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Abstract
The explore-then-commit (ETC) strategy, which consists of an exploration phase followed by

an exploitation phase, is one of the most widely used algorithms in a variety of online decision ap-
plications. Nevertheless, it has been shown in Garivier et al. (2016) that ETC is suboptimal in the
asymptotic sense as the horizon grows, and thus, is worse than fully sequential strategies such as
Upper Confidence Bound (UCB). In this paper, we propose a double explore-then-commit (DETC)
algorithm that has two exploration and exploitation phases and show that it can achieve the asymp-
totically optimal regret bound. To our knowledge, DETC is the first non-fully-sequential algorithm
that achieves asymptotic optimality. In addition, we extend DETC to batched bandit problems,
where (i) the exploration process is split into a small number of batches and (ii) the round com-
plexity1 is of central interest. We prove that a batched version of DETC can achieve the asymptotic
optimality with only a constant round complexity. This is the first batched bandit algorithm that
can attain the optimal asymptotic regret bound and optimal round complexity simultaneously.
Keywords: Multi-armed bandit, regret bound, explore-then-commit, batched bandit, round com-
plexity, asymptotic optimality.

1. Introduction

We study the multi-armed bandit problem, where an agent is asked to choose a bandit arm At from
a set of arms {1, 2, . . . ,K} at every time step t. Then it observes a reward rt associated with armAt
following a 1-subgaussian distribution with an unknown mean value µAt . For an arbitrary horizon
length T , the performance of any strategy for the bandit problem is measured by the expected
cumulative regret, which is defined as:

Rµ(T ) = T · max
i∈{1,2,··· ,K}

µi − Eµ
[∑T

t=1 rt
]
, (1.1)

where the subscript µ denotes the bandit instance consisting of the K arms {µ1, . . . , µK}.

1. Round complexity is defined as the total number of times an algorithm needs to update its learning policy. For
instance, an UCB algorithm on a bandit problem with time horizon T will have O(T ) round complexity because it
needs to update its estimation for arms based on the reward collected at each time step.
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Assume without loss of generality that arm 1 has the highest mean, i.e., µ1 = maxi{µi}. Lai
and Robbins (1985); Katehakis and Robbins (1995) show that when each arm’s reward distribution
is Gaussian, the expected regret of any strategy is at least

∑
i:∆i>0 2 log T/∆i when T approaches

infinity, where ∆i = |µ1 − µi| denotes the difference between the mean rewards of arm 1 and i.
That is,

lim inf
T→∞

Rµ(T )

log T
≥
∑
i:∆i>0

2

∆i
. (1.2)

When ∆i (i = 1, 2, . . . ,K) are known to the decision maker in advance, Garivier et al. (2016) show
that the asymptotic lower bound turns to

lim inf
T→∞

Rµ(T )

log T
≥
∑
i:∆i>0

1

2∆i
. (1.3)

We refer to limT→∞Rµ(T )/ log T as the asymptotic regret rate, and we say that an algorithm is
asymptotically optimal if it achieves the regret lower bound in (1.2) (when ∆i are unknown) or
(1.3) (when ∆i are known).

A number of popular multi-armed bandit algorithms such as UCB (Katehakis and Robbins,
1995; Garivier and Cappé, 2011), Thompson Sampling (Agrawal and Goyal, 2017; Korda et al.,
2013), and Bayes UCB (Kaufmann et al., 2018) are already asymptotically optimal. However, all
of them are fully sequential2 in the sense that they need to observe the outcome of each arm pull
before deciding which arm to pull next. Sequential algorithms are unsuitable for applications where
each arm pull takes a substantial amount of time. For example, in clinical trials, each treatment
involving a human participant can be regarded as an arm pull, and the outcome of the treatment can
only be observed after a defined time period. It is thus unaffordable to conduct all treatments in a
sequential manner due to the prohibitive total time cost. In the aim of reducing the waiting time for
outcomes and taking advantage of parallelism, strategies with distinct exploration and exploitation
stages are often more preferable compared with fully-sequential algorithms, where a batch of arm
pulls are conducted simultaneously within any stage and the outcomes of the entire batch are only
needed when a stopping criteria for stage switching is satisfied.

The most natural approach for separating the exploration and exploitation stages is to first uni-
formly pull each arm for the same number of times (the exploration stage), and then pull the arm
with the larger average reward repeatedly based on the result in the previous stage (the exploitation
stage). Such strategies with distinct exploration and exploitation stages fall into the class of ap-
proaches named explore-then-commit (ETC) (Perchet et al., 2016; Garivier et al., 2016), which are
simple and widely implemented in various online applications, such as clinical trials, crowdsourcing
and marketing (Perchet et al., 2016; Garivier et al., 2016; Gao et al., 2019). When the length of the
exploration stage (or equivalently the batch size of the pulls for each arm) is a fixed number, such
an strategy is referred to as FB-ETC (Garivier et al., 2016). In this case we only need to collect the
outcomes of the arm pulls at the end of the exploration stage, which is a one-time-only effort.

Despite the significant improvement in efficiency and parallelism compared with fully sequen-
tial algorithms, the regret of such two-stage ETC strategies is shown to be near-optimal with careful
tuning (Garivier and Kaufmann, 2016) but is also essentially suboptimal (Garivier et al., 2016) in

2. In particular, we say a strategy is fully sequential if its round complexity is polynomial in the horizon length T .
Similarly, we say a strategy is non-fully-sequential if its round complexity is o(T ).

2



DOUBLE EXPLORE-THEN-COMMIT: ASYMPTOTIC OPTIMALITY AND BEYOND

the sense that they cannot achieve the exact asymptotically optimal lower bounds in (1.2) or (1.3).
Following these nice and clean theoretical results, a natural and open question is:

Can non-fully-sequential strategies such as ETC strategies with multiple stages
achieve the asymptotically optimal regret?

In this paper, we answer this question affirmatively by proposing a double explore-then-commit
(DETC) algorithm that consists of two exploration and two exploitation stages, which directly im-
proves the ETC algorithm proposed in Garivier et al. (2016). Take the two-armed bandit problem
as an example, the key idea of DETC is illustrated as follows: based on the result of the first ex-
ploration stage, the algorithm will commit to the arm with the largest average reward and pull it
for a long time in the exploitation stage. After the first exploitation stage, the algorithm will have
a confident estimate of the chosen arm. However, since the unchosen arm is never pulled after the
first exploration stage, the algorithm is still not sure whether the unchosen arm is underestimated.
Therefore, a second exploration stage for the algorithm to pull the unchosen arms is necessary. After
this stage, the algorithm will have sufficiently accurate estimate for all arms and just needs another
exploitation stage to commit to the arm with the largest average reward. In contrast to the above
double explore-then-commit algorithm, existing ETC algorithms may have inaccurate estimates for
both the optimal arm and the suboptimal arms and hence suffers a suboptimal regret.

1.1. Our Contributions

Double explore-then-commit with asymptotic optimality We first study two-armed bandits, where
we simplify the notation by writing ∆ = ∆2 = |µ1 − µ2| as the gap. When ∆ is a known parame-
ter to the algorithm, we prove DETC (Algorithm 1) achieves the asymptotically optimal regret rate
1/(2∆), the instance-dependent optimal regret O(log(T∆2)/∆) and the minimax optimal regret
O(
√
T ) for two-armed bandits. Our result significantly improves the 4/∆ asymptotic regret rate of

FB-ETC with a fixed exploration length and the 1/∆ asymptotic regret rate of SPRT-ETC with a
data-dependent exploration length (Garivier et al., 2016).

When ∆ is unknown, we prove that DETC (Algorithm 2) achieves the asymptotically optimal
regret rate 2/∆, the instance-dependent regret O(log(T∆2)/∆) and the minimax optimal regret
O(
√
T ). This again improves the 4/∆ asymptotic regret rate of the BAI-ETC algorithm proposed

in Garivier et al. (2016). In both the known gap and the unknown gap settings, this is the first time
that the regrets of ETC algorithms have been proved to match the asymptotic lower bounds. In
contrast, Garivier et al. (2016) proved that the 1/∆ asymptotic regret rate for the known gap case
and the 4/∆ asymptotic regret rate for the unknown gap case are not improvable for the two-stage
ETC algorithms, which justifies the essence of the double exploration technique used in DETC in
order to achieve the asymptotic regret.

We also propose a variant of DETC (Algorithm 3) with unknown gaps that is simultaneously
instance-dependent/minimax optimal and asymptotically optimal for two-armed bandits. Our anal-
ysis and algorithmic framework also suggests an effective way of combining the asymptotically
optimal DETC algorithm with any other minimax optimal algorithms to achieve the instance-
dependent/minimax and asymptotic optimality simultaneously. To promote the application of DETC
in practice when the time horizon T is unknown ahead of time, we also proposed an anytime ver-
sion of DETC (Algorithm 6) using the doubling trick which enjoys the asymptotic optimal regret.
Moreover, we extend our DETC algorithm to K-armed bandits and prove that DETC (Algorithm
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7) achieves the asymptotically optimal regret rate
∑

i:∆i>0 2/∆i for K-armed bandits (Lai and
Robbins, 1985), where ∆i is the gap between the best arm and the i-th arm, i ∈ [K].

Double explore-then-commit in batched bandits The most direct application of explore-then-
commit strategies is its perfect fit into the batched bandit problem (Perchet et al., 2016; Bertsimas
and Mersereau, 2007; Chick and Gans, 2009; Agarwal et al., 2017; Gao et al., 2019; Esfandiari
et al., 2019), which requires arms to be pulled in rounds. In each round, we are allowed to pull
multiple arms at the same time, but can only observe the outcomes at the end of the round. The
central question is to minimize not only the expected cumulative regret after T arm pulls, but also
the number of rounds (round complexity) that we check the outcome of the pulls.

We prove that a simple variant of DETC (Algorithm 4 and Algorithm 5 for the known gap
and unknown gap settings respectively) can achieve O(1) round complexity while maintaining the
asymptotically optimal regret for two-armed bandits. This is a significant improvement of the round
complexity of fully sequential strategies such as UCB and UCB2 (Lai and Robbins, 1985; Auer
et al., 2002a; Garivier and Cappé, 2011), which usually requires O(T ) or O(log T ) rounds. Our
result suggests that it is not necessary to use the outcome at each time step as in fully sequential
algorithms such as UCB to achieve the asymptotic optimality. Existing batched bandit algorithms
(Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2019) are based on two-stage ETC, and
hence is suboptimal in the asymptotic sense. In contrast, DETC is the first batched bandit algorithm
that achieves the asymptotic optimality in regret and the optimal round complexity.

Notation We denote log+(x) = max{0, log x}. We use notations bxc (or dxe) to denote the
largest integer that is no larger (or no smaller) than x. For any functions f and g, we use f(T ) =
O(g(T )) to imply that f(T ) ≤ Cg(T ) for some constant C > 0 that is independent of T . We use
f(T ) = o(g(T )) to imply that limT→∞ f(T )/g(T ) = 0. A random variable X is said to follow
1-subgaussian distribution, if it holds that EX [exp(λX − λEX [X])] ≤ exp(λ2/2) for all λ ∈ R.

2. Double Explore-then-Commit Strategies

The vanilla ETC strategy (Perchet et al., 2016; Garivier et al., 2016) consists of two stages: in stage
one (the exploration stage), the agent pulls all arms for the same number of times, which can be a
fixed integer or a data-dependent stopping time, leading to the FB-ETC and SPRT-ETC (or BAI-
ETC) algorithms in (Garivier et al., 2016); in stage two (the exploitation stage), the agent pulls the
arm that achieves the best average reward according to the outcome of stage one. As we mentioned
in the introduction, none of these algorithms can achieve the asymptotic optimality in (1.2) or (1.3).
To tackle this problem, we propose a double explore-then-commit strategy for two-armed bandits
that improves ETC to be asymptotically optimal while still keeping non-fully-sequential.

2.1. Warm-Up: The Known Gap Setting

We first consider the case where the gap ∆ = µ1−µ2 is known to the decision maker (recall that we
assume w.l.o.g. that arm 1 is the optimal arm). We propose a double explore-then-commit (DETC)
algorithm, which consists of four stages. The details are displayed in Algorithm 1.

At the initialization step, we pull both arms once, after which we set the current time step
t = 2. In Stage I, DETC pulls both arms for τ1 = 4dlog(T1∆2)/∆2e times respectively, where
both τ1 and T1 are predefined parameters. At time step t, we define Tk(t) to be the total number
of times that arm k (k = 1, 2) has been pulled so far, i.e., Tk(t) =

∑t
i=1 1{Ai=k}, where Ai
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Algorithm 1 Double Explore-then-Commit (DETC) in the Known Gap Setting
input T , εT and ∆

1: Initialization: Pull arms A1 = 1 and A2 = 2, t ← 2, T1 = d2 log(T∆2)/(ε2T · ∆2)e, τ1 =
4dlog(T1∆2)/∆2e
Stage I: Explore all arms uniformly

2: while t ≤ 2τ1 do
3: Pull arms At+1 = 1 and At+2 = 2, t← t+ 2
4: end while

Stage II: Commit to the arm with the largest average reward
5: 1′ ← arg maxk∈{1,2} µ̂k(t)
6: while T1′(t) ≤ T1 do
7: Pull arm At+1 = 1′, t← t+ 1
8: end while

Stage III: Explore the unchosen arm in Stage II
9: µ′ ← µ̂1′(t), t2 ← 0, 2′ ← {1, 2} \ 1′, θ2′,0 ← 0

10: while 2(1− εT )t2∆ | µ′ − θ2′,t2 |< log(T∆2) do
11: Pull arm At+1 = 2′ and observe reward rt+1

12: θ2′,t2+1 = (t2θ2′,t2 + rt+1)/(t2 + 1), t← t+ 1, t2 ← t2 + 1
13: end while

Stage IV: Commit to the arm with the largest average reward
14: a← 1′ 1{µ̂1′(t) ≥ θ2′,t2}+ 2′ 1{µ̂1′(t) < θ2′,t2}
15: while t ≤ T do
16: Pull arm a, t← t+ 1
17: end while

is the arm pulled at time step i. Then we define the average reward of arm k at time step t as
µ̂k(t) :=

∑t
i=1 1{Ai=k} ri/Tk(t), where ri is the reward received by the algorithm at time i.

In Stage II, DETC repeatedly pulls the arm with the largest average reward at the end of Stage I,
denoted by arm 1′ = arg maxk=1,2 µ̂k,τ1 , where µ̂k,τ1 is the average reward of arm k after its τ1-th
pull. Note that before Stage II, arm 1′ has been pulled for τ1 times. We will terminate Stage II
after the total number of pulls of arm 1′ reaches T1. It is worth noting that Stage I and Stage II are
similar to existing ETC algorithms (Garivier et al., 2016), where these two stages are referred to as
the Explore (explore different arms) and the Commit (commit to one single arm) stages respectively.

The key difference here is that instead of pulling arm 1′ till the end of the horizon (time step
T ), our Algorithm 1 sets a check point T1 < T . After arm 1′ has been pulled for T1 times, we
stop and check the average reward of the arm that is not chosen in Stage II, denoted by arm 2′. The
motivation for this halting follows from a natural question: What if we have committed to the wrong
arm? Even though arm 2′ is not chosen based on the outcome of Stage I, it can still be optimal due
to random sampling errors. To avoid such a case, we pull arm 2′ for more steps such that the average
rewards of both arms can be distinguished from each other. Specifically, in Stage III of Algorithm
1, arm 2′ is repeatedly pulled until

2(1− εT )t2∆|µ′ − θ2′,t2 | ≥ log(T∆2), (2.1)
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where εT > 0 is a parameter, t2 is the recalculated number of pulls in Stage III at time step t3, θ2′,t2

is the average reward of arm 2′ in Stage III and µ′ is the average reward of arm 1′ recorded at the
end of Stage II. Note that µ′ = µ̂1′(t) throughout Stage III since arm 1′ is not pulled in this stage.

As is discussed in the above paragraph, at the end of Stage II, the average reward µ′ for arm 1′

already concentrates on its expected reward. Therefore, in Stage III of DETC, the sampling error
only comes from pulling arm 2′. Hence, our DETC algorithm offsets the drawback ETC algorithms
where the sampling error comes from both arms. In the remainder of the algorithm (Stage IV), we
just again commit to the arm with the largest empirical reward from at the end of Stage III.

Now, we present the regret bound of Algorithm 1. Note that if T∆2 < 1, the worst case regret
is trivially bounded by T∆ <

√
T and the asymptotic regret rate is meaningless since ∆→ 0 when

T →∞. Hence, in the following theorem, we assume T∆2 ≥ 1.

Theorem 2.1 If εT is chosen such that T1∆2 ≥ 1, the regret of Algorithm 1 is upper bounded as

Rµ(T ) ≤ 2∆ +
8

∆
+

4 log(T1∆2)

∆
+

log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆
. (2.2)

In particular, let εT = min{
√

log(T∆2)/(∆2 log2 T ), 1/2}, then lim supT→∞Rµ(T )/ log T ≤
1/(2∆), and Rµ(T ) = O(∆ + log(T∆2)/∆).

The proof of Theorem 2.1 can be found in Section C.1. This theorem states that Algorithm
1 achieves the asymptotically optimal regret rate 1/(2∆) and instance-dependent optimal regret
O(∆ + 1/∆ log(T∆2)), when parameter εT is properly chosen. In comparison, the ETC algorithm
in Garivier et al. (2016) can only achieve 1/∆ asymptotic regret rate under the same setting, which
is suboptimal for multi-armed bandit problems (Lai and Robbins, 1985) when gap ∆ is known to
the decision maker. It is important to note that, Garivier et al. (2016) also proved a lower bound for
asymptotic optimality of ETC and showed that the 1/∆ asymptotic regret rate of ‘single’ explore-
then-commit algorithms cannot be improved. Therefore, the double exploration techniques in our
DETC is indeed essential for breaking the 1/∆ barrier in the asymptotic regret rate.

The asymptotic optimality is also achieved by the ∆-UCB algorithm in Garivier et al. (2016),
which is a fully sequential strategy. In stark contrast, DETC shows that non-fully-sequential algo-
rithms can also achieve the asymptotically optimal regret for multi-armed bandit problems. Com-
pared with ∆-UCB, DETC has distinct stages of exploration and exploitation which makes the im-
plementation simple and more practical. A more important and unique feature of DETC is its lower
round complexity for batched bandit problems, which will be thoroughly discussed in Section 3.1.

Note that Algorithm 1 is a non-fully-sequential strategy in the sense that it only needs to update
the policy for o(T ) times. In particular, let us take a close look at the round complexity of Algo-
rithm 1. Since we do not need the outcomes of arm pulls within Stages I, II and IV, we only need
to collect the rewards and update the policy at the end of these stages. In other words, Stages I, II
and IV only need three rounds in total. Besides, according to Theorem 2.1, the expected number of
pulls of Stage III is log T/(2∆2). Therefore, the expected number of policy updates in Algorithm 1
is O(log T ), which is much smaller than O(T ), the round complexity of fully sequential strategies.
In Section 3.1, we will show that by carefully choosing the batch sizes used in Stage III, we can
modify Algorithm 1 and further improve the round complexity from O(log T ) to O(1).

3. For the simplicity of analysis, we recalculate the average reward of arm 2′ in Stage III. However, it is possible
to re-use the arms pulls in Stage I and II, without any major changes in the conclusions (see Jin et al. (2021) for
example).
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Algorithm 2 Double Explore-then-Commit (DETC) in the Unknown Gap Setting
input T, T1

1: Initialization: Pull arms A1 = 1, A2 = 2, t← 2;
Stage I: Explore all arms uniformly

2: while | µ̂1(t)− µ̂2(t) |<
√

16/t log+(T1/t) do
3: Pull arms At+1 = 1 and At+2 = 2, t← t+ 2
4: end while
5: Stage II: Commit to the arm with the largest average reward
6: 1′ ← arg maxi µ̂i(t)
7: while T1′(t) ≤ T1 do
8: Pull arm At+1 = 1′, t← t+ 1
9: end while

10: Stage III: Explore the unchosen arm in Stage II
11: µ′ ← µ̂1′(t), 2′ ← {1, 2} \ 1′

12: Pull arm At+1 = 2′ and observe reward rt+1, θ2′,1 = rt+1, t← t+ 1, t2 ← 1

13: while |µ′ − θ2′,t2 | <
√

2/t2 log
(
T/t2

(
log2(T/t2) + 1

))
do

14: Pull arm At+1 = 2′ and observe reward rt+1

15: θ2′,t2+1 = (t2θ2′,t2 + rt+1)/(t2 + 1), t← t+ 1, t2 ← t2 + 1
16: end while
17: Stage IV: Commit to the arm with the largest average reward
18: a← 1′ 1{µ̂1′(t) ≥ θ2′,t2}+ 2′ 1{µ̂1′(t) < θ2′,t2}
19: while t ≤ T do
20: Pull arm a, t← t+ 1
21: end while

2.2. Double Explore-then-Commit in the Unknown Gap Setting

In real world applications, the gap ∆ is often unknown. Thus, it is favorable to design an algorithm
without the knowledge of ∆. However, this imposes issues with Algorithm 1, since the stopping
rules of the two exploration stages (Stage I and Stage III) are unknown. To address this challenge,
we propose a DETC algorithm where the gap ∆ is unknown to the decision maker, which is dis-
played in Algorithm 2.

Similar to Algorithm 1, Algorithm 2 also consists of four stages, where Stage I and Stage III are
double exploration stages that ensure we have chosen the right arm to pull in the subsequent stages.
Since we have no knowledge about ∆, we derive the stopping rule for Stage I by comparing the
empirical average rewards of both arms. Once we have obtained empirical estimates of the mean re-
wards that are able to distinguish two arms in the sense that |µ̂1(t)−µ̂2(t)| ≥

√
16 log+(T1/t)/t, we

terminate Stage I. Here t is the current time step of the algorithm and T1 is a predefined parameter.
Similar to Algorithm 1, based on the outcomes of Stage I, we commit to arm 1′ = argmaxi=1,2 µ̂i(t)
at the end of Stage I and pull this arm repeatedly throughout Stage II. In Stage III, we turn to pull
arm 2′ that is not chosen in Stage II until the average reward of arm 2′ is significantly larger or
smaller than that of arm 1′ chosen in Stage II. In Stage IV, we again commit to the best empirically
preforming arm and pull it till the end of the algorithm.

7
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Compared with Algorithm 1, in both exploration stages of Algorithm 2, we do not use the
information of the gap ∆ at the cost of sequentially deciding the stopping rule in these two stages.
In the following theorem, we present the regret bound of Algorithm 2 and show that this regret is
still asymptotically optimal.

Theorem 2.2 Let T1 = log2 T , then the regret of Algorithm 2 satisfies

lim
T→∞

Rµ(T )/ log T = 2/∆.

The proof of Theorem 2.2 can be found in Section C.2. Here we provide some comparison
between existing algorithms and Algorithm 2. For two-armed bandits, Lai and Robbins (1985)
proved that the asymptotically optimal regret rate is 2/∆. This optimal bound has been achieved by
a series of fully sequential bandit algorithms such as UCB (Garivier and Cappé, 2011; Lattimore,
2018), Thompson sampling (Agrawal and Goyal, 2017), Ada-UCB (Kaufmann et al., 2018), etc. All
these algorithms are fully sequential, which means they have to examine the outcome from current
pull before it can decide which arm to pull in the next time step. In contrast, DETC (Algorithm 2)
is non-fully-sequential and separates the exploration and exploitation stages, which is much more
practical in many real world applications such as clinical trials and crowdsourcing. In particular,
DETC can be easily adapted to batched bandits and achieve a much smaller round complexity than
these fully sequential algorithms. We will elaborate this in Section 3.2.

Compared with other ETC algorithms in the unknown gap setting, Garivier et al. (2016) proved
a lower bound 4/∆ for ‘single’ explore-then-commit algorithms, while the regret upper bound of
DETC is improved to 2/∆. Therefore, in order to break the 4/∆ barrier in the asymptotic regret
rate, our double exploration technique in Algorithm 2 is crucial. Different from DETC in the known
gap setting, Theorem 2.2 does not say anything about the minimax or instance-dependent optimality
of Algorithm 2. Because we need to guess the gap ∆ during the exploration process in Stage I and
Stage III, additional errors may be introduced if the guess is not accurate enough. We will discuss
this in details in the next section.

2.3. Minimax and Asymptotically Optimal DETC

If we compare the stopping rules of the exploration stages in Algorithm 1 and Algorithm 2, we
can observe that the stopping rule in the known gap setting (Algorithm 1) depends on the gap ∆
(more specifically, it depends on the quantity 1/∆2 according to our analysis of the theorems in the
appendix). In Algorithm 2, the gap ∆ is unknown and guessed by the decision maker. This causes
problems when the unknown ∆ is too small (e.g., ∆ = 1/T 0.1), where 1/∆2 is significantly large
than log2 T . In this case, after T1 = log2 T pulls of arm 1′ in Stage II of Algorithm 2, the average
reward of 1′ may not be close to its mean reward within a ∆ range. Hence, it fails to achieve the
instance-dependent/minimax optimality.

Now we are going to show that a simple variant of Algorithm 2 with additional stopping rules
is simultaneously minimax/instance-dependent order-optimal and asymptotically optimal.

The new algorithm is displayed in Algorithm 3 which has the same input, initialization, Stage I
and Stage II as Algorithm 2. In Stage III, we add an additional stopping rule t2 < log2 T and
everything else remains unchanged as in Algorithm 2. The most notable change is in Stage IV of
Algorithm 3. Instead of directly committing to the arm with the largest average reward, we will first
find out how many pulls are required in Stage III to distinguish the two arms. The number of pulls

8
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Algorithm 3 Minimax and Asymptotically Optimal DETC in the Unknown Gap Setting
input T , T1

1: Initialization: Pull arms A1 = 1, A2 = 2, t← 2;
Stage I: Explore all arms uniformly (same as in Algorithm 2)
Stage II: Commit to the arm with the largest average reward (same as in Algorithm 2)
Stage III: Explore the unchosen arm in Stage II

2: µ′ ← µ̂1′(t), 2′ ← {1, 2} \ 1′

3: Pull arm At+1 = 2′ and observe reward rt+1, θ2′,1 = rt+1, t← t+ 1, t2 ← 1

4: while |µ′ − θ2′,t2 | <
√

2/t2 log
(
eT/t2

(
log2(T/t2) + 1

))
and t2 < log2 T do

5: Pull arm At+1 = 2′ and observe reward rt+1

6: θ2′,t2+1 = (t2θ2′,t2 + rt+1)/(t2 + 1), t← t+ 1, t2 ← t2 + 1
7: end while

Stage IV: Commit to the arm with the largest average reward
8: if t2 < log2 T then
9: a← 1′ 1{µ̂1′(t) ≥ θ2′,t2}+ 2′ 1{µ̂1′(t) < θ2′,t2}

10: while t ≤ T do
11: Pull arm a, t← t+ 1
12: end while
13: else
14: Pull arms At+1 = 1, At+2 = 2 and observe rewards rt+1 and rt+2

15: p1,1 = rt+1, p2,1 = rt+2, t← t+ 2, s← 1

16: while |p1,s − p2,s| <
√

8/s log+(T/s) do
17: Pull arms At+1 = 1 and At+2 = 2, and observe rewards rt+1 and rt+2

18: p1,s+1 = (s · p1,s + rt+1)/(s+ 1), p2,s+1 = (s · p2,s + rt+2)/(s+ 1)
19: t← t+ 2, s← s+ 1
20: end while
21: a← 11{p1,s ≥ p2,s}+ 21{p2,s ≥ p1,s}
22: while t ≤ T do
23: Pull arm a, t← t+ 1.
24: end while
25: end if

in Stage III is denoted by t2. If t2 < log2 T , then we just commit to the arm with the largest average
reward and pull it till the end of the algorithm. This will be the same as in Algorithm 2.

However, if t2 = log2 T , this would mean that the gap ∆ between two arms is extremely small.
In fact, we will prove that if we need to pull arm 2′ for log2 T times to distinguish it from arm
1′, then with high probability the gap ∆ is very small. Consequently, we need to explore both
arms again to obtain accurate estimate of their mean rewards. In a nutshell, the early stopping rule
t2 ≥ log2 T helps us detect the scenario with small ∆ with high probability, which ensures the
minimax/instance-dependent optimality of Algorithm 3. Moreover, we will show that this condition
is only violated with a tiny probability that goes to zero as T →∞, which ensures that the regret is
still asymptotically optimal.

Theorem 2.3 Let T1 = log10 T . Assume T∆2 ≥ 16e3, then the regret of Algorithm 3 satisfies

lim
T→∞

Rµ(T )/ log T = 2/∆ and Rµ(T ) = O(∆ + log(T∆2)/∆) = O(∆ +
√
T ).

9
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The proof of Theorem 2.3 can be found in Section C.3. This theorem states that Algorithm 3
achieves the instance-dependent/minimax and the asymptotic optimality regret simultaneously. This
is the first ETC-type algorithm that achieves these three optimal regrets simultaneously. Compared
with Algorithm 2 presented in the previous subsection, Algorithm 3 has a more complicated imple-
mentation of Stage IV in the sense that it may have to start over from the uniform exploration (Lines
16-19) and then commit to the arm that it believes to be the optimal arm. Though we prove that
the aforementioned event only happens with a small probability (in Section C.3) and we show that
Algorithm 3 indeed achieves a better regret bound, it essentially needs more rounds than Algorithm
2 since the Stage IV of Algorithm 3 is fully sequential from Line 16 to Line 19.

Apart from the advantages of achieving these optimalities at the same time, we emphasize that
Algorithm 3 also provides a framework on how to combine an asymptotically optimal algorithm
with a minimax/instance-dependent optimal algorithm. Specifically, in Algorithm 3, the first part
(Lines 1-11) of Algorithm 3 ensures the asymptotic optimality and the second part (Lines 14-23)
of Algorithm 3 ensures the minimax/instance-dependent optimality. Following our proof of Theo-
rem 2.3 in Section C.3, one can easily verify that the second part (Lines 14-23) can be replaced by
any other algorithm that is instance dependent optimal and Theorem 2.3 still holds. The main reason
that two optimality algorithm can be combined here is that: (i): the asymptotic optimality focuses
on the case that T →∞, and hence T should dominate 1/∆; (ii) the minimax optimality focuses on
the worst case bandits for a fixed T , and hence ∆ could be very small (e.g., ∆ = 1/T 0.1); (iii) our
framework can detect if ∆ is very small via the stopping rule t2 < log2 T in Line 4 of Algorithm 3.

3. Asymptotically Optimal DETC in Batched Bandit Problems

The proposed DETC algorithms in this paper can be easily extended to batched bandit problems
(Perchet et al., 2016; Gao et al., 2019). In this section, we present simple modifications to Al-
gorithms 1 and 2 which we refer to as Batched DETC. We prove that they not only achieve the
asymptotically optimal regret bounds but also enjoy O(1) round complexities.

3.1. Batched DETC in the Known Gap Setting
We use the same notations that are used in Section 2.1. The Batched DETC algorithm is identical
to Algorithm 1 except the stopping rule of Stage III. More specifically, let τ0 = log(T∆2)/(2(1 −
εT )2∆2). In Stage III of Algorithm 1, instead of querying the result θ2′,t2 at every step t2 = 0, 1, . . .,
we only query it at the following time grid:

T =

{⌈
τ0+

2
√

log(T∆2) + 4

2(1− εT )2∆2

⌉
,

⌈
τ0+

2(2
√

log(T∆2) + 4)

2(1− εT )2∆2

⌉
,

⌈
τ0+

3(2
√

log(T∆2) + 4)

2(1− εT )2∆2

⌉
, · · ·

}
. (3.1)

At each time point t2 ∈ T , we query the results of the bandits pulled since the last time point.
Between two time points, we pull the arm 2′ without accessing the results. The period between
two times points is also referred to as a round (Perchet et al., 2016). Reducing the total number of
queries, namely, the round complexity, is an important research topic in the batched bandit prob-
lem. For the convenience of readers, we present the Batched DETC algorithm for known gaps in
Algorithm 4. Note that in this batched version, Stage I, Stage II and Stage IV of Algorithm 4 are
identical to that of Algorithm 1, and we omit them for the simplicity of presentation.

Now, we present the round complexity of the Batched DETC in Algorithm 4.

10
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Algorithm 4 Batched DETC in the Known Gap Setting
input T , εT , ∆ and T defined in (3.1)

1: Initialization: Pull arms A1 = 1 and A2 = 2, t ← 2, T1 = d2 log(T∆2)/(ε2T · ∆2)e, τ1 =
4dlog(T1∆2)/∆2e
Stage I: Explore all arms uniformly (same as in Algorithm 1)
Stage II: Commit to the arm with the largest average reward (same as in Algorithm 1)
Stage III: Explore the unchosen arm in Stage II

2: µ′ ← µ̂1′(t), t2 ← 0, 2′ ← {1, 2} \ 1′, θ2′,s is the recalculated average reward of arm 2′ after
its s-th pull in Stage III and θ2′s ← 0, for s = 0

3: while true do
4: if t2 ∈ T then
5: if 2(1− εT )t2∆ | µ′ − θ2′,t2 |≥ log(T∆2) then
6: break
7: end if
8: end if
9: Pull arm At+1 = 2′, t← t+ 1, t2 ← t2 + 1

10: end while
Stage IV: Commit to the arm with the largest average reward (same as in Algorithm 1)

Theorem 3.1 In the batched bandit problem, the expected number of rounds used in Algorithm 4
is O(1). At the same time, the regret of Algorithm 4 is asymptotically optimal.

Remark 3.2 The proof of Theorem 3.1 can be found in Section D.1. Compared with fully sequen-
tially adaptive bandit algorithms such as UCB, which needs O(T ) rounds of queries, our DETC
algorithm only needs constant rounds of queries (independent of the horizon length T ). Compared
with another constant round algorithm FB-ETC in (Garivier et al., 2016), our DETC algorithm
simultaneously improves the asymptotic regret rate of FB-ETC (i.e., 4/∆) by a factor of 8.

3.2. Batched DETC in the Unknown Gap Setting

In the unknown gap setting, both the stopping rules of Stage I and Stage III in Algorithm 2 need to
be modified. In what follows, we describe a variant of Algorithm 2 that only needs to check the
outcomes at certain time points in Stage I and Stage III. In particular, let T1 = log2 T . In Stage I,
we query the results and test the condition in Line 3 of Algorithm 5 at the following time grid:

t ∈ T2 = {2
√

log T , 4
√

log T , 6
√

log T , . . .}. (3.2)

In Stage III, the condition in Line 10 of Algorithm 5 is only checked at the following time grid.

t2 ∈ T ′2 =
{
N1,2/∆̂

2N2 log(T log3 T ) + 1/∆̂2N2(log T )
2
3 ,

2/∆̂2N2 log(T log3 T ) + 2/∆̂2N2(log T )
2
3 ,

2/∆̂2N2 log(T log3 T ) + 3/∆̂2N2(log T )
2
3 , · · · , log2 T

}
.

(3.3)

where N1 = (2 log T )/ log log T , N2 = (1 + (log T )−
1
4 )2, and ∆̂ = |µ′ − θ2′,N1 | is an estimate of

∆′ based on the test result after the first round (the first N1 steps). Apart from restricting t2 ∈ T ′2 ,

11
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another difference here from Algorithm 2 is that we require t2 ≤ log2 T . Thus we will terminate
Stage III after at most log2 T pulls of arm 2′. For the convenience of readers, we display the modified
Algorithm 2 for batched bandits with unknown gaps in Algorithm 5.

Algorithm 5 Batched DETC in the Unknown Gap Setting
input T , T1, T2 defined in (3.2), and T ′2 defined in (3.3)

1: Initialization: Pull arms A1 = 1, A2 = 2, t← 2

Stage I: Explore all arms uniformly
2: while true do
3: if t ∈ T2 then
4: if | µ̂1(t)− µ̂2(t) |≥

√
16/t log+(T1/t) then

5: break
6: end if
7: end if
8: Pull arms At+1 = 1 and At+2 = 2, t← t+ 2
9: end while

Stage II: Commit to the arm with the largest average reward (same as in Algorithm 2)
Stage III: Explore the unchosen arm in Stage II

10: µ′ ← µ̂1′(t), 2′ ← {1, 2} \ 1′, t2 ← 0, θ2′s is the recalculated average reward of arm 2′ after its
s-th pull in Stage III and θ2′s ← 0, for s = 0

11: while t2 ≤ log2 T do
12: if t2 ∈ T ′2 then
13: if |µ′ − θ2′,t2 | <

√
2/t2 log

(
T/t2

(
log2(T/t2) + 1

))
then

14: break
15: end if
16: end if
17: Pull arm At+1 = 2′, t← t+ 1, t2 ← t2 + 1
18: end while

Stage IV: Commit to the arm with the largest average reward (same as in Algorithm 2)

Theorem 3.3 In the batched bandit problem, the expected number of rounds used in Algorithm 5
is O(1). Moreover, the regret of Algorithm 5 is asymptotically optimal.

The proof of Theorem 3.3 can be found in Section D.2. Here, we only focus on deriving the
asymptotic optimality along with a constant round complexity in the batched bandits setting. For
minimax and instance dependent regret bounds, Perchet et al. (2016) proved that any algorithm
achieving the minimax optimality or instance dependent optimality will cost at least Ω(log log T )
or Ω(log T/ log log T ) rounds respectively. How to extending our minimax/instance-dependent and
asymptotic optimal Algorithm 3 to the batched bandit setting is an interesting open question.

4. Experiment

In this section, we experimentally compare our proposed algorithms with existing algorithms in-
cluding BAI-ETC (Garivier et al., 2016), SPRT-ETC (Garivier et al., 2016), and UCB (Garivier

12
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Figure 1: Regret comparison among ETC-type algorithms as well as UCB. Results are averaged
over 10000 repetitions.

and Cappé, 2011). Our Algorithm 1 is denoted by DETC-UG and Algorithm 2 is denoted by
DETC-KG. We test all the algorithms on a two-armed bandit with Gaussian rewards, where the
mean reward follows distribution N (µi, 1), for arm i = 1, 2. We set the gap between the two arms
as ∆ = 0.2. For DETC-UG, the tuning parameter is T1 and for DETC-KG, the tuning parameter
is εT .

Among all compared algorithms, BAI-ETC, DETC-UG, and UCB are designed for the un-
known gap setting while SPRT-ETC and DETC-KG are designed for the known gap setting (which
use the gap information). All experiments are repeated 10000 times. Figure 1 shows the results
on regret. In the legend, the regret rate ∆R̂(T )/ log T is appended after the algorithm names. As
shown in Figure 1, the regret behavior reflects the theoretical results. In particular, DETC-UG
achieves comparable regret with UCB and DETC-KG achieves the smallest regret. In addition, for
both ETC and DETC strategies, the regret increases much slower after t exceeds certain threshold.
The reason is that for both ETC and DETC strategies, the regret for the last exploitation stage is in
the order of O(1/∆) = O(1), which is a constant independent of T . This means most of the regret
O(log T/∆) are due to the first three stages.

5. Conclusion

In this paper, we revisit the explore-then-commit (ETC) type of algorithms for multi-armed ban-
dit problems, which separate the exploration and exploitation stages. We break the barrier that
ETC type algorithms cannot achieve the asymptotically optimal regret bound (Garivier et al., 2016),
which is usually attained by fully sequential strategies such as UCB. We propose a double explore-
then-commit (DETC) strategy and prove that DETC is asymptotically optimal for subgaussian re-
wards, which is the first ETC type algorithm that matches the theoretical performance of UCB based
algorithms. We also show a variant of DETC for two-armed bandit problems, which can achieve
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the asymptotic optimality and the minimax/instance-dependent regret bound simultaneously, while
still keeping the merit of being non-fully-sequential.

To demonstrate the advantage of DETC over fully sequential strategies, we apply DETC to the
batched bandit problem which has various real world applications and prove that DETC enjoys a
constant round complexity while maintaining the asymptotic optimality at the same time. As a
comparison, the round complexity of fully sequential strategies such as UCB usually scales with
the horizon length T of the algorithm. This implies that the proposed DETC algorithm not only
enjoys optimal regret bounds under various metrics, but is also practical and easily implementable
in applications where the decision maker is expected to not switch its policy frequently and where
the learning process is in a batch and parallel fashion.
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Rémy Degenne and Vianney Perchet. Anytime optimal algorithms in stochastic multi-armed ban-
dits. In International Conference on Machine Learning, pages 1587–1595, 2016.

John Duchi, Feng Ruan, and Chulhee Yun. Minimax bounds on stochastic batched convex opti-
mization. In Conference On Learning Theory, pages 3065–3162, 2018.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab Mirrokni. Batched multi-armed
bandits with optimal regret. arXiv preprint arXiv:1910.04959, 2019.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information.
SIAM Journal on Computing, 23(5):1001–1018, 1994.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
In Advances in Neural Information Processing Systems, pages 501–511, 2019.
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Appendix A. Related Work on Multi-Armed Bandits and Batched Bandits

For regret minimization in stochastic bandit problems, Lai and Robbins (1985) proved the first
asymptotically lower bound that any strategy must have at least C(µ) log(T )(1− o(1)) regret when
the horizon T approaches infinity, where C(µ) is a constant. Later, strategies such as UCB (Lai
and Robbins, 1985; Auer et al., 2002a; Garivier and Cappé, 2011), Thompson Sampling (Korda
et al., 2013; Agrawal and Goyal, 2017) and Bayes UCB (Kaufmann et al., 2018) are all shown to
be asymptotically optimal in the unknown gap setting. For the known gap setting, Garivier et al.
(2016) developed the ∆-UCB algorithm that matches the lower bound. To our knowledge, all
previous asymptotically optimal algorithms are fully sequential. Despite the asymptotic optimality,
for a fixed time horizon T , the problem-independent lower bound (Auer et al., 2002b) states that
any strategy has at least a regret in the order of Ω(

√
KT ), which is called the minimax optimal

regret. MOSS (Audibert and Bubeck, 2009) is the first method proved to be minimax optimal.
Subsequently, two UCB-based methods, AdaUCB (Lattimore, 2018) and KL-UCB++ (Ménard and
Garivier, 2017), are also shown to achieve minimax optimality.

There is less work yet focusing on the batched bandit setting with limited rounds. UCB2 (Auer
et al., 2002a), which needs implicitly O(log T ) rounds of queries, is a variant of UCB that takes
O(T ) rounds of queries. Cesa-Bianchi et al. (2013) studied the batched bandit problem under the
notion of switching cost and showed that log log T rounds are sufficient to achieve the minimax
optimal regret Audibert and Bubeck (2009). Perchet et al. (2016) studied the two-armed batched
bandit problem with limited rounds. They developed polices that is minimax optimal and proved
that their round cost is near optimal. Gao et al. (2019) used similar polices for K-armed batched
bandits and proved that their batch complexity and regret are both near optimal, which is recently
further improved by Esfandiari et al. (2019). Besides, Gao et al. (2019); Esfandiari et al. (2019);
Perchet et al. (2016) also provide the instance dependent regret bound under the limited rounds
setting. In the asymptotic sense, the regret bound is O(K log T ). However, the hidden constant in
O(K log T ) makes it suboptimal in terms of the asymptotic regret and the round cost of these works
is Θ(log T ). In addition, the batched bandit problem is also studied in the linear bandit setting
(Esfandiari et al., 2019; Han et al., 2020; Ruan et al., 2020), best arm identification Agarwal et al.
(2017); Jin et al. (2019) and in theoretical computer science under the name of parallel algorithms
(Valiant, 1975; Tao et al., 2019; Alon and Azar, 1988; Feige et al., 1994; Bollobás and Thomason,
1983; Ajtai et al., 1986; Braverman et al., 2016; Duchi et al., 2018), to mention a few.

Appendix B. An Anytime Algorithm with Asymptotic Optimality

In previous sections, the stopping rules of DETC depends on the horizon length T . However, this
may not be the case in some practical cases, where we prefer to stop the algorithm at an arbitrary
time without deciding it at the beginning. This is referred to as the anytime setting in the bandit
literature (Degenne and Perchet, 2016; Lattimore and Szepesvári, 2020). In this section, we provide
an extension of our DETC algorithm for two-armed bandits to the anytime setting. Our algorithm
guesses T in epochs. For the r-th epoch, we guess T = 2r+1. At the r-th epoch of the algorithm,
the algorithm proceeds as follows: we find the arm 1′ which is the arm that played most often in the
first r − 1 epochs; then we pull arm 2′ till the stopping rules

|µ̂1′(t)− µ̂2′(t)| <

√
2

T2′(t)
log

(
r · 2r
T2′(t)

(
log2

(
r · 2r
T2′(t)

)
+ 1

))
and t ≤ 2r+1
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Algorithm 6 Anytime Asymptotically Optimal ETC in the Unknown Gap Setting
1: Initialization: Pull arms A1 = 1, A2 = 2, t← 2;
2: for r = 1, 2, · · · do
3: 1′ ← arg maxi∈{1,2} Ti(t), 2′ ← {1, 2} \ 1′

4: while |µ̂1′(t)− µ̂2′(t)| <
√

2
T2′ (t)

log
(
r·2r
T2′ (t)

(
log2( r·2r

T2′ (t)

)
+ 1
))

and t ≤ 2r+1 do
5: At+1 = 2′, t← t+ 1
6: end while
7: a(r)← 1′ 1{µ̂1′(t) ≥ µ̂2′(t)}+ 2′ 1{µ̂1′(t) < µ̂2′(t)}
8: while t ≤ 2r+1 do
9: Pull arm a(r), t← t+ 1

10: end while
11: end for

is satisfied. The aim here is to ensures that the difference of the average reward between the arm 2′

and 1′ is sufficient large such that the regret of playing the winner of 1′ and 2′ 2r times is bounded.
As we will prove: we keep the optimal regret by sightly improve the term in the stopping condition
from 2r to r · 2r. After this step, we commit to the arm with the largest average reward. Compared
with Algorithm 2, in each epoch, anytime ETC seems only to perform the third stage and fourth
stage of Algorithm 2. The reason here is that: the first two stages of Algorithm 2 aims to pull one
arm log2 T times while keeping the optimal regret. In anytime ETC algorithm, when the algorithm
runs log2 T steps, 1′ is the arm that pulled most often, thus 1′ is pulled O(log2 T ) times. Besides,
as we will prove later that the regret of first log2 T steps is bounded by O(

√
log T ).

The following theorem shows that Algorithm 6 is still asymptotically optimal for an unknown
horizon T .

Theorem B.1 The total expected regret for the anytime version of DETC (Algorithm 6) satisfies
limT→∞Rµ(T )/ log T = 2/∆.

The proof of Theorem B.1 could be found in Section C.4. The result shows that even for the
anytime setting (unknown horizon length), the ETC strategy can also be asymptotically optimal
as the UCB (Katehakis and Robbins, 1995) and Thompson Sampling (Korda et al., 2013) do. An
advantage of the anytime ETC algorithm is that Algorithm 6 only needs O(log T ) epochs, where in
each epoch it can separate exploration and exploitation stages, while for anytime UCB or Thompson
Sampling algorithms often need O(T ) mixed exploration and exploitation stages.

Appendix C. Double Explore-then-Commit for K-Armed Bandits

In this section, we extend our DETC framework to K-armed bandit problems, where K > 2. Due
to the similarity in both structures and analyses between Algorithm 1 for the known gap setting and
Algorithm 2 for the unknown gap setting, we only present the K-armed bandit algorithm for the
unknown gap setting, which is usually more general in practice and challenging in analysis.

We present the double explore-then-commit algorithm for K-armed bandits in Algorithm 7.
Similar to Algorithm 2 for two-armed bandits, the algorithm proceeds as follows: (1) in Stage I,
we uniformly explore over all the K arms; (2) in Stage II, we pull the arm with the largest average
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Algorithm 7 Double Explore-then-Commit for K-Armed Bandits (DETC-K)
input T , K. Initialization: t← 0

Stage I: Explore all arms uniformly
1: while t ≤ K

√
log T do

2: Pull every arm once, t← t+K
3: end while

Stage II: Commit to the arm with the largest average reward
4: 1′ ← arg maxk µ̂k(t), s← 0, p0 ← 0
5: while s ≤ log2 T do
6: Pull arm At+1 = 1′ and observe reward rt+1

7: ps+1 = (s · ps + rt+1)/(s+ 1), s← s+ 1, t← t+ 1
8: end while

Stage III: Explore the unchosen arm in Stage II
9: µ′ ← ps, Denote {2′, · · · ,K ′} = {1, 2, · · · ,K} \ {1′}

10: for i = 2, 3, · · · ,K do
11: ti ← 1, θi′,0 = 0

12: while |µ′ − θi′,ti | <
√

2/ti log
(
T/ti

(
log2(T/ti) + 1

))
and ti ≤ log2 T do

13: Pull arm i′ and observe reward rt+1

14: θi′,ti+1 = (ti · θi′,ti + rt+1)/(ti + 1), t← t+ 1, ti ← ti + 1
15: end while
16: if ti > log2 T then
17: Ffail ← 1 and break
18: end if
19: end for

Stage IV: Commit to the arm with the largest average reward
20: j′ := maxi′ θi′ti
21: if µ̂1′ ≥ θj′tj and Ffail = 0 then
22: Let a← 1′

23: while t < T do
24: Pull arm a, t← t+ 1
25: end while
26: else
27: Pull every arm log2 T times and let a be the arm with the largest average reward for this pull
28: Pull arm a till T time steps.
29: end if

reward; (3) in Stage III, we aim to ensure that the difference between the chosen arm 1′ in Stage II
and unchosen arms is sufficient by pulling all the unchosen arm i′ (i ≥ 2) repeatedly until the
average reward of arm i′ collected in this stage can be clearly distinguished from the average reward
of arm 1′. We set a check flag Ffail initialized as 0, which will be set to 1 if any unchosen arm i′ is
pulled for log2 T times; (4) in Stage IV, if Ffail = 0 and µ̂1′ is larger than the recalculated average
reward for any other arm, then we pull 1′ till the end. Otherwise, 1′ may not be the best arm. Then
we pull all arms log2 T times, and pull the arm with the largest recalculated average reward till the
end.

Now we present the regret bound of Algorithm 7.

Theorem C.1 The regret of Algorithm 7 with 1-subgaussian rewards satisfies

lim
T→∞

Rµ(T )/ log(T ) =
∑

i:∆i>02/∆i. (C.1)
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The proof of Theorem C.1 can be found in Section C.5. In the second case of Stage IV of
Algorithm 7, we actually believe that we have failed to choose the best arm via previous stages
and need to explore again for a fixed number of pulls (log2 T ) for all arms and commit to the best
arm based on the pulling results. Note that this can be seen as the naive ETC strategy with fixed
design (Garivier et al., 2016), which has an asymptotic regret rate 4/∆. Fortunately, Theorem
C.1 indicates our DETC algorithm can still achieve the asymptotically optimal regret for K-armed
bandits (Lai and Robbins, 1985). This means that the probability of failing in the first three stages
of Algorithm 7 is rather small and thus the extra ETC step does not affect the asymptotic regret of
our DETC algorithm. Lastly, it would be an interesting problem to extend the idea of Algorithm 3
in two-armed bandits to K-armed bandits, where simultaneously achieving the instance-dependent
and asymptotically optimal regret is still an open problem (Agrawal and Goyal, 2017; Lattimore,
2018).

C.1. Proof of the Regret Bound of Algorithm 1

Now we are going to prove Theorem 2.1. We first present a technical lemma that characterizes the
concentration properties of subgaussian random variables.

Lemma C.2 (Corollary 5.5 in Lattimore and Szepesvári (2020)) Assume that X1, . . . , Xn are
independent, σ-subguassian random variables centered around µ. Then for any ε > 0

P(µ̂ ≥ µ+ ε) ≤ exp

(
− nε2

2σ2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
− nε2

2σ2

)
, (C.2)

where µ̂ = 1/n
∑n

t=1Xt.

Proof [Proof of Theorem 2.1] Let τ2 be the total number of times arm 2′ is pulled in Stage III of
Algorithm 1. We know that τ2 is a random variable. Recall that µ1 > µ2 and ∆ = µ1 − µ2.
Recall τ1 is number of times arm 1 is pulled in Stage I. Let N2(T ) denote the total number of times
Algorithm 1 pulls arm 2, which is calculated as

N2(T ) = τ1 + (T1 − τ1)1{µ̂1(τ1) < µ̂2(τ1)}+ τ2 1{µ̂1(τ1) ≥ µ̂2(τ1)}
+ (T − T1 − τ1 − τ2)1{a = 2}. (C.3)

Then, the regret of Algorithm 1 Rµ(T ) = E[∆N2(T )] can be decomposed as follows

Rµ(T ) ≤ E
[
∆τ1 + ∆(T1 − τ1)1{µ̂1(τ1) < µ̂2(τ1)}+ ∆τ2 1{µ̂1(τ1) ≥ µ̂2(τ1)1}+ ∆T 1{a = 2}

]
≤ E

[
∆τ1 + ∆T1P(µ̂1(τ1) < µ̂2(τ1)) + ∆τ2P(µ̂1(τ1) ≥ µ̂2(τ1)) + ∆TP(a = 2)

]
≤ ∆τ1 + ∆T1P(τ1 < T1, 1

′ = 2)︸ ︷︷ ︸
I1

+ ∆E[τ2]︸ ︷︷ ︸
I2

+ ∆TP(τ2 < T, a = 2)︸ ︷︷ ︸
I3

. (C.4)

In what follows, we will bound these terms separately.

Bounding term I1: Let Xi and Yi be the rewards from pulling arm 1 and arm 2 for the i-th time
respectively. Thus Xi − µ1 and Yi − µ2 are 1-subgaussian random variables. Let S0 = 0 and
Sn = (X1 − Y1) + · · · + (Xn − Yn) for every n ≥ 1. Then Xi − Yi − ∆ is a

√
2-subgaussian

random variable. Applying Lemma C.2 with any ε > 0, we get

P(Sτ1/τ1 ≤ ∆− ε) ≤ exp(−τ1ε
2/4) ≤ exp(−ε2 log(T1∆2)/∆2), (C.5)
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where in the last inequality we plugged in the fact that τ1 ≥ 4 log(T1∆2)/∆2. By setting ε = ∆ in
the above inequality, we further obtain P(τ1 < T1, 1

′ = 2) = P(Sτ1/τ1 ≤ 0) ≤ 1/(T1∆2). Hence

I1 = T1∆P(τ1 < T1, 1
′ = 2) ≤ 1/∆. (C.6)

Bounding term I2: Recall that T1 ≥ 2 log(T∆2)/(ε2T∆2). Define event E = {µ′ ∈ (µ1′ −
εT∆, µ1′ + εT∆)}, and let Ec be the complement of E. By Lemma C.2 and the union bound,
P(E) ≥ 1− 2/(T∆2). Therefore,

I2 = ∆E[τ2 1(E)] + ∆E[τ2 1(Ec)]

= ∆E[τ2 1(E)] + ∆E[τ2 | Ec] · P(Ec)

≤ ∆E[τ2 1(E)] + ∆T · 2

T∆2

= ∆E[τ2 1(E, 1′ = 1)] + ∆E[τ2 1(E, 1′ = 2)] + 2/∆. (C.7)

We first focus on term ∆E[τ2 1(E, 1′ = 1)]. Observe that when E holds and 1′ = 1 (i.e.,
the chosen arm 1′ is the best arm), arm 2′ = 2 is pulled in Stage III of Algorithm 1. For ease of
presentation, we define the following notations:

Z0 = 0, Zi = µ′ − Yi+τ1 , S′0 = 0, S′n = Z1 + · · ·+ Zn, (C.8)

where Yi+τ1 is the reward from pulling arm 2 for the i-th time in Stage III. For any x > 0, we define

nx = (log(T∆2) + x)/(2(1− εT )2∆2).

We also define a check point parameter x0 = 2
√

log(T∆2).
Let E1 denote the event {E, 1′ = 1}. Note that in Stage III of Algorithm 1, conditioned on E1,

we have

2(1− εT )∆|S′t2 | = 2(1− εT )t2∆|µ′ − θ2′,t2 | < log(T∆2),

for t2 ≤ τ2 − 1. Therefore, conditioned on E1,{
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉}
= {τ2 − 1 ≥ dnxe}

⊆
{
S′dnxe ≤

log(T∆2)

2(1− εT )∆

}
. (C.9)

Let ∆′ = µ′ − E[Yi+τ1 ]. Then, Zi −∆′ is 1-subgaussian. We have that conditioned on E1,

∆′ = µ′ − E[Y1+τ1 ] = µ′ − µ2 ≥ µ1 − εT∆− µ2 = (1− εT )∆. (C.10)

By Lemma C.2, for any ε > 0, we have

P

(
S′dnxe

dnxe
≤ ∆′ − ε

∣∣∣∣∣ E1

)
≤ exp

(
−dnxeε2/2

)
. (C.11)

22



DOUBLE EXPLORE-THEN-COMMIT: ASYMPTOTIC OPTIMALITY AND BEYOND

Let ε = (1−εT )∆x
log(T∆2)+x

. Conditioned on E1,

dnxe(∆′ − ε) ≥ dnxe((1− εT )∆− ε) ≥ log(T∆2)

2(1− εT )∆
.

Combining this with (C.11) yields

P
(
S′dnxe ≤

log(T∆2)

2(1− εT )∆

∣∣∣∣ E1

)
≤ P

(
S′dnxe ≤ dnxe(∆

′ − ε)
∣∣∣ E1

)
≤ exp

(
− x2

4(log(T∆2) + x)

)
. (C.12)

This, when combined with (C.9), implies

P
(
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉ ∣∣∣∣ E1

)
≤ exp

(
− x2

4(log(T∆2) + x)

)
.

Recall that x0 = 2
√

log(T∆2). For any x ≥ x0, we have x
√

log(T∆2)/2 ≥ log(T∆2). Thus,∫ ∞
nx0

P(τ2 − 2 ≥ v | E1)dv =

∫ ∞
x0

P
(
τ2 − 2 ≥ log(T∆2) + x

2(1− εT )2∆2

∣∣∣∣ E1

)
dx

2(1− εT )2∆2

≤
∫ ∞
x0

P
(
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉ ∣∣∣∣ E1

)
dx

2(1− εT )2∆2

≤ 1

2(1− εT )2∆2

∫ ∞
x0

exp

(
− x2

4(log(T∆2) + x)

)
dx

≤ 1

2(1− εT )2∆2

∫ ∞
x0

exp

(
− x

2
√

log(T∆2) + 4

)
dx

≤ 1

2(1− εT )2∆2

∫ ∞
0

exp

(
− x

2
√

log(T∆2) + 4

)
dx

=

√
log(T∆2) + 2

(1− εT )2∆2
. (C.13)

Then, the expectation of ∆τ2 conditioned on E1 is

∆E[τ2 | E1] = ∆

∫ ∞
0

P(τ2 > v | E1)dv

= ∆

∫ nx0+2

0
P(τ2 > v | E1)dv + ∆

∫ ∞
nx0

P(τ2 − 2 ≥ v | E1)dv

≤ 2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆
. (C.14)

Hence, we have

∆E[τ2 1(E, 1′ = 1)] = ∆E[τ2 | E1] · P(E1)

≤ P(E1) ·
(

2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆

)
. (C.15)
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Let E2 denote the event {E, 1′ = 2}. In a manner similar to the proof of (C.14), we can show
that

∆E[τ2 1(E, 1′ = 2)] = ∆E[τ2 | E2] · P(E2)

≤ P(E2) ·
(

2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆

)
. (C.16)

Therefore, we have

I2 ≤ ∆E[τ2 1(E, 1′ = 1)] + ∆E[τ2 1(E, 1′ = 2)] +
2

∆

≤ 2∆ +
2

∆
+

log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆
. (C.17)

Bounding term I3: For term I3, similar to (C.7), we have

I3 =∆ · TP[τ2 < T, a = 2 | E1] · P[E1]

+ ∆ · TP[τ2 < T, a = 2 | E2] · P[E2] +
2

∆
. (C.18)

We will first prove that P(τ2 < T, a = 2 | E1) ≤ 1/(T∆2). Recall that S′n =
∑n

i=1 Zi and Zi =
µ′−Yi+τ1 . In addition, Zi−∆′ is 1-subgaussian, and ∆′ ≥ (1− εT )∆ whenever E1 occurs. Then,

E[exp(−2∆(1− εT )Z1) | E1] = E[exp(−2∆(1− εT )Z1 + 2∆∆′(1− εT )− 2∆∆′(1− εT )) | E1]

= E[exp(−2∆(1− εT )(Z1 −∆′)− 2∆∆′(1− εT )) | E1]

≤ exp((−2(1− εT )∆)2/2− 2(1− εT )∆∆′))

≤ exp(2(1− εT )∆((1− εT )∆−∆′))

≤ 1, (C.19)

where the first inequality follows from the definition of subgaussian random variables. We consider
the sigma-algebra Fn = σ(E1, Yτ1+i, i = 1, ..., n) for n ≥ 1. Define F0 = E1 and M0 = 1. Then,
the sequence {Mn}n=0,1,... with Mn = exp(−2∆(1 − εT )S′n) is a super-martingale with respect
to {Fn}n=0,1,.... Let τ ′ = T ∧ inf{n > 1 : S′n ≤ −log(T∆2)/(2∆(1− εT ))} be a stopping time.
Observe that conditioned on E1,

{τ2 < T, a = 2} ⊆
{
∃1 < n < T : S′n ≤ −

log(T∆2)

2∆(1− εT )

}
= {τ ′ < T}. (C.20)

Applying Doob’s optional stopping theorem (Durrett, 2019) yields E[Mτ ′ ] ≤ E[M0] = 1. In
addition, when τ2 < T , we have

Mτ ′ = exp(−2∆(1− εT )S′τ ′)

≥ exp(log(T∆2)) = T∆2. (C.21)
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In other words, {τ2 < T} ⊆ {Mτ ′ ≥ T∆2}. This leads to

P(τ2 < T, a = 2 | E1) ≤ P(τ ′ < T | E1)

≤ P(Mτ ′ ≥ T∆2 | E1)

≤ E[Mτ ′ ]/(T∆2) ≤ 1/(T∆2). (C.22)

where the third inequality follows form Markov’s inequality. Similarly, P(τ2 < T, a = 2 | E2) ≤
1/(T∆2) also holds. Thus, term I3 can be upper bounded by 3/∆.

Completing the proof: Substituting (C.6), (C.17) and I3 ≤ 3/∆ into (C.4) yields a total regret as
follows

Rµ(T ) ≤ 2∆ +
8

∆
+

4 log(T1∆2)

∆
+

log(T∆2) + 2
√

log(T∆2)

2(1− εT )2∆
+

√
log(T∆2) + 2

(1− εT )2∆
.

Recall the choice of εT in Theorem 2.1. By our choice that T1 = d2 log(T∆2)/(ε2T∆2))e, we have

T1 ≤ 1 + max{2 log2 T, 8 log(T∆2)/∆2}, (C.23)

which immediately implies, limT→∞ 4log(T1∆2)/(∆ log T ) = 0. Also note that limT→∞ εT = 0.
Thus, we have limT→∞Rµ(T )/ log T = 1/(2∆). By (C.23), we known that T1∆2 = O(log(T∆2)),
which results in the worse case regret bound as

Rµ(T ) = O

(
∆ +

1

∆
+

log(T∆2)

∆
+

log log(T∆2)

∆

)
= O(∆ +

log(T∆2)

∆
) = O(∆ +

√
T ),

where the last equality is due to the fact that T∆2 > 1 and log x ≤ 2
√
x for x > 1.

C.2. Proof of the Regret Bound of Algorithm 2

Next, we provide the proof for Theorem 2.2. Note that the stopping time of Stage I and Stage III
in Algorithm 2 is not fixed and instead depends on the random samples, and hence, the Hoeffding’s
inequality in Lemma C.2 is not directly applicable. To address this issue, we provide the following
two Lemmas.

Lemma C.3 Let N and M be extended real numbers in R+ and R+ ∪ {+∞}. Let γ be a real
number in R+, and let µ̂n =

∑n
s=1Xs/n be the empirical mean of n random variables identically

independently distributed according to 1-subgaussian distribution. Then

P(∃N ≤ n ≤M, µ̂n + γ ≤ 0) ≤ exp

(
− Nγ2

2

)
. (C.24)

The following lemma characterizes the length of the uniform exploration in Stage I of Algorithm
2. Since each arm is pulled for the same number of times (e.g., s times), the length of Stage I is 2s.
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Lemma C.4 Let n ∈ N+, X1, X2, · · · , be i.i.d. 1-subgaussian random variables, and Y1, Y2, · · · ,
be i.i.d. 1-subgaussian random variables. Assume without loss of generality that E[X1] > E[Y1].
Denote ∆ = E[Xi − Yi], and µ̂t = 1/

∑t
n=1(Xn − Yn). Then for any x > 0,

P
(
∃s ≥ 1 : µ̂s +

√
8

s
log+

(
N

s

)
≤ 0

)
≤ 15

N∆2
.

Moreover, we need following inequalities on the confidence bound of the average rewards. Sim-
ilar results have also been proved in Ménard and Garivier (2017) for bounding the KL divergence
between two exponential family distributions for different arms.

Lemma C.5 Let δ > 0 andM1,M2, . . . ,Mn be 1-subgaussian random variables with zero means.
Denote µ̂n =

∑n
s=1Ms/n. Then the following statements hold:

1. for any T1 ≤ T ,

T∑
n=1

P
(
µ̂n+

√
4

n
log+

(
T1

n

)
≥ δ
)
≤ 1+

4 log+(T1δ
2)

δ2
+

3

δ2
+

√
8πlog+(T1δ2)

δ2
; (C.25)

2. if Tδ2 ≥ e2, then

T∑
n=1

P

(
µ̂n +

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
≥ δ

)

≤ 1 +
2 log(Tδ2(log2(Tδ2) + 1))

δ2
+

3

δ2
+

√
4πlog(Tδ2(log2(Tδ2) + 1))

δ2
; (C.26)

3. if Tδ2 ≥ 4e3, then

P
(
∃s ≤ T : µ̂s +

√
2

s
log

(
T

s

(
log2 T

s
+ 1

))
+ δ ≤ 0

)
≤ 4(16e2 + 1)

Tδ2
. (C.27)

Proof [Proof of Theorem 2.2] Let τ1 be the number of times each arm is pulled in Stage I of
Algorithm 2 and τ2 be the total number of times arm 2′ is pulled in Stage III of Algorithm 2.
Similar to (C.4), the regret of Algorithm 2 can be decomposed as follows

Rµ(T ) ≤ ∆T1P(τ1 < T, 1′ = 2)︸ ︷︷ ︸
I1

+ ∆E[τ1] + ∆E[τ2]︸ ︷︷ ︸
I2

+ ∆TP(τ2 < T, a = 2)︸ ︷︷ ︸
I3

. (C.28)

Since we focus on the asymptotic optimality, we define εT =
√

2 log(T∆2)/(T1∆2) and as-
sume εT ∈ (0, 1/2), T∆2 ≥ 16e3.
Bounding term I1: Let Xs and Ys be the reward of arm 1 and 2 when they are pulled for the s-th
time respectively, s = 1, 2, . . .. Recall that µ̂k,s is the average reward for arm k after its s-th pull.
Applying Lemma C.4, we have

P(τ1 < T, 1′ = 2) ≤ P
(
∃s ∈ N : 2s ≤ T, µ̂1,s − µ̂2,s ≤ −

√
8 log+(T1/(2s))

s

)
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≤ 30

T1∆2
. (C.29)

where the last inequality comes from Lemma C.4. Therefore I1 ≤ 30/∆.
Bounding term I2: By the definition of τ1 and the stopping rule of Stage I in Algorithm 2, we have

E[τ1] =

T∑
s=1

P(τ1 ≥ s) ≤
T/2∑
s=1

P
(
µ̂1,s − µ̂2,s ≤

√
8 log+(T1/(2s))

s

)

=

T/2∑
s=1

P
(∑s

i=1 Zi
s

≤
√

4

s
log+

(T1

2s

)
− ∆√

2

)

≤
T∑
s=1

P
(
−
∑s

i=1 Zi
s

+

√
4

s
log+

(T1/2

s

)
≥ ∆√

2

)

≤ 1 +
8 log+(T1∆2/4)

∆2
+

6

∆2
+

2
√

8π log+(T1∆2/4)

∆2
, (C.30)

where the equality is by the definition of
∑s

i=1 Zi/s =
∑s

i=1(Xi − Yi − ∆)/(
√

2s) = (µ̂1,s −
µ̂2,s − ∆)/

√
2, and the last inequality is due to the first statement of Lemma C.5 since −Zi are

1-subgaussian variables as well.
Let

εT =
√

2 log(T∆2)/(T1∆2). (C.31)

Since we focus on the asymptotic optimality (T →∞) and T1 = log2 T , we assume

εT ∈ (0, 1/2) and T∆2 ≥ 16e3. (C.32)

Let E be the event µ′ ∈ [µ1′ − εT∆, µ1′ + εT∆]. Applying Lemma C.2 and union bound, P(E) ≥
1− 2/(T∆2). Similar to (C.7), we have

E[τ2] ≤ E[τ2 1(E, 1′ = 1)] + E[τ2 1(E, 1′ = 2)] + 2/∆2. (C.33)

To bound E[τ2 1(E, 1′ = 1)], we assume event E holds and the chosen arm 1′ is the best arm,
i.e., 1′ = 1. Let E1 = {E, 1′ = 1}. Let ∆′ = µ′ − E[Yi+τ1 ]. Then conditioned on E1, ∆′ ∈
[(1 − εT )∆, (1 + εT )∆]. Since εT ∈ (0, 1/2) and T∆2 ≥ 16e3, we have that conditioned on E1,
T (∆′)2 ≥ (1− εT )2T∆2 ≥ 4e3. Let Wi = µ′ − Yi+τ1 −∆′. Then −Wi is 1-subgaussian random
variable. By the stopping rule of Stage III in Algorithm 2, it holds that

E[τ2 | E1] ≤
T∑

t2=1

P(τ2 ≥ t2 | E1)

=

T∑
t2=1

P
(
µ′ − θ2′,t2 ≤

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
)) ∣∣∣∣ E1

)

=

T∑
t2=1

P
(
−
∑t2

i=1Wi

t2
+

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≥ ∆′

∣∣∣∣ E1

)
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≤ 1 +
3 + 2 log(4T∆2(log2(4T∆2) + 1)) +

√
4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆2
.

(C.34)

where the last inequality is due to the second statement of Lemma C.5 and−Wi are 1-subGuassian.
Let E2 = {E, 1′ = 2}, using the same argument, we can derive same bound as in (C.34) for
E[τ2 | E2]. Then We have

∆E[τ2] ≤ ∆E[τ2 1(E1)] + ∆E[τ2 1(E2)] +
2

∆

≤ ∆ +
2

∆
+

3 + 2 log(4T∆2(log2(4T∆2) + 1)) +
√

4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆
.

(C.35)

Bounding term I3: P(τ2 < T, a = 2) is the joint probability between the event that the chosen
arm after Stage III is arm 2 and the event that the following stopping condition will be satisfied in
Stage III:

|µ′ − θ2′,t2 | <
√

2/t2 log
(
T/t2

(
log2(T/t2) + 1

))
. (C.36)

Similar to (C.33),

I3 ≤ ∆TP[τ2 < T, a = 2 | E1]P[E1] + ∆TP[τ2 < T, a = 2 | E2]P[E2] +
2

∆
. (C.37)

Again, we first assume E1 holds. By definition, we have that conditioned on E1,
∑s

i Wi/s =
µ′ − θ2′,s − ∆′ and Wi is 1-subgaussian with zero mean. Recall that we have T (∆′)2 ≥ 4e3. By
the third statement of Lemma C.5, we have

P(τ2 < T, a = 2 | E1) ≤ P
(
∃t2 ≥ 1, µ′ − θ2′,t2 +

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≤ 0

∣∣∣∣ E1

)
≤ P

(
∃t2 ≥ 1, µ′ − θ2′,t2 −∆′ + ∆′ +

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≤ 0

∣∣∣∣ E1

)
≤ 4(16e2 + 1)

T (1− εT )2∆2
. (C.38)

When E2 holds, the proof is similar to the previous one. In particular, we only need to change the
notations to ∆′ = E[Xi+τ1 ]− µ′, which satisfies conditioned on E2, ∆′ ∈ [(1− εT )∆, (1 + εT )∆].
Hence, we can derive same bound as (C.38) for term P(τ2 < T, a = 2 | E2) .
Therefore,

I3 = ∆TP(τ2 < T, a = 2) ≤ 2

∆
+

4(16e2 + 1)

(1− εT )2∆
. (C.39)

Completing the proof: Therefore, substituting (C.29), (C.30), (C.35) and (C.39) into (C.28), we
have

Rµ(T ) ≤ 2∆ +
40 + 8 log+(T1∆2/4) + 2

√
8π log+(T1∆2)

∆
(C.40)
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+
4(16e2 + 2) + 2 log(4T∆2(log2(4T∆2) + 1)) +

√
4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆
.

(C.41)

Recall that ε2T = 2 log(T∆2)/(T1∆2). Let T1 = log2 T . When T → ∞, we have εT → 0, and
hence limT→∞Rµ(T )/T = 2/∆.

C.3. Proof of the Regret Bound of Algorithm 3

In this section, we provide the proof of Theorem 2.3. It will mostly follow the proof framework in
Section C.2 for Theorem 2.2. Recall that in the proof of Theorem 2.2, we used the concentration
inequalities in Lemma C.5 to upper bound τ2, which is the total number of times that the suboptimal
arm 2′ is pulled in Stage III of Algorithm 2. Now in Line 4 of Algorithm 3, we added the extra
stopping time log2 T to Stage III. Therefore, Lemma C.5 is no longer directly applicable here.
Instead, we need the following refined concentration lemma.

Lemma C.6 Let δ ∈ (0, 2/ log4 T ) andM1,M2, . . . ,Mn be 1-subgaussian random variables with
zero means. Denote µ̂n =

∑n
s=1Ms/n. Then the following inequality holds:

P
(
∃s ≤ log2 T : µ̂s +

√
2

s
log

(
eT

s

(
log2 T

s
+ 1

))
− δ ≤ 0

)
≤ 16e2 log T

T
. (C.42)

Proof [Proof of Theorem 2.3] For the sake of simplicity, we use the same notation that used in
Theorem 2.2. Similar to (C.4), the regret of Algorithm 3 can be decomposed as follows

Rµ(T ) ≤ ∆T1P(τ1 < T1, 1
′ = 2)︸ ︷︷ ︸

I1

+ ∆E[τ1] + ∆E[τ2]︸ ︷︷ ︸
I2

+ ∆TP(τ2 < log2 T, a = 2)︸ ︷︷ ︸
I3

+ P(τ2 = log2 T )R(IV | τ2 = log2 T )︸ ︷︷ ︸
I4

, (C.43)

where terms I1, I2 and I3 are the same as or slightly different from that in (C.4), and term I4 is a
new regret caused by Lines 14-19 of Algorithm 3, where τ2 = log2 T and R(IV | τ2 = log2 T )
represents the regret of Lines 14-19 in Stage IV.
Proof of Asymptotic Optimality: The proof of the asymptotic optimality is almost the same as
that in Section C.2. Recall the definition in (C.31) that εT =

√
2 log(T∆2)/(T1∆2). To derive

the asymptotic regret bound, since we consider the case that T → ∞, we can trivially assume
εT ∈ (0, 1/2) and T∆2 ≥ 16e3. Note that Stage I and Stage II of Algorithm 3 are exactly the same
as that of Algorithm 2. Based on the proof in Section C.2, it is easy to obtain the following results.

∆T1P(τ1 < T1, 1
′ = 2) = O

(
1

∆

)
, (C.44)

∆E[τ1] = O

(
∆ +

log+(T1∆2)

∆

)
, (C.45)

∆E[τ2] ≤ ∆ +
O(1) + 2 log(4e · T∆2(log2(4e · T∆2) + 1))

(1− εT )2∆
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+

√
4π log(4e · T∆2(log2(4e · T∆2) + 1))

(1− εT )2∆
. (C.46)

which are due to (C.29), (C.30) and (C.35) respectively.
For term I3, P(τ2 < log2 T, a = 2) is the joint probability between the event that the chosen

arm after Stage III is the suboptimal arm 2 and the event that the following stopping condition will
be satisfied after less than log2 T time steps executed in Stage III:

|µ′ − θ2′,t2 | <
√

2/t2 log
(
eT/t2

(
log2(T/t2) + 1

))
. (C.47)

Recall the proof in Section C.2 and note that the above probability is smaller than that in Algorithm
2 due to the extra requirement τ2 < T . Therefore, by (C.39) we have

I3 = ∆TP(τ2 < log2 T, a = 2) = O

(
1

(1− εT )2∆

)
. (C.48)

Now, we bound the new term I4. Note that τ2 = log2 T implies Lines 15-19 is performed in
Stage IV. Let τ3 be the number of pulls of each arm in Line 16. Then the regret in Lines 15-19 can
be upper bounded as R(IV | τ2 = log2 T ) ≤ ∆E[τ3] + ∆TP(τ3 < T, a = 2). Similar to the proof
in (C.29), we have

P(τ3 < T, a = 2) ≤ P
(
∃s ∈ N : 2s ≤ T, p1,s − p2,s ≤ −

√
8 log(T/s)

s

)
≤ 15

T∆2
. (C.49)

Similar to the proof of (C.30), we have

E[τ3] =
T∑
s=1

P(τ3 ≥ s) ≤
T∑
s=1

P
(
p1s − p2s ≤

√
8 log(T/s)

s

)

≤ 1 +
8 log(T∆2)

∆2
+

6

∆2
+

2
√

8π log(T∆2)

∆2
. (C.50)

Therefore, the regret generated by Lines 15-19 is

R(IV | τ2 = log2 T ) = O

(
∆ +

log(T∆2)

∆

)
. (C.51)

To obtain the final bound for term I4, we need to calculate the probability P(τ2 = log2 T ). Since

E[τ2] = E[τ2|τ2 = log2 T ] + E[τ2|τ2 < log2 T ] ≥ log2 TP(τ2 = log2 T ), (C.52)

combining the above result with (C.46), we have

P(τ2 = log2 T ) = O

(
log(T∆2)

∆2 log2 T

)
. (C.53)

Combining (C.51) and (C.53) together, we have

lim
T→∞

I4

log T
= lim

T→∞

P(τ2 = log2 T )R(IV | τ2 = log2 T )

log T
= 0.
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In conclusion, substituting the above results back into the regret decomposition in (C.43), we have
limT→∞Rµ(T )/ log T = 2/∆, which proves the asymptotic optimality of Algorithm 3.
Proof of Minimax/Instance-Dependent Optimality: When T∆2 ≤ 16e3, we have Rµ(T ) ≤
T∆ = O(

√
T ) and Rµ(T ) ≤ T∆ = O(1/∆), which is trivially minimax/instance-dependant

optimal. Hence, we assume T∆2 ≥ 16e3 in the rest of the proof. Different from the previous proof,
εT defined in (C.31) may not fall in the interval (0, 1/2) now. In particular, when the gap ∆ is very
small, the estimation of µ1′ will not be sufficiently accurate such that µ′ ∈ [µ1′ − εT∆, µ1′ + εT∆].
To handle this scenario, we will consider the following two cases.
Case 1: ∆ > 1/ log4 T . Actually, if the unknown gap ∆ is larger than 1/ log4 T , the proofs in
the previous part for the asymptotic optimality still holds. Note that T1 = log10 T , then εT =√

2 log(T∆2)/T1∆2 ∈ (0, 1/2). By the same argument as in (C.44), (C.45), (C.46) and (C.48), we
have I1 + I2 + I3 = O(∆ + log(T∆2)/∆). Also by (C.51), we have I4 ≤ R(IV |τ2 = log2 T ) =
O(∆ + log(T∆2)/∆). Thus substituting these terms back into the regret decomposition in (C.43)
yields Rµ(T ) = O(∆ + log(T∆2)/∆) = O(∆ +

√
T ).

Case 2: ∆ < 1/ log4 T . In this case, term I1 and ∆E[τ1] can be still bounded in the same way as
in (C.44), (C.45), which leads to I1 + ∆E[τ1] = O(1/∆ + log+(T1∆2)/∆).

Now we bound terms E[τ2] and I3. Recall that in the previous part for proving the asymptotic
regret, the bounds of term E[τ2] in (C.46) and term I3 in (C.48) are heavily based on the results in
(C.35) and (C.39). However, the results in (C.35) and (C.39) only hold based on the assumption
εT ∈ (0, 1/2), which is not true in the case ∆ < 1/ log4 T . Hence, (C.46) and (C.48) are not
applicable here. Now, we bound these terms without assuming εT ∈ (0, 1/2). For term ∆E[τ2],
since we pull 2′ at most log2 T times in Stage III of Algorithm 3, it can be trivially seen that
∆E[τ2] ≤ ∆ log2 T ≤ 1.

For term I3, note that we have pulled arm 1′ for T1 = log10 T times after Stage II. Applying
Lemma C.2, we obtain

P(|µ′ − µ1′ | ≥ 1/ log4 T ) ≤ 2/T 1/2 log T ≤ 1/T,

where µ′ is the average reward for arm 1′ at the end of Stage II and we used the fact that T ≥ e3.
Define event E′ = {|µ′ − µ1′ | ≤ 1/ log4 T} and its complement as E′c. We further have

I3 ≤ ∆TP(τ2 < log2 T, a = 2 | E′) + ∆TP(E′c)

≤ ∆TP(τ2 < log2 T | E′) + ∆. (C.54)

Conditioned on eventE′, we have |µ′−µ2′ | ≤ |µ′−µ1′ |+|µ1′−µ2′ | ≤ 2/ log4 T since |µ1′−µ2′ | =
∆ < 1/ log4 T . Based on this observation, we have

P(τ2 < log2 T | E′)

≤ P
(
∃t2 ≤ log2 T, |µ′ − θ2′,t2 | ≥

√
2

t2
log

(
eT

t2

(
log2 T

t2
+ 1

)) ∣∣∣∣ E′)

≤ P
(
∃t2 ≤ log2 T,−(µ′ − θ2′,t2) +

√
2

t2
log

(
eT

t2

(
log2 T

t2
+ 1

))
≤ 0

∣∣∣∣ E′)

+ P
(
∃t2 ≤ log2 T,−(µ′ − θ2′,t2)−

√
2

t2
log

(
eT

t2

(
log2 T

t2
+ 1

))
≥ 0

∣∣∣∣ E′)
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≤ P
(
∃t2 ≤ log2 T, (µ′ − µ2′)− (µ′ − θ2′,t2)− |µ′ − µ2′ |+

√
2

t2
log

(
eT

t2

(
log2 T

t2
+ 1

))
≤ 0

∣∣∣∣ E′)

+ P
(
∃t2 ≤ log2 T, (µ′ − µ2′)− (µ′ − θ2′,t2) + |µ′ − µ2′ | −

√
2

t2
log

(
eT

t2

(
log2 T

t2
+ 1

))
≥ 0

∣∣∣∣ E′)
≤ 32e2 log T

T
,

where the first inequality is due to the stopping rule of Stage III in Algorithm 3, the second inequality
is due to the fact that {|x − y| ≥ z} ⊂ {x − y ≥ z}

⋃
{x − y ≤ −z}, the third inequality is due

to the fact that µ′ − µ2′ − |µ′ − µ2′ | ≤ 0 and µ′ − µ2′ + |µ′ − µ2′ | ≥ 0, and in the last inequality
we apply Lemma C.6 with δ = |µ′ − µ2′ |. Therefore, substituting the above inequality back into
(C.54), we have the following bound for term I3:

I3 ≤ ∆TP(τ2 < log2 T |E′) + ∆

≤ ∆T
16e2 log T

T
+ ∆ ≤ 1,

where the last inequality is due to ∆ < 1/ log4 T and the fact that T ≥ e3. For term I4, conditioned
on τ2 = log2 T , the regret of Stage IV (namely, term R(IV | τ2 = log2 T )) only depends on the
data collected in Lines 15-19 of Algorithm 3, which is therefore the same as in (C.51). we have

I4 ≤ R(IV | τ2 = log2 T ) = O

(
∆ +

log(T∆2)

∆

)
.

Hence, for case 2, the total regret Rµ(T ) = O(∆ + log(T∆2)/∆) = O(∆ +
√
T ).

C.4. Proof of the Regret Bound of Algorithm 6

Now we provide the proof of the regret bound of the anytime version DETC algorithm.
Proof The regret of Algorithm 6 is caused by pulling the suboptimal arm 2, which gives rise to
Rµ(T ) =

∑T
t=1 ∆E[1{At = 2}]. We will consider two intermediate points t =

√
log T and

t = log2 T . Then we can decompose the regret of Algorithm 6 as follows:

Rµ(T ) =

√
log T∑
t=1

∆E[1{At = 2}]︸ ︷︷ ︸
I1

+

log2 T∑
t=
√

log T

∆E[1{At = 2}]

︸ ︷︷ ︸
I2

+
T∑

t=log2 T

∆E[1{At = 2}]

︸ ︷︷ ︸
I3

. (C.55)

In what follows, we will bound these terms separately.
Bounding term I1: Since the horizon length in this part is only

√
log T , we can directly upper

bound it as I1 ≤ ∆
√
T .

Bounding term I2: Since Algorithm 6 has multiple epochs, we will rewrite the regret in I2 in an
epoch-wise fashion. Specifically, without loss of generality, we assume that there are two integers
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r1 and r2 such that 2r1 =
√

log T and 2r2 = log2 T respectively. Denote τ2,r to be the total number
of pulls of arm 2 in the r-th epoch, r = 1, 2, . . .. Then we can rewrite I2 in the following way:

I2 =

log2 T∑
t=
√

log T

∆E[1{At = 2}] =

r2∑
r=r1

∆E[τ2,r]. (C.56)

Note that the chosen arm 1′ may be different in different epochs. In order to make the presentation
more precise, we use 1′(r) to denote the arm that is chosen by Line 3 in the r-th epoch of Algorithm
6. Also note that at the beginning of epoch r, the current time step of the algorithm is t = 2r. Let
εT = 1/ log log T and define event

E =

{ ⋂
r=r1,r1+1,...,r2

{
|µ̂1′(r)(2

r)− µ1′(r)| < εT∆
}}

.

Event E essentially says that at the beginning of any epoch r ∈ [r1, r2], the average reward of the
chosen arm 1′(r) is always close to its mean reward within a margin εT∆. The characterization of
this event is the key to analyzing the number of suboptimal arms pulled in each epoch.

Now we commute the probability that eventE happens. For any r ∈ [r1, r2], at the beginning of
the r-th epoch, we know that the algorithm has run for 2r times steps. Recall the definition of Tk(t),
the number of times that arm 1′(r) is pulled is T1′(r)(2

r). Since arm 1′(r) is the arm that has been
pulled for the most times so far, it must have been pulled for more than 2r−1 ≥ 2r1−1 =

√
log T/2

times, namely, T1′(r)(2
r) ≥

√
log T/2. By Lemma C.2, we have

P
(∣∣µ̂1′

(
2r
)
− µ1′

∣∣ ≥ εT∆
)
≤ 2 exp

(
−
T1′(r)(2

r)ε2T∆2

2

)
≤ 2 exp

(
−
√

log Tε2T∆2

4

)
≤ 2

log4 T
, (C.57)

where the last inequality holds due to εT = 1/ log log T and when T is sufficiently large T such
that

√
log T

4 log log T
≥ 4(log log T )2

∆2
. (C.58)

Let Ec be the complement of event E. Then it holds that

P(Ec) = P
({ ⋂

r=r1,r1+1,...,r2

{
|µ̂1′(2

r)− µ1′ | < εT∆
}}c)

= P
( ⋃
r=r1,r1+1,...,r2

{
|µ̂1′(2

r)− µ1′ | ≥ εT∆
})

≤
r2∑
r=r1

P(|µ̂1′(2
r)− µ1′ | ≥ εT∆)
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≤ 1/ log3 T, (C.59)

where in the first inequality we applied the union bound over all epochs r ∈ [r1, r2], and the last
inequality is due to (C.57) and r2 = 2 log2 log T ≤ log T/2 for sufficiently large T .

Based on the characterization of event E, we bound the summation of τ2,r in (C.56) as follows:

r2∑
r=r1

E[τ2,r] ≤
r2∑
r=r1

E[τ2,r|E]P(E) +

r2∑
r=1

2rP(Ec)

≤
r2∑
r=r1

E[τ2,r|E]P(E) +
2r2+1

log3 T

≤
r2∑
r=r1

E[τ2,r|E]P(E) +
2

log T
. (C.60)

where in the first inequality we used the fact the τ2,r is at most 2r in the r-th epoch, the second
inequality is due to (C.59), and the last inequality is due to 2r2 = log2 T .

In the r-th epoch of Algorithm 6, τ2,r is contributed by two part: the number of pulls of arm 2
in Line 5 and the number of pulls of arm 2 in Line 9. We denote them as c+

r and c−r respectively
such that τ2,r = c+

r + c−r . In epoch r ∈ [r1, r2], by the fact that E[x] =
∑

s P(x > s) we have

E[c+
r |E]P(E)

=
T∑
s=1

P(c+
r ≥ s | E)P(E)

≤
2r+1∑
t=2r

P

(
µ̂1(t)− µ̂2(t) ≤

√
2

T2(t)
log

(
r · 2r
T2(t)

(
log2

(
r · 2r
T2(t)

)
+ 1

))∣∣∣∣∣E
)
P(E)

≤
2r+1∑
t=2r

P

(
µ1 − εT∆− µ̂2(t) ≤

√
2

T2(t)
log

(
r · 2r
T2(t)

(
log2

(
r · 2r
T2(t)

)
+ 1

))∣∣∣∣∣E
)
P(E)

≤
2r+1∑
t=1

P
(
µ̂2(t)− µ1 + ∆ +

√
2

T2(t)
log
(r · 2r
T2(t)

(
log2(

r · 2r
T2(t)

) + 1
))
≥ (1− εT )∆

)
, (C.61)

where in the first inequality, c+
r > 0 (arm 2 is pulled in Line 5) means the arm chosen in this epoch

is arm 1′(r) = 2 and the stopping condition in Line 4 of Algorithm 6 is satisfied, in the second
inequality, we used the fact that conditioned on event E, it holds that µ̂1(t) ≥ µ1− εT∆, and in the
last inequality, we used the fact that P(x|y)P(y) = P(x, y) ≤ P(x) for any random variables x and
y. Now note that µ̂2(t) − µ1 + ∆ = µ̂2(t) − µ2 is 1-subgaussian with zero mean. Applying the
second statement of Lemma C.5 with δ = (1− εT )∆, we have

r2∑
r=r1

E[c+
r |E]P(E) =

r2∑
r=r1

O

(
log(r · 2r∆2)

(1− εT )2∆2

)
= 2 log log T ·O

(
log(r2 · 2r2∆2)

∆2

)
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= O(
√

log T ), (C.62)

where the last equality is from the upper bound of 1/∆2 in (C.58) and the following upper bound
of ∆2:

∆ ≤ log T and log log T ≥ 4, (C.63)

which holds for sufficiently large T .
Now we bound E[c−r |E]P(E). Note that when c−r > 0 (arm 2 is pulled in Line 9), we know

that (1) the stopping condition in Line 4 of Algorithm 6 is violated by some t ≤ 2r+1; and (2) arm
a(r) = 2. Therefore, we have

E[c−r |E]P(E) = E[c−r |E, c−r > 0]P(E)P(c−r > 0|E)

= E[c−r |E, c−r > 0]P(E)
[
P(c−r > 0, 1′ = 1 | E) + P(c−r > 0, 1′ = 2 | E)

]
.

(C.64)

For the first term in (C.64), similar to the proof in (C.61), we have

E[c−r |E, c−r > 0]P(E)P(c−r > 0, 1′ = 1 | E)

≤ 2rP
(
∃t ≤ 2r+1 : µ1 − εT∆− µ̂2(t) < −

√
2

T2(t)
log

(
r · 2r
T2(t)

(
log2

(
r · 2r
T2(t)

)
+ 1

)))
≤ 2r+2O

(
1

r · 2r∆2

)
, (C.65)

where in the first inequality we used the fact that c−r ≤ 2r and µ̂1(t) ≥ µ1 − εT∆, and the second
inequality is due to third statement of Lemma C.5. Using exactly the same argument, we have

E[c−r |E, c−r > 0]P(E)P(c−r > 0, 1′ = 2 | E)

≤ 2rP
(
∃t ≤ 2r+1 : µ2 + εT∆− µ̂1(t) >

√
2

T2(t)
log

(
r · 2r
T2(t)

(
log2

(
r · 2r
T2(t)

)
+ 1

)))
≤ 2r+2O

(
1

r · 2r∆2

)
. (C.66)

Therefore, it holds that

r2∑
r=r1

E[c−r |E]P(E) =

r2∑
r=1

2r+1O

(
1

r · 2r∆2

)
= O

(
log r2

r∆2

)
= O

(
1

∆2

)
. (C.67)

Combining (C.60), (C.62) and (C.67) together, we have

I2 = ∆

r2∑
r=r1

E[τ2,r]

= ∆

r2∑
r=r1

E[c+
r |E]P(E) + ∆

r2∑
r=r1

E[c−r |E]P(E) +
2∆

log T
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= O

(√
log T +

1

∆
+

∆

log T

)
. (C.68)

Bounding term I3: We start with decomposing I3 into two terms. The first term is the number of
pulls of arm 2 at Line 5, i.e.,

∑log2 T
r=r2+1 c

+
r and the second term is the number of pulls of arm 2 at

Line 9, i.e.,
∑log2 T

r=r2+1 c
−
r . Therefore, we have

I3 = E

[ log2 T∑
r=r2+1

c−r

]
+ E

[ log2 T∑
r=r2+1

c+
r

]
. (C.69)

Define event

E′ =

{ ⋂
r=r2+1,...,log2 T

{
|µ̂1′(r)(2

r)− µ1′(r)| < εT∆
}}

.

E′ says that for epoch r ≥ r2 + 1, the average reward of the chosen arm 1′(r) is close to its
mean reward within a margin εT∆, which plays a similar role as E does. Now, we commute the
probability that E′ happens. Since arm 1′(r) is the arm that has been pulled for the most times so
far, 1′(r) must have been pulled for more than 2r2 ≥ log2 T . By Lemma C.2, we have

P
(∣∣µ̂1′

(
2r
)
− µ1′

∣∣ ≥ εT∆
)
≤ 2 exp

(
−
T1′(r)(2

r)ε2T∆2

2

)
≤ 2 exp

(
−

log2 Tε2T∆2

2

)
≤ 2

T 2
, (C.70)

where the last inequality holds due to εT = 1/ log log T and when T is sufficiently large T such
that

log2 T

2 log T
≥ 2(log log T )2

∆2
. (C.71)

Let E′c be the complement of event E. Then it holds that

P(E′c) = P
({ ⋂

r=r2+1,...,log2 T

{
|µ̂1′(2

r)− µ1′ | < εT∆
}}c)

= P
( ⋃
r=r2+1,...,log2 T

{
|µ̂1′(2

r)− µ1′ | ≥ εT∆
})

≤
log2 T∑
r=r2+1

P(|µ̂1′(2
r)− µ1′ | ≥ εT∆)

≤ 1/T, (C.72)

where in the first inequality we applied the union bound over all epochs r ∈ [r2 + 1, log2 T ], and
the last inequality is due to (C.70) and log2 T ≤ T/2. Recall that in (C.59), P(Ec) = O(1/ log3 T ).
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However, this error probability is not sufficient to support the algorithm run for T steps. Instead,
when we have pulled arm 1′ for log2 T times, since P(E′c) ≤ 1/T , the regret caused by E′c is at
most ∆.

Based on the characterization of event E′, we bound the summation of c+
r and c−r in (C.69) as

follows:
log2 T∑
r=r2+1

E[c+
r ] +

log2 T∑
r=r2+1

E[c−r ] ≤
log2 T∑
r=r2+1

E[c+
r | E′]P(E′) +

log2 T∑
r=r2+1

E[c−r | E′]P(E′) +

log2 T∑
r=r2+1

2rP(E′c)

≤
log2 T∑
r=r2+1

E[c+
r | E′]P(E′) +

log2 T∑
r=r2+1

E[c−r | E′]P(E′) + 2, (C.73)

where in the first inequality we used the fact the c+
r + c−r is at most 2r in the r-th epoch, the

second inequality is due to (C.72). Now, we bound term
∑log2 T

r=r2
E[c+

r |E′]P(E′). Using the previous
results (C.61) of bounding E[c+

r |E]P(E),

log2 T∑
r=r2+1

E[c+
r |E′]P(E′)

≤
log2 T∑
r=r2+1

2r+1∑
t=2r

P
(
µ̂2(t)− µ1 + ∆ +

√
2

T2(t)
log

(
r · 2r
T2(t)

(
log2(

r · 2r
T2(t)

) + 1

))
≥ (1− εT )∆

)

≤
T∑
t=1

P
(
µ̂2(t)− µ1 + ∆ +

√
2

T2(t)
log

(
log2 T · T
T2(t)

(
log2(

log2 T · T
T2(t)

) + 1

))
≥ (1− εT )∆

)
≤ 2 log(T∆2 log T ) + o(log(T∆2 log T ))

(1− εT )2∆2
, (C.74)

where the last inequality is due to the second statement of Lemma C.5. By (C.66), we have

E[c−r |E′, c−r > 0]P(E′)P(c−r > 0, 1′ = 2 | E′) ≤ 2r+2O

(
1

r · 2r∆2

)
. (C.75)

Therefore, we have
log2 T∑
r=r2+1

E[c−r |E′]P(E′) =

r2∑
r=r2+1

2r+1O

(
1

r · 2r∆2

)
= O

(∫ log T

x=1

1

x∆2

)
dx = O

(
log log T

∆2

)
.

(C.76)

Combing (C.73) and (C.76) together, we have

I3 =
2 log(T∆2 log T ) + o(log(T∆2 log T ))

(1− εT )2∆2
+O

(
log log T

∆2

)
+O(1). (C.77)

Substituting (C.68) and (C.77) into (C.55), we have

lim
T→∞

Rµ(T )

log T
=

2

∆
,

which completes the proof.

37



DOUBLE EXPLORE-THEN-COMMIT: ASYMPTOTIC OPTIMALITY AND BEYOND

C.5. Proof of the Regret Bound of Algorithm 7

In this section, we prove the regret bound of DETC for K-armed bandits.
Proof [Proof of Theorem C.1] Let Ti be the total number of pulls of arm i throughout the algorithm,
i ≥ 2. Since by definition the regret is Rµ(T ) =

∑
i E[Ti∆i], it suffices to prove

lim
T→∞

E[Ti]

log(T )
=

2

∆2
i

. (C.78)

Denote τ2,i as the number of pulls of arm i in Stage III of Algorithm 7. Similar to (C.3) and (C.4),
the term E[Ti] can be decomposed as follows

E[Ti] ≤
√

log T + log2 TP(1′ = i)︸ ︷︷ ︸
I1

+E[τ2,i]︸ ︷︷ ︸
I2

+TP(µ̂1′ ≥ θj′,tj ,Ffail = 0, a = i)︸ ︷︷ ︸
I3

+ log2 TP(Ffail = 1) + TP(Ffail = 1, a = i)︸ ︷︷ ︸
I4

, (C.79)

where the last term I4 characterizes the failing probability of the first three stages and the ETC step
in the last two lines of Algorithm 7.
Bounding term I1: Let µ̂i,s be the estimated reward of arm i after its s-th pull. Let τ1 =

√
log T .

Let X be the reward of arm 1 and Y i be the reward of arm i for i > 1. Let Sin = X1 − Y i
1 + · · ·+

Xn − Y i
n. After pulling arm 1 and arm i τ1 times, using Lemma C.2, we get

P(Siτ1/τ1 ≤ ∆i − ε) ≤ exp(−τ1ε
2/4). (C.80)

For sufficiently large T such that T > K and for all i, it holds
√

log T

logK + 2 log log T
≥ 4

∆2
i

, (C.81)

Setting ε = ∆i in (C.80), we have P(µ̂1,τ1 ≤ µ̂i,τ1) ≤ 1/(K log2 T ). Applying union bound, we
have

P(µ̂1,τ1 ≥ max
i
µ̂i,τ1) = P(1′ = 1) ≥ 1− 1

log2 T
, (C.82)

which further implies I1 ≤ 1.

Bounding term I2: Let εi =
√

4 log(T∆2
i )/((log T )2∆2

i ). Applying Lemma C.2, we have

P(µ′ /∈ (µ1′ − εi∆i, µ1′ + εi∆i)) ≤ 2/(T∆2
i ). (C.83)

Similar to (D.3), we choose a large T such that for all ∆i > 0,√
4 log(T∆2

i )

∆2
i log2 T

≤ 1

(log T )
1
3

, (C.84)

then εi ≤ 1/(log T )
1
3 . Let E be the event µ′ ∈ (µ1′ − εi∆i, µ1′ + εi∆i). Let E1 be the event

{E, 1′ = 1}. Note that Pr(1′ = 1) ≥ 1 − 1/ log2 T , Pr(Ec) ≤ 2/(T∆2
i ) and τ2,i ≤ log2 T , the

term I2 can be decomposed as

E[τ2,i] = E[τ2,i 1(1′ = 1)] + E[τ2,i 1(1′ 6= 1)]
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≤ E[τ2,i 1(1′ = 1)] + 1

≤ E[τ2,i 1(E1)] + E[τ2,i 1(Ec)] + 1

≤ 1 +
2

∆i
+ E[τ2,i | E1]. (C.85)

We can derive the same bound as E[τ2 | E1] in (C.34) for E[τ2,i | E1]. We have

I2 = E[τ2,i | E1]

≤ 1 +
3 + 2 log(4T∆2

i (log2(4T∆2
i ) + 1)) +

√
4π log(4T∆2

i (log2(4T∆2
i ) + 1))

(1− εi)2∆2
i

. (C.86)

Bounding term I3: When Ffail = 0, we can follow the same proof for bounding I3 in (C.38).
Therefore, we can obtain

I3 ≤
2

∆2
i

+
4(16e2 + 1)

(1− εi)2∆2
i

. (C.87)

Bounding term I4: For term P(Ffail = 1), similar to (C.85), we have

P(Ffail = 1) = P(Ffail = 1 | 1′ = 1) Pr(1′ = 1) + P(Ffail = 1 | 1′ 6= 1) Pr(1′ 6= 1)

≤ P(Ffail = 1 | 1′ = 1) +
1

log2 T

≤ P(Ffail = 1 | E, 1′ = 1) Pr(E | 1′ = 1) + Pr(Ec | 1′ = 1) +
1

log2 T

≤ P(Ffail = 1 | E1) +
2

T∆2
i

+
1

log2 T
, (C.88)

where the first and third inequalities are due to the law of total probability, the second inequality is
due to (C.82), and the last inequality is due to (C.83). Let ∆′i = µ′−E[Y i

1 ], Wr = µ′−Y i
r+τ1 −∆′i.

We have that conditioned on E1,
∑s

rWr/s = µ′ − θ2′,s − ∆′ and Wr is 1-subgaussian with zero
mean. By the third statement of Lemma C.5, we have

P(Ffail = 1 | E1) ≤ P
(
∃ti ≥ 1, µ′ − θi′,ti +

√
2

ti
log
(T
ti

(
log2 T

ti
+ 1
))
≤ 0

∣∣∣∣E1

)
≤ 4(16e2 + 1)

T (1− εi)2∆2
i

. (C.89)

For term TP(Ffail = 1, a = i), we choose large enough T to ensure

exp(−∆2
i log2 T/4) ≤ 1

T
. (C.90)

Then, following the similar argument in (D.15), we can obtain

P(Ffail = 1, a = i) ≤ 1

T
. (C.91)
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Therefore, substituting (C.88), (C.89) and (C.91) into the definition of I4 in (C.79), we have

I4 = log2 TP(Ffail = 1) + TP(Ffail = 1, a = i)

≤ 2 +
2 log2 T

T∆2
i

+
4(16e2 + 1) log2 T

T (1− εi)2∆2
i

. (C.92)

Completing the proof: we can choose a sufficiently large T such that all the conditions (C.81),
(C.84), (C.90) are satisfied simultaneously. Substituting (C.92), (C.87), (C.86) and I1 ≤ 1 back into
(C.79), we have

E[Ti] ≤ 4 +
C + 2 log(4T∆2

i (log2(4T∆2
i ) + 1)) +

√
4π log(4T∆2

i (log2(4T∆2
i ) + 1))

(1− εi)2∆2
i

,

for all i ≥ 2, where C > 0 is a universal constant. Note that for T → ∞, εi ≤ 1/(log T )
1
3 . Hence

we have limT→∞ E[Ti]/ log T = 2/∆2
i and limT→∞Rµ(T )/ log T =

∑
i 2/∆i.

Appendix D. Round Complexity of Batched DETC

In this section, we derive the round complexities of Algorithms 4 and 5 for batched bandit models.
We will prove that Batched DETC still enjoys the asymptotic optimality. Note that in batched
bandits, our focus is on the asymptotic regret bound and thus we assume that T is sufficiently large
throughout the proofs in this section to simplify the presentation.

D.1. Proof of Theorem 3.1

We first prove the round complexity for Batched DETC (Algorithm 4) when the gap ∆ is known.
Proof The analysis is very similar to that of Theorem 2.1 and thus we will use the same notations
therein. Note that Stage I requires 1 round of queries since τ1 is fixed. In addition, Stage II and
Stage IV need 1 query at the beginning of stages respectively. Now it remains to calculate the total
rounds for Stage III.

Recall that E is event µ′ ∈ [µ1′ − εT∆, µ1′ + εT∆], E1 = {E, 1′ = 1} and E2 = {E, 1′ = 2}.
We first assume that E1 holds. Let xi = i(2

√
log(T∆2) + 4) and nxi = τ0 + xi/(2(1− εT )2∆2).

For simplicity, assume xi, nxi ∈ N+. From (C.12), we have

P(τ2 > nxi | E1) ≤ P
(
Snxi

≤ log(T∆2)

2(1− εT )∆

∣∣∣∣ E1

)
≤ exp

(
− x2

i

4(log(T∆2) + xi)

)
≤ exp

(
− xi

2
√

log(T∆2) + 4

)
≤ 2−i.

(D.1)

Thus, the expected number of rounds of queries needed in Stage III of Algorithm 4 is upper bounded
by
∑∞

i=1 i/2
i = 2. Similarly, if E2 holds, we still have the expected number of rounds in Stage III

is upper bounded by 2. Lastly, if Ec holds, we have P(Ec) ≤ 2/(T∆2). Note that the increment
between consecutive test time points is (2

√
log(T∆2) + 4)/(2(1 − εT )2∆2), thus the expected

number of test time points is at most T (1− εT )2∆2/(
√

log(T∆2)). Then the expected number of
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rounds for this case is bounded by 2(1 − εT )2/(
√

log(T∆2)). For T → ∞, the expected number
of rounds cost for this case is 0. To summarize, the round complexity of Algorithm 4 is O(1).

Following the same proof in (C.13) and (C.14), it is easy to verify that E[τ2 | E1] ≤ τ0 +
(2
√

log(T∆2) + 4)/((1 − εT )2∆2), which is no larger than the bound in (C.14). The bounds for
other terms remain the same. Therefore, the batched version of Algorithm 4 is still asymptotically
optimal, instance-dependent optimal and minimax optimal.

D.2. Proof of Theorem 3.3

Now we prove the round complexity and regret bound for Batched DETC (Algorithm 5) when the
gap ∆ is unknown.
Proof For the sake of simplicity, we use the same notations that are used in Theorem 2.2 and its
proof. To compute the round complexity and regret of Stage I, we first compute the probability that
τ1 > 2i

√
log T . We assume T is large enough such that it satisfies√

log T ≥ 16 log+(T1∆2/2)/∆2, (D.2)

where we recall that T1 = log2 T . Let si = 2i
√

log T for i = 1, 2, . . . and γ = 4 log+(T1∆2/2)/∆2.
From (D.2), it is easy to verify that si ≥ 32i/∆2, γ/si ≤ 1/8 and

√
4 log+(T1/2si)/si ≤

∆
√
γ/si. The stopping rule in Stage I implies

P(τ1 ≥ si) ≤ P

(
µ̂1,si − µ̂2,si ≤

√
8

si
log+

(
T1

2si

))

= P
(∑si

i=1 Zi
si

≤

√
4

si
log+

(
T1

2si

)
− ∆√

2

)
≤ P

(∑si
i=1 Zi
si

≤ ∆

√
γ

si
− ∆√

2

)
≤ exp

(
− si∆

2

2

(
1√
2
−
√
γ

si

)2)
≤ exp(−i)
≤ 2−i,

where the third inequality follows from Lemma C.2 and the fourth inequality is due to the fact that
si ≥ 32i/∆2 and γ/si ≤ 1/8. Hence by the choice of testing points in (3.2), the expected number
of rounds needed in Stage I of Algorithm 5 is upper bounded by

∑∞
i=1 i/2

i ≤ 2. The expectation of
τ1 is upper bounded by E[τ1] ≤

∑∞
i=1 2i

√
log T/2i ≤ 4

√
log T , which matches the bound derived

in (C.30).
Now we focus on bounding term ∆E[τ2] and the round complexity in Stage III. Let ε′T =√

2εT =
√

4 log(T∆2)/(T1∆2). Let E be the event µ′ ∈ [µ1′ − ε′T∆, µ1′ + ε′T∆]. Applying
Lemma C.2, we have P(Ec) ≤ 1/(T 2∆4). Hence, the expected number of test time points con-
tributed by case Ec is O(1/(T∆4)) which goes to zero when T →∞. Similarly, we assume that E
holds and the chosen arm 1′ = 1. Recall E1 = {E, 1′ = 1}. Recall that this condition also implies
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∆′ ∈ [(1− ε′T )∆, (1+ ε′T )∆], where ε′T =
√

log(T∆2)/(T1∆2) and T1 = log2 T . When T is large
enough such that it satisfies √

4 log(T∆2)

∆2 log2 T
≤ 1

(log T )
1
3

, (D.3)

we have ε′T ≤ 1/(log T )
1
3 . Furthermore, we can also choose a large T such that√

log T (∆′)2 ≥ 2(log log T )2. (D.4)

Applying Lemma C.2, we have

P
(
µ2′ −∆′(log T )−

1
4 ≤ θ2′,N1 ≤ µ2′ + ∆′(log T )−

1
4 | E1

)
≥ 1− 2 exp

(
− 2 log T (∆′)2

2
√

log T log log T

)
≥ 1− 2

log2 T
, (D.5)

where the last inequality follows by (D.4). This means that after the first round of Stage III in
Algorithm 5, the average reward for arm 2′ concentrates around the true value µ2′ with a high
probability. Let E3 be the event µ2′ − ∆′/ 4

√
log T ≤ θ2′,N1 ≤ µ2′ + ∆′/ 4

√
log T . Recall that

E1 = {E, 1′ = 1} and E2 = {E, 1′ = 2}. Let H1 = {E1, E3} and H2 = {E2, E3}. We have

E[τ2] ≤ E[τ2 | E1, E3]P[E1, E3] + E[τ2 | E2, E3]P[E2, E3] + E[τ2 | Ec3]P[Ec3] + E[τ2 | Ec]P[Ec]

≤ E[τ2 | H1]P[H1] + E[τ2 | H2]P[H2] + E[τ2 | Ec3]P[Ec3] + 2/(T∆3) (D.6)

We first focus on term E[τ2 | H1]. We assume event H1 holds. Define

s′i =
2(1 + 1/ 4

√
log T )2 log(T log3 T )

∆̂2
+
i(1 + 1/ 4

√
log T )2(log T )

2
3

∆̂2
,

γ′ =
2 log

(
T (∆′)2[log2(T (∆′)2) + 1]

)
(∆′)2

,

for i = 1, 2, . . .. Recall the definition of test time points in (3.3), we know that the (i+ 1)-th test in
Stage III happens at time step t2 = s′i. We choose a large enough T such that

log3 T ≥ (∆′)2(log2(T (∆′)2) + 1). (D.7)

Let ∆′ = µ′ − µ2′ . Hence conditioned on H1, ∆̂ = µ′ − θ2′,N1 ∈ [(1 − 1/ 4
√

log T )∆′, (1 +
1/ 4
√

log T )∆′]. Then we have that conditioned on H1

2(1 + 1/ 4
√

log T )2 log(T log3 T )

∆̂2
≥ 2 log(T log3 T )

(∆′)2
≥ γ′, (D.8)

where the last inequality is due to (D.7). On the other hand, we also have that conditioned on H1

s′i ≥
2(1 + 1/ 4

√
log T )2 log(T log3 T )

∆̂2
≥ 2

(∆′)2
. (D.9)
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Therefore, by the definition of γ′, it holds that conditioned on H1

∆′

√
γ′

s′i
=

√
2

s′i
log(T (∆′)2(log2(T (∆′)2) + 1)) ≥

√
2

s′i
log

(
T

s′i

(
log2

(
T

s′i

)
+ 1

))
.

Recall the definition Wi = µ′ − Yi+τ1 −∆′ used in (C.34). From the stopping rule of Stage III in
Algorithm 2, conditioned on H1, we obtain

P(τ2 ≥ s′i | H1) ≤ P
(
µ′ − θ2′,s′i

≤

√
2

s′i
log
(T
s′i

(
log2 T

s′i
+ 1
)) ∣∣∣∣ H1

)

= P
(∑s′i

i=1Wi

s′i
+ ∆′ ≤

√
2

s′i
log
(T
s′i

(
log2 T

s′i
+ 1
)) ∣∣∣∣ H1

)

≤ exp

(
− s′i(∆

′)2

2

(
1−

√
γ′

s′i

)2)
= exp

(
− (∆′)2

2
(
√
s′i −

√
γ′)2

)
= exp

(
− (∆′)2

2

(
s′i − γ′√
s′i +

√
γ′

)2)
≤ exp

(
− i2(log T )4/3

8s′i(∆
′)2

)
, (D.10)

where the second inequality from Lemma C.2 and in the last inequality we used the fact that s′i−γ′ ≥
i(1 + 1/ 4

√
log T )2(log T )

2
3 /(∆̂2) ≥ i(log T )

2
3 /(∆′)2 by (D.8). Choose sufficiently large T to

ensure
(log T )

4
3 ≥ 8s′i(∆

′)2. (D.11)

Substituting (D.11) back into (D.10) yields P(τ2 ≥ s′i | H1) ≤ 1/2i. Similarly, P(τ2 ≥ s′i | H2) ≤
1/2i, Thus conditioned on H1 (or H2), the expected rounds used in Stage III of Algorithm 2 is
upper bounded by

∑∞
i=1 i/2

i ≤ 2. Recall that from (D.3), ε′T ≤ 1/(log T )
1
3 . Conditional on H1,

the expectation of τ2 is upper bounded by

E[τ2 | H1] ≤ s′1 +
∑
i=2

[(s′i − s′1)P(τ2 ≥ s′i | H1)]

≤ 2(1 + 1/(log T )
1
4 )2 log(T log3 T )

∆̂2
+

2(1 + 1/ 4
√

log T )2(log T )
2
3

∆̂2

≤ 2(1 + 1/(log T )
1
4 )2 log(T log3 T ) + 2(1 + 1/(log T )

1
4 )2(log T )

2
3

(1− 1/(log T )
1
3 )2(1− 1/(log T )

1
4 )2∆2

, (D.12)

where the last inequality is due to ∆′ ∈ [(1 − ε′T )∆, (1 + ε′T )∆]. Similarly, we can derive same
bound as in (D.12) for E[τ2 | H2].

For the case Ec3. Note that τ2 ≤ log2 T and we have P(Ec3) ≤ 2/ log2 T by (D.5). Therefore
E[τ2 | Ec3] can be upper bounded by 2, which is dominated by (D.12). Since τ2 ≤ log2 T , condi-
tioned on Ec3, the expected rounds is upper bounded by P(Ec3) · log2 T ≤ 2. To summarize, we have
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proved that conditioned on H1 (or H2, or Ec, or Ec3), the expected rounds cost is O(1). Therefore,
the expected rounds cost of Stage III is O(1).

Note that the above analysis does not change the regret incurred in Stage III. A slight difference
of this proof from that of Theorem 2.2 arises when we terminate Stage III with t2 = log2 T . The
term I3 can be written as

I3 = ∆TP(τ2 = log2 T, a = 2) + ∆TP(τ2 < log2 T, a = 2), (D.13)

We can derive same bound as (C.39) for term ∆TP(τ2 < log2 T, a = 2). Now, we focus on term
∆TP(τ2 = log2 T, a = 2). For this case, we have tested log2 T samples for both arm 1 and 2. Let
G0 = 0 and Gn = (X1 − Y1+τ1) + · · ·+ (Xn − Yn+τ1) for every n ≥ 1. Then Xi − Yi+τ1 −∆ is
a
√

2-subgaussian random variable. Applying Lemma C.2 with ε = ∆ yields

P
(
Gτ2
τ2
≤ 0

)
≤ exp

(
− τ2∆2

4

)
.

Conditioned on τ2 = log2 T , we further obtain P(a = 2) = P(Gτ2 ≤ 0) ≤ exp(−∆2 log2 T/4) ≤
1/T , where in the last inequality we again choose large enough T to ensure

exp(−∆2 log2 T/4) ≤ 1

T
. (D.14)

Therefore, we have proved that conditional on τ2 = log2 T ,

P(a = 2) ≤ 1

T
. (D.15)

Hence, ∆TP(τ2 = log2 T, a = 2) ≤ 1/∆.
To summarize, we can choose a sufficiently large T such that all the conditions (D.2), (D.3),

(D.4), (D.7), (D.11) and (D.14) are satisfied simultaneously. Then the round complexity of Algo-
rithm 2 isO(1). For the regret bound, since the only difference between Algorithm 5 and Algorithm
2 is the stopping rules of Stage I and Stage III, we only need to combine the regret for terms (D.12)
and (D.15) and the fact that ∆E[τ1] ≤ 4∆

√
log T to obtain the total regret. Therefore, we have

limT→∞R(T )/ log T = 2/∆.

Appendix E. Proof of Concentration Lemmas

In this section, we provide the proof of the concentration lemma and the maximal inequality for
subgaussian random variables.

E.1. Proof of Lemma C.3

Our proof relies on the following maximal inequality for supermartingales.

Lemma E.1 (Ville (1939)) If (Sn) is a non-negative supermartingale, then for any x > 0,

P
(

sup
n∈N

Sn > x

)
≤ E[S0]

x
.
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Proof [Proof of Lemma C.3] The proof follows from the same idea as the proof of Lemma 4 (Max-
imal Inequality) in Ménard and Garivier (2017). If µ̂n > 0, then (C.24) holds trivially. Otherwise,
if event {∃N ≤ n ≤ M, µ̂n + γ ≤ 0} holds, then the following three inequalities also hold simul-
taneously:

µ̂n ≤ 0, −γµ̂n −
γ2

2
≥ γ2 − γ2

2
=
γ2

2
, and − γnµ̂n −

nγ2

2
≥ Nγ2

2
,

where the second inequality is due to µ̂n ≤ −γ and the last is due to n ≥ N . Therefore, we have

P(∃N ≤ n ≤M, µ̂n + γ ≤ 0) ≤ P
(
∃N ≤ n ≤M,−γnµ̂n −

nγ2

2
≥ Nγ2

2

)
= P

(
max

N≤n≤M
exp

(
− γnµ̂n −

nγ2

2

)
≥ exp

(
Nγ2

2

))
≤ P

(
max

1≤n≤M
exp

(
− γnµ̂n −

nγ2

2

)
≥ exp

(
Nγ2

2

))
≤ E[exp(−γX1 − γ2/2)]

exp(Nγ2/2)

≤ exp

(
− Nγ2

2

)
,

where the third inequality is from Ville’s maximal inequality (Ville, 1939) for non-negative super-
martingale and the fact that Sn = exp(−γnµ̂n − nγ2/2) is a non-negative supermartingale. To
show Sn is a non-negative supermartingale, we have

E[exp(−γnµ̂n − nγ2/2)|S1, . . . , Sn−1] = Sn−1E[exp(−γXn)] exp(−γ2/2)

≤ Sn−1 exp(γ2/2) exp(−γ2/2)

≤ Sn−1,

where the first inequality is from the definition of 1-subgaussian random variables. This completes
the proof.

E.2. Proof of Lemma C.4

Proof Let Zi = (Xi − Yi −∆)/
√

2. Then Zs is a 1-subgaussian random variable with zero mean.
Applying the standard peeling technique, we have

P
(
∃s ≥ 1 : µ̂s +

√
8 log+(N/s)

s
≤ 0

)
≤ P

(
∃s ≥ 1 :

∑s
i=1 Zi
s

+

√
4 log+(N/s)

s
+

∆√
2
≤ 0

)
≤ 15

N∆2
, (E.1)

where the last inequality is from Lemma 9.3 of Lattimore and Szepesvári (2020).
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E.3. Proof of Lemma C.5

To prove Lemma C.5, we also need the following technical lemma from Ménard and Garivier
(2017).

Lemma E.2 For all β > 1 we have

1

elog(β)/β − 1
≤ 2 max{β, β/(β − 1)}. (E.2)

Proof [Proof of Lemma C.5] For the first statement, let γ = 4 log+(T1δ
2)/δ2. Note that for n ≥

1/δ2, it holds that

δ

√
γ

n
=

√
4

n
log+(T1δ2) ≥

√
4

n
log+

(T1

n

)
. (E.3)

Let γ′ = max{γ, 1/δ2}. Therefore, we have

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(T1

n

)
≥ δ
)
≤ γ′ +

T∑
n=dγe

P
(
µ̂n ≥ δ

(
1−

√
γ′

n

))

≤ γ′ +
∞∑

n=dγ′e

exp

(
− δ2(

√
n−
√
γ′)2

2

)
(E.4)

≤ γ′ + 1 +

∫ ∞
γ′

exp

(
− δ2(

√
x−
√
γ′)2

2

)
dx

≤ γ′ + 1 +
2

δ

∫ ∞
0

(y
δ

+
√
γ′
)

exp(−y2/2)dy

≤ γ′ + 1 +
2

δ2
+

√
2πγ′

δ
, (E.5)

where (E.4) is the result of Lemma C.2 and (E.5) is due to the fact that
∫∞

0 y exp(−y2/2)dy = 1

and
∫∞

0 exp(−y2/2)dy =
√

2π/2. (E.5) immediately implies the claim in the first statement:

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(T1

n

)
≥ δ
)
≤γ′ +

T∑
n=dγ′e

P
(
µ̂n ≥ δ

(
1−

√
γ′

n

))

≤γ′ + 1 +
2

δ2
+

√
2πγ′

δ
. (E.6)

Plugging γ′ ≤ 4 log+(T1δ
2)/δ2 + 1/δ2 to above equation, we obtain

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(
T1

n

)
≥ δ
)
≤ 1 +

4 log+(T1δ
2)

δ2
+

3

δ2
+

√
8πlog+(T1δ2)

δ2
. (E.7)

For the second statement, its proof is similar to that of the first one. Let us define the following
quantity:

ρ =
2 log(Tδ2(log2(Tδ2) + 1))

δ2
. (E.8)
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Note that for all n ≥ 1/δ2, it holds that

δ

√
ρ

n
=

√
2 log(Tδ2(log2(Tδ2) + 1))

n
≥

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
. (E.9)

Using the same argument in (E.5) we can show that

T∑
n=1

P

(
µ̂n +

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
≥ δ

)
≤ 1 +

2 log(Tδ2(log2(Tδ2) + 1))

δ2
+

3

δ2

+

√
4πlog(Tδ2(log2(Tδ2) + 1))

δ2
.

To prove the last statement, we borrow the idea from Ménard and Garivier (2017) for proving
the regret of kl-UCB++. Define f(δ) = 2/δ2 log(Tδ2/4). Then we can decompose the event
{∃s : s ≤ T} into two cases: {∃s : s ≤ f(δ)} and {∃s : f(δ) ≤ s ≤ T}.

P
(
∃s ≤ T : µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))

+ δ ≤ 0

)
≤ P

(
∃s ≤ f(δ) : µ̂s ≤ −

√
2

s
log
(T
s

(
log2 T

s
+ 1
)))

︸ ︷︷ ︸
A1

+P(∃s, f(δ) ≤ s ≤ T : µ̂s ≤ −δ)︸ ︷︷ ︸
A2

.

(E.10)

Note that when Tδ2 ≥ 4e3, f(δ) ≥ 0. Let β > 1 be a parameter that will be chosen later. Applying
the peeling technique, we can bound term A1 as follows.

A1 ≤
∞∑
`=0

P
(
∃s, f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))
≤ 0

)
︸ ︷︷ ︸

A`
1

. (E.11)

For each ` = 0, 1, . . ., define γl to be

γ` =
β`

f(δ)
log

(
Tβ`

2f(δ)

(
1 + log2 T

2f(δ)

))
, (E.12)

which by definition immediately implies

√
2γl =

√
2β`

f(δ)
log

(
Tβ`

2f(δ)

(
1 + log2 T

2f(δ)

))
≤

√
2

s
log

(
T

2s

(
log2 T

s

)
+ 1

)
,

where in the above inequality we used the fact that s ≤ f(δ)/β` and that f(δ) ≥ s/2 since β > 1.
Therefore, we have

P
(
∃s, f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))
≤ 0

)
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≤ P
(
∃ f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2γ` ≤ 0

)
≤ exp

(
− f(δ)

β`+1
γ`

)
= e−` log(β)/β−C/β, (E.13)

where the second inequality is by Doob’s maximal inequality (Lemma C.3), the last equation is due
to the definition of γ`, and the parameter C is defined to be

C := log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
. (E.14)

Substituting (E.13) back into (E.11), we get

A1 ≤
∞∑
`=0

e−` log(β)/β−C/β =
e−C/β

1− e− log(β)/β
≤ e1−C/β

elog(β)/β − 1
≤ 2emax(β, β/(β − 1))e−C/β,

where the second inequality is due to log β ≤ β and thus elog(β)/β ≤ e, and the last inequality comes
from Lemma E.2. Since Tδ2 ≥ 4e3, we have T/(2f(δ)) = Tδ2/(4 log(Tδ2/4)) ≥

√
Tδ2/4 ≥

e3/2, which further implies

C = log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≥ log

(
T

2f(δ)

)
= log

(
Tδ2

4 log(Tδ
2

4 )

)
≥ 3/2. (E.15)

Now we choose β := C/(C − 1), so that 1 < β ≤ 2C and β/(β − 1) = C. Together with the
definition of f , this choice immediately yields

A1 ≤ 4eCe−C/β = 4e2Ce−C . (E.16)

Note that

Ce−C =

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))−1

log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≤ 2f(δ)

T log2(T/(2f(δ)))
log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≤ 4f(δ)

T log(T/(2f(δ)))

=
8 log(Tδ2/4)

Tδ2 log([Tδ2/4]/ log(Tδ2/4))

≤ 16

Tδ2
, (E.17)

where in the second and the third inequalities, we used the fact that that for all x ≥ e3/2,

log(x(1 + log2 x))

log x
≤ 2 and

log x

log(x/ log x)
≤ 2. (E.18)
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Therefore, we have proved so far A1 ≤ 64e2/(Tδ2). For term A2 in (E.10), we can again apply the
maximal inequality in Lemma C.3 and obtain

A2 = P(∃s, f(δ) ≤ s ≤ T : µ̂s ≤ −δ) ≤ e−δ
2f(δ)/2 =

4

Tδ2
. (E.19)

Finally, combining the above results, we get

P
(
∃s ≤ f(δ), µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))

+ δ ≤ 0

)
≤ 4(16e2 + 1)

Tδ2
. (E.20)

This completes the proof.

E.4. Proof of Lemma C.6

Proof Recall δ ∈ (0, 2/ log4 T ). Note that for s ≤ log2 T ,√
2

s
log

(
eT

s

(
log2 T

s
+ 1

))
− δ ≥

√
2

s

(
1 + log

(
T

s

(
log2 T

s
+ 1

)))
− 2

log4 T

≥

√
2

s
log

(
T

s

(
log2 T

s
+ 1

))
.

Let a(s) = 2/s, b(s) = 2/s log(T/s(log2(T/s)+1). The last inequality is equals to
√
a(s) + b(s)−√

b(s) ≥ 2/ log4 T for s ≤ log2 T , which holds because (i):√
a(s) + b(s)−

√
b(s) = a(s)/(

√
a(s) + b(s) +

√
b(s));

(ii): for s ≤ log2 T , then a(s) ≥ a(log2 T ) = 2/ log2 T ,√
a(s) + b(s) +

√
b(s) ≤

√
a(1) + b(1) +

√
b(1) < log2 T,

hence a(s)/(
√
a(s) + b(s) +

√
b(s)) ≥ 2/ log4 T . Now, we only need to prove

P
(
∃s ≤ log2 T : µ̂s +

√
2

s
log

(
T

s

(
log2 T

s
+ 1

))
≤ 0

)
≤ 16e2 log T

T
. (E.21)

The rest proof of Lemma C.6 is similar to the proof of Lemma C.5. Let A1 be the r.h.s. (E.21) and
f = log2 T . Then applying the peeling technique, we can bound A1 as follows.

A1 ≤
∞∑
`=0

P
(
∃ f

β`+1
≤ s ≤ f

β`
: µ̂s +

√
2

s
log

(
T

s

(
log2 T

s
+ 1

))
≤ 0

)
.

Similar to (E.16), we have A1 ≤ 2emax(β, β/(β − 1))e−C/β ≤ 4e2Ce−C . Then (E.17) becomes

Ce−C =

(
T

2f

(
1 + log2 T

2f

))−1

log

(
T

2f

(
1 + log2 T

2f

))
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≤ 4f

T log(T/(2f))

≤ 4 log T

T
, (E.22)

where the last inequality is due to f = log2 T . Similar to the proof in Lemma C.5, we have
A1 ≤ 16e2 log T/T . Therefore, we have

P
(
∃s ≤ log2 T : µ̂s +

√
2

s
log
(eT
s

(
log2 T

s
+ 1
))
− δ ≤ 0

)
≤ 16e2 log T

T
.

This completes the proof.
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