the Minimax Theorem Hold for VC Games?

We define a general binary-valued zero-sum game as follows. Let A and B be nonempty sets,
called the action sets. We suppose they are each equipped with a σ-algebra defining the measurable
subsets; in particular, we suppose all singleton sets {a} ⊆ A, {b} ⊆ B, are measurable. Let
val : A × B → {0, 1} be a value function, assumed to be measurable in the product σ-algebra.
For each a ∈ A, we can interpret val(a, ·) as a function B → {0, 1}. We call (A,B, val) a VC
game if the VC dimension of {val(a, ·) : a ∈ A} is finite.5 A subgame of (A,B, val) is any
game (A′,B′, val) where A′ ⊆ A and B′ ⊆ B are nonempty measurable subsets, and val here
is interpreted as the restriction of val to A′ × B′. For any countable sequences {ai}i∈N in A and
{bi}i∈N in B, we say ({ai : i ∈ N}, {bi : i ∈ N}, val) is an infinite triangular subgame if ∀i, j ∈ N,
val(ai, bj) = 1[i ≤ j]. Generally, for a set S (equipped with a σ-algebra defining the measurable
subsets), denote by Π(S) the set of all probability measures on S.

Theorem 6 A binary-valued VC game (A,B, val) satisfies

inf
PA∈Π(A′)

sup
PB∈Π(B′)

E
(a,b)∼PA×PB

[val(a, b)] = sup
PB∈Π(B′)

inf
PA∈Π(A′)

E
(a,b)∼PA×PB

[val(a, b)]

for all subgames (A′,B′, val) if and only if it has no infinite triangular subgame. Moreover, this
remains true even if Π(A′), Π(B′) are restricted to be just the probability measures having finite
support.

We note that, in general, one cannot strengthen this result by replacing the inf and sup by min
and max. In other words, there are games for which the above result applies, but where optimal
maximin and minimax strategies do not exist, as the optimal value is witnessed only in the limit.

5. We note that it follows from a known relation of Assouad (1983) between VC dimension and dual VC dimension that
the VC dimension of {val(a, ·) : a ∈ A} is finite if and only if the VC dimension of {val(·, b) : b ∈ B} is also finite.
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One such simple example is the game “Guess My Number”. This game is played between two
players whom we call Alice and Bob. Each of Alice and Bob privately picks a natural number, and
Bob’s goal is to pick the same number Alice picked. Bob wins the game if and only if they picked
the same number. It is easy to see that Alice can win this game with probability arbitrarily close to
1: indeed, if Alice picks a uniform distribution over {1, . . . , N}, then she wins with probability at
least 1−1/N . However, since every distribution over N must give a positive measure to at least one
number, there is no single strategy for Alice with which she wins with probability 1.

Littlestone games. As a special case of particular importance in this work, we say (A,B, val) is
a Littlestone game if {val(a, ·) : a ∈ A} has finite Littlestone dimension. Due to a well-known
connection between the Littlestone dimension and the so-called threshold dimension it is clear that
any Littlestone game has no infinite triangular subgame (Shelah, 1978; Hodges, 1997, see also
Alon, Livni, Malliaris, and Moran, 2019). Thus, the following corollary is immediately entailed by
Theorem 6.

Corollary 7 Any binary-valued Littlestone game (A,B, val) satisfies

inf
PA∈Π(A)

sup
PB∈Π(B)

E
(a,b)∼PA×PB

[val(a, b)] = sup
PB∈Π(B)

inf
PA∈Π(A)

E
(a,b)∼PA×PB

[val(a, b)].

This remains true even if Π(A) and Π(B) are restricted to just the probability measures having
finite support.

2.4. Expression of the Results in Terms of Equivalence Queries

There is a well-known correspondence between the online learning setting of Littlestone (1988)
and the setting of Exact learning from Equivalence Queries introduced by Angluin (1987). In the
problem of learning C using Equivalence Queries for H ⊇ C, there is some unknown target concept
h∗ ∈ C, and proceeding in rounds, on each round an algorithm proposes a hypothesis h ∈ H as a
query to an oracle, which then either certifies that h = h∗ or else returns a counterexample x ∈ X
such that h(x) 6= h∗(x). The query complexity QCEQ(C,H) is defined as the minimum number q
such that there is an algorithm that, for any h∗ ∈ C, regardless of the oracle’s responses (as long
as they are valid), the algorithm is guaranteed to query the oracle with h = h∗ within at most q
queries; if no such number q exists, QCEQ(C,H) is defined to be infinite.

It is easy to observe that QCEQ(C,H) = MB(C,H) + 1. To see this, note that we can always
use an online learning algorithm to propose the hypotheses h ∈ H, and update the learner using
(x, 1− h(x)) for the returned point x on rounds where the oracle returns an x. Since each such x is
a mistake for the online learner, an optimal learner will need at most MB(C,H) such rounds before
its next hypothesis h equals h∗, in which case one final query suffices for the oracle to certify that
h = h∗. In the other direction, given any optimal algorithm for Exact learning C with Equivalence
Queries for H, we can use the proposed hypothesis h as an online learner’s predictor until the first
time when it makes a mistake (xt, yt); that xt would be a valid response from the oracle, so we
may feed this into the Exact learning algorithm, which then produces its next hypothesis h, which
becomes the new hypothesis for the online learner for its prediction on the point xt+1, and so on
until the next mistake. If the sequence (x1, y1), (x2, y2), . . . is C-realizable, then this can continue
for at most QCEQ(C,H)− 1 rounds before the algorithm produces a hypothesis h that never makes
another mistake on the sequence (it need not be equal the target concept h∗ if the number of mistakes
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is strictly smaller than QCEQ(C,H) − 1, but merely never encounters another counterexample to
update on).

The problem of characterizing QCEQ(C,H) is a classic question in the learning theory literature
(e.g., Angluin, 1987, 1990; Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins, 1996; Balcázar,
Castro, Guijarro, and Simon, 2002b; Chase and Freitag, 2020). For finite C, it was shown by
Balcázar, Castro, Guijarro, and Simon (2002b) that K ≤ QCEQ(C,H) ≤ dK ln(|C|)e. The lower
bound of Littlestone (1988) for MB(C,YX ) immediately implies a lower bound in terms of the
Littlestone dimension L: namely, L + 1 ≤ QCEQ(C,H). Recently, Chase and Freitag (2020)
established an upper bound expressed in terms of the Littlestone dimension L, which also holds for
infinite classes: namely, QCEQ(C,H) ≤ KL. They in fact show a bound where K is replaced by
the sometimes-smaller consistency dimension; we refer the reader to that work for the details. This
was the best known bound holding for all classes of a given L, with no dependence on |C|. Thus,
our Theorem 1 immediately implies a new near-optimal bound: QCEQ(C, H) = O(LK log(K)).
This resolves the optimal query complexity, up to a factor log(K) and unavoidable gaps, a problem
which has been studied for several decades, and moreover this solution represents an exponential
improvement in the dependence on L compared to the previous result of Chase and Freitag (2020).
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Appendix A. The Optimal Mistake Bound for Learning C with H

This section presents the details of the algorithm and proof of Theorem 1.

For a finite set Q of pairs (Ci, wi), where Ci ⊆ C and wi ≥ 0, define

Vote(Q)(x) =

∑
(Ci,wi)∈QwiSOACi(x)∑

(Cj ,wj)∈Qwj
,

and Maj(Q)(x) = 1[Vote(Q)(x) ≥ 1/2]. Also, for ε ∈ [0, 1], define

HighVote(Q, ε) = {(x,Maj(Q)(x)) : x ∈ X ,Vote(Q)(x) ∈ [0, ε] ∪ [1− ε, 1]}.

Consider the following online learning algorithm, for any C and H with K = K(C,H) < ∞,
executed on any C-realizable sequence (x1, y1), . . . , (xT , yT ) in X × Y .

11
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0. Initialize Q = {(C1, w1)} = {(C, 1)}, η = 1/(2K), t = 1
1. Repeat while t ≤ T
2. If HighVote(Q, η) is H-realizable
3. Choose ĥt ∈ H correct on HighVote(Q, η), predict ŷt = ĥt(xt)
4. If ŷt 6= yt (i.e., mistake)
5. For each (Ci, wi) ∈ Q
6. If SOACi(xt) 6= yt, set wi ← η · wi
7. Ci ← {h ∈ Ci : h(xt) = yt}
8. If Ci = ∅, remove (Ci, wi) from Q
9. t← t+ 1
10. Else let {(x̃1, ỹ1), . . . , (x̃K, ỹK)} ⊆ HighVote(Q, η) be C-unrealizable
11. For each (Ci, wi) ∈ Q
12. For each j ≤ K
13. If SOACi(x̃j) = ỹj , wij ← η · wi, else wij ← wi
14. Let Cij = {h ∈ Ci : h(x̃j) = 1− ỹj}
15. Q← {(Cij , wij) : Cij 6= ∅}

Theorem 8 MB(C,H) ≤ 4LK ln(2K), achieved by the above algorithm.

Proof Suppose L and K are both finite. Let h∗ ∈ C be a concept correct on {(xt, yt)}Tt=1. On
each round where HighVote(Q, η) is H-realizable and ŷt 6= yt, clearly h∗ is correct on the (xt, yt)
used to update the sets Ci. Moreover, on each round where HighVote(Q, η) is not H-realizable,
the sequence {(x̃j , ỹj)}Kj=1 is not C-realizable, and therefore there is at least one x̃j for which
1 − ỹj = 1 −Maj(Q)(x̃j) = h∗(x̃j). So if we think of the set Q as developing like a tree (with
each element at the end of the round being updated from the previous round using the point (xt, yt)
on rounds of the first type, or else branching off of a previous element by updating with some
(x̃j , 1 − ỹj) on rounds of the second type), then there is a path in the tree where all of the updates
are for h∗-consistent examples. To put this more formally, if at the beginning of round n there exists
(C,w) ∈ Q with h∗ ∈ C, then (by the above observations) at the end of round n there will still
exist some (C ′, w′) ∈ Q with h∗ ∈ C ′, so that by induction we maintain this property for all rounds
n. Moreover, we note that, at the end of any round n, any (C,w) ∈ Q having h∗ ∈ C must have
w ≥ ηL, since on any sequence of labeled examples (x′i, h

∗(x′i)), there are at most L times i with
SOAC{(x′

j
,h∗(x′

j
)):j<i}

(x′i) 6= h∗(x′i), as established by Littlestone (1988). Thus, after n rounds of the

outermost loop, ∃(C∗n, w∗n) ∈ Q with

w∗n ≥ ηL = (1/(2K))L.

Now suppose the algorithm executes the outermost loop at least n times, and consider the total
state of the algorithm after completing round n of the outermost loop. Let tn denote the value of t
after completing this round, and let Mn denote the number of t ∈ {1, . . . , tn−1} with ŷt 6= yt: that
is, the number of mistakes on the actual data sequence within the first n rounds. Let Nn denote the
number of the first n rounds where HighVote(Q, η) is not H-realizable. Let Wn denote the total
weight in Q after completing n rounds.

On any round n′ ≤ n where HighVote(Q, η) is H-realizable and ŷt 6= yt (for t = tn′ − 1),
since every (x, y) ∈ HighVote(Q, η) has ĥt(x) = y, yet we know that ĥt(xt) = ŷt 6= yt, it
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must be that (xt, yt) /∈ HighVote(Q, η); therefore at least η fraction of the total weight is mul-
tiplied by η in Step 6: that is, Wn′ ≤ η2Wn′−1 + (1 − η)Wn′−1 = (1− η(1− η))Wn′−1 =(
1− (2K− 1)/(2K)2

)
Wn′−1. On the other hand, on any round n′ ≤ n where HighVote(Q, η)

is not H-realizable, each j ≤ K has (x̃j , ỹj) in HighVote(Q, η), so that at least 1 − η fraction
of the total of weights wi have wij = η · wi; thus, Wn′ ≤ K(η(1 − η)Wn′−1 + ηWn′−1) =
(1− 1/(4K))Wn′−1. By induction, we have

Wn ≤ (1− (2K− 1)/(2K)2)Mn(1− 1/(4K))Nn

< exp{−Mn(2K− 1)/(2K)2} exp{−Nn/(4K)} ≤ exp{−Mn/(4K)} exp{−Nn/(4K)}

since K ≥ 1. Thus, since w∗n ≤Wn, we have

Mn/(4K) +Nn/(4K) < L ln(2K).

This has two important implications. First, since we always have n = Nn + tn− 1, and tn ≤ T + 1
while the above inequality impliesNn < 4KL ln(2K), we have that the algorithm will terminate af-
ter a finite number of rounds. Second, the above inequality further implies that Mn < 4KL ln(2K)
for all rounds in the algorithm, so that this is also a bound on the total number of mistakes at the
time of termination, after predicting for all T points in the sequence. This completes the proof.

Appendix B. A Characterization of Games Satisfying the Minimax Theorem for All
Subgames

A key component of the proofs of our results on learning with majority votes and randomized proper
predictors (Theorems 3, 4, 5) is a general characterization of games for which the minimax theorem
holds: namely, Theorem 6 stated Section 2.2. We present the proof here, separating the two parts of
the claim.

Proposition 9 Any binary-valued VC game (A,B, val) with no infinite triangular subgame satis-
fies

inf
PA∈Π(A)

sup
PB∈Π(B)

E
(a,b)∼PA×PB

[val(a, b)] = sup
PB∈Π(B)

inf
PA∈Π(A)

E
(a,b)∼PA×PB

[val(a, b)].

Moreover, this remains true even if Π(A), Π(B) are restricted to be just the probability measures
having finite support.

Proof We prove this result in the contrapositive. Suppose (A,B, val) is a binary-valued VC game,
let

α = sup
PB∈Π(B)

inf
PA∈Π(A)

E
(a,b)∼PA×PB

[val(a, b)]

and let
β = inf

PA∈Π(A)
sup

PB∈Π(B)
E

(a,b)∼PA×PB

[val(a, b)],

and let us suppose α < β. Let VA denote the VC dimension of {val(a, ·) : a ∈ A} and VB denote
the VC dimension of {val(·, b) : b ∈ B}. Note that these are both finite by the assumption that
(A,B, val) is VC game, and the fact that VB < 2VA+1 (Assouad, 1983).
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We inductively define two sequences of mixed strategies {P tA}t∈N,{P tB}t∈N, where each P tA ∈
Π(A) and each P tB ∈ Π(B) such that, for a numerical constant c, each P tA is supported on at most
cVB

(β−α)2
elements of A and has

sup
PB∈Π(

⋃
i<t supp(P i

B))
E

(a,b)∼P t
A×PB

[val(a, b)] ≤ 2α+ β

3
(1)

while each P tB is supported on at most cVA
(β−α)2

elements of B and has

inf
PA∈Π(

⋃
i≤t supp(P i

A))
E

(a,b)∼PA×P t
B

[val(a, b)] ≥ α+ 2β

3
. (2)

As a base case, let P 1
A = 1{a} for some a ∈ A: that is, P 1

A is any pure strategy. Now fix any
t ∈ N and suppose there exist P iA, i ∈ {1, . . . , t} and P iB , i ∈ {1, . . . , t − 1} satisfying the above
properties. To complete the inductive construction, it suffices to specify P tA and P t+1

B to extend the
sequences. Letting B<t =

⋃
i<t supp(P iB), since this is a finite set (by the inductive hypothesis),

there is a finite number of distinct sequences {val(a, b)}b∈B<t realized by elements a ∈ A. Thus,
there exists a finite set A′ ⊆ A such that every such sequence {val(a, b)}b∈B<t witnessed by an
a ∈ A is also witnessed by {val(a′, b)}b∈B<t for some a′ ∈ A′. In particular, by the classic
minimax theorem for finite games (von Neumann and Morgenstern, 1944), ∃P ∗A ∈ Π(A′) such that

sup
PB∈Π(B<t)

E
(a,b)∼P ∗A×PB

[val(a, b)] = sup
PB∈Π(B<t)

inf
PA∈Π(A′)

E
(a,b)∼PA×PB

[val(a, b)]

= sup
PB∈Π(B<t)

inf
PA∈Π(A)

E
(a,b)∼PA×PB

[val(a, b)] ≤ sup
PB∈Π(B)

inf
PA∈Π(A)

E
(a,b)∼PA×PB

[val(a, b)] = α,

where the second equality follows from the assumed property of A′ and the subsequent inequality
follows from the fact that every PB ∈ Π(B<t) is a restriction to B<t of some P ′B ∈ Π(B) with
supp(P ′B) = supp(PB).

Now since B<t is a finite set, the classic uniform convergence property of VC classes holds
(Lemma 19 of Appendix F), which in particular implies that there exists a sequence {ai}i≤m in
A′ for some m ≤ cVB

(β−α)2
(for a universal constant c) such that, defining P tA as the empirical mea-

sure, i.e., P tA(·) = 1
m

∑m
i=1 1[ai ∈ ·], it holds that every b ∈ B<t satisfies Ea∼P t

A
[val(a, b)] ≤

Ea∼P ∗A [val(a, b)] + β−α
3 . In particular, this implies

sup
PB∈Π(B<t)

E
(a,b)∼P t

A×PB

[val(a, b)] ≤ α+
β − α

3
=

2α+ β

3
.

That is, (1) holds.
Applying the same argument to the set A≤t =

⋃
i≤t supp(P iA), implies the existence of a finite

set B′ ⊆ B with supPA∈Π(A≤t) E(a,b)∼PA×P ∗B [val(a, b)] ≥ β, and a sequence {bi}i≤m′ in B′ for

some m′ ≤ cVA
(β−α)2

such that, defining P t+1
B as the empirical measure, P t+1

B = 1
m′
∑m′

i=1 1[bi ∈ ·],
it holds that every a ∈ A≤t satisfies Eb∼P t+1

B
[val(a, b)] ≥ Eb∼P ∗B [val(a, b)]− β−α

3 , which implies

inf
PA∈Π(A≤t)

E
(a,b)∼PA×P t+1

B

[val(a, b)] ≥ β − β − α
3

=
α+ 2β

3
,
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so that (2) holds. By the principle of induction, we have established the claimed existence of the
above infinite sequences P tA,P tB .

For each i ∈ N, let mA
i = |supp(P iA)| and {ai,1, . . . , ai,mA

i
} = supp(P iA), and let mB

i =

|supp(P iB)| and {bi,1, . . . , bi,mB
i
} = supp(P iB), Now for each i, j ∈ N, define two matrices: Cij

is a mA
i × mB

j matrix with entries Cijk` = val(ai,k, bj,`), and Dij is a mA
j × mB

i matrix with
entries Dij

k` = val(aj,k, bi,`). Note that every i, j ∈ N have Cij and Dij of sizes no larger than
cVB

(β−α)2
× cVA

(β−α)2
. In particular, this implies that there are only a finite number of possible (Cij , Dij)

pairs witnessed among choices of i, j ∈ N. If we consider each possible (C,D) pair as a color
for the pairs (i, j) ∈ N2 with i < j, the infinite Ramsey theorem implies that there exists an
infinite increasing sequence i1, i2, . . . in N such that ∀(s, t), (s′, t′) ∈ N2 with s < t and s′ < t′,
we have (Cisit , Disit) = (Cis′ it′ , Dis′ it′ ). Let (C∗, D∗) denote this common value for the pair
(Cisit , Disit).

Now we claim ∃k∗, `∗ with C∗k∗`∗ = 1 and D∗k∗`∗ = 0. This is because, for each (s, t) ∈ N with
s < t, we have is < it, so that

inf
PA∈Π(supp(P is

A ))
sup

PB∈Π(supp(P
it
B ))

E
(a,b)∼PA×PB

[val(a, b)]

≥ inf
PA∈Π(A≤it

)
E

(a,b)∼PA×P
it
B

[val(a, b)] ≥ α+ 2β

3
,

while

inf
PA∈Π(supp(P

it
A ))

sup
PB∈Π(supp(P is

B ))

E
(a,b)∼PA×PB

[val(a, b)]

≤ sup
PB∈Π(B<it )

E
(a,b)∼P it

A ×PB

[val(a, b)] ≤ 2α+ β

3
.

In other words, the value of the finite game represented by C∗ is strictly greater than the value of
the finite game represented by D∗. For this to be true, there must exist at least one pair k∗, `∗ with
C∗k∗`∗ > D∗k∗`∗ , which (since these are binary-valued games) implies C∗k∗`∗ = 1 and D∗k∗`∗ = 0.
Fix any such pair k∗, `∗.

To complete the proof, we use this fact to construct an infinite triangular subgame. Define
ãt = ai2t−1,k∗ and b̃t = bi2t,`∗ for all t ∈ N. Note that, for any s, t ∈ N, if s ≤ t, then i2s−1 < i2t,
so that val(ãs, b̃t) = val(ai2s−1,k∗ , bi2t,`∗) = C

i2s−1i2t
k∗`∗ = C∗k∗`∗ = 1. On the other hand, if s > t,

then i2s−1 > i2t, so that val(ãs, b̃t) = val(ai2s−1,k∗ , bi2t,`∗) = D
i2ti2s−1

k∗`∗ = D∗k∗`∗ = 0. Together we
have val(ãs, b̃t) = 1[s ≤ t] for all s, t ∈ N, so that ({ãt : t ∈ N}, {b̃t : t ∈ N}, val) is an infinite
triangular subgame.

The final claim about restricting Π(A) and Π(B) to have finite support follows by noting that all
probability measures PA and PB used in the above proof have finite support, so that if the claimed
equality is violated for finite-support probability measures, then the above construction still implies
the existence of an infinite triangular subgame.
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Proposition 10 Any binary-valued VC game (A,B, val) with an infinite triangular subgame
(A′,B′, val) satisfies

1 = inf
PA∈Π(A′)

sup
PB∈Π(B′)

E
(a,b)∼PA×PB

[val(a, b)] > sup
PB∈Π(B′)

inf
PA∈Π(A′)

E
(a,b)∼PA×PB

[val(a, b)] = 0.

Proof Let {ai : i ∈ N} = A′ and {bi : i ∈ N} = B′ so that val(ai, bj) = 1[i ≤ j], as guaranteed
by the defining property of an infinite triangular subgame. Now note that, for any PA ∈ Π(A′), we
have

sup
PB∈Π(B′)

E
(a,b)∼PA×PB

[val(a, b)] ≥ lim
j→∞

E
ai∼PA

[val(ai, bj)] = E
ai∼PA

[
lim
j→∞

val(ai, bj)

]
= 1,

where the first equality is due to the monotone convergence theorem, which applies since val(ai, bj)
is nondecreasing in j, with limiting value 1 (achieved for all j ≥ i). Since the values are bounded
by 1, this implies the leftmost claimed equality.

Likewise, for any PB ∈ Π(B′), we have

inf
PA∈Π(A′)

E
(a,b)∼PA×PB

[val(a, b)] ≤ lim
i→∞

E
bj∼PB

[val(ai, bj)] = E
bj∼PB

[
lim
i→∞

val(ai, bj)

]
= 0,

where the first equality holds by the dominated convergence theorem, since |val(ai, bj)| ≤ 1 and
val(ai, bj) has limit 0 as i→∞ (achieved for all i > j). Since the values are bounded below by 0,
this implies the rightmost claimed equality, and this completes the proof.

Theorem 6 follows immediately from Propositions 9 and 10, as follows.
Proof of Theorem 6 If (A,B, val) is a VC game for which some subgame (A′,B′, val) satisfies

inf
PA∈Π(A′)

sup
PB∈Π(B′)

E
(a,b)∼PA×PB

[val(a, b)] > sup
PB∈Π(B′)

inf
PA∈Π(A′)

E
(a,b)∼PA×PB

[val(a, b)], (3)

then Proposition 9 implies (A′,B′, val) has an infinite triangular subgame, which is therefore also
a subgame of (A,B, val). By Proposition 9, this remains true even if we restrict to finite-support
probability measures. For the other direction, any game (A,B, val) with an infinite triangular sub-
game (A′,B′, val) satisfies (3) for these A′, B′ by Proposition 10. This completes the proof.

Appendix C. Optimal Online Learning with Small Majorities

The question we address here is how simple of a hypothesis class H can we use while ensuring that
an optimal mistake bound is still achievable (up to numerical constant factors). Here we find this
is possible using H based on majority votes of O(V∗) classifiers from C. We first prove a coarse
bound achieved by the general algorithm above by showing that K = O(V) for this class H. This
yields a mistake bound O(VL log(V)). We then refine this by a direct analysis, showing that an
essentially-similar algorithm achieves a mistake bound of O(L) with this same class H.
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C.1. Supporting Lemmas

We first establish the following helpful lemmas. The first is a simple application of the minimax
theorem and the classic result on the size of ε-approximating sets for VC classes. The second
is based on a technique for sparsifying majority votes having a margin, proposed by Moran and
Yehudayoff (2016).

Lemma 11 Suppose L <∞. For any ε ∈ (0, 1] and any set S ⊆ X ×Y , if, for every finite-support
probability measure π on C, there exists (x, y) ∈ S such that π(h : h(x) 6= y) > ε, then for every
integerm ≥ c1V

ε log
(

1
ε

)
(for a universal constant c1), there exists a sequence S′ in S with |S′| = m

such that every h ∈ C has 1
m

∑
(x,y)∈S′ 1[h(x) 6= y] > ε

2 .

Proof By Corollary 7, there exists a finite-support probability measure P on S such that every
h ∈ C has P ((x, y) : h(x) 6= y) ≥ 2

3ε. Since P has finite support, the classic relative uniform
convergence bounds of Vapnik and Chervonenkis (1974) hold (see Lemma 19 in Appendix F). This
implies that for a universal constant c1, for any m ≥ c1V

ε ln
(

1
ε

)
, there exists a sequence S′ of length

m in S such that every h ∈ C satisfies 1
m

∑
(x,y)∈S′ 1[h(x) 6= y] > ε

2 .

Lemma 12 For any ε ∈ (0, 1/2) and any set S ⊆ X ×Y , if there exists a finite-support probability
measure π on C such that every (x, y) ∈ S satisfies π(h : h(x) 6= y) ≤ ε, then there exists a
multiset C′ ⊆ C with |C′| ≤ c2V∗

ε2
(for c2 a universal constant) such that every (x, y) ∈ S satisfies

1
|C′|
∑

h∈C′ 1[h(x) 6= y] < 2ε.

Proof To prove this, we apply the classic uniform convergence guarantees based on the chaining
argument. Specifically, we apply Lemma 19 of Appendix F with Z = C and F the set of functions
gx : C→ {0, 1}, x ∈ X , defined as gx(h) = h(x) for h ∈ C. The existence of C′ with the claimed
properties then follows immediately from Lemma 19 by noting that V(F) = V∗(C).

C.2. The Dual Helly Number of Small Majorities

To start, we state a coarse bound based on a direct application of Theorem 8, by bounding the dual
Helly number.

Proposition 13 For a numerical constant c and H = Maj(CcV∗), it holds that K = O(V), and
hence MB(C,H) = O(LV log(V)).

Proof The statement is vacuous for L = ∞, so suppose L < ∞. Let c = 16c2, for c2 from
Lemma 12. Let S be a set not realizable by H. In particular, applying Lemma 12 with ε = 1/4, we
conclude that for every finite-support probability measure π on C, there exists (x, y) ∈ S such that
π(h : h(x) 6= y) > 1/4. Lemma 11 then implies there exists S′ ⊆ S with |S′| ≤ d4c1V log(4)e ≤
7c1V, such that every h ∈ C has 1

|S′|
∑

(x,y)∈S′ 1[h(x) 6= y] > 1
8 . In particular, this implies S′ is

not realizable by C. Thus, K ≤ 7c1V. A bound MB(C,H) ≤ 28c1LV ln(14c1V) then follows from
Theorem 8.
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C.3. Optimal Mistake Bound via a Direct Analysis

Proposition 13 reveals that it is possible to learn any C using majorities of O(V∗) elements of C,
with mistake bound at most O(LV log(V)). Here we find that this can be improved to an essentially
optimal mistake bound: that is, O(L). To put this another way, we find that the optimal SOA
predictor of Littlestone (1988) can be approximated (in the appropriate sense) by small majority
votes of classifiers from C.

The following is a more-detailed form of Theorem 3, from which the original statement of
Theorem 3 immediately follows.

Theorem 14 For c = 36c2 and H = Maj(CcV∗), it holds that MB(C,H) ≤ 80L.

Theorem 14 will immediately follow from a result stated in the following section, which presents
a stronger result where we are guaranteed not merely a small number of mistakes, but also a small
number of points where the majority vote fails to have high margin: namely, Theorem 15. Specifi-
cally, Theorem 14 follows by plugging ε = 1/3 into Theorem 15.

Appendix D. Online Learning with Votes of Large Margin

Since K(C,C) is sometimes large or infinite, proper learning isn’t always viable; however, since
Proposition 13 indicates K(C,H) is small for H the set of majority votes of O(V∗) classifiers of C,
we can define predictors that, for each time t, sample a classifier ĥt ∼ πt for some distribution πt
over C, and will be correct with probability greater than 1/2 against an adversary that only knows
πt before selecting the next (xt, yt), but does not know the specific ĥt sampled from πt. We may
however be interested in having even greater probability of predicting correctly, defining a loss
function that is 1 if πt(h : h(xt) 6= yt) > ε for some given ε ∈ (0, 1/2). We would then be
interested in bounding the number of times t for which this occurs.

Equivalently, we can interpret this criterion in terms of the margin of the majority vote classifier:
that is, we can think of the learning algorithm as outputting the conditional mean h̄t(x) := πt(h :
h(xt) = 1), and we are interested in bounding the number of times t where |h̄t(xt)− yt| > ε.

The following is a more-detailed restatement of Theorem 4, from which the statement of Theo-
rem 4 immediately follows.

Theorem 15 Let c = 4c2 (for c2 from Lemma 12). For any ε ∈ (0, 1/2), there is an algorithm A
with H(C,A) ⊆ Vote(CcV∗/ε2) such that, for any T ∈ N, running A on any C-realizable sequence
(x1, y1), . . . , (xT , yT ), there are at most 8L

ε(1−ε/8) ln
(

8
ε

)
times t where |h̄t(xt)− yt| > ε.

This bound will be achieved by the following algorithm, which takes as input C and any value
ε ∈ (0, 1/2), and processes a C-realizable adversarial sequence (x1, y1), . . . , (xT , yT ).
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0. Initialize Q = {(C1, w1)} = {(C, 1)}, η = ε/8, m =
⌈

2c1V
ε log

(
2
ε

)⌉
, t = 1

1. Repeat while t ≤ T
2. If ∃h ∈ Vote(CcV∗/ε2) with sup(x,y)∈HighVote(Q,ε/8) |h(x)− y| ≤ ε
3. Choose h̄t = h for some such h, predict ȳt = h̄t(xt)
4. If |ȳt − yt| > ε
5. For each (Ci, wi) ∈ Q
6. If SOACi(xt) 6= yt, set wi ← η · wi
7. Ci ← {h ∈ Ci : h(xt) = yt}
8. If Ci = ∅, remove (Ci, wi) from Q
9. t← t+ 1
10. Else let {(x̃1, ỹ1), . . . , (x̃m, ỹm)} ⊆ HighVote(Q, ε/8) be such that

every h ∈ C has 1
m

∑m
i=1 1[h(xi) 6= yi] > ε/4

11. For each (Ci, wi) ∈ Q
12. For each j ≤ m
13. If SOACi(x̃j) = ỹj , set wij ← η · wi, else wij ← wi
14. Let Cij = {h ∈ Ci : h(x̃j) = 1− ỹj}
15. Q← {(Cij , wij) : Cij 6= ∅}

We now present the proof of Theorem 15.
Proof of Theorem 15 The proof is similar to the proof of Theorem 8, with a few important changes.
Suppose L < ∞, let h∗ ∈ C be a concept correct on {(xt, yt)}Tt=1, and let H = Vote(CcV∗/ε2).
First note that, by Lemma 12, on any given round, if the condition in Step 2 fails, then for every
finite-support probability measure π on C, there exists (x, y) ∈ HighVote(Q, ε/8) such that π(h :
h(x) 6= Maj(Q)(x)) > ε/2. Thus, the existence of the sequence (x̃1, ỹ1), . . . , (x̃m, ỹm) in Step 10
is guaranteed by Lemma 11.

On each round where the condition in Step 2 holds but |ȳt − yt| > ε, we clearly have that h∗

is correct on the (xt, yt) used to update the sets Ci. Moreover, on each round where the condition
in Step 2 fails, since h∗ ∈ C, the defining property of (x̃1, ỹ1), . . . , (x̃m, ỹm) in Step 10 guarantees
that at least (ε/4)m of these (x̃j , ỹj) have h∗(x̃j) = 1−ỹj . So if we think of the setQ as developing
like a tree (with each element at the end of the round being updated from the previous round using
the point (xt, yt) on rounds of the first type, or else branching off of a previous element by updating
with one of the (x̃j , 1− ỹj) examples on rounds of the second type), then there are a number of paths
in the tree where all of the corresponding examples (x, y) have y = h∗(x). More formally, if at the
beginning of a round there exist q elements (C,w) ∈ Q with h∗ ∈ C, then on rounds where the
condition in Step 2 holds, at the end of the round there will still be exactly q such elements inQ (i.e.,
none of them are removed in Step 8, since all contain h∗); on the other hand, on rounds where the
condition in Step 2 fails, then since at least (ε/4)m of the examples (x̃j , ỹj) have h∗(x̃j) = 1− ỹj ,
at the end of the round there will be at least (ε/4)mq elements (C ′, w′) ∈ Q with h∗ ∈ C ′.

Now suppose the algorithm executes the outermost loop at least n times, and consider the total
state of the algorithm after completing round n of the outermost loop. Let tn denote the value of t
after completing this round, and letMn denote the number of t ∈ {1, . . . , tn−1} with |ȳt−yt| > ε.
LetNn denote the number of the first n rounds for which the condition in Step 2 fails. LetWn denote
the total of the weights in Q after round n, and define W0 = 1.

Applying the above argument inductively, we have that after completing round n of the outer-
most loop, there are at least ((ε/4)m)Nn elements (C,w) ∈ Q with h∗ ∈ C. Moreover, we note
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that any (C,w) ∈ Q with h∗ ∈ C must have w ≥ ηL, since on any sequence of labeled examples
(x′i, h

∗(x′i)), there are at most L times i with SOAC{(x′
j
,h∗(x′

j
)):j<i}

(x′i) 6= h∗(x′i), as established by

Littlestone (1988). It follows that after completing round n we have

Wn ≥ ((ε/4)m)Nn · ηL.

On the other hand, on every round n′ ≤ n where the condition in Step 2 holds but |ȳt − yt| >
ε in Step 4 (for t = tn′ − 1), note that it cannot be that (xt, yt) ∈ HighVote(Q, ε/8), since
this would contradict either |ȳt − yt| > ε or the defining property of h̄t. Thus, since (xt, yt) /∈
HighVote(Q, ε/8), at least ε/8 fraction of the total weight is multiplied by η: that is, Wn′ ≤
Wn′−1 (η(ε/8) + (1− (ε/8))). Furthermore, on every round where the condition in Step 2 fails,
for each j ≤ m, since (x̃j , ỹj) ∈ HighVote(Q, ε/8), it must be that at least 1 − (ε/8) fraction of
the total weights wi from the previous round will have wij = η · wi. Together with the growth by a
factor ofm from branching, we have that on such rounds n′ ≤ n,Wn′ ≤Wn′−1m

((
1− ε

8

)
η + ε

8

)
.

By induction we have that, after round n,

Wn ≤
(
η
ε

8
+ 1− ε

8

)Mn

mNn

((
1− ε

8

)
η +

ε

8

)Nn

.

Combining the upper and lower bounds, we have(ε
4
m
)Nn

· ηL ≤
(
η
ε

8
+ 1− ε

8

)Mn

mNn

((
1− ε

8

)
η +

ε

8

)Nn

.

Plugging in η = ε/8 we have(ε
4
m
)Nn

·
(ε

8

)L
≤
(

1− ε

8

(
1− ε

8

))Mn
((

1− ε

16

) ε
4
m
)Nn

≤ exp
{
−ε

8

(
1− ε

8

)
Mn

}
·
((

1− ε

16

) ε
4
m
)Nn

.

Taking logarithms of both sides and simplifying, we have

Mn +Nn
8

ε (1− ε/8)
ln

(
1

1− ε/16

)
≤ 8L

ε(1− ε/8)
ln

(
8

ε

)
.

This has two important implications. First, since we always have n = Nn + tn− 1, and tn ≤ T + 1

while the above inequality implies Nn ≤ L ln(8/ε)
ln(1/(1−ε/16)) < ∞, we may conclude that the algo-

rithm will terminate after a finite number of rounds. Second, the above inequality further implies
Mn ≤ 8L

ε(1−ε/8) ln
(

8
ε

)
for all rounds n in the algorithm, so that this also bounds the total number of

times t ≤ T with |ȳt − yt| > ε. This completes the proof.

Remark 16 We also remark that the above algorithm can actually be executed with any on-
line learning algorithm A in place of SOA, resulting in a conversion to a method using votes
of O(V∗/ε2) concepts in C, and having a number of rounds with |h̄t(xt) − yt| > ε at most
O
(
MB(C,A, T )1

ε log 1
ε

)
.
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Appendix E. Near-Optimal Agnostic Online Learning with Randomized Proper
Predictors

This section presents the details of the algorithm and proof for Theorem 5. Recall the statement of
the theorem, as follows.
Theorem 5 (Restated) For any T ∈ N, there is an algorithm A with H(A, T ) ⊆ Vote(Cm), where
m = O

(
V∗T

L log(T/L)

)
, such that for any sequence (x1, y1), . . . , (xT , yT ) ∈ X × Y ,

T∑
t=1

∣∣h̄t(xt)− yt∣∣−min
h∈C

T∑
t=1

1[h(xt) 6= yt] = O
(√

LT log(T/L)
)
.

Before presenting the proof, let us first note that the algorithm we propose is, to a large extent,
constructive, in the sense that on each round t it constructs a probability measure pt on C, based on
(x1, y1), . . . , (xt−1, yt−1), so that h̄t(xt) = pt(h : h(xt) = 1). Thus, we may regard this method as
a randomized proper learning algorithm, in the sense that on each round, if we draw a random ht ∼
pt (independently, given the data sequence) then E

∑T
t=1 1[ht(xt) 6= yt] =

∑T
t=1

∣∣h̄t(xt)− yt∣∣, so

that the expected regret of these sampled classifiers is at most O
(√

LT log(T/L)
)

.
As discussed above, this result can be interpreted as a more constructive version of a result of

Rakhlin, Sridharan, and Tewari (2015). The result in Theorem 5 is also more general, as it removes
additional restrictions on C required by Rakhlin, Sridharan, and Tewari (2015).

Turning now to the task of proving Theorem 5, we will rely on the following Lemma from
Ben-David, Pál, and Shalev-Shwartz (2009). For any sequence x1, . . . , xt, abbreviate x1:t =
(x1, . . . , xt).

Lemma 17 (Ben-David, Pál, and Shalev-Shwartz, 2009, Lemma 12) For any concept class C of
Littlestone dimension L, for any T ∈ N, there exists a family GT := {gI : I ⊆ {1, . . . , T}, |I| ≤ L}
of functions X ∗ → Y such that, for every x1, . . . , xT ∈ X ,

{(h(x1), . . . , h(xT )) : h ∈ C} = {(gI(x1), gI(x1:2), . . . , gI(x1:T )) : gI ∈ GT } .

Specifically, Ben-David, Pál, and Shalev-Shwartz (2009) construct this family GT by letting
gI(x1:t) be the prediction of SOAH(t,I)(xt), whereH(0, I) = C, andH(t, I) is inductively defined
as H(t, I) = {h ∈ H(t− 1, I) : h(xt) = 1− SOAH(t−1,I)(xt))} if t ∈ I and {h ∈ H(t− 1, I) :
h(xt) = 1−SOAH(t−1,I)(xt))} 6= ∅, andH(t, I) = H(t−1, I) otherwise. The property guaranteed
by Lemma 17 then follows from the L mistake bound of Littlestone (1988) for SOA: that is, the
gI that agrees with h on x1:T simply takes I as the (at most L) times when SOAH would make
mistakes on (x1, h(x1)), . . . , (xT , h(xT )), given that it updates H ← {h′ ∈ H : h′(xt) = h(xt)}
after each mistake (xt, h(xt)).

We will also make use of a classic result for learning from expert advice for the absolute loss
(Vovk, 1990, 1992; Littlestone and Warmuth, 1994; Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth, 1997; Kivinen and Warmuth, 1999; Singer and Feder, 1999); see Theorem
2.2 of Cesa-Bianchi and Lugosi (2006).

Lemma 18 (Cesa-Bianchi and Lugosi, 2006, Theorem 2.2) For any N,T ∈ N and f1, . . . , fN
functions X ∗ → [0, 1], letting η =

√
(8/T ) ln(N), for any (x1, y1), . . . , (xT , yT ) ∈ X × [0, 1],
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letting w0,i = 1 and wt,i = e−η
∑

s≤t |fi(x1:s)−ys| for each t ≤ T , i ≤ N , letting f̄t(x1:t, y1:(t−1)) =∑
iwt−1,ifi(x1:t)/

∑
i′ wt−1,i′ , it holds that

T∑
t=1

∣∣f̄t(x1:t, y1:(t−1))− yt
∣∣− min

1≤i≤N

T∑
t=1

|fi(x1:t)− yt| ≤
√

(T/2) ln(N).

We are now ready for the proof of Theorem 5.
Proof of Theorem 5 If T < 10L, the regret bound is ≥ T (for appropriate constants), which
trivially holds, so let us suppose T ≥ 10L. Fix a value ε =

√
(L/T ) log(eT/L) and let A be the

algorithm guaranteed by Theorem 15: that is, for any C-realizable sequence (x1, y1), . . . , (xT , yT ),
for each t ≤ T , A proposes a finite-support probability measure πt on C (namely, a uniform distri-
bution on at most O(V∗/ε2) elements of C) defined based solely on (x1, y1), . . . , (xt−1, yt−1), and
there are at most O

(
L
ε log 1

ε

)
times t for which |πt(h : h(xt) = 1)− yt| > ε.

Now consider running A for the sequence (x1, gI(x1)), (x2, gI(x1:2)), . . . , (xT , gI(x1:T )) for
gI ∈ GT , where GT is from Lemma 17. In particular, Lemma 17 guarantees this is a C-realizable
sequence. Let πIt denote the corresponding probability measure that would be proposed on each
round t, and let h̄It (x) = πIt (h : h(x) = 1).

Let h∗ = argminh∈C
∑T

t=1 1[h(xt) 6= yt]. By Lemma 17, there exists gI∗ ∈ GT with
gI∗(x1:t) = h∗(xt) for every t ≤ T . We therefore have

T∑
t=1

1
[∣∣∣h̄I∗t (xt)− h∗(xt)

∣∣∣ > ε
]

= O

(
L

ε
log

1

ε

)
.

In particular, this immediately implies

T∑
t=1

∣∣∣h̄I∗t (xt)− h∗(xt)
∣∣∣ ≤ εT +O

(
L

ε
log

1

ε

)
. (4)

Let IT = {I ⊆ {1, . . . , T} : |I| ≤ L}. We will now treat the predictors h̄It , I ∈ IT ,
as experts in the traditional framework of learning from expert advice for the absolute loss. Let
N =

(
T
≤L

)
=
∑L

j=0

(
T
j

)
. Following Lemma 18, let η =

√
(8/T ) ln(N), and for each I ∈

IT let w0,I = 1 and wt,I = e−η
∑

s≤t |h̄Is(xs)−ys| for each t ≤ T . Finally, define h̄′t(x) =∑
I∈IT wt−1,I h̄

I
t (x)/

∑
I∈IT wt−1,I .

By Lemma 18, we have

T∑
t=1

∣∣h̄′t(xt)− yt∣∣ ≤√(T/2) ln(N) + min
I∈IT

T∑
t=1

∣∣h̄It (xt)− yt∣∣
≤

√
L(T/2) ln

(
eT

L

)
+

T∑
t=1

∣∣∣h̄I∗t (xt)− yt
∣∣∣ .

By the triangle inequality, the rightmost expression is at most√
L(T/2) ln

(
eT

L

)
+

T∑
t=1

∣∣∣h̄I∗t (xt)− h∗(xt)
∣∣∣+

T∑
t=1

|h∗(xt)− yt| .
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Combining this with (4) and plugging in ε =
√

(L/T ) log(eT/L) yields

T∑
t=1

∣∣h̄′t(xt)− yt∣∣− T∑
t=1

|h∗(xt)− yt| = O

(√
LT log

(
T

L

))
.

The claimed regret now follows by noting that h̄′t(x) = p′t(h : h(x) = 1) by choosing p′t =∑
I∈IT

wt−1,I∑
I′∈IT

wt−1,I′
πIt . Since each πIt is a finite-support probability measure on C, p′t is also a

finite-support probability measure on C.
To conclude, we note that the probability measures p′t in the above proof may have supports

of size up to Õ
(

V∗
(
eT
L

)L+1
)

. However, we can apply the same sparsification argument used in

previous sections: that is, since p′t has finite support, we can apply the classic result on the size of
ε-approximating sets (Lemma 19 of Appendix F), which implies there exists h̄t ∈ Vote(Cm) with
m = O

(
V∗

ε2

)
such that supx |h̄t(x)− p′t(h : h(x) = 1)| ≤ ε, so that using h̄t on each round, rather

than h̄′t, by the triangle inequality we have

T∑
t=1

∣∣h̄t(xt)− yt∣∣−min
h∈C

T∑
t=1

|h(xt)− yt|

≤ εT +

T∑
t=1

∣∣h̄′t(xt)− yt∣∣−min
h∈C

T∑
t=1

|h(xt)− yt| = εT +O
(√

LT log(T/L)
)
.

Taking ε =
√

(L/T ) log(T/L) then retains the regret bound O
(√

LT log(T/L)
)

required by The-

orem 5, with h̄t ∈ Vote(Cm) for m = O
(

V∗T
L log(T/L)

)
.
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Appendix F. Uniform Convergence Bounds for VC Classes

Lemma 19 There is a universal constant c0 such that, for any set Z and any finitely-supported
probability measure P on Z , for any set F of functions Z → {0, 1}, for m ∈ N and ε ∈ (0, 1], if
m ≥ c0V(F)

ε log 1
ε , then there exists z1, . . . , zm ∈ Z such that every f ∈ F with P (z : f(z) = 1) ≥

2
3ε has 1

m

∑m
t=1 f(zt) >

ε
2 . Moreover, if m ≥ c0V(F)

ε2
, then there exists z1, . . . , zm ∈ Z such that

every f ∈ F satisfies
∣∣P (z : f(z) = 1)− 1

m

∑m
t=1 f(zt)

∣∣ < ε.

Proof The first claim follows from the relative uniform convergence bounds of Vapnik and Cher-
vonenkis (1974), which hold without further restrictions on F since P has finite support; see The-
orem 4.4 of Vapnik (1998). Specifically, Theorem 4.4 of Vapnik (1998) guarantees that (for an
appropriate constant c0), for (Z1, . . . , Zm) ∼ Pm, with nonzero probability, every f ∈ F with
P (z : f(z) = 1) ≥ 2

3ε has 1
m

∑m
t=1 f(Zt) >

ε
2 , which then implies there exist at least one such

sequence z1, . . . , zm satisfying the claim. Similarly, for the second claim, by the classic uniform
convergence guarantees based on the chaining argument (see Talagrand, 1994; van der Vaart and
Wellner, 1996), which again hold without further restrictions to F because P has finite support, it
holds that, if m ≥ c0V(F)

ε2
(for an appropriate constant c0), for (Z1, . . . , Zm) ∼ Pm, with nonzero

probability, every f ∈ F satisfies
∣∣P (z : f(z) = 1)− 1

m

∑m
t=1 f(zt)

∣∣ < ε. In particular, this im-
plies there must exist at least one such sequence z1, . . . , zm satisfying the claim.
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