
Proceedings of Machine Learning Research vol 134:1–53, 2021 34th Annual Conference on Learning Theory

Group testing and local search:
is there a computational-statistical gap?

Fotis Iliopoulos FOTIOS@IAS.EDU
Princeton University and Institute for Advanced Study

Ilias Zadik ZADIK@NYU.EDU

New York University

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
Group testing is a fundamental problem in statistical inference with many real-world applica-

tions, including the need for massive group testing during the ongoing COVID-19 pandemic. In
this paper we study the task of approximate recovery, in which we tolerate having a small number
of incorrectly classified items.

One of the most well-known, optimal, and easy to implement testing procedures is the non-
adaptive Bernoulli group testing, where all tests are conducted in parallel, and each item is chosen
to be part of any certain test independently with some fixed probability. In this setting, there is an
observed gap between the number of tests above which recovery is information theoretically pos-
sible, and the number of tests required by the currently best known efficient algorithms to succeed.
In this paper we seek to understand whether this computational-statistical gap can be closed. Our
main contributions are the following:

1. Often times such gaps are explained by a phase transition in the landscape of the solution space of
the problem (an Overlap Gap Property (OGP) phase transition). We provide first moment evidence
that, perhaps surprisingly, such a phase transition does not take place throughout the regime for which
recovery is information theoretically possible. This fact suggests that the model is in fact amenable to
local search algorithms.

2. We prove the complete absence of “bad” local minima for a part of the “hard” regime, a fact which
implies an improvement over known theoretical results on the performance of efficient algorithms for
approximate recovery without false-negatives.

3. Finally, motivated by the evidence for the absence for the OGP, we present extensive simulations that
strongly suggest that a very simple local algorithm known as Glauber Dynamics does indeed succeed,
and can be used to efficiently implement the well-known (theoretically optimal) Smallest Satisfying
Set (SSS) estimator. Given that practical algorithms for this task utilize Branch and Bound and Linear
Programming relaxation techniques, our finding could potentially be of practical interest.

Keywords: Bernoulli Group Testing; Computational-Statistical Gap; Overlap Gap Property; Local
Search
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1. Introduction

Group testing is a fundamental and long-studied problem in statistical inference, which was intro-
duced in the 1940s by Dorfman (Dorfman, 1943). The goal is to detect a set of k defective items, for
a known parameter k, out of population of size p using n� p tests. To achieve this, one is allowed
to utilize a procedure that is able to test items in groups. Each test is returned positive if and only if
at least one item in the group is defective.

As an illustrative example, group testing can be applied in the context of medical testing, en-
abling us to efficiently screen a population for a rare disease. In this setting, we assume that we
have an estimate on the number of infected individuals (who correspond to the “defective items”),
as well as a way to take a sample, of say saliva or blood, from each individual, and test it. The idea
then is that the number of tests needed to identify the infected individuals can be dramatically re-
duced by pooling samples. Indeed, utilizing group testing for pooling samples in medical tests was
the original idea of Dorfman, and it is also highly relevant nowadays due to the ongoing COVID-
19 pandemic Narayanan et al. (2020); Sunjaya and Sunjaya (2020); Yelin et al. (2020). Besides
medical testing though, group testing has found several real-world applications in a wide variety of
areas, including communication protocols Anta et al. (2013), molecular biology and DNA library
screening Cheng and Du (2008), pattern matching Clifford et al. (2010), databases Cormode and
Muthukrishnan (2005) and data compression Hong et al. (2001).

From an information theoretic point of view, the number of tests required depends on various
assumptions on the mathematical model used, and the reader is referred to the survey of Aldridge,
Johnson and Scarlett Aldridge et al. (2019) for details on the several models that have been studied.
Here we focus on the sublinear sparse regime, i.e., the case where k scales sublinearly with p;
k/p → 0, as p → +∞. A standard sublinear setting in the group testing literature is when k =
bpαc for some constant sparsity parameter α ∈ (0, 1) Aldridge et al. (2019). This is the most
interesting regime from a mathematical perspective, but also the one that is suitable for modeling
the early stages of an epidemic Wang et al. (2011) in the context of medical testing. Further, we
are interested in the so-called approximate recovery task (also known as “partial” recovery), where
we tolerate having some small number of incorrectly classified items. Note that, since in practical
settings we only expect to have an estimation on the input number of defective items k, incorrect
classifications may be unavoidable even if we are able to guarantee “exact” recovery. Note also that
in several applications it might not be required for both false-positive errors (non-defective items
incorrectly classified as defective) and false-negative errors (defective items incorrectly classified
as non-defective) to be zero. As an example, when screening for diseases, a small number of false-
positive errors might arguably be a small cost to pay compared to performing many more pooled
tests.

More formally, let σ∗ denote the set of defective items and σ̂ be the output of our estimator. For
a set of items σ let σ := [p] \ σ denote the complement of σ. Given d ∈ N let

Pr
d

[err] := Pr
[
|σ̂ ∩ σ∗| > d or |σ̂ ∩ σ∗| > d

]
,

denote the probability either the number of false negatives or false positives exceeds a common
threshold d.

Definition 1 Fix a parameter γ ∈ (0, 1) and let d = bγkc. We say that an estimator achieves
(1− γ)-approximate recovery asymptotically almost surely if limp→+∞ Prd[err] = 0.
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Similar to the above definition, everywhere in this work, we say than a sequence of events (Ap)p∈N
happen asymptotically almost surely (a.a.s.) as p→ +∞ if limp→+∞ Pr [Ap] = 1.

Finally, in this paper we consider the well-known and very simple to implement non-adaptive
Bernoulli group testing design, where all tests are conducted in parallel (non-adaptivity) and each
item is part of any certain test with some fixed probability and independently of each other item.
Despite its simplicity, Bernoulli group testing is asymptotically information theoretically optimal in
the context of (1− o(1))-approximate recovery in the following sense. (The first part of Theorem 2
is proven in Scarlett and Cevher (2016), while the second part in Scarlett and Cevher (2017).)

Theorem 2 (Scarlett and Cevher (2016, 2017)) Let k, p, d ∈ N with 1 ≤ k ≤ p. We assume that
k, p → +∞ with k = o(p). Fix parameters γ, η ∈ (0, 1). Under non-adaptive Bernoulli group
testing in which each item participates in a test with probability ν/k, and d = γk, we have the
following:

(a) With ν satisfying
(
1− ν

k

)k
= 1

2 , there exists an estimator with the property that limp→+∞ Prd[err] =
0, provided that n > (1 + η)n∗, where n∗ = k log2

p
k .

(b) For any test design and any estimator, in order to achieve limp→+∞ Prd[err] = 0 it is necessary
that n > (1− η)n∗γ , where n∗γ = (1− γ)k log2

p
k = (1− γ)n∗.

Remark 3 Strictly speaking, the result in Scarlett and Cevher (2016) requires ν = ln 2 for Part
(a) of Theorem 2, which is though equal asymptotically to the value of ν as we stated it. In Lemma 5
we provide a slightly more general result which justifies this minor change.

Remark 4 It is known Coja-Oghlan et al. (2020) that performing nexact tests is asymptotically a
necessary and sufficient condition (information theoretically) for exact recovery in the non-adaptive
group testing setting, where k = pα, α ∈ (0, 1),

nexact = max

{
k

ln 2
log2 k, n

∗
}

= max
{ α

ln 2
, 1− α

}
pα log2 p. (1)

Observe that for α > 1
1+ 1

ln 2

≈ 0.41 the first term in (1) dominates and, therefore, the approxi-

mate recovery bound promised by Theorem 2 provides an improvement in the number of tests re-
quired. Note also that Coja-Oghlan et al. obtain this result via a sophisticated test-design other
than Bernoulli group-testing.

We remark that the estimator promised by the first part Theorem 2 is in principle not compu-
tationally efficient. In particular, Theorem 2 refers to exhaustive search towards finding a set of k
items which (nearly) satisfies all the tests, namely none of the k items participate in a negative test,
and at least one of them participates in each positive test. (See Lemma 5 for an exact statement
and Scarlett and Cevher (2016, 2017) for a relevant discussion). Note also that exhaustive search in
principle takes

(
p
k

)
time.

The currently best known efficient algorithm Scarlett and Cevher (2018) for (1−o(1))-approximate
recovery under non-adaptive Bernoulli group testing requires (ln 2)−1 ·n∗ tests asymptotically. This
gap between the number of tests above which recovery is information theoretically possible, and the
number of tests required by the currently best known algorithms to succeed, is usually referred to as
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a computational-statistical gap. The extent to which this gap is of fundamental nature has drawn sig-
nificant attention in the group testing community and has been explicitly posed as one of nine open
problems in the recent theoretical survey on the topic (Aldridge et al., 2019, Section 6, Open Prob-
lem 3). The natural belief that simple “random-design” settings exhibit a potentially fundamental
such computational-statistical gap, similar to the one observed in the infamous planted clique model
(see e.g. the introduction on Gamarnik and Zadik (2019a) and below), is one of the main reasons
why researchers in the area of group testing have studied test designs other than Bernoulli testing
(see e.g. Coja-Oghlan et al. (2020); Johnson et al. (2018); Mézard et al. (2008); Wadayama (2016);
Cheraghchi and Nakos (2020)). Indeed, recovery in the non-adaptive Bernoulli group testing setting
can be seen as equivalently solving planted Set Cover instances coming from a certain random fam-
ily. (Recall that Set Cover, similar to Max Clique, is an NP-complete problem. We discuss this con-
nection in Remark 14.) Notably, in the context of exact recovery via non-adaptive testing, the line
of work going beyond the Bernoulli design culminated with the very recent paper of Coja-Oghlan
et.al. Coja-Oghlan et al. (2020) which shows that nexact is the information-theoretic/algorithmic
phase transition threshold. Specifically, Coja-Oghlan et.al. provide a sophisticated test design which
is inspired by recent advances in coding theory known as spatially coupled low-density parity check
codes Felstrom and Zigangirov (1999); Kudekar et al. (2011), which matches the information theo-
retical optimal bound, nexact. In addition, they propose an efficient algorithm which, given as input
nexact tests (asymptotically) from their test design, successfully infers the set of defective items with
high probability.

In the light of Theorem 2, Remarks 3, 4, the simplicity of the Bernoulli group testing design,
and our discussion above, a natural and important question both from a theoretical and application
point of view is the following:

Is there a computational-statistical gap under non-adaptive Bernoulli group testing for the task
of (1− o(1))-approximate recovery?

Our main contribution in this paper is to provide extensive theoretical and experimental evidence
suggesting that, perhaps surprisingly, such a gap does not exist. We do so by showing that in some,
potentially fundamental, geometric way the Bernoulli group testing behaves differently than other
models exhibiting computational-statistical gaps. In particular, we provide evidence which indicate
that the inference task at hand can be performed efficiently via a very simple local search algorithm.

We stress that, given the recent results of Coja-Oghlan et al. (2020) regarding exact recovery,
it would not be surprising if a “spatial coupling”-inspired test design also succeeds in closing the
computational-statistical gap in the approximate recovery task. After all, “spatial coupling”-inspired
models are known to not exhibit gaps that appear in simpler random models in all the contexts they
have been applied, see e.g. Achlioptas et al. (2016) for a discussion of this phenomenon in the con-
text of random constraint satisfaction problems and e.g. Donoho et al. (2013); Krzakala et al. (2012)
in the context of compressed sensing. However, the main message of this paper is that the very
simple non-adaptive Bernoulli group testing design may already be sufficient for computationally
efficient (1− o(1))-approximate recovery.

We discuss our results informally forthwith, and we present them formally in Appendices B
and C. We remark that throughout the paper we will be interested in different values of the parameter
ν, which recall that dictates the probability ν/k with which each item participates in a certain test,
being precise in each of our statements.
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Computational gaps between what existential or brute-force/information-theoretic methods promise
and what computationally efficient algorithms achieve arise in the study of several “non-planted”
models like random constraint satisfaction problems, see e.g. Achlioptas and Coja-Oghlan (2008);
Coja-Oghlan and Efthymiou (2015); Gamarnik and Sudan (2014), but also several “planted” infer-
ence algorithmic tasks, like high dimensional linear regression Gamarnik and Zadik (2017, 2019b),
tensor PCA Arous et al. (2020a); Montanari and Richard (2014), sparse PCA Gamarnik et al.
(2019); Arous et al. (2020b) and, of course, the planted clique problem Jerrum (1992); Barak et al.
(2016); Gamarnik and Zadik (2019a). In the latter context the gaps are commonly referred to as
computational-statistical gaps, as we mentioned above. Often times such gaps are explained by
the presence of a geometric property in the solution space of the problem known as Overlap Gap
Property (OGP), which has been repeatedly observed to appear exactly at the regime where lo-
cal algorithms cannot solve efficiently the problem. Additionally, it has also been observed that
in the absence of this property the problem is amenable to simple local search algorithms. OGP
is a notion originating in spin glass theory and the groundbreaking work of Talagrand Talagrand
(2003) and, in some form, it has been originally introduced in the context of computational gap for
the “non-planted model” of random k-SAT Achlioptas and Ricci-Tersenghi (2006); Mézard et al.
(2005). Recently it has been defined and analyzed also in the context of computational-statistical
gaps for the high dimensional linear regression model Gamarnik and Zadik (2017, 2019b), the ten-
sor PCA model Arous et al. (2020a), the planted clique model Gamarnik and Zadik (2019a) and
the sparse PCA model Arous et al. (2020b); Gamarnik et al. (2019). In all such planted models, it
is either proven, or suggested by evidence, that the OGP phase transition takes place exactly at the
point where we observe and expect local algorithms to work. From a rigorous point of view, the
existence of OGP has been proven to imply the failure of various MCMC methods Gamarnik and
Zadik (2019a); Gamarnik et al. (2019); Arous et al. (2020b), yet a rigorous proof that at its absence
local method works remains one of the important conjectures in this line of research. Interestingly,
progress in the last direction has been recently made in the context of certain “non-planted” mean
field spin glass systems Subag (2019); Montanari (2019); Alaoui et al. (2020) where under the con-
jecture of the absence of a property similar to OGP the success of a certain “local” Approximate
Message Passing method has been established. In this work we attempt to locate exactly the OGP
phase transition (if it exists at all) in order to understand if the non-adaptive Bernoulli group testing
exhibits a computational-statistical gap.

It should be noted that over the recent years researchers have approached the study of whether
such gaps are fundamental from various different angles other than the OGP. For example, re-
searchers have studied average-case reductions between various inference models (see e.g. Berthet
and Rigollet (2013); Brennan et al. (2018); Brennan and Bresler (2020) and references therein),
the performance of various restricted classes of inference algorithms, such as low-degree methods
(see e.g. Barak et al. (2016); Hopkins (2018); Kunisky et al. (2019); Schramm and Wein (2020)),
message passing algorithms such as Belief Propagation and Approximate Message Passing (see e.g.
(Bandeira et al., 2018, Chapters 3,4) and references therein), and statistical-query algorithms (see
e.g. Feldman et al. (2017)).

To conclude, in line with the thread of research of studying computational-statistical gaps via
their geometric phase transitions, in this paper we seek to understand whether the optimization
landscape of the (1 − o(1))-approximate inference task under Bernoulli group testing is smooth
enough for local search algorithms to succeed.
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2. Contributions

In this section we report our main results. Due to the technical nature of many of our theoretical
results, we choose to do this in the main body of the paper in an informal manner and, in particular,
via the informally stated Theorems 6, 7 and Corollary 9. In the Appendix we present formally all the
statements with their proofs. In this section we also discuss the main insights from our experimental
results (see Figures 1 and 2), but we give the full details in Appendix C.

2.1. Absence of the Overlap Gap Property (OGP)

For our first and main result we provide first moment evidence suggesting that the landscape of the
optimization problem corresponding to the inference task does not exhibit the Overlap Gap Property
accross the regime where inference is information-theoretic possible. We state our result formally
in Appendix B.2, where we also give details regarding its technical aspects. Here we informally
discuss why we believe this is a potentially fundamental reason for computational tractability, and
what we mean when referring to “first moment evidence”.

A first observation towards approximate recovery is that one can remove from consideration
any item that participates in a negative test, as such an item is certainly non-defective. We call the
remaining items as potentially defective. We also say that a potentially defective item explains a
certain positive test if it participates in it. The following key lemma informs us that finding a set of
k potentially defective items whose elements explain all but a few positive tests implies approximate
recovery. Its proof can be found in Appendix F.

Lemma 5 Let k, p, d ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞ with k = o(p).
Fix parameters δ, ε ∈ (0, 1). Assume we observe n ≥ (1 + ε)k log2

p
k tests under non-adaptive

Bernoulli group testing in which each item participates in a test with probability ν/k, where ν
satisfies (1 − ν

k )ν = 1
2 . There exists an ε′ > 0 such that every set of size k whose elements explain

at least (1− ε′)n tests must contain at least b(1− δ)kc defective items, a.a.s. as p→ +∞.

Based on Lemma 5, to perform optimal approximate recovery we consider the case where ν > 0
satisfies (1 − ν

k )k = 1
2 and consider the task of minimizing the number of unexplained tests over

the space of k-tuples of potentially defective items, which we denote by Ωk. In particular, we seek
to understand “smoothness” properties of the underlying optimization landscape.

Informally, the Overlap Gap Property (OGP) with respect to this minimization problem says
that the near-optimal solutions of this problem form two disjoint and well-separated clusters, one
corresponding to sets in Ωk which are “close” to the set of defective items, and one corresponding
to sets in Ωk which are “far” from it. (See Definition 18 in the Appendix for a rigorous definition.)
At the presence of such a disconnectivity property, one can rigorously prove that a class of natural
local search algorithms fails (see e.g. Gamarnik and Zadik (2019a)). As mentioned above a highly
non-rigorous, yet surprisingly accurate in many contexts computational prediction Gamarnik and
Zadik (2017, 2019a,b); Arous et al. (2020b) is that the OGP can be the only type of computational
bottlenecks there is for local algorithms. In other words, the prediction is that, at its absence,
an appropriate local search algorithm works efficiently and can solve the optimization problem to
(near) optimality. In this work, we provide “first moment evidence” that the OGP never appears
in the landscape of the mentioned minimization problem when inference is possible, i.e. when
n ≥ (1 + ε)k log2

p
k for any ε > 0.
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Now in order to explain what we mean by “first moment evidence” for the absence of the
OGP, let us point out that the standard way of studying the existence of OGP is by studying the
monotonicity of the function φ(`), namely the minimum possible value of unexplained tests, which
is minimized over the sets in Ωk that contain exactly ` defective items (has overlap with the set
of defective items equal to `) (see Definition 19 for a formal definition, and also Gamarnik and
Zadik (2017, 2019a)). This is because a necessary implication of the existence of OGP is that,
roughly speaking, φ(`) is not decreasing. (See Lemma 20 for a formal statement.) Intuitively, such
a connection holds since OGP roughly implies that the overlap values ` for which φ(`) is small (few
unexplained sets) are either “large” (corresponding to large intersection with the true defective items
— the “close” cluster) or “small” (corresponding small intersection with the true defective items —
the “far” cluster). Hence, such a function cannot be decreasing with `.

Towards understanding the monotonicity properties of φ(`) we need to understand the value
φ(`) which is the optimal value of a restricted random combinatorial optimization problem. For this
we use the moments method. In particular, we define for t, ` ≥ 0, the counting random variable

Σ`,t = {σ ∈ Ωk : |σ ∩ σ∗| = `,H(σ) ≤ t},

where recall that σ∗ denotes the set of defective items, and let H(σ) denote the number of unex-
plained tests with respect to σ. Observe that

φ(`) ≤ t⇔ Σ`,t ≥ 1,

and that, in particular, by Markov’s inequality and Paley’s-Zigmund’s inequality we have for all
t > 0 and ` ∈ {0, 1, 2, . . . , b(1− ε)kc}:

E [Σt,`]
2

E
[
Σ2
t,`

] ≤ Pr [φ(`) ≤ t] = Pr[Σ`,t ≥ 1] ≤ E [Σt,`] .

Hence, if for some t1, t2 > 0 it holds E [Σt1,`] = o(1) we have φ(`) > t1 a.a.s as p → +∞ and if
E[Σt2,`]

2

E
[
Σ2
t2,`

] = 1− o(1) or equivalently
Var[Σt2,`]
E[Σt2,`]

2 = o(1) we have φ(`) ≤ t2 a.a.s. The employment of

the first moment to get an a.a.s. lower bound is called a first moment method, and the employment
of the second moment to get an a.a.s. upper bound is called the second moment method.

In many cases of sparse combinatorial optimization problems it has been established in the
literature that the first and second moment methods can be proven for t1, t2 sufficiently close to
each other, sometimes satisfying even t2 ≤ t1 + 2, a phenomenon known as 2-point concentration
(see e.g. Bollobás (1982) or the more recent Balister et al. (2019)). Here we say that we provide
first moment evidence for the OGP, because we do not check the second moment method to prove
the sufficient concentration of measure, but we only use the first moment to derive a prediction for
the value on which φ(`) concentrates on. Specifically, we define the function which maps ` to the
value t = t` > 0 for which the first moment satisfies

E [Σt,`] = 1,

and we call it the first moment function and denote it by F (`). We use F (`) as an approximation for
the value of φ(`).Note that the first moment prediction is expected to correspond to the critical t > 0
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above of which this first moment will blow up (where the second moment method can work) and
below it will shrink to zero (where Markov inequality works). The first moment prediction has been
proven, admittedly via lengthy and elaborate conditional second moment arguments, to provide tight
predictions for the associated function φ(`) in many setting similar to the group testing where OGP
has been studied, such as the regression setting Gamarnik and Zadik (2017) and the planted clique
setting Gamarnik and Zadik (2019a). Notably, in these setting the approximation is tight enough so
that the existence or not of OGP is directly related to the monotonicity of the first moment function,
and furthermore the transition point where this function becomes decreasing corresponds exactly
to the point where local algorithms are expected to work. Finally, it is worth pointing out that a
similar “first moment”, or “annealed complexity”, method has been employed for the study of the
landscape of the spiked tensor PCA model Arous et al. (2019); Ros et al. (2019).

In our work, we explicitly derive the first moment function F (`) for the Bernoulli group testing
model and prove that it remains decreasing (in the sense of Lemma 20) throughout the regime
n ≥ (1 + ε)k log2

p
k for any ε > 0.

Theorem 6 (Informal Statement) Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞
with k = o(p) and consider the Bernoulli group testing model with ν > 0 such that (1− ν

k )k = 1
2 .

Then if n ≥ (1 + ε)k log2
p
k for any ε > 0, (the information-theoretic threshold for the problem),

the first moment function of the model is strictly decreasing.

One can pictorially observe the decreasing property of the first moment curve in Figure 7 all the way
to the information-theoretic threshold. To get the result into context we invite the reader to compare
this behavior with the similar monotonicity property of the first moment curve in the regression
setting Gamarnik and Zadik (2017) and its widely believed computational-statistical gap. In Figure
1 of the arXiv version of Gamarnik and Zadik (2017) one can see that the first moment curve in the
information-theoretic relevant regime, transitions as n increases from being non-monotonic (exactly
at the conjectured “hard” regime), to being monotonic (exactly at the “easy” regime). Our result is
that such a transition never appears in the Bernoulli group testing model.

Upon a conjectured tightness of the second moment method, we show how this implies the
absence of the OGP when n ≥ (1 + ε)k log2

p
k for any ε > 0 (see Theorem 28). We consider this

notable evidence that a local search algorithm can succeed in this regime, suggesting that there is
actually no computational-statistical gap. Remarkably this is in full agreement with our experiments
section below. We formalize and further explain all the latter statements in Appendix B.2.

2.2. Absence of bad local minima

For our second theoretical contribution we study a much more strict notion of optimization land-
scape smoothness, namely the absence of “bad” local minima. This is a very stringent, but certainly
sufficient, condition for the success of even greedy local improvements algorithms. Hence, it is
naturally not expected to coincide with the OGP phase transition where a potentially more elabo-
rate local algorithm could be needed (see Gamarnik and Zadik (2019b) for a similar result in the
context of regression). Yet, our evidence that the OGP does not appear for the Bernoulli group
testing model when n ≥ (1 + ε)k log2

p
k for any ε > 0, conceivably suggests that the landscape

of the minimization problem could be smooth enough to not even contain bad local minima when
n ≥ (1 + ε)k log2

p
k for some small values of ε > 0.

We consider the same objective function as in the previous paragraph, but this time we study
the space of k′-tuples of potentially defective items, where k′ = b(1 + ε)kc for any fixed ε ∈ [0, 1).
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Crucially, we now study all the possible Bernoulli group testing designs by considering a fixed by
arbitrary parameter ν (recall that for each test, each item is tested with probability ν/k). Informally,
a bad local minimum σ is a k′-tuple of potentially defective items that contains a non-negligible
number of non-defective items, and such that every other k′-tuple in Hamming distance two from
σ explains at most the same number of positive tests. We give a formal definition in Appendix B.3,
Definition 29.

Our result is a bound on the number of tests required for the absence of bad local minima as
a function of parameters ε, δ, ν, where we are interested in (1 − ε − δ)-approximate recovery. We
state the theorem informally below, and formally in Appendix B.3, Theorem 30.

Theorem 7 (Informal Statement) Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p→ +∞ with
k = o(p). Fix parameters ν > 0, R ∈ (0, 1), δ, ε ∈ [0, 1) such that δε > 0, set k′ = b(1 + ε)kc, and

assume that we observe the outcome of n = b log2 (pk)
R c tests under non-adaptive Bernoulli group

testing in which each item participates in a test with probability ν/k. If

R <
νe−ν

ln 2
+ max

λ≥0
min

ζ∈[0,1−δ)
Q(λ, ζ, ν, ε),

where Q = Q(λ, ζ, ν, ε) is given in (8) (due to its elaborate form), then there exists no bad local
minima with respect to (1− ε− δ)-approximate recovery in the space of k′-tuples of items.

Remark 8 Note that for any ν > 0, neasy = b(νe−ν

ln 2 )−1 log2

(
p
k

)
c is the number of tests required

for (1 − o(1))-approximate recovery via the straightforward algorithms known as Combinatorial
Orthogonal Matching Pursuit (COMP) and Definite Defectives (DD). COMP simply amounts to
outputting every item that does not participate in a negative test. DD amounts to first discarding
every item that participates in a negative test, and then outputting the set of items which have the
property that they are the only item in a certain positive test (see also Aldridge et al. (2019)).

According to Remark 8, Theorem 7 quantifies the decrease in the number of tests that is possible
(with respect to the requirements of straightforward algorithms like DD and COMP), while at the
same time guaranteeing that the landscape remains smooth enough to not contain any bad local
minima. Nonetheless, note that the final result includes a complicated optimization problem of
some large deviation function maxλ≥0 minζ∈[0,1−δ)Q(λ, ζ, ν, ε), which the bigger it is, the more
tests can be saved (and of course it is always non-negative as it can be directly checked that it obtains
the value 0 for λ = 0).

After proper inspection of the properties of the function Q, and exploiting the facts that in
Theorem 7 we allow ε to be positive and ν to take any value of our choice, we manage, as a corollary,
to (slightly) improve the state-of-the art result regarding the number of tests required for efficient
approximate recovery under the restriction that no false-negatives are allowed. As we have already
mentioned, such a requirement is potentially desirable in medical testing. We state the corollary
informally below and formally in Appendix B.3, Corollary 31.

Corollary 9 (Informal Statement) Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞
with k = o(p). Under non-adaptive Bernoulli group testing in which each item participates in a test
with probability ln(5/2)/k, there exists a greedy local search algorithm such that, asymptotically
almost surely, given as input at least b1.829 log2

(
p
k

)
c tests, it outputs a set of b1.01kc items that is

guaranteed to contain every defective item.
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Remark 10 The constant 1.01 is chosen for concreteness and exposition purposes and in order to
simplify the proof of Corollary 9. We note that, with some additional technical effort, the constant
can be chosen to be 1 + ε, for any ε > 0.

To put Corollary 9 in to context, let us point out that if k = bpαc, α ∈ (0, 1) and we make
no assumptions on the value of α ∈ (0, 1), then the best known algorithm (in terms of the number
of tests it requires to succeed) for approximate recovery with the guarantee of never introducing
false-negative errors is COMP Aldridge et al. (2019). Indeed, COMP succeeds given as input at
least nCOMP ≈ b1.883 log2

(
p
k

)
c tests.

If α is known to be appropriately small then, to the best of our knowledge, the currently best
known algorithm among the ones that with high probability never introduce false-negative errors is
the so-called Separate Decoding algorithm of Scarlett and Cevher (2018). In particular, Separate
Decoding requires as input (asymptotically) at least

nSP = min
δ>0

max

{
1

(1− δ) ln 2
,

α

((1− δ) ln(1− δ) + δ) (1− α) ln 2

}
· log2

(
p

k

)
tests, assuming we choose the value of ν so that it satisfies (1 − ν/k)k = 1/2. (Note that ln 2 ≈
0.693.) Thus, if α is sufficiently large, say α ≥ 0.56, then it can be easily checked that the algorithm
of Corollary 9 outperforms both COMP and Separate Decoding on the task of approximate recovery
with the guarantee of never introducing false-negative errors, with high probability.

As a final remark, the proof of Theorem 7 is conceptually straightforward but technically elabo-
rate. We thus view it as an important first step towards a rigorous understanding of the optimization
landscape. (We stress though that, based on our calculations, we do not expect the complete absence
of bad local minima at rates close to the information theoretic threshold. In other words, we con-
jecture that the use of stochastic local search (positive temperature local MCMC methods) would
be necessary for success at rates close to the information theoretic threshold. We leave the rigorous
investigation of the above fact as future work.) The main proof strategy is presented in Appendix E,
while the proofs of some of the more technical intermediate lemmas are deferred to Appendix H.

2.3. Experimental results: The Smallest Satisfying Set estimator via local search.

In our previous results we provided evidence for the absence of OGP when n ≥ (1 + ε)k log2
p
k for

every ε > 0 and showed that for some reasonable values of ε > 0 the landscape is smooth enough
that greedy local search methods work. Naturally, one would like to verify that the OGP prediction
is correct and that local search methods can successfully (1 − o(1))-approximately recover for
any ε > 0. In our last set of results, we fix the Bernoulli group testing design with ν satisfying
(1 − ν

k )k = 1
2 and we investigate experimentally to what extent approximate recovery is indeed

amenable to local search. We discuss our findings here and, more extensively, in Appendix C. The
key takeaways are the following:

1. A simple local-search (MCMC) algorithm we propose is almost always successful in solving
the optimization task of interest (“minimize unexplained positive tests”) to exact optimality
when given as input at least (1 + ε)blog2

(
p
k

)
c tests for any ε > 0. (Recall Theorem 2.)

2. Based on this observation, we propose an approach for solving the so-called Smallest Satis-
fying Set (SSS) problem via local search. Solving the SSS problem is a theoretically optimal
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method both for exact and approximate inference, which does not require prior knowledge of
the parameter k. It is typically approached in practice by being modeled as an Integer Program
and solved by Branch and Bound methods and Linear Programming Relaxation techniques,
as it is equivalent to solving a certain random family of instances of the NP-complete Set
Cover problem. (The reader is referred to Chapter 2, Section 2 in Aldridge et al. (2019) for
more details on the SSS problem.) Our experiments suggest that the random family of Set
Cover instances induced by the non-adaptive Bernoulli group testing problem might in fact
be tractable, and this may be of practical interest.

To describe the algorithms we implemented we need the following definition.

Definition 11 A set S ⊆ {1, 2, . . . , p} is called satisfying if:

(a) every positive test contains at least one item from S;

(b) no negative test contains any item from S.

In other words, a set is satisfying if it explains every positive test and none of its elements partici-
pates in a negative test. Clearly, the set of defective items is a satisfying set.

Recalling now Lemma 5, we see that solving the k-Satisfying Set (k-SS) problem , i.e., the
problem of finding a satisfying set of size k, guarantees (1− o(1))-approximate recovery. (In fact,
Lemma 5 implies that even a near-optimal solution suffices, but we will not need this extra property
for the purposes of this section.) Based on this observation, we now describe a simple algorithm for
solving the k-SS problem which is essentially the well-known Glauber Dynamics Markov Chain
Monte Carlo algorithm.

Glauber Dynamics is a simple local Markov chain that was originally used from statistical physi-
cists to simulate the so-called Ising model (see e.g. Dobrushin and Shlosman (1987)). More gen-
erally though, Glauber Dynamics is an algorithm designed for sampling from distributions with
exponentially large support which has received a lot of attention due to its simplicity and wide ap-
plicability, see e.g. Levin and Peres (2017). Here we use it for optimization purposes, with the
intention to exploit the fact that its stationary distribution assigns the bulk of its probability mass to
nearly-optimal states.

Specifically, given a Bernoulli group testing instance, let PD denote the set of potentially defec-
tive items, which recall that is the set of items that do not participate in any negative test. Recall also
Ωk is the state space of our algorithm, i.e., the set of all possible subsets of exactly k potentially
defective items which do not belong in any negative test. Finally, for a set (k-tuple) σ ∈ Ωk let
P (σ) denote the number of positive tests explained by σ. To solve the k-SS problem we will use
the following simple local algorithm.

Remark 12 Note that β, sometimes called the inverse temperature, is a parameter to be chosen by
the user. In our experiments we choose β = 5, but we have noticed that the proposed algorithm is
actually quite robust with respect to the choice of β. Note also that we always run our algorithms
for at most N = 20|PD| ln |PD| = O(p ln p) steps, i.e, for a nearly linear number of steps.

The main outcome of the experiments we conducted with Glauber Dynamics is that we had an
almost perfect (nearly probability one) success rate with respect to solving the k-SS problem to
exact optimality given at least (1 + ε) log2

(
p
k

)
tests as input (see Figure 1) for any ε ≥ 0 we tried.

11
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Data: β, k,PD,PosTests
begin

σ ← a random state from Ωk

N ← ceil(20|PD| ln |PD|)
for i = 1 to N do

Pick an item i ∈ σ uniformly at random
Pick an item in j ∈ PD \ σ uniformly at random
Let τ = (σ ∪ {j}) \ {i}
Move to τ (i.e., σ := τ ) with probability eβP (τ)

eβP (τ)+eβP (σ)

if P (σ) = |PosTests| then
Return σ

end
end
Return σ

end
Algorithm 1: Glauber Dynamics

(We emphasize that solving the k-SS problem might not imply success with respect to estimating
the defective set. Indeed, the solution to k-SS implies successful recovery only asymptotically.) The
reader is referred to Appendix C for more details.

This outcome certainly supports the OGP prediction which, in fact, only suggest that one can
solve the problem to near-optimality, since it shows that it is solvable to exact optimality. We
also check the performance of the algorithm in terms of exact/approximate recovery. While, as we
discussed from a theory standpoint, approximate recovery should be guaranteed for any optimal
solution (any satisfying set), in our experiment we do observe a significant but not perfect success
in terms of approximate recovery. We believe this is related to the naturally bounded values of k, p
we consider (in the order of thousands), since we also observe that the success in the recovery task
get increasingly better as we increase k, p.

Motivated by our success in solving to optimality the k-SS problem, and as an attempt to check
our success without the knowledge of the value of k, we investigate next the performance of a local
search approach for solving the SSS problem which we describe below.

As the name suggests, the SSS problem amounts to finding the smallest satisfying set without
assuming prior knowledge of k. It is based on the idea that the set of defective items is a satisfying
set, but since defectivity is rare, the latter is likely to be small in size compared to the rest satisfying
sets. More formally, we have the following corollary of Lemma 5 which implies that solving the
SSS is a theoretically optimal approach for approximate recovery.

Corollary 13 Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞ with k = o(p). Fix
parameters η, γ ∈ (0, 1). Assume we observe at least n = (1 + η)k log p

k tests under non-adaptive
Bernoulli group testing in which each item participates in a test with probability ν/k, where ν
satisfies (1− ν

k )ν = 1
2 . The smallest satisfying set contains at least b(1−γ)kc defective items a.a.s.

as p→ +∞.

Proof We know that the smallest satisfying set is of size at most k, since the set of defective items is
satisfying and has size k. Applying Lemma 5 with parameters δ = γ and ε = η, we also know that
every other satisfying set of size k contains at least b(1− γ)kc defective items. So assume that the

12
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Figure 1: Performance of Glauber Dynamics in solving the k-SS problem. The gray line shows how
often the proposed algorithm is able to solve the k-SS problem, the orange line represents
the probability of exact recovery, while the blue line the probability of 90%-approximate
recovery. In our experiments k = bp1/3c and ν satisfies (1− ν/k)k = 1/2 .

smallest satisfying set σ has k′ < k items, and that it contains less than b(1− γ)kc defective items.
Observe now that we can form a new satisfying set σ′ by adding k−k′ non-defective items to σ. By
construction, σ′ is a satisfying set of size k that contains less than b(1 − γ)kc items, contradicting
Lemma 5, and thus, concluding the proof of the corollary.

Remark 14 The SSS problem for a given group testing instance is equivalent to the following
Set Cover instance: Consider an element for each positive test, and a set for each potentially de-
fective item containing every positive test (element) in which it participates. Finding the smallest
satisfying set amounts to finding the smallest in size set that covers every element, i.e., solving the
corresponding Set Cover problem.

Given the Glauber Dynamics algorithm, our approach to solving the SSS is straightforward. We
always start by eliminating every item that is contained in a negative set, so that we are left with
the set of potentially defective items. We then use the Glauber Dynamics algorithm as an oracle
for solving the k′-SS problem for every k′ ∈ {1, . . . , p} and proceed by the standard technique for
reducing optimization problems to feasibility problems via binary search.

In Figure 2 we present results from simulations suggesting that our approach for solving the
SSS problems, besides theoretically optimally in terms of recovery, is efficient and furthermore is
able to outperform the other known popular algorithms.
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Figure 2: Left: Comparison of the performances of the SSS (implemented via local search),
SCOMP, COMP, DD and MD algorithms in the 90%-approximate recovery task. Here
k = bp1/3c and ν satisfies (1 − ν/k)k = 1/2. Right: Comparison of the perfor-
mances of the SSS (implemented via local search) and SCOMP algorithm in the 90%-
approximate recovery task as the number of items p increases, k = bp1/3c, ν satisfies
(1 − ν/k)k = 1/2, and the rate is fixed at R = (1.3)−1. Note that the horizontal axis is
in logarithmic scale.
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Appendix A. Organization of the appendices

The appendices are organized as follows. In Appendix B we formally statement our theoretical
results, Theorems 25, 27 and 30. In Appendix C we present our experimental results. In Appendix D
we prove Theorem 25, Theorem 27 and Theorem 28. In Appendix E we prove Theorem 30. Several
technical proofs are deferred to Appendices F, G, H, I.

Appendix B. Formal statement of theoretical results

In this section we formally present our theoretical results.

18



GROUP TESTING AND LOCAL SEARCH

B.1. The Model

We start with formally defining the inference model of interest. There are p items, k out of them
are defective and chosen uniformly at random among the total p items. We denote by θ∗ ∈ {0, 1}p
the indicator vector of the defective items. We perform n tests, where at each test each item is
independently included in the test with probability ν/k, where ν > 0 is some positive constant. In
most cases we consider ν satisfying (1 − ν

k )k = 1
2 , as informed by the first part of Theorem 2, but

in some cases we choose some other more suitable value of ν in which case we clearly state it. For
i = 1, . . . , n we call Xi ∈ {0, 1}p the indicator vector corresponding to the subset of the items
chosen for the i-th test and Yi = 1(〈Xi, θ

∗〉 ≥ 1) the binary outcome of the i-th test. We also define
the test matrix X ∈ {0, 1}n×p the matrix with rows Xi, i = 1, . . . , n and the test outcomes vector
Y ∈ {0, 1}n the vector with elements Yi, i = 1, . . . , n. Finally, we define by

R =
log2

(
p
k

)
n

(2)

a quantity we call the rate. With respect to scaling purposes we assume that as p → +∞, k, n →
+∞ under the restrictions that R is kept equal to a fixed constant and that k = o(p).

The Bayesian task of interest is to asymptotically approximately recover the vector θ∗ given
access to (Y,X), i.e., to construct an estimator θ̂ = θ̂(Y,X) ∈ {0, 1}p with

dH(θ̂, θ∗) = o(k), (3)

asymptotically almost surely (a.a.s.), with respect to the randomness of the prior on θ∗ and the test
matrix X , as p → +∞. Here dH(·, ·) denotes the Hamming distance between two binary vectors.
Note also that achieving (3) with an estimator of sparsity k implies (1−o(1))-approximate recovery
in the sense of Definition 1. Importantly, for our theoretical results, we work under the assumption
that k is known to the statistician.

As explained in the Introduction (Theorem 2), using the introduced notation of the rate, the
recovery task of interest is known to be information-theoretic impossible if R > 1 and information-
theoretic possible ifR < 1. Specifically, ifR < 1 one can use the Bernoulli design with ν satisfying
(1 − ν

k )k = 1
2 and then use exhaustive search to find a satisfying set. Furthermore if R < νe−ν

ln 2
for some ν > 0 one can recover by using the Bernoulli design with parameter ν > 0 and then run
the polynomial-time algorithm COMP which simply outputs items that never participated in any
negative test. (Recall Remark 8.) Naturally, we would like to know for which rates νe−ν

ln 2 < R < 1
we can recover approximately (in the sense of (3)) using a computationally efficient estimator, the
Bernoulli design with parameter ν — and in particular how close we can get toR = 1. Of particular
interest is, of course, the case where ν satisfies (1 − ν

k )k = 1
2 where approximate recovery in the

sense of (3) is known to be information-theoretically possible for all R < 1.

B.2. Absence of the Overlap Gap Property

As we have already mentioned, our first and main theorem provides first moment evidence for the
absence of the Overlap Gap Property (OGP) asymptotically up to the information theoretic threshold
R = 1 for the task of (1 − o(1))-approximate recovery. We propose this evidence as a potentially
fundamental reason for computational tractability in this regime. For this section, and towards
this goal, we fix the Bernoulli design for parameter ν > 0 with (1 − ν

k )k = 1
2 . Recall that the
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optimal estimator in this Bernoulli design, which works for all R < 1, corresponds to finding an
(approximately) satisfying set.

Towards understanding the computational difficulty of finding an (approximately) satisfying set
in this context we first apply, as a pre-processing step, the COMP algorithm which is known to
achieve (1− o(1))-approximate recovery for all R < 1

2 and for the value of ν we chose. Indeed, we
know this is true for R < νe−ν

ln 2 and then notice that as k → +∞, ν = (1 + o(1)) ln 2 and therefore
it holds νe−ν

ln 2 = 1+o(1)
2 . For this reason when R < 1

2 the recovery goal is trivially achieved by this
polynomial-time preprocessing step. Hence, in what follows we assume R to satisfy 1

2 < R < 1
(we ignore the case where R = 1

2 to avoid any unnecessary criticality issues, and focus solely on
higher rates than 1

2 ).
Now COMP simply removes from consideration any item that takes part in a negative test. We

call any item that is not removed from consideration after this step as potentially defective. The
following two lemmas estimate the number of positive tests and the number of potentially defective
items. The proofs of Lemmas 15, 16 can be found in Appendix G. (Note that these are well-known
statements that have been implicitly proven in previous works, but we chose to include their proof
in this paper as well for completeness.)

Lemma 15 Let P ⊆ {1, . . . , n} denote the set of indices of the positive tests. For every constant
η ∈ (0, 1):

(1− η)
n

2
≤ |P| ≤ (1 + η)

n

2
, (4)

asymptotically almost surely as p→ +∞.

Lemma 16 Suppose 1
2 < R < 1. Let PD denote the set of potentially defective items. For every

constant η ∈ (0, 1):

(1− η)p

(
k

p

) 1+η
2R

≤ |PD| ≤ (1 + η)p

(
k

p

) 1−η
2R

(5)

asymptotically almost surely as p→ +∞.

Remark 17 In the light of Lemmas 15, 16, in what follows we condition on the values of the
random variables P and PD and we assume that their cardinalities, which we denote by npos and
p′ respectively, satisfy (4) and (5), respectively for a sufficiently small constant η of interest. We also
slightly abuse the notation and denote by θ∗ ∈ {0, 1}p′ the indicator vector of the defective items,
by Xi ∈ {0, 1}p

′
the row vector corresponding to the positive test with index i ∈ P , whose non-zero

entries indicate the potentially defective items that participate in this test, and we switch to indexing
with p′.

Note that after the execution of COMP we have in consideration npos positive tests and p′ poten-
tially defective items. At this point, and recalling Lemma 5, the task of finding an (approximately)
satisfying set of cardinality k corresponds to finding a set of k items out of the p′ which explain all
but a vanishing fraction of the positive tests (note that here we used that the number of positive tests
is of the same order as the number of total number of tests a.a.s. — Lemma 4). Given a k-sparse
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θ ∈ {0, 1}p′ we say that a positive test i ∈ P is unexplained by θ if 〈Xi, θ〉 = 0, and by H(θ) we
denote the number of unexplained tests with respect to θ, i.e.

H(θ) := |{i ∈ P : 〈Xi, θ〉 = 0}|.

We sometimes call H(θ) the energy at θ, motivated by the statistical physics context where OGP
originates from. Notice that θ corresponds to an (approximately) satisfying set if and only if it holds
(H(θ) = o(n)) H(θ) = 0. Using this notation, to find an (approximately) satisfying set it suffices
to solve to near-optimality the following optimization problem

(Φ) min H(θ)

s.t. θ ∈ {0, 1}p′

‖θ‖0 = k.

We make two observations. First the optimal value of (Φ) is clearly zero and achieved by θ∗.
Second, again by Lemma 5, the level of near-optimality which suffices for approximate recovery
corresponds to the θ with H(θ) = o(n).

As explained in the Introduction, inspired by statistical physics, and the successful predic-
tion of the computational thresholds at least in the context of the sparse regression Gamarnik and
Zadik (2017) and of the planted clique problems Gamarnik and Zadik (2019a), we study the pre-
sense/absence of OGP in the landscape of (Φ) to offer a heuristic understanding of the rates in
R ∈ (1

2 , 1) for which the optimization problem can be solved to near-optimality, or equivalently
θ∗ can be approximately recovered via local methods. As explained also in the Introduction, we
provide evidence that the OGP never appears for any R ∈ (1

2 , 1).
The OGP informally says that the space of near-optimal solution of (Φ) separate into two dis-

joint clusters, one corresponding to θ which are “close” to θ∗ (the high overlap cluster) and one
corresponding to θ which are “far” to θ∗ (the low overlap cluster). We now formally define it for
any fixed p′, k.

Definition 18 ((ζp′ ,Wp′ , Hp′)-OGP) Fix some Wp′ ∈ {0, 1, . . . , k − 1}, ζp′ ∈ {bk
2

p′ c, b
k2

p′ c +

1, . . . , k −Wp′ − 1} and some H ′p > 0. We say that (Φ) exhibits the (ζp′ ,Wp′ , Dp′)-Overlap Gap
Property ((ζp′ ,Wp′ , Hp′)-OGP) if there exists a threshold value rp′ ∈ R satisfying the following
properties.

(1) For any θ ∈ {0, 1}p′ with ‖θ‖0 = k and H(θ) ≤ rp′ , it holds that either 〈θ, θ∗〉 ≤ ζp′ or
〈θ, θ∗〉 ≥ ζp′ +Wp′ + 1.

(2) There exist θ1, θ2 ∈ {0, 1}p
′

such that ‖θ1‖0 = ‖θ2‖0 = k, 〈θ1, θ〉 ≤ ζp′ , 〈θ2, θ〉 ≥ ζp′ +
Wp′ + 1 and min{H(θ1), H(θ2)} ≤ rp′;

(3) It holds maxθ∈{0,1}p′ :‖θ‖0=k,ζp′+1≤〈θ,θ∗〉≤ζp′+Wp′−1H(θ) ≥ rp′ +Hp′ .

Let us provide some intuition on the definition of the OGP, as it slightly generalizes the previous
definitions used for the Overlap Gap Property in the literature Gamarnik and Zadik (2017, 2019a,b),
since we define it adjusted to the task of approximate recovery. The parameter Wp′ corresponds
to the width of the OGP and the parameter Hp′ to the height of the OGP. The first condition says
that all solutions θ achieving energy H(θ) less than some threshold value rp′ must either have dot
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product (overlap) with θ∗ less than ζp′ or bigger than ζp′ + Wp′ . This gives rise to two clusters of
near-optimal solutions (in the sense of achieving energy at most rn) whose overlap with θ∗ differs
by at leastWp′ . The second condition makes sure that the two clusters are non-empty. Now, the third
condition implies that there is some energy level achieved by some θ with overlap with θ∗ strictly
between ζp′ and ζp′ + Wp′ and energy higher by at least the height Hp′ > 0, as compared to all
energies achieved by solutions in the two clusters. Finally, notice that the requirement ζp′ ≥ bk

2

p′ c
holds, as one can always achieve overlap with θ∗ of the order (1 + o(1))bk2p′ c, by simply choosing
a binary k-sparse vector at random, and therefore an OGP for smaller overlap sizes than it is not
relevant for recovery, but it is definitely relevant for all overlaps bigger than bk2p′ c.

A highly informal, yet surprising accurate in certain contexts, computational prediction is that
local search algorithms attempting to solve (Φ) are able to find in polynomial in p′ time a θ with
〈θ, θ∗〉 > ζp′ if and only if for all width levels Wp′ ∈ {1, . . . , k − ζp′ − 1} with Wp′ = ω(1)
and height levels Hp′ > 0 with Hp′ = ω(log p′) the (Φ) does not exhibit the (ζp′ ,Wp′ , Hp′)-
OGP a.a.s. as p → +∞. The heuristic intuition behind this prediction is as follows. If two clus-
ters of near-optimal solutions of (Φ) are separated by a growing width Wp′ = ω(1) and height
Hp′ = ω(log p′) then no local search algorithm is able to either “jump across” the clusters by
tuning the local search radius at Hamming distance Wp′ from its current state (as this would take(
k
Wp′

)(
p′−k
Wp′

)
= eΩ(Wp′ log p′)-time), or use natural MCMC methods such as Glauber dynamics with

finite temperature to “jump over” the height Hp′ (as this would normally require eHp′ = eω(log p′)-
time). The prediction now is that unless such an OGP appears, an appropriate local search algorithm
works.

We now provide evidence that for all 1
2 < R < 1 such an OGP indeed does not take place in

(Φ) when ζp′ ≤ (1 − ε)k, for arbitrarily small fixed ε > 0. Such a result suggests that local search
methods can obtain overlap (1−ε)k, i.e. achieve (1−ε)-approximate recovery, in polynomial-time.
We first define the following restricted optimization problems.

Definition 19 For ` = 0, 1, 2, . . . , k, let φ(`) denote the optimal value of the optimization problem

(Φ (`)) min H(θ)

s.t. θ ∈ {0, 1}p′

||θ||0 = k, 〈θ, θ∗〉 = `.

Note that Φ(`) is simply Φ constrained on only θ satisfying 〈θ, θ∗〉 = `. Of course θ∗ is not known
to the statistician, and Φ(`) are considered solely for analysis purposes. Trivially, as ` spans all
possible values of 〈θ, θ∗〉, min`=0,1,...,k φ(`) = H(θ∗) = 0. Furthermore, for R < 1 by Lemma 5 it
holds arg min`=0,1,...,k φ(`) = (1− o(1))k a.a.s.

Now we offer a necessary implication of the existence of OGP in terms of the monotonicity of
φ(`), which allows us to argue for its abscence in what follows. As mentioned in the introduction,
such links between OGP and the monotonicity of φ(`) have appeared in the literature but the exact
lemma below is not known, to the best of our knowledge. The proof of Lemma 20 can be found in
Appendix G.

Lemma 20 Let ζ,M,W ∈ {0, 1, . . . , k}, H > 0 with M + W ≤ k. If Φ satisfies the (ζ,W,H)-
OGP for some ζ ≤ M , then there exists u ∈ {0, 1, . . . ,W − 1}, such that φ(`W + u) is not
non-increasing for ` = 0, 1, 2, . . . , bM/W c.
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Using Lemma 20 we now provide evidence that for any arbitrarily small but fixed ε ∈ (0, 1) Φ
a.a.s. as p → +∞ does not satisfy the (ζp′ ,Wp′ , Hp′)-OGP for any choice of parameters ζp′ ≤
M = b(1 − ε)kc, Wp′ = ω(1) and Hp′ > 0. Notice that the additional stronger condition of
Hp′ = ω(log p′) is not required for our argument and only the weaker Hp′ > 0 suffices. To
prove the abscence of such an OGP in light of Lemma 20 according to which it suffices to study the
monotonicity of φ(`) across the different arithmetic progressions with some differenceWp′ = ω(1).

Towards understanding the concentration properties of φ(`) we use the moments method, which
we have already explained in the Introduction, but which we repeat here for completeness. We define
for t, ` ≥ 0, the counting random variable

Z`,t =
∣∣∣{θ ∈ {0, 1}p′ : ‖θ‖0 = k, 〈θ, θ∗〉 = `,H(θ) ≤ t}

∣∣∣
and observe that

φ(`) ≤ t⇔ Z`,t ≥ 1.

In particular, by Markov’s inequality and Paley’s-Zigmund’s inequality we have for all t > 0 and
` ∈ {0, 1, 2, . . . , b(1− ε)kc}:

E [Zt,`]
2

E
[
Z2
t,`

] ≤ Pr [φ(`) ≤ t] = Pr[Z`,t ≥ 1] ≤ E [Zt,`] .

Hence if for some t1, t2 > 0 it holds E [Zt1,`] = o(1) we have φ(`) > t1 a.a.s as p → +∞ and if
E[Zt2,`]

2

E
[
Z2
t2,`

] = 1− o(1) or equivalently
Var[Zt2,`]
E[Zt2,`]

2 = o(1) we have φ(`) ≤ t2 a.a.s. The employment of

the first moment to get a a.a.s. lower bound is called a first moment method, and the employment
of the second moment to get an a.a.s. upper bound is called the second moment method.

As we have already explained in the Introduction, we define the function which maps ` to the
value t = t` > 0 for which the first moment satisfies E [Zt1,`] = 1 (first moment prediction), which
we use as our heuristic approximation for φ(`), which has been a successful approximation in both
regression Gamarnik and Zadik (2017), the planted clique Gamarnik et al. (2019) and sparse PCA
models Arous et al. (2020b). Now using standard large deviation theory of the Binomial random
variable we arrive at the following definition of the first moment prediction.

Definition 21 Suppose 1
2 < R < 1. Then for every fixed value of p′, npos satisfying Lemma 16 and

15 for sufficiently small η > 0 we denote by Fp′(λ), λ ∈ [0, 1) the first moment function defined
implicitly by being the unique function satisfying the following two constraints for each λ ∈ [0, 1),

(1) Fp′(λ) ≤ 1− 2λ−1;

(2)

α
(
Fp′(λ), 1− 2λ−1

)
=

ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos

. (6)

where α(x, y) := x ln x
y + (1− x) ln 1−x

1−y .
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Remark 22 Here α(x, y), x, y ∈ [0, 1], is the Kullback–Leibler divergence (relative entropy func-
tion) between two Bernoulli random variables with probability of success x and y, respectively. It
naturally appears here using the large deviation properties of the Binomial distributions.

Remark 23 Technically Fp′ also depends on the value of npos, and not just p′. However, we choose
to emphasize only the dependency on the population of potentially defective items — which is the
main (growing) parameter we use to index all quantities in our work— in order to simplify the
notation.

The non-voidness of Definition 21 is given in the following Proposition, along with some basic
analytic properties of the first moment function. The proof of Proposition 24 can be found in
Appendix G.

Proposition 24 Suppose 1
2 < R < 1. Then the first moment function Fp′(λ) exists, is unique and

for any ε > 0 it is continuously differentiable for λ ∈ [0, 1− ε], a.a.s. as p→ +∞ (with respect to
the randomness of p′, npos satisfying Lemma 16 and 15 for sufficiently small η. ).

Now we prove rigorously using the first moment method that φ(`) can be lower bounded in
terms of the first moment function Fp′(`).

Theorem 25 Suppose 1
2 < R < 1 and k = Θ(pα) for some constant α ∈ (0, 1). For every

ε > 0, there exists a constant C = C(ε) such that a.a.s. as p → +∞ for every integer ` ∈
{0, 1, . . . , b(1− ε)kc} we have:

φ(`) ≥ nposFp′

(
`

k

)
− C ln k.

Using the second moment method to establish concentration, we conjecture that the Theorem
25 can be strengthened to prove the following result (as explained in the literature, similar results
have been proven to be tight in multiple cases where OGP has been studied Gamarnik and Zadik
(2017); Balister et al. (2019); Gamarnik and Zadik (2019a); Arous et al. (2020b).

Conjecture 26 Suppose 1
2 < R < 1. For every ε > 0, there exists a constant C = C(ε) such that

a.a.s. as p→ +∞ for every integer ` ∈ {0, 1, . . . , b(1− ε)kc} we have:

∣∣φ(`)− nposFp′

(
`

k

) ∣∣ ≤ C ln k.

Theorem 27 Let arbitrary 1
2 < R < 1. For every ε > 0 there exists a constant D = D(ε) > 0

such that a.a.s. as p→ +∞ for every ` ∈ {0, . . . , b(1− ε)kc} we have:

Fp′

(
`+ 1

k

)
− Fp′

(
`

k

)
≤ −D

ln
(
p′−k
k

)
npos

. (7)

In particular, Fp′(`) is strictly decreasing as a function of ` ∈ {0, 1, 2, . . . , b(1 − ε)kc}, a.a.s. as
p→ +∞.
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Figure 3: R = 0.75
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Figure 4: R = 0.85
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Figure 5: R = 0.9
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Figure 6: R = 0.975

Figure 7: For plotting purposes, we plot a “first order approximation”, F̃ : [0, 0.9] → R of the im-
plicitly defined first moment curve Fp′(λ) which is the curve satisfying for all λ ∈ [0, 0.9],

F̃ (λ) ≤ 1 − 2λ−1 and α
(
F̃ (λ), 1− 2λ−1

)
= (2R − 1) ln 2(1 − λ). The first order ap-

proximation we use is ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
/npos ≈ (2R − 1) ln 2(1 − λ) and follows

from a relatively straightforward derivation using Lemmas 15, 16 and basic asymptotics
since k = o(p). One can see that the F̃ remains strictly decreasing throughout the dif-
ference choices of R < 1 (in accordance with Theorem 27) and it converges to the zero
function as R tends to 1.
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This monotonicity result and Lemma 20 suggests that possibly φ(`) is decreasing as a function of `
implying indeed the absence of the OGP for all R ∈ (1

2 , 1). Yet, to establish this we have to tolerate
the error naturally appearing in Theorem 25 and Conjecture 26. We are able to show that indeed
such a error tolerance is possible and we obtain the following result.

Theorem 28 Let arbitrary 1
2 < R < 1 and k ≤ p1−c for some c > 0. Suppose Conjecture 26

holds. Then for any ε > 0 the following is true asymptotically almost surely as p → +∞. For
any ζp′ ,Wp′ ∈ {0, 1, . . . , k} with ζp′ ≤ (1 − ε)k, ζp′ + Wp′ ≤ k, Wp′ = ω(1) and Hp′ > 0 the
(ζp′ ,Wp′ , Hp′)-OGP does not hold.

Note that in Theorem 28 we require the very weak assumption that k ≤ p1−c for some c > 0 which
captures almost all of the sublinear regime k = o(p).We consider this assumption to be of technical
nature.

B.3. Absence of bad local minima

Motivated by the evidence for the absence of the OGP for all rates R < 1 in the landscape of
Bernoulli group testing with ν with (1 − ν

k )k = 1
2 , which is described in the previous section,

we now turn our attention to a much more strict notion of optimization landscape smoothness,
namely the absence of “bad” local minima. The fact that OGP may not appear for any R < 1,
suggests that the absence of bad local minima may hold for reasonable values of R near 1. If true,
this has clear rigorous algorithmic implications such as the certain success of greedy local search
methods. Furthermore, partial motivation for studying this notion of optimization complexity is a
rigorous understanding of the performance of Glauber Dynamics, the algorithm we described in
the Introduction, and which we implemented for our experimental results (and which achieves an
almost perfect success rate in solving the corresponding optimization problem for all R < 1, see
Section C). Indeed, the absence of bad local minima guarantees the success of the Glauber dynamics
algorithm for large values of β and, in particular, for β = +∞.

Data: k′,PD,PosTests
begin

σ0 ← an arbitrary state from Ωk′

N ← |PosTests|, t← 0
while P (σt) < |PosTests| do

For all possible pairs (i, j) ∈ σt × (PD \ σt), let τij := (σt ∪ {j}) \ {i}.
Define Tσt = {τij : (i, j) ∈ σt × (PD \ σt)}
Let τ ∈ Tσt ∪{σt} be the state with the highest P -value (solving ties uniformly at random).
σt+1 := τ
if σt = σt+1 then

Return σt
end
t← t+ 1

end
Return σt

end
Algorithm 2: Greedy Local Search
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Recall that PD denotes the set of potentially defective items, that for every integer k′ ∈ {1, 2 . . . , p},
Ωk′ denotes the set of all possible subsets of exactly k′ items which do not participate in any negative
test and that, for a state (k′-tuple) σ ∈ Ωk′ , P (σ) denotes the number of positive tests explained by
state σ. We consider the above greedy local search algorithm (which can be seen as an “aggressive”
version of Glauber dynamics).

In the second theorem of the present work we study the optimization landscape of the [approx-
imate] k′-SS problem for k′ ≥ k. One potential motivation for studying values of k′ that are larger
(but still close to) k is to obtain algorithms for approximate recovery which never introduce false-
negatives errors, with high probability. Indeed, we will show that utilizing our theorem we will be
able to slightly improve upon the state-of-the-art results for this task.

To formally state our theorem, we need the following definition.

Definition 29 Let k, p ∈ N with 1 ≤ k ≤ p. Fix parameters δ, ε ∈ [0, 1), and set k′ = b(1 + ε)kc.
We say that a state σ ∈ Ωk′ is a (δ, ε)-bad local minimum if it contains less than b(1 − δ)kc
defective items and there exists no state τ ∈ Tσ such that P (τ) ≥ P (σ) + 1.

Our second theoretical contribution is a sufficient condition for the absence of (δ, ε)-bad local
minima.

Theorem 30 Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞ with k = o(p). Fix
parameters ν > 0, R ∈ (0, 1), δ, ε ∈ [0, 1) such that δε > 0, set k′ = b(1 + ε)kc, and assume that

we observe the outcome of n = b log2 (pk)
R c tests under non-adaptive Bernoulli group testing in which

each item participates in a test with probability ν/k. If

R <
νe−ν

ln 2
+ max

λ≥0
min

ζ∈[0,1−δ)
Q(λ, ζ, ν, ε),

where Q = Q(λ, ζ, ν, ε) is

Q = −
ln

(
e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1) + (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1

)
(1 + ε− ζ) ln 2

,

(8)

then there exists no (δ, ε)-bad local minimum in Ωk′ .

A concrete consequence of Theorem 30 is the following corollary. Its proof can be found in
Appendix I.

Corollary 31 Let k, p ∈ N with 1 ≤ k ≤ p. We assume that k, p → +∞ with k = o(p).

Assume that we observe the outcome of n = b log2 (pk)
R c tests under non-adaptive Bernoulli group

testing in which each item participates in a test with probability ln(5/2)/k. If R < 0.5468, then
GREEDY LOCAL SEARCH with input k′ = b(1.01)kc terminates in at most n steps almost surely,
and furthermore outputs a k′-tuple that contains the k defective items asymptotically almost surely
as p→ +∞.
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Appendix C. Experimental results

In this section we present experimental results that provide further evidence suggesting the absence
of a computational-statistical gap in the Bernoulli group testing problem with ν such that (1− ν

k )k =
1
2 and the tractability of finding a satisfying set for all R ≤ 1. In particular, our experiments are in
agreement with the prediction from the absence of the OGP for all R < 1. The key insights from
our experimental results can be summarized as follows.

1. The k-SS problem is efficiently solvable to exact optimality via a simple local search algo-
rithm even at rate R = 1.

2. Solving the SSS problem via a local search method is efficient and outperforms other popular
algorithms in terms of approximate recovery.

We give more details forthwith. We note that all our experiments were performed in a Mac-
BookPro with a 2.3 GHz 8-Core Intel Core i9 Processor and 16 GB 2667 MHz DDR4 RAM.

In Figure 1 we demonstrate the performance of Glauber Dynamics for solving the k-SS problem
on instances where k = bp1/3c and ν satisfies (1 − ν/k)k = 1/2. While the choice of ν should
already be well-motivated, the choice of k is chosen because k = bp1/3c corresponds the largest
power of p for which, not only approximate, but even exact recovery is theoretically possible for
any R < 1 by the Bernoulli design of choice Aldridge et al. (2019). Now each data point that
corresponds to a particular value of the inverse rate R−1 is computed by creating 100 Bernoulli
group testing instances and counting how many times the algorithm succeeds (where success refers
to solving the optimization, exact- and approximate-recovery task, respectively). The gray lines,
which support our first point above, correspond to the probability that Glauber Dynamics success-
fully solves the k-SS problem to exact optimality (i.e. finds a satisfying set). Remarkably, we
observe an almost perfect success rate in this task (> 99.7%). The orange lines correspond to the
probability of successful exact recovery, while the blue lines correspond to the probability of suc-
cessful 90%-approximate recovery. Note that in terms of exact/approximate recovery the algorithm
is not succeeding with high probability when R is close to 1, albeit always outputing a satisfying
set, seemingly opposing the theoretical results (Lemma 5). We naturally consider this an artifact of
considering finite p, which is supported by the second diagram of Figure 2, where as p increases,
the success probability of the approximate recovery task (of solving the harder SSS problem, which
does not know the value of k) at a given fixed rate R < 1 also increases, as predicted by Lemma 5.

In Figure 2 we demonstrate how our proposed algorithm for solving now the SSS problem
(solving the k′-SS problem for k′ = 0, 1, . . . , p and performing binary search) compares to a series
of known popular algorithms for 90%-approximate recovery. Again, we choose k = bp1/3c, ν that
satisfies (1−ν/k)k = 1/2, and we compute each data point by creating 100 Bernoulli group testing
instances and counting how many times the algorithm succeeds in terms of the 90%-approximate-
recovery task. The algorithms we compare our approach with are the following. (Some of them we
have already discussed, but we include their description here again for completeness. The reader is
also referred to Aldridge et al. (2019) for more details.)

• Combinatorial orthogonal matching pursuit (COMP): In the COMP algorithm we remove
every item that takes part in a negative test, and output the rest. Each item in the output of
COMP is called potentially defective (PD).
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• Definite defective (DD): In the DD algorithm we output the set of PD items, which have the
property that they are the only PD item in a certain positive test. Each item in the output of
DD is called definite defective (DD).

• Sequential COMP (SCOMP): The SCOMP algorithm is defined as follows. (Recalling Re-
mark 14, SCOMP is essentially Chvatal’s greedy approximation algorithm for Set Cover.)

1. Initialize S to be the set of DD items.
2. Say that a positive test is unexplained if it does not contain any items from S. Add to S

the PD item not in S that is in the most unexplained tests, and mark the corresponding
tests as no longer unexplained. (Ties may be broken arbitrarily).

3. Repeat Step 2 until no tests remain unexplained. The estimate of SCOMP is S.

• Max Degree (MD) : The MD algorithm sorts the PD items in decreasing order with respect to
how many positive tests each such item takes part in. It then outputs the k first PD items in
this order.

As a final remark, our results are in agreement with earlier experimental findings on Markov
Chain Monte Carlo algorithms for noisy group testing settings in applied contexts, such as com-
putational biology Knill et al. (1996); Schliep et al. (2003) and security Furon et al. (2012), but
we note that our work is the first one to provide a concrete theoretical explanation for their strong
performance in simulations, and a principled way to exploit local algorithms for implementing the
SSS estimator.

Appendix D. Proofs related to the Overlap Gap Property

In this section we prove Theorems 25, 27 and 28 .
We will find helpful the following technical results regarding the relative entropy function

α(x, y) := x ln x
y + (1− x) ln 1−x

1−y , x, y ∈ [0, 1].

Lemma 32 Let x, y ∈ (0, 1
2 ] with x < y be fixed and N →∞. We have

Pr[Bin(N, y) ≤ xN ] = e−Nα(x,y)+O(lnN).

Lemma 33 The partial derivatives of α(x, y) with respect to x and y are given by the following
expressions:

∂

∂x
α(x, y) = ln

(
x

1− x

)
− ln

(
y

1− y

)
;

∂

∂y
α(x, y) = −x

y
+

1− x
1− y

.

Lemma 34 For any δ ∈ (0, 1), and c0 = c0(δ) > 0 it holds that for all x0, x, y > 0 such that
x < (1− δ)y, x0 < x, y ≤ 1

2 , we have:

∂

∂x
α(x, y) ≤ −c0

As a consequence:

α(x− x0, y) ≥ α(x, y) + c0x0.

29



ILIOPOULOS ZADIK

For the proof of Lemma 32 see e.g. Lemma 2 in Balister et al. (2019). Lemma 33 follows
trivially by direct calculations, and Lemma 34 is shown in Appendix G.

D.1. Proof of Theorem 25

Recall that for any θ ∈ {0, 1}p′ with ‖θ‖0 = k we denote by H(θ) the number of unexplained
tests with respect to θ. Denote also by θ∗ the unknown binary k-sparse vector supported on the true
defective items and notice that H(θ∗) = 0. Finally, recall Remark 17.

Now for t, ` ≥ 0, let

Z`,t =
∣∣∣{θ ∈ {0, 1}p′ : ‖θ‖0 = k, 〈θ, θ∗〉 = `,H(θ) ≤ t}

∣∣∣
and observe that

φ(`) ≤ t⇔ Z`,t ≥ 1.

In particular, by Markov’s inequality, for all t > 0 and ` ∈ {0, 1, 2, . . . , b(1− ε)kc}:

Pr [φ(`) ≤ t] = Pr[Z`,t ≥ 1] ≤ E [Zt,`] . (9)

Therefore, in order to prove Theorem 25 it suffices to show that there exists an appropriate large
constant C = C(ε) > 0 such that if

t` := nposFp′

(
`

k

)
− C ln k,

then

lim
p→+∞

b(1−ε)kc∑
`=0

E [Zt`,`] = 0. (10)

To see this notice that combining (9) and (10) implies that for all ` ≤ (1 − ε)k it holds φ(`) ≥
nposFp′

(
`
k

)
− C ln k asymptotically almost surely, which is our claim.

Towards that end, fix ` ∈ {0, 1, 2, . . . , b(1 − ε)kc} and θ ∈ {0, 1}p′ such that ‖θ‖0 = k and
〈θ, θ∗〉 = `, and observe that by the linearity of expectation:

E[Zt`,`] =

(
k

`

)(
p′ − k
k − `

)
Pr[H(θ) ≤ t`]. (11)

Lemma 35 H(θ) is distributed as a binomial random variable Bin(npos, 1− 2−(1− `
k

)).

Proof Recall that each item takes part in a certain positive test independently of the other items and
tests and that we have conditioned on the value of the random variable P , namely the set of indices
of the positive tests. For any fixed i ∈ P:

Pr[〈Xi, θ〉 = 0 | i ∈ P] =
Pr[(〈Xi, θ〉 = 0) ∧ (i ∈ P)]

Pr[i ∈ P]

=
(1− ν

k )k
(
1− (1− ν

k )k−`
)

1−
(
1− ν

k

)k
=

1
2

(
1− (1− ν

k )k−`
)

1
2

= 1− 2−(1− `
k

),
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concluding the proof. Note that in the above calculation Pr[·] denotes the probability with respect to
the original, unconditional probability space. Recall also that we have chosen ν so that (1−ν/k)k =
1/2, a fact we use in the third line of the above calculation.

Combining (11), Lemma 35, and Lemma 32 (with N = npos, x = t`
npos

and y = 1− 2−(1− `
k

) ) we
obtain:

E[Zt`,`] ≤
(
k

`

)(
p′ − k
k − `

)
e
−nposα

(
Fp′(

`
k )−C ln k

npos
,1−2−(1− `

k
)
)

+O(lnnpos)
.

For large enough p, and therefore large enough npos according to Lemma 15, we can apply Lemma 34
with x = t`

npos
, x0 = C ln k

npos
, y = 1− 2−(1− `

k
), δ = 2−(1− `

k
) to get:

E[Zt`,`] ≤
(
k

`

)(
p′ − k
k − `

)
e
−nposα

(
Fp′(

`
k ),1−2−(1− `

k
)
)
−c0C ln k+O(lnnpos)

≤ e−c0C ln k+O(lnnpos).

where for the second inequality we used the definition of the first moment function Fp′ and, in
particular, (6).

Overall,

b(1−ε)kc∑
`=0

E[Zt`,`] ≤ ke−c0C ln k+O(lnnpos)

which indeed tends to zero for sufficiently large C since, from our conditioning, npos = O(n) =
O(k ln(p/k)) and k = Θ(pα) for some constant α > 0, concluding the proof.

D.2. Proof of Theorem 27

We start by showing the following technical lemmas in Appendix G.

Lemma 36 Suppose 1
2 < R < 1. There exists δ = δ(ε) > 0 such that a.a.s. as p → +∞ it holds

for all λ ∈ [0, 1− ε]:

(a)

δ ≤

(
k
bλkc
)( p′−k
bk(1−λ)c

)
npos(1− λ) ln 2

≤ 1− δ,

and

(b)
δ(1− 2λ−1) ≤ Fp′(λ) ≤ (1− δ)(1− 2λ−1).

Lemma 37 There exists a sufficiently small constant η′ > 0 such that for all λ ∈ [0, 1− ε] it holds

Fp′(λ) ≤ (1− 2λ−1)

1− (1 + η′)

(
k
bλkc
)( p′−k
bk(1−λ)c

)
npos(1− λ) ln 2

 ,

a.a.s. as p→ +∞.
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All the constants (included for example in the asymptotic notations) in this proof may depend
on the value of ε.

Let us now fix some ` ∈ {0, 1, 2, . . . , b(1 − ε)kc}. Using (6) and elementary algebra with
binomial coefficients we obtain that almost surely:

α

(
Fp′

(
`+ 1

k

)
, 1− 2

`+1
k
−1

)
− α

(
Fp′

(
`

k

)
, 1− 2

`
k
−1

)
=

ln
((

k
`+1

)(
p′−k
k−`−1

))
− ln

((
k
`

)(
p′−k
k−`
))

npos

=
ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

. (12)

Let δ be the constant promised by Lemma 36 and let us define the compact convex set

T = {(x, y) ∈ [0, 1]2 : δy ≤ x ≤ (1− δ)y, y ≤ 1− 2−ε},

for which we have for all λ ∈ [0, 1−ε], (Fp′(λ), 1−2λ−1) ∈ T, a.a.s. as p→ +∞. Combining (12)
with an application of the two dimensional mean value theorem on T (e.g. by restricting α on the line
segment connecting ( `k , 1−2

`
k
−1) and ( `+1

k , 1−2
`+1
k
−1)) we conclude that there exists (ξ1, ξ2) ∈ T

with ξ1 ∈
(
Fp′(

`
k ), Fp′(

`+1
k )
)

and ξ2 ∈ [1− 2
`+1
k
−1, 1− 2

`
k
−1] such that

〈
∇α (ξ1, ξ2) ,

(
Fp′

(
`+ 1

k

)
, 1− 2

`+1
k
−1

)
−
(
Fp′

(
`

k

)
, 1− 2

`
k
−1

)〉
=

ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

.

or equivalently

∂

∂ξ1
α(ξ1, ξ2)

(
Fp′

(
`+ 1

k

)
− Fp′

(
`

k

))
− ∂

∂ξ2
α(ξ1, ξ2)

(
2
`+1
k
−1 − 2

`
k
−1
)

=
ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

.

(13)

Now from Proposition 24, Fp′ is continuously differentiable in [0, 1−ε]. Therefore, for constants
possibly dependent on ε, we have that it necessarily holds

ξ1 = Fp′

(
`

k

)
+O

(
1

k

)
.

Furthermore since ` ≤ (1− ε)k we also have uniformly over all such `,

Ω(1) ≤ ξ2 = 1− 2
`
k
−1 +O(

1

k
).

Hence, applying Lemma 33 we get:

∂

∂ξ2
α(ξ1, ξ2) = −ξ1

ξ2
+

1− ξ1

1− ξ2
=

1

2
`
k
−1
−

Fp′(
`
k )

2
`
k
−1(1− 2

`
k
−1)

+O

(
1

k

)
. (14)

For similar reasons for constants possibly dependent only on ε > 0,

2
`+1
k
−1 − 2

`
k
−1 = 2

`
k
−1 ln 2

k
+O

(
1

k2

)
. (15)
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Combining (14), (15) allows us to conclude that

∂

ξ2
α(ξ1, ξ2)

(
2
`+1
k
−1 − 2

`
k
−1
)

=
ln 2

k

(
1−

Fp′(
`
k )

1− 2
`
k
−1

)
+O

(
1

k2

)
(16)

Combing now (13) and (16) we obtain:

∂

∂ξ1
α(ξ1, ξ2)

(
Fp′

(
`+ 1

k

)
− Fp′

(
`

k

))
=

ln
[

(k−`)2
(`+1)(p′−2k+`+1)

]
npos

+
ln 2

k

(
1−

Fp′(
`
k )

1− 2
`
k
−1

)
+O

(
1

k2

)
.

(17)

Now, using Lemma 34 and the definition of T we get that for the constant c0 = ln 2 > 0,

∂

∂ξ1
α(ξ1, ξ2) ≤ −c0, (18)

which therefore using (17) shows that it suffices to prove that for some constant D0 = D0(ε) it
holds

ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

+
ln 2

k

(
1−

Fp(
`
k )

1− 2
`
k
−1

)
≥ D0

ln p′−k
k

npos
+ ω

(
1

k2

)
.

Now since we have 1
2 < R < 1 it holds ln p′−k

k
npos

= Ω( 1
k ) = ω( 1

k2
) a.a.s. as p → +∞ and therefore

it suffices to show that for some constant D0 = D0(ε) it holds

ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

+
ln 2

k

(
1−

Fp(
`
k )

1− 2
`
k
−1

)
≥ D0

ln p′−k
k

npos
. (19)

Now using Lemma 37 and simple rearrangement of the terms, we obtain for some constant
η′ > 0,

ln 2

k

(
1−

Fp′(
`
k )

1− 2
`
k
−1

)
≥ (1 + η′)

ln
(
k
`

)(
p′−k
k−`
)

(k − `)npos
≥ (1 + η′)

ln
(
k(p−k)
(k−`)2

)
npos

, (20)

where for the second inequality we used that
(
k
`

)(
p−k
k−`
)
≥
(
k(p−k)
(k−`)2

)k−`
, which in turn follows by

the well-known inequality
(
a
b

)
≥
(
a
b

)b, which is true for any pair of integers a ≥ b.
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Hence, by elementary algebra it holds,

ln
[

(k−`)2
(`+1)(p′−2k+`+1)

]
npos

+
ln 2

k

(
1−

Fp(
`
k )

1− 2
`
k
−1

)
≥

ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

+ (1 + η′)
ln k(p′−k)

(k−`)2

npos
+O

(
1

k2

)

=
ln
[

(k−`)2
(`+1)(p′−2k+`)

]
npos

+
ln k(p′−k)

(k−`)2

npos

+η′
ln k(p′−k)

(k−`)2

npos
+O

(
1

k2

)

=
ln
[

k(p′−k)
(`+1)(p′−2k+`)

]
npos

+ η′
ln k(p′−k)

(k−`)2

npos
+O

(
1

k2

)
≥

ln k
`+1

npos
+ η′

ln p′−k
k

npos
+O

(
1

k2

)
≥ D0

ln p′−k
k

npos
,

where D0 is an appropriately small positive constant, since k = o(p), a.a.s. as p → +∞ npos =
Θ(k ln p

k ) and ` ≤ (1− ε)k. This completes the proof of the theorem.

D.3. Proof of Theorem 28

Notice that if for any ζp′ ,Wp′ ∈ {0, 1, . . . , k}, Hp′ > 0 with ζp′ ≤ (1 − ε)k, ζp′ + Wp′ ≤ k,
Wp′ = ω(1) and Hp′ > 0 the (ζp′ ,Wp′ , Hp′)-OGP holds then we can apply Lemma 20 for ζ =
ζp′ ,W = Wp′ , H = Hp′ and finally M = b(1 − ε)kc (by redefining Wp′ by min{Wp′ , (1 − ε)k}
if necessary) to deduce that for some u = 0, 1, . . . ,Wp′ − 1, the function φ(`Wp′ + u) is not
non-increasing as a function of ` = 0, 1, . . . , b(1− ε)k/Wp′c.

Hence it suffices to show that for any ε > 0 a.a.s. as p → +∞ any Wp′ = ω(1) and any
u < Wp′ the function φ(`Wp′ + u) is decreasing as a function of ` = 0, 1, . . . , b(1 − ε)k/Wp′c.
Notice that now to prove this, it actually suffices to prove that for any ε > 0 a.a.s. as p → +∞
there exists a constant Q(ε) > 0 such that for any `2 < `1 < (1− ε)k with `1 > `2 +Q(ε) it holds
φ(`2) > φ(`1).

Towards that goal, let us fix some Q = Q(ε) that we will take sufficiently large for our needs.
Notice that from Conjecture 26 for some constant C = C(ε), a.a.s. it holds for any such `2, `1

φ(`2)− φ(`1) ≥ npos

(
F

(
`2
k

)
− F

(
`1
k

))
− 2C ln k. (21)

Now using Theorem 27 we also have for some constant D = D(ε) > 0 a.a.s. for any such `2, `1 by
telescopic summation,

F

(
`2
k

)
− F

(
`1
k

)
≥ (`1 − `2)D

ln
(
p′−k
k

)
npos

≥ Q(ε)D
ln
(
p′−k
k

)
npos

(22)
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Combining (21) and (22) we conclude that a.a.s. for any such `2, `1

φ(`2)− φ(`1) ≥ Q(ε)D ln

(
p′ − k
k

)
− 2C ln k. (23)

Using that we condition on the a.a.s. event that for some sufficiently small η < 1− 1
2R Lemma 16

hold we have a.a.s. ln
(
p′−k
k

)
≥ (1 − 1

2R − η) ln p
k . Hence we conclude that a.a.s. for any such

`2, `1,

φ(`2)− φ(`1) ≥ Q(ε)D

(
1− 1

2R
− η
)

ln
(p
k

)
− 2C ln k. (24)

Using now that k ≤ p1−c for some c > 0 we have that ln
( p
k

)
= Ω(ln k). Hence, indeed we can

choose a constant Q(ε) > 0 so that as p→ +∞ it holds

Q(ε)D

(
1− 1

2R
− η
)

ln
(p
k

)
> 2C ln k. (25)

Combining (24) and (25) completes the proof.

Appendix E. Proof of Theorem 30

In this section we prove Theorem 30. We will assume without loss of generality that R ≥ νe−ν

ln 2 .
(Indeed, if R < νe−ν

ln 2 , then we can utilize only the first blog2

(
p
k

)
/(νe−ν

ln 2 )c tests and ignore the rest.)
We start the analysis by estimating the number of possibly defective items which are actually

non-defective by proving Lemma 38. Its proof can be found in Appendix H.

Lemma 38 Let q denote the number of possibly defective items which are actually non-defective.
For every constant η ∈ (0, 1):

q ≤ (1 + η)p

(
k

p

) (1−η)ν·exp(−ν(1+ ν
2k

))
R ln 2

, (26)

asymptotically almost surely.

We call q the number of possible defective items that are actually non-defective and we condition
on its value satisfying the condition of Lemma 38 in what follows.

We proceed now towards proving Theorem 30. For every ` ∈ {0, . . . , k − 1} let Ω`
k′ ⊆ Ωk′

denote the set of potentially defective k′-tuples that contain exactly ` defective items. Fix now an
integer ` ∈ {0, . . . , k−1} and, for each σ ∈ Ω`

k′ , let Bσ denote the bad event that there exists no state
τij ∈ Tσ such that P (τij) > P (σ) and i, j are a non-defective and a defective item, respectively.
(Recall that for all possible pairs (i, j) ∈ σ× (PD\σ), we define τi,j = (σ∪{j})\{i}.) Recalling
Definition 29, to show our result it suffices to prove that

lim
p→+∞

b(1−δ)kc−1∑
`=0

Pr

 ⋃
σ∈Ω`

k′

Bσ

 = 0. (27)
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We first upper bound maxσ∈Ω`
k′

Pr[Bσ] since, by a union bound and the elementary observation

that |Ω`
k′ | =

(
k
`

)(
q

k′−`
)
, in order to show (27) it suffices to show that

lim
p→+∞

b(1−δ)kc−1∑
`=0

(
k

`

)(
q

k′ − `

)
max
σ∈Ω`

k′

Pr[Bσ] = 0. (28)

To that end, fix an ` ∈ {0, 1, . . . , b(1− δ)kc − 1} and an arbitrary state σ ∈ Ω`
k′ . Let also T ∗σ ⊆ Tσ

denote the set of states τij such that i is a non-defective item in σ, a set of items we denote by NDσ,
and j is a defective item which does not belong in σ, a set of items we denote by D\σ. For each
τij ∈ T ∗σ let ∆(τij) = P (τij)−P (σ) denote the random variable that equals the difference between
the number of positive tests explained by τij and the number of positive tests explained by σ. Let
Θj denote the number of positive tests that contain j and do not contain any item from σ. Let also
Θij denote the number of positive tests in which (i) i is the only item in σ that participates in the
test and; (ii) j does not participate in the test. Using our notation, it is an elementary observation
that

∆(τij) = Θj −Θij . (29)

To see this, at first observe that any positive test that contains at least two items from σ is explained
both by the set of items in σ and by the set of items of every state in Tσ. This is because our
algorithm removes (and, therefore, also inserts to) at most one item from σ. Thus, such tests do not
contribute to ∆(τij). Therefore it suffices to focus on the contribution of tests with either one or
zero items from σ. Now observe that the only tests that contribute positively to ∆(τij) (and increase
its value by one) among the ones that contain at most one item from σ, are exactly the ones that
contain j and no item of σ. Analogously, the only tests that contribute negatively to ∆(τij) (by
decreasing its value by one) among the ones that contain at most one item from σ are the ones in
which i is the only item that is contained in σ, and j is not contained in σ. The identity (29) follows.

Using (29) we now bound Pr[Bσ] as follows.

Pr[Bσ] ≤ Pr

 ⋂
τij∈T ∗σ

{∆(τij) ≤ 0}


≤ Pr

 ∑
τij∈T ∗σ

∆(τij) ≤ 0


= Pr

 ∑
i∈NDσ ,j∈D\σ

(Θj −Θij) ≤ 0

 . (30)

We now prove the following equality in distribution. The proof of Lemma 39 can be found in
Appendix H.

Lemma 39 For every ` = 0, 1, 2, . . . , k − 1 and σ ∈ Ω`
k′:∑

i∈NDσ ,j∈D\σ

(Θj −Θij)
d
=

n∑
q=1

C(`)
q ,
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where C(`)
q are independently and identically distributed random variables whose distribution sam-

ples with probability (1 − ν
k )k

′
from a (scaled1) binomial random variable (k′ − `)Bin(k − `, νk ),

with probability ν
(
k′

k −
`
k

) (
1− ν

k

)k′−1
(

1−
(
1− ν

k

)k−`) samples from a (scaled) binomial−1 ·
Bin(k − `, 1− ν

k ) and it is 0, otherwise.

A direct corollary of Lemma 39 is the following. Its proof can also be found in in Appendix H.

Corollary 40 For every ` = 0, 1, 2, . . . , k − 1 and σ ∈ Ω`
k:

Pr

 ∑
i∈NDσ ,j∈D\σ

(Θj −Θij) ≤ 0

 ≤ Pr

 n∑
q=1

T (`)
q ≤ 0

 ,
where T (`)

q are independently and identically distributed random variables whose distribution sam-
ples with probability (1− ν

k )k
′

from a (scaled) binomial random variable k′−`
k−` Bin(k− `, νk ), equals

to −1 with probability ν
(
k′

k −
`
k

) (
1− ν

k

)k′−1
(

1−
(
1− ν

k

)k−`), and it is 0, otherwise.

Overall, combining (30) with Corollary 40, and using the standard strategy for proving large
deviation bounds, we obtain:

Pr[Bσ] ≤ Pr

 n∑
q=1

T (`)
q ≤ 0

 ≤ min
λ≥0

n∏
q=1

E
[
e−λT

(`)
i

]
= min

λ≥0
E
[
e−λT

(`)
1

]n
. (31)

Now (31) implies that in order to prove (28) it suffices to find λ ≥ 0 such that

lim
p→+∞

b(1−δ)kc−1∑
`=0

exp

(
ln

(
k

`

)(
q

k′ − `

)
+ n lnE

[
e−λT

(`)
1

])
= 0,

or it suffices to have

lim
p→+∞

k exp

(
max

`=0,1,...,b(1−δ)kc−1

{
ln

(
k

`

)(
q

k′ − `

)
+ n lnE

[
e−λT

(`)
1

]})
= 0,

or, equivalently, by taking logarithms

lim
p→+∞

[
ln k + max

`=0,1,...,b(1−δ)kc−1

{
ln

(
k

`

)(
q

k′ − `

)
+ n lnE

[
e−λT

(`)
1

]}]
= −∞. (32)

It is a straightforward observation using the elementary
(
m1

m2

)
≤ (m1e/m2)m2 and Lemma 38 with

a parameter η > 0 to be defined later, that it holds for some constants C0, C1 > 0,

ln

(
k

`

)(
q

k′ − `

)
≤ (k′ − `) ln

q

(1 + ε)k − (1− δ)k
+ C0k

≤

(
1− (1− η)

νe−ν(1+ ν
2k

)

R ln 2

)(
1 + ε− `

k

)
k ln

p

k
+ C1k,

1. Here we mean that the result of the binomial is multiplied by a fixed number, namely, (k′ − `) in this case.
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where in deriving the second inequality we used the fact that εδ > 0, i.e., at least one of ε, δ is

positive. Using the last inequality and the fact that n ≤ log2 (pk)
R , to show (32) it suffices to show that

lim
p→+∞

[C1k + F1(ν, k, η,R, δ, ε) + ln k] = −∞,

where,

F1(ν, k, η,R, δ, ε) = max
`=0,...,b(1−δ)kc−1

{(
1− (1− η)

νe−ν(1+ ν
2k

)

R ln 2

)(
1 + ε− `

k

)
k ln

p

k
+

log2

(
p
k

)
R

lnE
[
e−λT

(`)
1

]}
.

Now using first ln
(
p
k

)
≤ k ln(p/k) + k and second that since T (`)

1 ≥ −1 almost surely, it holds

lnE
[
e−λT

(`)
1

]
≤ lnE

[
eλ
]

= λ, it suffices to show that

lim
p→+∞

[(
C1 +

λ

R ln 2

)
k + ln k + F2(ν, k, η,R, ε)

]
= −∞,

where,

F2(ν, k, η,R, δ, ε) = max
`=0,...,b(1−δ)kc−1

{(
1− (1− η)

νe−ν(1+ ν
2k

)

R ln 2

)(
1 + ε− `

k

)
+

1

R ln 2
lnE

[
e−λT

(`)
1

]}
k ln

p

k
.

Now, since k = o(p) and also λ ≥ 0, R > 0 are fixed constants, it suffices to show that

lim sup
p→+∞

max
`=0,...,b(1−δ)kc−1

{(
1− (1− η)

νe−ν(1+ ν
2k

)

R ln 2

)(
1 + ε− `

k

)
+

1

R ln 2
lnE

[
e−λT

(`)
1

]}
k ln

p

k
< 0,

or

R < lim inf
p→+∞

min
`=0,1,...,b(1−δ)kc−1

(1− η)νe−ν(1+ ν
2k

)(1 + ε− `
k )− lnE

[
e−λT

(`)
1

]
(1 + ε− `

k ) ln 2
,

which is equivalent to

R < (1− η)
νe−ν(1+ ν

2k
)

ln 2
− lim sup

p→+∞
max

ζ∈[0,1−δ]

lnE
[
e−λT

(bζkc)
1

]
(1 + ε− ζ) ln 2

. (33)

Now since it suffices that (33) holds for some η > 0 our condition by continuity is equivalent with

R <
νe−ν(1+ ν

2k
)

ln 2
− lim sup

p→+∞
max

ζ∈[0,1−δ)

lnE
[
e−λT

(bζkc)
1

]
(1 + ε− ζ) ln 2

. (34)

We now prove the following technical lemma in Appendix H.

Lemma 41 Under the assumptions of Theorem 30:

lim sup
p→+∞

max
ζ∈[0,1−δ)

lnE
[
e−λT

(bζkc)
1

]
(1 + ε− ζ) ln 2

= max
ζ∈[0,1−δ)

lim sup
p→+∞

lnE
[
e−λT

(bζkc)
1

]
(1 + ε− ζ) ln 2

.
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Combining Lemma 41 with (34), it suffices to have

R <
νe−ν

ln 2
− max
ζ∈[0,1−δ)

lim sup
p→+∞

lnE
[
e−λT

(bζkc)
1

]
(1 + ε− ζ) ln 2

. (35)

By direct computation for every ζ ∈ [0, 1− δ) it holds

E
[
e−λT

(bζkc)
1

]
=
(

1− ν

k

)k′ ((
e−µ

ν

k
+ 1− ν

k

)k−bζkc
− 1

)
+

(
k′

k
− bζkc

k

)
ν
(

1− ν

k

)k′−1
(

1−
(

1− ν

k

)k−bζkc)
(eλ − 1) + 1, (36)

where µ = µ(λ, ε, ζ, k) = λ b(1+ε)kc−bζkc
k−bζkc . Since k → +∞ as p → +∞ we conclude by using

elementary calculus that

lim
p→+∞

E
[
e−λT

(bζkc)
1

]
= e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1)

+ (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1. (37)

Combining (35) and (37) it suffices to have

R <
νe−ν

ln 2
+ min
ζ∈[0,1−δ)

Q(λ, ζ, ν, ε). (38)

where recall that

Q(λ, ζ, ν, ε) = −
ln

(
e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1) + (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1

)
(1 + ε− ζ) ln 2

.

As it suffices that this condition is satisfied by some λ ≥ 0, by optimizing (38) over λ ≥ 0 it
suffices to have

R <
νe−ν

ln 2
+ max

λ≥0
min

ζ∈[0,1−δ)
Q(λ, ζ, ν, ε),

concluding the proof.

Appendix F. Proof of Lemma 5

Let us consider some fixed ε′ > 0 which will be chosen sufficiently small given the needs of the
proof.

For ` = 0, 1, . . . , b(1− δ)kc let Zε,ε′,` be the counting random variable of the number of sets of
size k which satisfy at least (1 − ε′)n tests and contain exactly ` defective items (with overlap `).
By two union bounds, first over ` and then over the different sets of overlap ` and by fixing for each
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`, an arbitrary set θ` with overlap ` we have

Pr

b(1−δ)kc⋃
`=0

{Zε,ε′,` ≥ 1}

 ≤ b(1−δ)kc∑
`=0

Pr
[
Zε,ε′,` ≥ 1

]

≤
b(1−δ)kc∑
`=0

(
k

`

)(
p− k
k − `

)
Pr
[
{θ` satisfies (1− ε′)n tests}

]
,

where we used that the exchangeability of the events {θ` satisfies (1 − ε′)n tests} for the different
possible choice of θ`. Now using also a union bound over the possible subset of tests of cardinality
d(1− ε′)ne that θ` satisfies, we have for some fixed subset of tests S of cardinality d(1− ε′)ne that

Pr

b(1−δ)kc⋃
`=0

{Zε,ε′,` ≥ 1}

 ≤ ( n

d(1− ε′)ne

) b(1−δ)kc∑
`=0

(
k

`

)(
p− k
k − `

)
Pr [{θ` satisfies the tests in S}]

≤
(

n

d(1− ε′)ne

) b(1−δ)kc∑
`=0

(
k

`

)(
p− k
k − `

)
Pr [{θ` satisfies a fixed test}]d(1−ε

′)ne ,

where we have used the exchangeability of the events {θ` satisfies the tests in S} for the different S
of a fixed size, and the independence of the tests. Now it is well-known computation in the group
testing literature (see e.g. (Truong et al., 2020, Section II.A)) that for each `,

Pr [{θ` satisfies a fixed test}] = 2
`
k
−1.

Hence it holds

Pr

b(1−δ)kc⋃
`=0

{Zε,ε′,` ≥ 1}

 ≤ ( n

d(1− ε′)ne

) b(1−δ)kc∑
`=0

(
k

`

)(
p− k
k − `

)
2−d(1−ε

′)ne k−`
k ,

which now using standard asymptotics
(
n
αn

)
≤ eCα log 1

α
n for α > 0 and some universal constant

C > 0 and
(
k
`

)(
p−k
k−`
)
≤ e(k−`) ln p

k
+O(k) allows us to conclude for some constant C ′ > C > 0

Pr

b(1−δ)kc⋃
`=0

{Zε,ε′,` ≥ 1}

 ≤ eCε′ log( 1
ε′ )n

b(1−δ)kc∑
`=0

e(k−`) ln p
k

+O(k)2−(1−ε′)n k−`
k

≤
b(1−δ)kc∑
`=0

exp

(
Cε′ log(

1

ε′
)k ln

p

k
+ (k − `) ln

p

k
+O(k)− (1− ε′)(1 + ε)(k − `) ln

p

k

)

≤
b(1−δ)kc∑
`=0

exp

(
(1− (1− ε′)(1 + ε))(k − `) ln

p

k
+ Cε′ log(

1

ε′
)k ln

p

k
+O(k))

)
≤ k exp

(
(1− (1− ε′)(1 + ε))δk ln

p

k
+ Cε′ log(

1

ε′
)k ln

p

k
+O(k)

)
= exp

(
(1− (1− ε′)(1 + ε))δk ln

p

k
+ Cε′ log(

1

ε′
)k ln

p

k
+O(k + log k)

)
= exp

(
((1− (1− ε′)(1 + ε))δ + C ′ε′ log(

1

ε′
))k ln

p

k

)
,
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where for the asymptotics we used that k = o(p). We now choose ε′ > 0 sufficently small such that
(1− (1− ε′)(1 + ε))δ + C ′ε′ log( 1

ε′ ) < −
εδ
2 < 0 to get

Pr

b(1−δ)kc⋃
`=0

{Zε,ε′,` ≥ 1}

 ≤ exp

(
−εδ

2
k ln

p

k

)
,

which clearly tends to zero as p grows to infinity and k = o(p). Hence
⋂b(1−δ)kc
`=0 {Zδ,ε,ε′,` = 0}

happens a.a.s. as p→ +∞, which is exactly what we want.

Appendix G. OGP related proofs Omitted from Sections B and D

In this section we present the proofs of Lemmas 15, 16, 20, 34, 36, 37 and Proposition 24.

G.1. Proof of Lemma 15

Observe that each test is positive with probability 1 − (1 − ν
k )k independently of all other tests.

Hence, by linearity of expectation we have E[|P|] = n(1− (1− ν
k )k)

p→+∞−−−−→ n/2. Now standard
Chernoff estimates imply that for any constant η′ ∈ (0, 1)

Pr[||P| − E[|P|]| > η′E[|P|]] ≤ exp(−(η′)2E[|P|]/3)
p→+∞−−−−→ 0.

Combining these two facts concludes the proof.

G.2. Proof of Lemma 16

Let p′ = |PD|. We only show the lower bound on p′. The proof of the upper bound is similar, and
in fact almost identical to the one of the more refined Lemma 38.

Recall that k = bpαc, α ∈ (0, 1), and let δ = min{α, η}/10. Let nneg = n − npos denote the
number of negative tests and notice that Lemma 15 implies that nneg ≤ (1 + δ)n/2. We condition
on that nneg = Nneg, where Nneg ≤ (1 + δ)n/2 is a fixed value. Since the probability that a fixed
non-defective item appears in a particular test is ν/k, we see that:

E[p′ − k | nneg = Nneg] = (p− k)
(

1− ν

k

)Nneg

≥ (p− k)exp

(
− Nneg

k
ν − 1

)
(39)

= (p− k)exp

(
−

(1 + δ) ln
(
p
k

)(
k
ν − 1

)
R ln 2

)

≥ (p− k)exp

(
−

(1 + δ)(k ln p
k + k))

2
(
k
ν − 1

)
R ln 2

)
(40)

≥ (p− k)exp

(
−

(1 + 2δ)(ln p
k + 1))

2R

)
= (p− k)e−

1+2δ
2R

(
k

p

) 1+2δ
2R

.
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Note that in (39) we used the fact that 1 − 1/x > e−1/(x−1), for x ≥ 2, while in (40) the fact that(
p
k

)
≤
( ep
k

)k.
Note also that our assumption that R ≥ 1

2 implies that as p→ +∞,

(p− k)e−
1+2δ
2R

(
k

p

) 1+2δ
2R

= Ω(k2δ) = ω(1).

Thus, since each non-defective item participates in a negative test independently of the other non-
defective items, standard Chernoff estimates imply that

Pr

[
p′ − k ≤ (1− δ)(p− k)e−

1+2δ
2R

(
k

p

) 1+2δ
2R ∣∣nneg = Nneg

]
≤ exp(−δ2k2δ/3)

p→+∞−−−−→ 0.

The above concludes the proof since Nneg ≤ (1 + 2δ)n/2 is chosen arbitrarily, we have already
established that nneg ≤ (1 + 2δ)n/2 asymptotically almost surely and, recalling that δ ≤ η/10, we
have

(1− δ)(p− k)e−
1+2δ
2R

(
k

p

) 1+2δ
2R

≥ (1− η)p

(
k

p

) 1+η
2R

for sufficiently large p.

G.3. Proof of Lemma 20

Assume that Φ satisfies the (ζ,W,H)-OGP for some for some ζ < M < M+W < arg min`=0,1,...,k φ(`).
Then by the definition of the OGP and of function φ it holds

φ(ζ) ≤ rp′ < φ(ζ +W ).

If by Euclidean division ζ = W bζ/W c + u for u ∈ {0, 1, . . . ,W − 1}, then we have ζ + W =
W (bζ/W c+ 1) + u. In particular,

φ(W bζ/W c+ u) < φ(W (bζ/W c+ 1) + u),

implying that indeed φ(W`+ u) is not non-increasing for ` = 0, 1, 2, . . . , bM/W c.

G.4. Proof of Proposition 24

Let us first fix a λ ∈ [0, 1). Using Lemma 36 for some 0 < ε < 1− λ we have that

0 <
ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos

< (1− λ) ln 2 < ln 2, (41)

a.a.s. as p→ +∞. By elementary inspection the function that sends x ∈ (0, 1− 2λ−1] to α(x, 1−
2λ−1) is continuous, strictly decreasing with image [0, ln 2). Hence given (41) we conclude that
there exists a unique x = Fp′(λ) satisfying (6) for this fixed value of λ.
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For the last part, let us fix some ε > 0. Using again Lemma 36 we conclude that for some
δ = δ(ε) > 0 it holds for all λ ∈ [0, 1− ε

2 ] that

δ(1− 2λ−1) ≤ Fp′(λ) ≤ (1− δ)(1− 2λ−1), (42)

a.a.s. as p→ +∞. In particular, Fp′(λ) is the unique solution of

G(x, λ) := α(x, 1− 2λ−1)−
ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos

= 0

where (x, λ) for now on are assumed to always satisfy x ≤ (1−δ)(1−2λ−1) and 1 > x, 1−2λ−1 >
0.

Towards proving the continuous differentiability of Fp′(λ) on some λ∗ ∈ [0, 1 − ε], notice that
we can restrict λ in a sufficiently small interval around λ∗ ∈ [0, 1 − ε] which is always included in

[0, 1 − ε
2 ], so that the term

ln
[
( k
bλkc)(

p′−k
b(1−λ)kc)

]
npos

is constant as a function of λ on that interval. Now
in this small interval G(x, λ) is continuous differentiable and furthermore since x ≤ (1 − δ)(1 −
2λ−1) and 1 > x, 1 − 2λ−1 > 0, it also holds ∂G

∂x (x, λ∗) = ∂α
∂x (x, λ∗) 6= 0 based on Lemma 34.

Hence, by the two dimensional implicit function theorem we can conclude indeed the continuous
differentiability of Fp′(λ) at λ = λ∗.

G.5. Proof of Lemma 34

If we are able to prove that

− ∂

∂x
α(x, y) ≥ c0

then the second claim of the lemma follows immediately by the mean value theorem. Recalling
Lemma 33 we see that, equivalently, it suffices to show

ln

(
y(1− x)

(1− y)x

)
≥ c0. (43)

Using the hypothesis we obtain

y(1− x)

(1− y)x
≥ 1− (1− δ)y

(1− y)(1− δ)
≥ 1

1− δ
> 1,

which implies (43) for c0 := ln 1
1−δ > 0, concluding the proof.

G.6. Proof of Lemma 36

We first prove part (a). We fix a sufficiently small but fixed η > 0 and condition on (15) and (16)
for this value of η. The exact bounds on η become apparent by going through the proof. Note that
as an easy consequence of (16) it holds

ln
p′

k
= (1− 1

2R
+O(η)) ln

p

k
(44)
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and in particular since k = o(p) and 1
2 < R < 1 we can choose η sufficiently small such that it also

holds k = o(p′). Using these observations and the elementary
(
a
b

)
= (1 + o(1))a log b

a if a = o(b),
it follows that a.a.s. as p→ +∞, it holds that for all λ ∈ [0, 1− ε],

ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos

=
ln
[( p′−k
b(1−λ)kc

)]
npos

+O

(
k

npos

)

= 2
ln
[( p′−k
b(1−λ)kc

)]
n

+O

(
k

n

)
+O(η), using (15)

= 2
b(1− λ)kc ln p′−k

b(1−λ)kc

n
+O

(
k

n

)
+O(η)

= 2
((1− λ)k +O(1)) ln p′−k

b(1−λ)kc

n
+O

(
k

n

)
+O(η)

= 2R
(1− λ)k ln p′−k

b(1−λ)kc

k log2
p
k

+O

(
1

k

)
+O

(
k

k log2
p
k

)
+O (η)

.

Now using that k = o(p′), k = o(p) and (44) as well as that k grows with p we can further conclude
that

ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos

= 2R ln 2
(1− λ)(ln(p

′

k ) +O( kp′ ))

ln p
k

+O (η)

= 2R(1− 1

2R
+O(η)) ln 2

(1− λ) ln p
k

ln p
k

+O (η)

= (2R− 1 +O(η)) ln 2(1− λ) +O (η)

= (2R− 1) ln 2(1− λ) +O (η) ,

which, since ε < 1− λ < 1, it implies

ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos ln 2(1− λ)

= 2R− 1 +O(η).

Now recall that we assume 1
2 < R < 1 and therefore 0 < 2R − 1 < 1. Hence choosing η small

enough allows to conclude that the ratio is bounded away from 0 and 1 a.a.s. as p→ +∞.
For the second part, we define the function Q(x, y) = α(x, y)/ ln( 1

1−y ) which is continuous on
T := {(x, y) ∈ [1

2 , 1−2−ε]2 : x ≤ y} with imageQ(T ) = [0, 1). Furthermore, by direct inspection
we have that Q(x, y) approaches 1 if and only if x/y approaches 0 and Q(x, y) approaches 0 if
and only if x/y approaches 1. Hence, by the definition of Fp′(λ), in order to show the lemma it
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suffices to show that there exists δ = δ(ε) ∈ (0, 1) such that, for sufficiently large p, it holds for all
λ ∈ [0, 1− ε]:

δ ≤ Q(Fp′(λ), 1− 2λ−1) ≤ 1− δ, (45)

a.a.s. as p → +∞. Indeed, under (45) we have for all λ ∈ [0, 1 − ε], (Fp′(λ), 1 − 2λ−1) ∈
Q−1[δ, 1− δ] a.a.s. as p→ +∞ and, therefore, the result follows as using the continuity of Q, and
that Q−1[δ, 1 − δ] is a compact set included in the square [1

2 , 1 − 2−ε]2 and has positive distance
from the lines x/y = 1 and x/y = 0.

Notice that (45) from the definition of Q is equivalent with the property that a.a.s as p → +∞
for all λ ∈ [0, 1]

δ ≤
α(Fp′(λ), 1− 2λ−1)

log 1
1−2λ−1

=
ln
[(

k
bλkc
)( p′−k
b(1−λ)kc

)]
npos ln 2(1− λ)

≤ 1− δ, (46)

which is proven in the first part of the lemma.

G.7. Proof of Lemma 37

We first claim that to show the lemma it suffices to prove that there exists sufficiently small η′ > 0
and δ′ > 0 such that for all λ, u with λ ∈ [0, 1− ε] and δ′ ≤ u ≤ 1− δ′ it holds

α((1− 2λ−1)(1− u), 1− 2λ−1) <
u

1 + η′
(1− λ) ln 2. (47)

and

δ′ ≤ (1 + η′)

(
k
λk

)( p−k
k(1−λ)

)
npos(1− λ) ln 2

≤ 1− δ′, (48)

a.a.s as p → +∞. Indeed the result would then follow by setting u∗ = (1 + η′)
( kλk)(

p−k
k(1−λ))

npos(1−λ) ln 2 and
observing that using the definition of the function Fp′ it holds

α((1− 2λ−1)(1− u∗), 1− 2λ−1) < α(Fp(λ), 1− 2λ−1).

Now using the fact that α(x, y) is decreasing, for fixed y as a function of x ≤ y, we conclude that
it must hold for all λ ∈ [0, 1− ε]

Fp(λ) ≤ (1− 2λ−1)(1− u∗) = (1− 2λ−1)

1− (1 + η′)

(
k
bλkc
)( p′−k
bk(1−λ)c

)
npos(1− λ) ln 2

 ,

which is what we want.
Note that (48) is true for sufficiently small η′, δ′ > 0 directly by the first part of Lemma 36.
We now prove the deterministic inequality (47) by fixing some δ′ > 0 satisfying (48) for some

value of η′, say η′1 > 0, and then choosing η′ sufficiently small with η′ ∈ (0, η′1), which allows us
to establish (47).
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Notice that the λ, u for which we want to establish (47), satisfy λ ∈ [0, 1−ε] and δ′ ≤ u ≤ 1−δ′,
correspond to a compact set. Hence by continuity to establish the strict inequality (47) for some
sufficiently small η′ ∈ (0, η′1) it in fact suffices to show it for η′ = 0 that is prove for all λ ∈ [0, 1−ε]
and δ′ ≤ u ≤ 1− δ′,

α((1− 2λ−1)(1− u), 1− 2λ−1) < u(1− λ) ln 2.

Equivalently, setting x = 1 − 2λ−1 ∈ [1
2 , 1 − 2−ε], it suffices to show that for all x ∈ [1

2 , 1 − 2−ε]
and δ′ ≤ u ≤ 1− δ′,

α(x(1− u), x) < u ln
1

1− x
, (49)

Now using the definition of α in (49) we obtain:

x(1− u) ln(1− u) + (1− x(1− u)) ln

(
1− x(1− u)

1− x

)
< −u ln(1− x)

which is equivalent to

x(1− u) ln
(1− u)(1− x)

1− x(1− u)
+ ln(1− x(1− u)) < (1− u) ln(1− x). (50)

Finally, to prove (50) we fix u ∈ [δ′, 1− δ′] and consider the function

G(x) = x(1− u) ln
(1− u)(1− x)

1− x(1− u)
+ ln(1− x(1− u))− (1− u) ln(1− x)

defined in x ∈ [1
2 , 1− 2−ε]. Clearly, it suffices to show that G(x) < 0 for all x, u of interest.

Towards that end, we calculate the derivative with respect to x:

G′(x) = (1− u) ln
(1− u)(1− x)

1− x(1− u)
− xu

(1− x)(1− x(1− u))
− 1− u

1− x(1− u)
+ (1− u)

1

1− x

which, after some elementary algebra, simplifies to

G′(x) = (1− u) ln
(1− u)(1− x)

1− x(1− u)
− xu2

(1− x)(1− x(1− u))
. (51)

Now the righthand side of (51) is clearly strictly less than zero since 0 < δ′ ≤ u ≤ 1− δ′ < 1 and
0 < 1

2 ≤ x ≤ 1− 2−ε < 1 and, therefore, both of its summands are negative.
As a consequence, we get that G(x) is decreasing and, in particular,

G(x) ≤ lim
x→ 1

2

G(x) =
(1− u)

2
ln

1− u
1 + u

+ ln

(
1 + u

2

)
+ (1− u) ln 2. (52)
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Recalling the definition of the binary entropy h(w) = −w log2w− (1−w) log2(1−w), w ∈ [0, 1]
we see that the righthand side of (52) (after we divide by ln 2) can be written as:

limx→ 1
2
G(x)

ln 2
=

(1− u)

2
log2

1− u
1 + u

+ log2

(
1 + u

2

)
+ (1− u)

=
(1− u)

2
log2

(
2 · (1− u)

2

)
− (1− u)

2
log2

(
2 · 1 + u

2

)
+ log2

(
1 + u

2

)
+ (1− u)

=
(1− u)

2
log2

(
1− u

2

)
− (1− u)

2
log2

(
1 + u

2

)
+ log2

(
1 + u

2

)
+ (1− u)

=
(1− u)

2
log2

(
1− u

2

)
+

(1 + u)

2
log2

(
1 + u

2

)
+ (1− u)

= −h
(

1− u
2

)
+ (1− u).

Therefore, limx→ 1
2
G(x) < 0 if and only if h(1−u

2 ) > 1− u. The latter inequality follows from the

fact that h is strictly concave in [0, 1
2 ] and, further, h(0) = 0 and h(1

2) = 1. Indeed, as a corollary
of this fact we obtain that h(w) > 2h(1

2)w = 2w for any w ∈ (0, 1
2) and, thus, the result claim

follows by setting w = 1−u
2 ∈ [ δ

′

2 ,
1−δ′

2 ] ⊂ (0, 1
2). Thus, we have shown that G(x) < 0 for every

x, u of interest, completing the proof of the lemma.

Appendix H. Proofs omitted from Section E

In this section we present the proofs of Lemmas 38, 39, 41 and of Corollary 40.

H.1. Proof of Lemma 38

Let δ′ ∈ (0, 1) be a constant to be defined later. Our first step is to prove that the number of negative
tests, nneg, is at least (1− δ′)n(1− ν

k )k asymptotically almost surely. To see this, observe that each
test is negative with probability (1 − ν

k )k independently of all other tests. Hence, by linearity of
expectation we have E[nneg] = n(1− ν

k )k and standard Chernoff estimates imply that

Pr[nneg < (1− δ′)E[nneg]] ≤ exp(−(δ′)2E[nneg]/2)
p→+∞−−−−→ 0.

Next, we will condition on that nneg = Nneg, where Nneg ≥ (1− δ′)n(1− ν
k )k is a fixed value.

In this case, since the probability that a fixed non-defective item appears in a particular test is ν/k,
we see that

E[q | nneg = Nneg] = (p− k)
(

1− ν

k

)Nneg

≤ p · exp

(
−(1− δ′)ν

k
ne
− k
k
ν−1

)
(53)

≤ p

(
k

p

) (1−δ′)ν·exp(−ν(1+ ν
2k

))
R ln 2

, (54)

for sufficiently large p. Note that in (53) we used the facts that 1 − x ≤ e−x, for every x ∈ R, and
that 1− 1/x > e−1/(x−1), for x ≥ 2, while in (54) the fact that

(
p
k

)
≥
( p
k

)k and the definition of R.
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Note also that our assumption that R ≥ νe−ν

ln 2 implies that as p→ +∞,

p

(
k

p

) (1−δ′)ν·exp(−ν(1+ ν
2k

))
R ln 2

= Ω(p
δ′
2 ) = ω(1).

Thus, since each non-defective item participates in a negative test independently of the other non-
defective items, standard Chernoff estimates imply that

Pr

q > (1 + η)p

(
k

p

) (1−δ′)ν·exp(−ν(1+ ν
2k

))
R ln 2 ∣∣nneg = Nneg

 ≤ exp(−η2pδ
′/2/3)

p→+∞−−−−→ 0.

Choosing δ′ = η, concludes the proof, since Nneg ≥ (1 − δ′)n(1 − ν
k )k is chosen arbitrarily, and

we have already established that nneg ≥ (1− δ′)n(1− ν
k )k asymptotically almost surely.

H.2. Proof of Lemma 39

We proceed by analyzing the (clearly i.i.d.) impact of each test to the sum
∑

i∈NDσ ,j∈D\σ
(Θj−Θij).

Note that each test can either contribute positively to the sum
∑

i∈NDσ ,j∈D\σ
(Θj − Θij), by being

counted by variables in the family {Θj}j∈D\σ , or negatively, by being counted by variables in the
family {Θij}i∈NDσ ,j∈D\σ , or not at all. Below we fix a certain test and estimate its contribution

which we denote by C(`)
q . Clearly C(`)

q are i.i.d. random variables and
∑

i∈NDσ ,j∈D\σ
(Θj −Θij)

d
=∑n

q=1C
(`)
q .

To be counted by the variables in the family {Θj}j∈D\σ , the test should not contain any item of
σ, which happens with probability (1− ν

k )k
′
. Conditional on this event, the positive contribution of

the test to the sum
∑

i∈NDσ ,j∈D\σ
(Θj − Θij) equals simply to |NDσ| · X = (k′ − `) · X , where

X is the random variable equal to the number of defective items in D\σ tht participate in the test.
Clearly, X ∼ Bin(k − `, νk ).

For each non-defective item i ∈ NDσ, let Ei denote the event that i is the only element in σ that
participates in the test, and that the test is positive. Observe that eventsEi are mutually-exclusive by
definition and, therefore, the negative contribution of the test to the sum

∑
i∈NDσ ,j∈D\σ

(Θj −Θij)

is given by 1(∪i∈NDσEi) ·Y =
∑

i∈NDσ
1(Ei) ·Y , where Y ∼ Bin(k−`, 1− ν

k ) counts the number
of items in D\σ that do not participate in the test. Now it is not hard to see that

Pr[Ei] =
ν

k

(
1− ν

k

)k′−1
(

1−
(

1− ν

k

)k−`)
and, therefore

Pr[∪i∈NDσEi] =
∑
i∈NDσ

Pr[Ei] = ν

(
k′

k
− `

k

)(
1− ν

k

)k′−1
(

1−
(

1− ν

k

)k−`)
.

Combining the findings in the above two paragraphs, we conclude that the random variable Cq
indeed follows the distribution as described in the statement of the lemma, which completes the
proof.
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H.3. Proof of Corollary 40

We use the fact that Bin(k− `, 1− ν
k ) ≤ k− ` with probability 1 to obtain that each of the random

variables C(`)
q , q ∈ {1, . . . , n} in Lemma 39 is stochastically dominated by a random variable D(`)

q ,
whose distribution samples with probability (1−ν

k )k
′
from a (scaled) binomial random variable (k′−

`)Bin(k−`, νk ), it is equal to−(k−`) with probability ν
(
k′

k −
`
k

) (
1− ν

k

)k′−1
(

1−
(
1− ν

k

)k−`),
and it is 0, otherwise.

We then observe that we can couple each D(`)
q variable with the corresponding T (`)

q variable in
the obvious way, so that

n∑
q=1

D(`)
q =

n∑
q=1

(k − `)T (`)
q ,

and, therefore, we obtain:

Pr

 ∑
i∈NDσ ,j∈D\σ

(Θj −Θij) ≤ 0

 ≤ Pr

 n∑
q=1

D(`)
q ≤ 0

 ≤ Pr

 n∑
q=1

T (`)
q ≤ 0

 ,
concluding the proof.

H.4. Proof of Lemma 41

It suffices to show the uniform convergence over ζ ∈ [0, 1−δ) of the sequence of functions mapping

each ζ ∈ [0, 1 − δ) to
lnE

[
e−λT

(bζkc)
1

]
(1+ε−ζ) ln 2 , as p → +∞, Since the denominator is independent of

p and bounded away from zero by max{ε, δ} ln 2 > 0 (recall that we have assumed εδ > 0) it
suffices to show uniform convergence over ζ ∈ [0, 1 − δ) of the sequence of functions mapping
each ζ ∈ [0, 1− δ) to lnE

[
e−λT

(bζkc)
1

]
, as p→ +∞.

Notice that if λ = 0 the uniform convergence is immediate as our sequence of functions is
identically equal to zero. Hence, from now on we assume without loss of generality that λ > 0.

By direct computation for every ζ ∈ [0, 1− δ) it holds

E
[
e−λT

(bζkc)
1

]
=
(

1− ν

k

)k′ ((
e−µ

ν

k
+ 1− ν

k

)k−bζkc
− 1

)
+

(
k′

k
− bζkc

k

)
ν
(

1− ν

k

)k′−1
(

1−
(

1− ν

k

)k−bζkc)
(eλ − 1) + 1, (55)

where µ = µ(λ, ε, ζ, k) = λ b(1+ε)kc−bζkc
k−bζkc . Since k → +∞ as p → +∞ we conclude by using

elementary calculus that

lim
p→+∞

E
[
e−λT

(bζkc)
1

]
= e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1)

+ (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1. (56)

Now notice that since ε, ν > 0 and λ ≥ 0, ζ < 1, for all ζ ∈ [0, 1− δ), we have:

lim
p→+∞

E
[
e−λT

(bζkc)
1

]
> 1− e−ν(1+ε)(1− (1 + ε− ζ)ν(1− ε−ν(1−ζ))(eλ − 1) > 1− e−ν(1+ε) > 0.

(57)
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Hence the limiting function is always positive. Therefore, using the elementary inequality lnx ≤
x− 1, for all x > 0 to conclude the desired uniform convergence it suffices to show that

lim
p→+∞

max
ζ∈[0,1−δ)

∣∣∣∣∣∣
E
[
e−λT

(bζkc)
1

]
limp→+∞ E

[
e−λT

(bζkc)
1

] − 1

∣∣∣∣∣∣ = 0. (58)

In what follows we use the O(·) notation, including constants possibly depending on the (fixed
for the purposes of this lemma) ν, λ, ε but not on ζ. Using that for a = O(1), (1 + a/k)k =
ea(1 +O(1/k)), |bζkc/k − ζ| ≤ 1/k and for x = o(1), ex = 1 +O(x), we have that for arbitrary
ζ ∈ [0, 1− δ) and k sufficiently large,(

1− ν

k

)k′ ((
e−µ

ν

k
+ 1− ν

k

)k−bζkc
− 1

)
=

(
1 +O

(
1

k

))
e−(1+ε)ν

(
e(e−µ−1)ν(1− bζkc

k
) − 1

)
=

(
1 +O

(
1

k

))
e−(1+ε)ν

(
e(e−µ−1)ν(1−ζ+O( 1

k )) − 1
)

=

(
1 +O

(
1

k

))
e−(1+ε)ν

(
eν(e−µ−1)ν(1−ζ) − 1

)
= e−ν

(
eν(e−µ−1)(1−ζ) − 1

)
+O

(
1

k

)
. (59)

Using the same identities and elementary algebra we also have for arbitrary ζ ∈ [0, 1 − δ) and k
sufficiently large,(

k′

k
− bζkc

k

)
ν
(

1− ν

k

)k′−1
(

1−
(

1− ν

k

)k−bζkc)(
eλ − 1

)
=

(
1 + ε− ζ +O

(
1

k

))(
1 +O

(
1

k

))
νe−(1+ε)ν

(
1− e−ν(1−ζ)

)(
eλ − 1

)
=

(
1 +O

(
1

k

))
(1 + ε− ζ) νe−(1+ε)ν

(
1− e−ν(1−ζ)

)(
eλ − 1

)
= (1 + ε− ζ) νe−(1+ε)ν

(
1− e−ν(1−ζ)

)(
eλ − 1

)
+O

(
1

k

)
. (60)

Hence, combining (55), (56) (59) and (60) we conclude that for sufficiently large p (and therefore
k) it holds

max
ζ∈[0,1)

∣∣∣∣∣∣
E
[
e−λT

(bζkc)
1

]
limp→+∞ E

[
e−λT

(bζkc)
1

] − 1

∣∣∣∣∣∣ =
O
(

1
k

)
limp→+∞ E

[
e−λT

(bζkc)
1

] . (61)

But now since from (57) the limiting function is uniformly lower bounded by 1− e−(1+ε)ν > 0 we
conclude that

max
ζ∈[0,1)

∣∣∣∣∣∣
E
[
e−λT

(bζkc)
1

]
limp→+∞ E

[
e−λT

(bζkc)
1

] − 1

∣∣∣∣∣∣ = O

(
1

k
(
1− e−(1+ε)ν

)) = O

(
1

k

)
,

from which (58) follows. This completes the proof of the lemma.
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Appendix I. Proof of Corollary 31

Notice that at each step the algorithm either finds a new state σ which satisfies a strictly larger
number of positive tests, or it terminates. As a consequence, it terminates in at most n steps, as
there are at most n positive tests in total.

Now, if we can show that no (0, 1/100)-bad local minima exist, then this means that the algo-
rithm will never terminate in a state σ which does not contain all k defective items, concluding the
proof. To do this, we apply Theorem 30 with ν = ln(5/2) and λ = ln(100/83) and ε = 1/100.

We prove the following lemma.

Lemma 42 Let ν = ln(5/2), λ = ln(100/83) and ε = 1/100. The function

Q(ζ) = −
ln

(
e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1) + (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1

)
(1 + ε− ζ) ln 2

is increasing in ζ ∈ [0, 1).

Theorem 30 and Lemma 42 imply that if

R <
ln(5/2) · (2/5)

ln 2
+Q(ln(100/83), 0, ln(5/2), 1/100), (62)

then no bad (0, 1/100)-local bad minima exist. The fact that the righthand side of (62) is at least
0.5468 concludes the proof.

I.1. Proof of Lemma 42

To prove the lemma we show that the derivative of Q(ζ) is positive. We define

f(ζ) = ln

(
e−ν(1+ε)(eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1) − 1) + (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1

)
,

g(ζ) = (1 + ε− ζ) ln 2,

so that Q(ζ) = −f(ζ)/g(ζ) and, therefore,

∂Q(ζ)

∂ζ
= −

g(ζ) · ∂f(ζ)
∂ζ − f(ζ) · ∂g(ζ)∂ζ

g(ζ)2
. (63)

We need to show that the righthand side of (63) is positive and, to that end, we need to calculate
∂f(ζ)
∂ζ and ∂g(ζ)

∂ζ . The latter is trivial to calculate:

∂g(ζ)

∂ζ
= − ln 2. (64)

For the former, setting

h(ζ) = e−ν(1+ε)(eν(1−ζ)(e−
λ(1+ε−ζ)

1−ζ −1) − 1) + (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1) + 1
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so that f(ζ) = lnh(ζ), we have

∂f(ζ)

∂ζ
=

1

h(ζ)
· ∂h(ζ)

∂ζ
(65)

and so we focus on calculating ∂h(ζ)
∂ζ . Observe now that h(ζ) = a(ζ) + b(ζ) + 1 where:

a(ζ) = e−ν(1+ε)(eν(1−ζ)(e−
λ(1+ε−ζ)

1−ζ −1) − 1),

b(ζ) = (1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1)

and, thus, ∂h(ζ)
∂ζ = ∂a(ζ)

∂ζ + ∂b(ζ)
∂ζ .

We start by calculating the derivative of a(ζ), and by direct calculation we see that

∂a(ζ)

∂ζ
=

∂(e−ν(1+ε)eν(1−ζ)(e−
λ(1+ε−ζ)

1−ζ −1))

∂ζ

= e−ν(1+ε)eν(1−ζ)(e−
λ(1+ε−ζ)

1−ζ −1)∂(ν(1− ζ)(e
−λ(1+ε−ζ)

1−ζ − 1))

∂ζ

= e−ν(1+ε)eν(1−ζ)(e−
λ(1+ε−ζ)

1−ζ −1)

(
∂c(ζ)

∂ζ
+ ν

)
(66)

where,

c(ζ) = ν(1− ζ)e
−λ(1+ε−ζ)

1−ζ (67)

In particular, we have:

∂c(ζ)

∂ζ
=

∂(ν(1− ζ))

∂ζ
· e−

λ(1+ε−ζ)
1−ζ + ν(1− ζ)

∂(e
−λ(1+ε−ζ)

1−ζ )

∂ζ

= −νe
−λ(1+ε−ζ)

1−ζ + ν(1− ζ)e
−λ(1+ε−ζ)

1−ζ · − ((1− ζ)(−λ)− λ(1 + ε− ζ)(−1))

(1− ζ)2

= −νe
−λ(1+ε−ζ)

1−ζ + ν(1− ζ)e
−λ(1+ε−ζ)

1−ζ · (1− ζ)λ− λ(1 + ε− ζ)

(1− ζ)2

= −νe
−λ(1+ε−ζ)

1−ζ − ελνe
−λ(1+ε−ζ)

1−ζ

1− ζ

= −νe
−λ(1+ε−ζ)

1−ζ

(
1 +

ελ

1− ζ

)
. (68)

Combining (66) and (68) we obtain:

∂a(ζ)

∂ζ
= νe−ν(1+ε)eν(1−ζ)(e−

λ(1+ε−ζ)
1−ζ −1)

(
1− e

−λ(1+ε−ζ)
1−ζ

(
1 +

ελ

1− ζ

))
. (69)
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We continue by computing the derivative of b(ζ):

∂b(ζ)

∂ζ
=

∂((1 + ε− ζ)νe−ν(1+ε)(1− e−ν(1−ζ))(eλ − 1))

∂ζ

= νe−ν(1+ε)(eλ − 1)
(

(−1)(1− e−ν(1−ζ))− νe−ν(1−ζ)
)

= νe−ν(1+ε)(eλ − 1)
(

(1− ν)e−ν(1−ζ) − 1
)
. (70)

We are now ready to prove that the righthand side (63) is negative. Using the notation we have
introduced, this amounts to showing that

(1 + ε− ζ)
∂h(ζ)

∂ζ

1

h(ζ)
+ ln (h(ζ)) < 0, (71)

for every ζ ∈ [0, 1).
Since ν = ln(5/2), λ = ln(100/83) and ε = 1/100 we have:

h(ζ) =

(
2

5

)1+ 1
100

(5

2

)(1−ζ)(( 83
100

)
1+ 1

100−ζ
1−ζ −1)

− 1


+

(
2

5

)1+ 1
100
(

1 +
1

100
− ζ
)

ln

(
5

2

)(
1−

(
2

5

)1−ζ
)

17

83
+ 1,

∂a(ζ)

∂ζ
=

(
2

5

)1+ 1
100

ln

(
5

2

)(
5

2

)(1−ζ)(( 83
100

)
1+ 1

100−ζ
1−ζ −1)

1−
(

83

100

) 1+ 1
100−ζ
1−ζ

(
1 +

ln(100/83)

100(1− ζ)

) ,

∂b(ζ)

∂ζ
=

(
2

5

)1+ 1
100

ln

(
5

2

)
17

83

((
1− ln

(
5

2

))(
2

5

)(1−ζ)
− 1

)
.

It can be verified computationally that, for every ζ ∈ [0, 1), we have (i) h(ζ) ∈ (0.97, 1); (ii)
∂h(ζ)
∂ζ = ∂a(ζ)

∂ζ + ∂b(ζ)
∂ζ < 0. Therefore, each summand in (71) is strictly negative, concluding the

proof.
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