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Abstract
We show how to achieve the notion of “multicalibration” from Hébert-Johnson et al. (2018) not
just for means, but also for variances and other higher moments. Informally, this means that we
can find regression functions which, given a data point, can make point predictions not just for
the expectation of its label, but for higher moments of its label distribution as well—and those
predictions match the true distribution quantities when averaged not just over the population as a
whole, but also when averaged over an enormous number of finely defined subgroups. It yields
a principled way to estimate the uncertainty of predictions on many different subgroups—and to
diagnose potential sources of unfairness in the predictive power of features across subgroups. As an
application, we show that our moment estimates can be used to derive marginal prediction intervals
that are simultaneously valid as averaged over all of the (sufficiently large) subgroups for which
moment multicalibration has been obtained.

1. Introduction

Uncertainty estimation is fundamental to prediction and regression. Given a training set of labelled
points D ⊆ X × [0, 1] consisting of feature vectors x ∈ X and labels y ∈ [0, 1], the standard
regression problem is to find a function µ : X → [0, 1] that delivers a good point estimate of
µ(x) = E[y|x]. We also desire the variance of the label distribution E[(y−µ(x))2|x] as a measure of
the inherent uncertainty of a prediction. Higher central moments would yield even more information
about this uncertainty which can be represented by prediction intervals: An interval [`(x), u(x)] that
with high probability contains y, i.e., Pry[y ∈ [`(x), u(x)]|x] ≥ 1− δ for some δ ∈ (0, 1).

If the data are generated according to a parametric model as in the classic ordinary least squares
setting, one can form confidence regions around the underlying model parameters, and translate
these into both mean and uncertainty estimates about individual predictions. In non-parametric
settings it is unclear how one should reason about uncertainty. We typically observe each feature
vector x infrequently, and so we have essentially no information about the true distribution on y
conditional on x. One solution to this problem is to compute marginal prediction intervals which
average over data points x to give guarantees of the form: Prx,y[y ∈ [`(x), u(x)]] ≥ 1 − δ. This
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is the approach that is taken in the conformal prediction literature — see e.g. Shafer and Vovk
(2008). The impossibility of obtaining conditional prediction intervals and the necessity to satisfy
some relaxation is well known in this literature Lei and Wasserman (2014); Barber et al. (2020);
Foygel Barber et al. (2021).

Marginal prediction intervals, unlike prediction intervals, do not condition on x. They offer a
promise not over the randomness of the label conditional on the features, but over an average over
data points. To make the distinction vivid, imagine one is a patient with high blood pressure, and
a statistical model asserts that a certain drug will lower one’s diastolic blood pressure to between
70 and 80 mm Hg. If [70, 80] were a 95% prediction interval conditional on all of one’s observable
features, then one could reason that over the unrealized randomness in the world, there is a 95%
chance that one’s new blood pressure will lie in [70, 80]. If [70, 80] is a 95% marginal prediction
interval, however, it means that 95% of all patients who take the drug will see their blood pressure
decline to a level contained within the interval. Because the average is taken over a large, heteroge-
neous collection of people, the guarantee of the marginal prediction interval offers no meaningful
promise to individuals. For example, it is possible that patients that share one’s demographic char-
acteristics (e.g. women of Sephardic Jewish descent with a family history of diabetes) will tend to
see their blood pressure elevated by the drug. Estimating separate marginal predictions for differ-
ent demographic groups does not solve this problem, because a single person can be a member of
many medically relevant groups simultaniously, and there is no clear way to combine many (poten-
tially very different) estimates. Foygel Barber et al. (2021) also study a similar problem – for more
discussion, see our related work in Section 1.2.

This fundamental problem with uncertainty estimation in non-parametric settings is also a prob-
lem for mean estimation: what does it mean that a point prediction µ(x) is an estimate of E[y|x] if
we have no knowledge of the distribution on y conditional on x (because we have observed no sam-
ples from this distribution)? A standard performance measure is calibration (Dawid, 1982), which
similarly averages over data points: a predictor µ is calibrated (roughly) if E(x,y)[µ(x)− y|µ(x) =
i] = 0 for all predictions i: i.e. for every i, conditioned on x being such that the prediction µ(x) was
(close to) i, the expected outcome y is also (close to) i. Just as with marginal prediction intervals,
guarantees of calibration mean little to individuals, who differ substantially from the majority of
people over whom the average is taken.

Hébert-Johnson et al. (2018) proposed multicalibration as a way to interpolate between the
(unattainable) ideal of being able to correctly predict E[y|x] for each x and offering a guaranteed
averaged over the entire data distribution. The idea is to fix a large, structured set of (possibly
overlapping) sub-populations (G ∈ 2X ). A predictor µ is multicalibrated if, informally, for all
predictions i and groups G ∈ G, E(x,y)[µ(x) − y|µ(x) = i, x ∈ G] = 0. Thus, µ is calibrated
not just on the overall population, but also simultaneously on many different finely defined sub-
populations that one might care about (e.g. different demographic groups). Hébert-Johnson et al.
(2018) show how to compute an approximately multicalibrated predictor µ on all subgroups in G
that have substantial probability mass—we provide a high level description of their algorithm, which
we use, below.

The main contribution of this paper is to show how to achieve what can loosely be termed
multicalibration for higher moment estimates. We provide not just estimates µ(x) of means (µ(x) =
E[y|x]), but also estimates, mk(x), for higher central moments, (mk(x) = E[(y − µ(x))k|x]) such
that all of these forecasts are appropriately multicalibrated in a sense made precise below. This
is useful for a number of basic tasks. One we briefly highlight is that it can help diagnose data
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iniquities: for example, if the set of collected features is much less predictive of the target label on
certain demographic groups G ∈ G this will necessarily manifest itself in multicalibrated moment
predictions by having higher variance predictions on individual members of those populations.

As an important application, we show that standard concentration inequalities which could be
applied using the true moments of a distribution to obtain prediction intervals can also be applied
using our multicalibrated moment estimates. Doing so produces intervals [`(x), u(x)] for each data
point that are simultaneously valid marginal prediction intervals not just overall, but also conditioned
on x lying in any of the (sufficiently large) subgroups over which we are multicalibrated. This allows
one to interpret these prediction intervals as predicting something meaningful not just an average
over all people, but — simultaneously — as averages over all of the people who were given the same
prediction, across many finely defined subgroups (like women of Sephardic Jewish descent with a
family history of diabetes). Note that because the groups G ∈ G may overlap, a single individual
can belong to many such groups, and can at her option interpret the prediction interval as averaging
over any of them.

1.1. Overview of Our Approach and Results

1.1.1. MEAN MULTICALIBRATION AND IMPEDIMENTS TO EXTENSIONS TO HIGHER

MOMENTS

We first review the algorithm of Hébert-Johnson et al. (2018), recast in the framework in which
we will conduct our analysis. We here elide some issues such as how we deal with discretization
and how calibration error is parameterized — see Section 2 for the formal model and definitions.
Fix a feature space X , labels Y = [0, 1], and an unknown distribution P over X × Y . Given are
sets G ⊆ 2X , corresponding to sub-populations of interest. The goal is to construct a predictor,
µ : X → Y , that is multicalibrated, i.e. calibrated on each group G ∈ G. This means that we want
a predictor, µ, that is mean-consistent on every set of the form G(µ, i) = {x ∈ G : µ(x) = i} for
some i: in other words, for every such set G(µ, i) we want E(x,y)∼P [µ(x) − y]|x ∈ G(µ, i)] = 0.
We describe the algorithm as if it has direct access to the true distribution P , and defer for now a
description of how to implement the algorithm using a finite sample.

It is helpful to conceive of the task as a zero-sum game between two players: a “(mean) con-
sistency player”, and an “audit player” who knows the true distribution P . The consistency player
chooses a predictor µ, and the audit player, given a predictor, attempts to identify a subset S of X on
which the predictor is not mean consistent.1 Given a pair of choices, the corresponding cost (which
the consistency player wishes to minimize and the audit player wishes to maximize) is the absolute
value difference between the average prediction of the consistency player and the average expected
label on the subset S identified by the audit player. The value of this game is 0, since the consistency
player can obtain perfect consistency using the true conditional label distribution µ(x) = E[y|x].
The algorithm of Hébert-Johnson et al. (2018) can be interpreted as solving this zero sum game
by simulating repeated play, using online gradient descent for the consistency player, and “best re-
sponse” for an audit player, who stops play if there are no remaining sets S = G(µ, i) witnessing
violations of multicalibration. This works because by linearity of expectation, we can formulate the
game so that the consistency player’s utility function is linear in her individual predictions µ(x). A
formal description and proof of correctness can be found in Section 3.1.

1. Here, and in what follows, we adopt the convention thatG refers to a group in G, while S refers to any generic subset
of X .
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There are two—related—impediments to extending this approach to higher moments, i.e., find-
ing predictors mk(x) ≈ mk(x) = E[(y − E[y|x])k|x], that are “consistent” with P on many sets.
The first of these is definitional—what do we mean by “consistent” for higher moments? The sec-
ond is algorithmic—given a definition, how do we achieve it? Both are impediments because, unlike
means, higher moments are not linear functionals of the distribution. A consequence is that moments
for k > 1 do not combine linearly in the way expectations do. In particular for S = S1 ∪ S2 where
S1 and S2 are disjoint, E[(y−E[y|x ∈ S])k|S] 6= Pr(x ∈ S1|S)E[(y−E[y|x ∈ S1])k|S1]+Pr(x ∈
S2|S)E[(y − E[y|x ∈ S2])k|S2]. It is therefore silly to require that moment predictions mk(x) sat-
isfy the same “average consistency” condition asked of means: i.e. we cannot demand that the
population variance on the subset of the population on which we predict variance v be v, because
this is not a property that the true moments mk(x) satisfy. Consider, for example, a setting in which
there are two types of points, x1 and x2. The true distribution is uniform over {(x1, 0), (x2, 1)}
(and so in particular the label y is deterministically fixed by the features). We have that for all
k > 1, µ(x1) = 0, µ(x2) = 1, and mk(x0) = mk(x1) = 0. Nevertheless, the variance over the
set of points on which the true distribution satisfies mk(x) = 0 is 1/4, not 0. We cannot ask that
our “moment calibrated” predictors satisfy properties violated by the true distribution, because we
would have no guarantee of feasibility — and our ultimate goal in multicalibration is to find a set
of mean and moment predictors that are indistinguishable from the true distribution with respect to
some class of tests.

1.1.2. MEAN CONDITIONED MOMENT MULTICALIBRATION AND MARGINAL PREDICTION

INTERVALS

A key observation (Observation 2.1) is that higher moments do linearize over sets that have the
same mean: in other words, if we have S = S1 ∪ S2 for disjoint S1 and S2 such that E[y|x ∈
S1] = E[y|x ∈ S2], then, it follows that E[(y − E[y|x ∈ S])k|S] = Pr(x ∈ S1|S)E[(y − E[y|x ∈
S1])

k|S1] + Pr(x ∈ S2|S)E[(y − E[y|x ∈ S2])
k|S2]. An implication of this is that the true dis-

tribution does satisfy what we term mean-conditioned moment multicalibration. Namely, if for a
fixed k > 1 we define for each set G ∈ G and each pair of mean and kth moment values i, j the
sets: G(µ,mk, i, j) = {x ∈ G : µ(x) = i,mk(x) = j}, then we have both mean consistency:
E[(y− i)|x ∈ G(µ,mk, i, j)] = 0 and moment consistency: E[(y− i)k− j|x ∈ G(µ,mk, i, j)] = 0
over these sets. Therefore, we require the same condition to hold for our mean and moment
predictors µ and {ma}ka=1: namely that simultaneously for every a, that over each of the sets
G(µ,ma, i, j), the true label mean should be i and the true label a-th moment should be j. In other
words, if we have a set of predictors that are mean conditioned moment multicalibrated, then an in-
dividual who receives a particular mean and (e.g.) variance prediction can be assured that amongst
all the people who received the same mean and variance prediction even averaged over any of the
possibly large number of sub-groups G of which the individual is a member, the true mean and
variance are faithful to the prediction.

Appendix F demonstrates a key application of mean-conditioned moment-multicalibrated es-
timators: They can be used in place of real distributional moments to derive prediction intervals.
Given moments of a random variableX , a standard way to derive concentration inequalities forX is
by using the following inequality for any even moment (for k = 2 this is Cheybychev’s inequality):

Pr[|X − µ(X)| ≥ t] ≤ E[(X−µ(X))k]
tk

.
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If X is the label distribution conditional on features x, this yields the prediction interval:

Pr
y

[
y ∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x
]
≥ 1− δ.

In Appendix F we show that if we have a mean-conditioned moment-multicalibrated pair (µ,mk),
we can replace the true mean and moments in the derivation of this prediction interval, and get
marginal prediction intervals, which are valid not just averaged over all points, but simultaneously
as averaged over all point that received the same prediction within any of the groups within which
we are mean-conditioned moment multicalibrated. In other words, for all G ∈ G and for all i, j:

Pr
(x,y)∼P

[
y ∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x ∈ G(µ,mk, i, j)

]
≥ 1− δ.

1.1.3. ACHIEVING MEAN CONDITIONED MOMENT MULTICALIBRATION

What is the difficulty with finding sets of predictors (µ, {ma}ka=2) such that simultaneously each
pair (µ,ma) are mean-conditioned moment multicalibrated? It is that moments do not have the
linear structure that means do. Hence, the zero-sum game formulation we describe for mean-
multicalibration cannot be applied directly. A naı̈ve approach (which fails, but which will be a useful
sub-routine for us) is to first train a mean-multicalibrated predictor µ, and then define “pseudo-
moment” labels for each x as m̃k,µ(x) = (y− µ(x))k. Since these are constant values, we can then
use the algorithm for mean multicalibration to achieve “pseudo-moment calibration with respect to
µ” — i.e. mean consistency on each set G(µ,mk, i, j) with respect to our pseudo-moment labels
m̃k,µ(x). By itself this doesn’t guarantee any sort of “moment consistency,” but we show in Section
3.2 that if we can:

1. Find moment predictors mk that satisfy pseudo-moment calibration with respect to µ, and

2. Our mean predictor µ satisfies mean consistency on every set of the form G(µ,mk, i, j),

then, the pair (µ,mk) will satisfy mean-conditioned moment multicalibration.
The difficulty is that these two requirements are circularly defined. Once we have a fixed mean

predictor µ, we can use a gradient descent procedure to find moment predictors {ma}ka=2 that are
pseudo-calibrated with respect to µ. However, we also require our mean predictor to be mean con-
sistent on the setsG(µ,ma, i, j), which are undefined until we fix our moment predictors {ma}ka=2.
Section 3.3 resolves the circularity by using an alternating descent procedure that toggles between
updating µ and {ma}ka=2, each aiming for a mean calibration target that is defined with respect to
the other. We prove that this alternating gradient descent procedure is guaranteed to converge after
only a small number of rounds.

Finally, we show in Appendix D how to implement our algorithm using a finite sample from
the distribution and furnish sample complexity bounds, in a way analogous to Hébert-Johnson et al.
(2018). The sample complexity bounds are logarithmic in the number of groups |G| that we wish
to be multicalibrated with respect to, and polynomial in our desired calibration error parameters
and the number of moments k with which we wish to achieve mean-conditioned moment multi-
calibrated predictors. In particular, because dependence on |G| is only logarithmic, we can satisfy
mean-conditioned moment-multicalibration on an exponentially large collection of intersecting sets
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G from just a polynomial sample of data from the unknown population distribution. Note, how-
ever, that despite our polynomial dependence on k, the natural scale of the k’th moment decreases
exponentially in k, and so to obtain non-trivial approximation guarantees for k’th moments with
polynomial sample complexity, we should think of taking k at most logarithmic in the relevant pa-
rameters of the problem. See Theorem 20 and Corollary 21 for details. Our running time scales
polynomially with our approximation error parameters, the number of moments k with which we
wish to be multicalibrated, and the running time of solving learning problems over G (which is at
most linear in |G|, but can be much faster). See Theorems 20 and 27 for details. In other words,
our algorithms are “oracle efficient” in the sense that if we have a subroutine for solving learning
problems over G, then we can use it to solve mean-conditioned moment-multicalibration problems
with at most polynomial overhead. In theory, for almost every interesting class G, learning over G
is hard in the worst case — but oracle efficiency has proven to be a useful paradigm in the design of
learning algorithms (especially in the fairness in machine learning literature — see e.g. (Agarwal
et al., 2018; Kearns et al., 2018; Hébert-Johnson et al., 2018; Kim et al., 2019)) because in practice
we have extremely powerful heuristics for solving complex learning problems. Moreover, this kind
of oracle efficiency is the best running time guarantee that we can hope for, because as shown by
Hébert-Johnson et al. (2018), even mean-multicalibration is as hard as solving arbitrary learning
problems over G in the worst case.

1.2. Additional Related Work

Calibration as a means of evaluating forecasts of expectations dates back to Dawid (1982). This
literature focuses on a simple online forecasting setting, motivated by weather prediction prob-
lems: in a sequence of rounds, nature chooses the probability of some binary event (e.g. rain),
and a forecaster predicts a probability of that event. Dawid (1982) shows that a Bayesian fore-
caster will always be subjectively calibrated (i.e. he will believe himself to be calibrated). Foster
and Vohra (1998) show that there exist randomized forecasters that can asymptotically satisfy cal-
ibration against arbitrary sequences of outcomes (this is impossible for deterministic forecasters
(Oakes, 1985)). These papers focus on the online setting, because simple calibration is trivial in a
batch/distributional setting: simply predicting the mean outcome on every point satisfies calibration.
Within this literature, the most related works are Lehrer (2001) and Sandroni et al. (2003), which
give very general asymptotic results that are able to achieve (mean) multicalibration as a special
case. Lehrer (2001), operating in the sequential online setting, asks for calibration to hold not just
on the entire sequence of realized outcomes, but on countably many infinite sub-sequences (e.g. the
set of all computable subsequences). He proves that there exists an online forecasting algorithm
which can asymptotically achieve this. Sandroni et al. (2003) extend this result to subsequences
which can be defined in terms of the forecasters predictions as well. Both of these papers operate in
a setting that is general enough to encode the constraint of mean multicalibration (by encoding the
features of datapoints in the “state space”) even in an online, adversarial setting — albeit not in a
computationally or sample efficient way. In contrast, Hébert-Johnson et al. (2018), who define the
notion of mean multicalibration, give an algorithm for achieving it in a batch distributional setting
— in a much more computationally and sample efficient manner than could have been achieved by
applying the machinery of Lehrer (2001); Sandroni et al. (2003). Recently, Zhao et al. (2020) gave
a notion of “individual level” (mean) calibration, defined over the randomness of the forecaster, that
is valid conditional on individual data points (i.e. without needing to average over a population).
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They provide promising empirical results, but the theoretical guarantees of predictors satisfying this
notion do not provide non-trivial information about a data distribution, because (as the authors note)
their notion of individual calibration can be satisfied without observing any data.

Hébert-Johnson et al. (2018) also proposed the notion of “multi-accuracy,” a weaker notion than
multicalibration which asks for a predictor µ that satisfies mean consistency on each set G ∈ G,
but not on sets G(µ, i). Kim et al. (2019) gave a practical algorithm for achieving multi-accuracy,
and a promising set of experiments suggesting that it could be used to correct for error disparities
between different demographic groups on realistic data sets, without sacrificing overall accuracy.
Dwork et al. (2019) propose notions of fairness and evidence consistency for ranking individuals
by their “probability of success” when historical data only records binary outcomes: they show that
their proposed notions are closely related to multicalibration of the probability predictions implicitly
underlying the rankings. Shabat et al. (2020) prove uniform convergence bounds for multicalibra-
tion error over hypothesis classes of bounded complexity. In our paper, as in Hébert-Johnson et al.
(2018), we learn over hypothesis classes that are only implicitly defined by the set of groups G, and
so we bound generalization error in the same manner that Hébert-Johnson et al. (2018) do, rather
than using uniform convergence arguments.

Conformal prediction is similarly motivated to calibration, but is focused on finding marginal
prediction intervals rather than mean estimates: see e.g. Shafer and Vovk (2008) for an overview of
this literature. Finding marginal prediction intervals on its own (i.e. when prediction intervals only
have to be valid on average over the entire population) is easy in the batch/distributional setting,
and so just as with the calibration literature, the conformal prediction literature is primarily focused
on the online setting in which predictions must be made as points arrive. The most closely related
paper in this literature is Foygel Barber et al. (2021) who study the batch distributional (with a more
general label space than considered in this paper), and also aim to find marginal prediction intervals
with coverage guarantees which hold not just over the entire population, but on a collection G of
more finely defined sub-populations. Foygel Barber et al. (2021) obtain prediction intervals of this
sort by using a holdout set method from conformal prediction: roughly speaking, they compute
empirical 1− δ coverage intervals on each set G ∈ G in the holdout set, and then for an individual
x, select the widest such interval amongst all groups G that contain x. In general, this is very con-
servative, but they show that under certain structural assumption on G, the width of the interval can
be bounded. In contrast, our methods always give tight estimates of variance and other higher mo-
ments without any assumption on the group structure, and our prediction intervals are tight insofar
as moment based bounds are tight (which is to say, tight in the worst case, but not instance optimal).
The algorithm given by Foygel Barber et al. (2021) relies on explicit enumeration of groups G ∈ G
over the holdout set.

There are also several papers in the “fairness in machine learning” literature (in addition to
Hébert-Johnson et al. (2018); Kim et al. (2019)), which are similarly motivated by replacing coarse
statistical constraints with constraints that come closer to offering individual guarantees: see Choulde-
chova and Roth (2020) for a survey. Kearns et al. (2018, 2019) propose to learn classifiers which
equalize statistical measures of harm like false positive or negative rates across a very large number
of demographic subgroups G ∈ G, and give practical algorithms for this problem by solving a zero-
sum game formulation using techniques from no-regret learning. Kim et al. (2018) give algorithms
for satisfying a notion of metric fairness which similarly enforces constraints averaged over a large
number of subgroups G ∈ G. Rothblum and Yona (2018) define a PAC-like version of the individ-
ual fairness notion of Dwork et al. (2012) and prove generalization bounds showing how to achieve

7



JUNG LEE PAI ROTH VOHRA

their notion out of sample on all sufficiently large groups of individuals. Sharifi-Malvajerdi et al.
(2019) show how to equalize statistical measures of harm like false positive rates across individuals
— when the rates in question are defined over the randomness of the problem distribution and the
classifier. Joseph et al. (2016, 2018) propose an individual-level notion of “weakly meritocratic fair-
ness” that can be satisfied in bandit learning settings whenever it is possible to compute confidence
or prediction intervals around individual labels. They analyze the parametric setting, when actual
(conditional) prediction and confidence intervals are possible — but the techniques from our paper
could be used for learning in the assumption-free setting (with a slightly weaker notion of fairness)
using marginal prediction intervals.

2. Preliminaries

Let X be the domain of features, Y = [0, 1] the label domain, and P the true (unknown) probability
distribution over X × Y .2 Let PX refer to the induced marginal distribution on X and define PY
analogously. Going forward, we refer to the associated random variables with capital letters (e.g.
X , Y ), and realizations with lowercase letters (x, y).

Let G ⊆ 2X be a collection of subsets of X ,3 and for each G ∈ G, let χG denote that associated
indicator function, i.e. χG(x) = 1 ⇐⇒ x ∈ G. For implementation purposes, we assume that
each indicator function χG(x) can be computed by a polynomially sized circuit. 4

Definition 1 Given the true distribution P , we write µ = EP [y], and its kth central moment is:
mk = EP

[
(y − µ)k

]
. Given a set S ⊆ X , we abuse notation and write µ(S) = EP [y|x ∈

S] and mk(S) = EP
[
(y − µ(S))k |x ∈ S

]
for the conditional mean and kth central moment of

labels on the distribution conditional on x ∈ S.

We are given n independent draws from X × Y according to distribution P , denoted D =
{(xb, yb)}nb=1. The goal is to predict means and higher moments of Y|X , i.e. to construct functions
µ : X → [0, 1], (we shall refer to this as a mean predictor) and mk : X → [0, 1] (analogously,
kth-moment predictor)—as Y is the unit interval, means and moments also lie in the unit interval.

To define calibration, we need to reason about all points that receive a particular prediction.
For real valued predictors, this can be a measure zero set. One solution is to to restrict attention
to predictors that are discretized to lie on the grid Gm = { 1

2m ,
3
2m , . . . ,

2m−1
2m }, for some (large)

number m. If one were to do this, the discretization parameter m would be coupled to the error one
could ultimately obtain: since it may be inevitable to suffer error at least 1/2m if one is restricted
to making predictions on a discrete grid. Alternately, one can define calibration by “bucketing”
real valued predictions into m buckets of width 1

m each. This allows us to treat m (a parameter
controlling the fineness of our calibration constraint) as an orthogonal parameter to our calibration

2. Our approach applies for both finite and infinite feature domains. If X is uncountably infinite, define an associated
measure space, and P is a countably additive probability measure on this space. We omit the associated notation
since it will have no use in what follows.

3. If X is uncountably infinite, then G is a collection of measurable, computable sets. We abuse notation and write 2X

to denote this.
4. Our algorithm in the end will need to manipulate these indicator functions. We might imagine e.g. that G is the hy-

pothesis class of some learning algorithm for a binary prediction problem, and that the functions χG(x) are particular
hypotheses from this class — e.g. linear threshold functions.
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error. To that end, given a set S ⊆ X , mean predictor µ, and some i ∈ [m], define

S(µ, i) ≡
{
x ∈ S :

∣∣∣∣µ(x)− 2i− 1

2m

∣∣∣∣ ≤ 1

2m

}
to be the set of points in S whose mean predictions fall into the ith bucket, i.e. [2i−12m −

1
2m ,

2i−1
2m + 1

2m ].
Analogously, define

S(µ,mk, i, j) ≡
{
x ∈ S :

∣∣∣∣µ(x)− 2i− 1

2m

∣∣∣∣ ≤ 1

2m
,

∣∣∣∣mk(x)− 2j − 1

2m

∣∣∣∣ ≤ 1

2m

}
to be the set of points in S that receive mean predictions in the ith bucket and kth moment predictions
in the jth bucket. Given mean and kth moment predictors µ and mk, and any set S ⊆ X we write

µ(S) = EP [µ(x)|x ∈ S] and mk(S) = EP [mk(x)|x ∈ S] ,

i.e. µ(S) is the average mean prediction of µ when x’s are drawn according to the true distribution,
P , conditional on x ∈ S, and mk(S) is the analogous quantity for k’th moment predictions.

To be clear, we will maintain the convention for means and higher moments that quantities with
bars refer to predictions (µ,mk) and unmodified notation (µ,mk) refer to true (unknown) population
values.

Definition 2 (Consistency) Call a mean predictor µ (α, ε)-mean consistent on a set S if |µ (S)− µ (S)| ≤
α

PX (S) + ε. Similarly, a moment predictor mk is called (α, ε)-moment consistent on a set S if
|mk (S)−mk (S)| ≤ α

PX (S) + ε.

When ε = 0, we say µ is α-mean consistent and mk is α-moment consistent. Note that (α, ε)-
mean consistency implies (α+ ε)-mean consistency.

Remark 3 Our notion of consistency on a set S corresponds to error that smoothly degrades with
the size (measure) of the set S. This is essential to giving out of sample guarantees. Hébert-
Johnson et al. (2018) handles this slightly differently, by giving uniform guarantees, but only for
sets that have measure at least γ. Our approach of giving smoothly parameterized error guarantees
for all sets is only stronger (up to a reparameterization of α← αγ), and makes the analysis of our
algorithms more transparent because it corresponds more directly to the guarantees they achieve.

The following simple observation will be useful in understanding our approach.

Observation 2.1 Let P be a mixture distribution over m component distributions P` with mixture
weights w` ≥ 0,

∑m
`=1w` = 1. Let µ`,mk` be the mean and kth moment associated with P`. Then:

mk =

m∑
`=1

w`

(
k∑
a=0

(
k

a

)
(µ` − µ)k−ama`

)
.

If the mixture variables have the same mean, i.e. µ` = µ for all `, then, the above expression reduces
to: mk =

∑m
`=1w`mk`

9
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Observation 2.1 highlights the key challenge: unlike means, higher moments combine non-
linearly over mixtures. That is to say, that althoughmk(S) is defined to be an average over the values
mk(x) for x ∈ S, mk(S) is not an average over the values mk(x) for x ∈ S for k > 1. Observation
2.1 also makes clear what we are trying to exploit in defining mean-conditioned moment calibration:
mk(S) is an average over the values mk(x) for x ∈ S whenever µ(x) is constant over S.

We are now ready to define calibration, which asks for mean and moment consistency on par-
ticular sets defined by the mean and moment predictors themselves:

Definition 4 (Calibration) Fix a set S ⊆ X and a true distribution P .

1. A mean predictor µ is (α, ε)-mean calibrated on a set S if it is (α, ε)-mean consistent on
every set S(µ, i), i.e. if for each i ∈ [m]:

|µ (S(µ, i))− µ(S(µ, i))| ≤ α

PX (S(µ, i))
+ ε.

Again, if ε = 0, we say µ is α-mean calibrated.

2. Predictors (µ,mk) are (α, β, ε)-mean-conditioned-moment calibrated on a set S if they are
(α, ε)-mean and (β, ε)-moment consistent on every set S(µ,mk, i, j), i.e. if for every i, j ∈
[m]:

|µ (S(µ,mk, i, j))− µ (S(µ,mk, i, j))| ≤
α

PX (S(µ,mk, i, j))
+ ε,

and |mk (S(µ,mk, i, j))−mk (S(µ,mk, i, j))| ≤
β

PX (S(µ,mk, i, j))
+ ε.

If ε = 0, we say (µ,mk) are (α, β)-mean-conditioned-moment calibrated.

We say that µ,mk are (α, ε)-multicalibrated and (α, β, ε)-mean-conditioned-moment multicali-
brated with respect to (a collection of sets) G if they are (α, ε)-mean calibrated and (α, β, ε)-mean
conditioned moment calibrated respectively on every G ∈ G.

Remark 5 Observe that by construction, the true feature conditional mean and moment functions
µ(x),mk(x) are mean-conditioned-moment multicalibrated on every collection of sets G. We can
view the goal of multicalibration as coming up with mean and moment predictors µ,mk that are
almost indistinguishable from the true distributional means and moments, with respect to a class
of consistency checks defined by G. Note that it is only because we have defined our goal as mean
conditioned moment calibration that the true moments mk(x) of the distribution satisfy these con-
sistency conditions, which are defined as expectations.

We highlight the difference between calibration and consistency on a given set S in terms of
mean prediction µ; an analogous discussion applies to higher moments. Consistency requires that
the prediction µ(x), averaged over x’s in S according to the conditional distribution, approximately
equals the true label average µ(S). It doesn’t impose a similar requirement on subsets of S. There-
fore, a predictor consistent on S will be correct on average for the set S but could be systematically
biased for each prediction in S that it makes.

Calibration on S requires, for every prediction i ∈ [m], that µ is consistent on the set S(µ, i).
That is to say it ensures consistency on every subset of x’s in S on which the predictor µ makes
predictions in some some fixed bucket i. Exact calibration implies exact consistency, but the reverse
is not true.
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3. Achieving Mean Conditioned Moment Multicalibration

In this section, we show how to construct a mean predictor that is mean multicalibrated and mean
and moment predictors that are mean-conditioned-moment multicalibrated with respect to some
given collection of groups G. For the sake of clarity, we assume in this section that distributional
quantities such as conditional mean µ(S) and conditional kth moment mk(S) are known and have
a perfect learning oracle for G – this allows us to present the core algorithmic ideas without the
technical details of approximation, which are intricate but largely standard (i.e. Chernoff bounds).
However, as these distributional quantities must be in fact estimated from data, we show in Appendix
D how to generalize all the main results in this section to a setting when only finite sample from P
is available.

3.1. Mean Multicalibration

We summarize an algorithm to achieve mean multicalibration. It is a modest extension to the one
in Hébert-Johnson et al. (2018) that accommodates arbitrary distributions over a possibly infinite
domain and arbitrary initializations. We present it in somewhat greater generality than needed for
mean-calibration, because our final algorithm in Section 3.3 needs to achieve mean consistency on
more sets than are required for mean calibration alone.

For intuition, consider the following mini-max problem, which captures a more difficult problem
than mean multicalibration (as there is no restriction at all on the sets S):

min
µ:X→[0,1]

max
S⊆X ,

λ∈{−1,1}

λ · PX (S) · (µ(S)− µ(S)) .

We can associate a zero-sum game with this mini-max problem by viewing the minimization
player as a consistency player who must commit to a mean predictor µ, and viewing the maximiza-
tion player as an auditor who attempts to identify sets S on which the consistency player fails to
be mean consistent. Observe that the inclusion of the measure term PX (S) in the objective makes
the learner’s utility function linear in her individual predictions µ(x). There is a strategy for the
consistency player that would guarantee her a payoff of 0—or in other words, would guarantee con-
sistency on all possible sets S: she could simply set µ(x) = E[y|x]. This establishes the value of
the game, but of course it requires knowledge of P . Given only a finite sample of the data, we will
be unable to determine E[y|x] for all x, and so this strategy is not implementable.

One way to solve our problem absent knowledge of the distribution is to allow the consistency
player to play online gradient descent (Zinkevich, 2003) on the set of mean predictors over rounds
t, and to allow the auditor to “best respond” at every round, by exhibiting a set S corresponding to a
large consistency violation5. This is guaranteed to converge quickly to an approximate equilibrium
of the game: i.e. a mean predictor satisfying approximate consistency on all sets. If the auditor
limits herself to choosing sets S(µt, i) corresponding to mean calibration, then we converge quickly
to approximate mean calibration. Here we give a direct analysis of a general gradient descent
procedure of the sort we need, in terms of the sets that the auditor happens to choose during this
interaction. For finite support distributions P , this bound could be derived directly from the regret

5. Because the objective function of our game weights the consistency violations µ(S) − µ(S) by the measure of the
set PX (S), these violations are linear functions of the individual predictions µ(x). Thus it suffices to run gradient
descent over the space of individual predictions X , rather than the space of all possible functions µ : X → [0, 1].

11
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bound of online projected gradient descent (Zinkevich, 2003) or from the analysis of the similar
algorithm in Hébert-Johnson et al. (2018). We reproduce a direct analysis in the Appendix to match
the theorem statement we want for distributions which may have infinite support. (Note that for
such distributions the mean predictor will have to be maintained implicitly). In Algorithm 1, after
each gradient update, we project µt back into the set of functions with range [0, 1] using an `2
projection. Because squared `2 distance is linearly separable, it can be accomplished by a simple
coordinate-wise operation which we write as project[0,1](x) = min(max(x, 0), 1).

Start with an arbitrary initial mean predictor µ1 : X → [0, 1]
for t = 1, . . . , T do

Audit player plays some St ⊆ X , λt ∈ {−1, 1}

µt+1(x) =

{
project[0,1]

(
µt(x)− ηλt

)
if x ∈ St,

µt(x) otherwise.
Algorithm 1: Projected Gradient Descent(η) for µ

Lemma 6 For any initial mean predictor µ1 ∈ X → [0, 1] and any sequence of (St, λt)Tt=1,
Algorithm 1 satisfies:

∑T
t=1 λ

tPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η + η
2

∑T
t=1 PX (St).

The proof is in the Appendix. A direct consequence of the bound in Lemma 6 is that, when
interacting with a consistency player who uses gradient descent with learning rate η = α, an auditor
will be able to find sets that fail to be α-mean consistent for at most 1/α2 many rounds.6 The
following theorem is a direct consequence of Lemma 6 — its short proof is in the Appendix.

Theorem 7 Set T = 1
α2 − 1 and η = α = 1√

T+1
in Algorithm 1. Assume that for every t ∈ [T ],

λt
(
µt(St)− µ(St)

)
≥ α
PX (St) , Then, for every S ⊆ X , we have∣∣µT+1(S)− µ(S)

∣∣ ≤ α

PX (S)
.

In particular, if the auditor selects setsG(µt, i) that fail to satisfy approximate mean consistency
whenever they exist, then we quickly converge to a mean-multicalibrated predictor. Either we reach
a state in which µt is approximately mean consistent on every set G(µt, i) before T rounds, in
which case we are done, or after T rounds, the conclusion of Theorem 7 implies not only that we
are approximately mean-multicalibrated with respect to G, but that we are approximately mean-
consistent on every set.

3.2. Pseudo-Moment Consistency

In this section we make a simple observation: Algorithm 1 from Section 3.1 for achieving mean
consistency and calibration did not depend on any properties of the labels y. It would have worked
equally well had we invented an arbitrary label for each datapoint x, and asked for mean consistency
with respect to that label. Using this observation, we consider a (naı̈ve, and incorrect) attempt at

6. A somewhat better bound is achievable by using a non-uniform learning rate that depends on the measure of the sets
St chosen by the auditor; we use a uniform learning rate throughout this paper for clarity.

12



MOMENT MULTICALIBRATION

achieving calibration for higher moments — but one that will be a useful subroutine in our final
algorithm. Recall that mk(S) = E[(y − µ(x))k|x ∈ S]. If we have a mean predictor µ(x), it
is therefore tempting to imagine that each point x is associated with an alternative label ỹ(x) =

m̃k,µ(x), where: m̃k,µ(x) = E
[
(y − µ(x))k

∣∣∣x] . We could then use the algorithm from Section
3.1 to construct an predictor mk that was mean multicalibrated with respect to these labels. We
refer to the property of being mean consistent with respect to the moment-like labels m̃k,µ(x) as
“pseudo-moment-consistency”:

Definition 8 (Pseudo-Moment-Consistency) Fixing a mean predictor µ, define the kth pseudo-
moment labels to be m̃k,µ(x) = E

[
(y − µ(x))k

∣∣∣x]. A moment predictor mk is (β, ε)-pseudo-

moment-consistent on a set S, with respect to a mean predictor µ if |mk(S)− m̃k,µ(S)| ≤ β
PX (S) +

ε. We simply say β-pseudo-moment consistent if the predictor is (β, 0)-pesudo-moment-consistent.

We can achieve pseudo-moment consistency using the gradient descent procedure of Algorithm
2 in the appendix which is essentially analogous to Algorithm 1. In particular, we obtain the fol-
lowing theorem, whose proof is deferred to the Appendix.

Theorem 9 Let T = 1
β2 − 1 and η = 1√

T+1
= β in Algorithm 2, and fix any mean predictor

µ, which defines the function m̃k,µ(x). Assume that for every t ∈ [T ],
∣∣mt

k(R
t)− m̃k,µ(Rt)

∣∣ ≥
β

PX (Rt) . Then, for every R ⊆ X , we have |mk(R)− m̃k,µ(R)| ≤ β
PX (R)– that is mk is β-pseudo-

moment-consistent on every set R.

Now, a guarantee of “pseudo-moment-consistency” is really a guarantee of mean consistency
with respect to “moment-like” labels m̃k,µ(x), and does not correspond to moment consistency.
This is because momentsmk for k > 1 don’t combine linearly the way means do: recall Observation
2.1. But also recall from Observation 2.1 that higher moments do happen to combine linearly if we
average only over points that share the same mean.

We take advantage of this to prove the following key lemma: if we achieve pseudo-moment con-
sistency on all sets G(µ,mk, i, j) (for G ∈ G) with respect to a mean predictor µ that happens also
to be mean-consistent on all sets G(µ,mk, i, j), then, the pair of predictors is in fact approximately
mean-conditioned moment multicalibrated with respect to G.

Lemma 10 Assume µ is such that for all G ∈ G and i, j ∈ [m], µ is α-mean consistent on every
set G(µ,mk, i, j)):

|µ(G(µ,mk, i, j))− µ(G(µ,mk, i, j))| ≤
α

PX (G(µ,mk, i, j))
.

Assume also that mk is β-pseudo-moment-consistent with respect to µ on every set G(µ,mk, i, j))
for G ∈ G and i, j ∈ [m]:

|mk(G(µ,mk, i, j))− m̃k,µ(G(µ,mk, i, j))| ≤
β

PX (G(µ,mk, i, j))
.

Then, for every G ∈ G, i, j ∈ [m], we have

|mk(G(µ,mk, i, j))−mk(G(µ,mk, i, j))| ≤
β + kα

PX (G(µ,mk, i, j)
+
k

m
.

This implies in particular that (µ,mk) are (α, β′, ε)-mean-conditioned moment multicalibrated with
respect to G, for β′ = β + kα and ε = k

m .
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Lemma 10 reduces the problem of finding mean-conditioned-moment multicalibrated predictors
(µ,mk) to the problem of finding a pair of predictors (µ,mk) satisfying mean-consistency and
pseudo-moment-consistency on the sets G(µ,mk, i, j). It is unclear how to do this, because these
conditions have a circular dependency: pseudo-moment consistency of mk with respect to µ is not
defined until we have fixed a mean predictor µ, because the “labels” m̃k,µ(x) with respect to which
pseudo-moment consistency is defined depend on µ. On the other hand, the sets G(µ,mk, i, j) on
which µ must satisfy mean consistency are not defined until we fix the moment predictor mk. The
next section is devoted to resolving this circularity and finding predictors satisfying the conditions
of Lemma 10.

3.3. Mean-Conditioned Moment Multicalibration

We arrive at the last block upon which our main result rests: an alternating gradient descent pro-
cedure that on any distribution finds a mean multicalibrated predictor µ together with moment pre-
dictors {ma}ka=2 such that each pair (µ,ma) is approximately mean-conditioned moment multi-
calibrated on G. We continue, for clarity’s sake, to assume access to the underlying distribution
P , and postpone to Appendix D the details of implementing this approach with a polynomially
sized sample of points. Our strategy is to obtain a set of predictors that together satisfy the hy-
potheses of Lemma 10: mean consistency and pseudo-moment-consistency on every set of the form
G(µ,ma, i, j)) ⊆ G ∈ G, 1 < a ≤ k, and i, j ∈ [m]. We have already seen in Section 3.1 that for a
fixed collection of sets, a simple gradient-descent procedure can obtain mean consistency on each of
the sets. Section 3.2 demonstrates that for a fixed mean predictor µ, a similar gradient descent pro-
cedure can obtain pseudo-moment-consistency with respect to µ on each set G(µ,ma, i, j)). Our
algorithm simply alternates between these two procedures. In rounds t, we maintain hypothesis pre-
dictors µt, {mt

a}ka=2. In alternating rounds, we perform updates of gradient descent using Algorithm
3 to arrive at a mean predictor µt that has taken a step towards consistency on setsG(µt,mt−1

a , i, j),
and then using the newly updated mean predictor µt, run Algorithm 4 to obtain moment predictors
mt
a that obtain pseudo-moment-consistency with respect to µt on all sets G(µt,mt

a, i, j). This is
coordinated via a wrapper algorithm, Algorithm 5. We prove this alternating procedure terminates
after 1/α2 − 1 many rounds and outputs predictors µ, {ma}ka=2 that are jointly mean-conditioned
moment-multicalibrated. The actual details of Algorithm 3, 4, and 5 can be found in the appendix.

Theorem 11 Let T be the final iterate t of Algorithm 5 (i.e. its output is (µT , {mT
a }ka=2). Algorithm

5 has the following guarantees:

1. Total Iterations: The algorithm halts. The final iterate T is s.t. T ≤ 1
α2 −1. The total number

of gradient descent update operations is at most
(

1
α2 − 1

) (
1 + (k − 1)

(
1
β2 − 1

))
.

2. Mean multicalibration: Output µT is α-mean multicalibrated with respect to G.

3. Mean Conditioned Moment multicalibration: For every a ∈ {2, . . . , k}, the pair (µT ,mT
a )

is (α, β + aα, am)-mean-conditioned moment-multicalibrated with respect to G.
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Appendix A. Details and Proofs from Section 3.1

Lemma 12 For any initial mean predictor µ1 ∈ X → [0, 1] and any sequence of (St, λt)Tt=1,
Algorithm 1 satisfies:

∑T
t=1 λ

tPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η + η
2

∑T
t=1 PX (St).

Proof Because µt+1(x) = µt(x) for x 6∈ St, we can lower bound the “progress” made towards µ at
each round t ∈ [T ] as:

EP
[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
= PX (St)EP

[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2|x ∈ St

]
≥ PX (St)EP

[
(µt(x)− µ(x))2 − (µt(x)− ηλt − µ(x))2|x ∈ St

]
= PX (St)EP

[
(µt(x)− µ(x))2 −

(
(µt(x)− µ(x))2 − 2ηλt(µt(x)− µ(x)) + (ηλt)2

)
|x ∈ St

]
= PX (St)EP

[
2ηλt(µt(x)− µ(x))|x ∈ St

]
− PX (St)(ηλt)2

= 2ηλtPX (St)
(
µt(St)− µ(St)

)
− PX (St)(ηλt)2.

The inequality would be an equality if we did not project µt into the range [0, 1]. Performing the
projection only decreases its `2 distance to µ, which yields the inequality. Rearranging terms and
observing that (λt)2 = 1 yields

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
EP
[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
+
ηPX (St)

2

Therefore we have that

T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤

T∑
t=1

(
1

2η
EP
[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
+
ηPX (St)

2

)

=
1

2η
EP
[
(µ1(x)− µ(x))2 − (µT+1(x)− µ(x))2

]
+
η

2

T∑
t=1

PX (St)

≤ 1

2η
+
η

2

T∑
t=1

PX (St)

as desired. The last inequality follows because µ1(x), µ(x), and µT+1(x) all fall in [0, 1].
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Theorem 7 Set T = 1
α2 − 1 and η = α = 1√

T+1
in Algorithm 1. Assume that for every t ∈ [T ],

λt
(
µt(St)− µ(St)

)
≥ α
PX (St) , Then, for every S ⊆ X , we have∣∣µT+1(S)− µ(S)

∣∣ ≤ α

PX (S)
.

Proof Fix any set S ⊆ X and imagine extending the sequence by setting ST+1 = S and setting
λT+1 = sign(µT+1(S)− µ(S)). By Lemma 6, we would then have:

T+1∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
+
η

2

T+1∑
t=1

PX (St)

≤ 1

2η
+
η(T + 1)

2

≤
√
T + 1 (substituting η =

1√
T + 1

)

We can then peel off the last term in the sum corresponding to ST+1 = S to obtain:

PX (S)
∣∣µT+1(S)− µ(S)

∣∣ ≤ √T + 1−
T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤
√
T + 1− αT (by assumption)

= α (since T =
1

α2
− 1)

which completes the proof.

Appendix B. Details and Proofs from Section 3.2

For intuition, we can think of the pseudo-moment calibration algorithm as playing the following
zero sum game using projected online gradient descent against an adversary who plays best re-
sponses. Recall that µ is a fixed quantity so that m̃k,µ is well defined.

min
mk

max
R⊆X

ψ∈{−1,1}

ψPX (R) (mk(R)− m̃k,µ(R)) .

Lemma 13 For any arbitrary m1
k : X → [0, 1] and any sequence of (Rt, ψt)Tt=1, we have that

T∑
t=1

ψtPX (Rt)
(
mt
k(R)− m̃k,µ(R)

)
≤ 1

2η
+
η

2

T∑
t=1

PX (Rt)

Proof

EP
[
(mt

k(x)− m̃k,µ(x))2 − (mt+1
k (x)− m̃k,µ(x))2

]
=PX (Rt)EP

[
(mt

k(x)− m̃k,µ(xi))
2 − (mt+1

k (x)− m̃k,µ(x))2|x ∈ Rt
]

≥PX (Rt)EP
[
(mt

k(x)− m̃k,µ(x))2 − (mt
k(x)− ηψt − m̃k,µ(x))2|x ∈ Rt

]
=PX (Rt)EP

[
(mt

k(x)− m̃k,µ(x))2 −
(
(mt

k(x)− m̃k,µ(x))2 − 2ηψt(mt
k(x)− m̃k,µ(x)) + (ηψt)2

)
|x ∈ Rt

]
=2ηψtPX (Rt)EP

[
mt
k(x)− m̃k,µ(x))|x ∈ Rt

]
− PX (Rt)(ηψt)2
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Here the inequality comes from the fact that projection can only make the `2 norm smaller. Rear-
ranging terms and observing that (ψt)2 = 1 yields

ψtPX (Rt)EP
[
mt
k(x)− m̃k,µ(x)|x ∈ Rt

]
≤ 1

2η
EP
[
(mt

k(x)− m̃k,µ(x))2 − (mt+1
k (x)− m̃k,µ(xi))

2
]

+
ηPX (Rt)

2
.

Plugging this inequality back into the regret, we get

T∑
t=1

ψtPX (Rt)
(
mt
k(R)− m̃k,µ(R)

)
=

T∑
t=1

ψtPX (Rt)EP
[
mt
k(x)− m̃k,µ(x)|x ∈ Rt

]
≤

T∑
t=1

(
1

2η
EP
[
(mt

k(x)− m̃k,µ(x))2 − (mt+1
k (x)− m̃k,µ(xi))

2
]

+
ηPX (Rt)

2

)

=
1

2η

(∑
x∈X

EP
[
(m1

k(x)− m̃k,µ(x))2 − (mT+1
k (x)− m̃k,µ(xi))

2
])

+
η

2

T∑
t=1

PX (Rt)

≤ 1

2η
+
η

2

T∑
t=1

PX (Rt)

as desired. The last inequality follows because m1
k(x), m̃k,µ(x), and mT+1

k (x) all fall in [0, 1].

Start with an arbitrary initial pseudo-moment predictor m1
k : X → [0, 1]

for t = 1, . . . , T do
Audit player plays some Rt ⊆ X , ψt ∈ {−1, 1}

mt+1
k (x) =

{
project[0,1]

(
mt
k(x)− ηψt

)
if x ∈ Rt,

mt
k(x) otherwise.

Algorithm 2: Projected Gradient Descent(η) for mk

Theorem 9 Let T = 1
β2−1 and η = 1√

T+1
= β in Algorithm 2, and fix any mean predictor µ, which

defines the function m̃k,µ(x). Assume that for every t ∈ [T ],
∣∣mt

k(R
t)− m̃k,µ(Rt)

∣∣ ≥ β
PX (Rt) .

Then, for every R ⊆ X , we have |mk(R)− m̃k,µ(R)| ≤ β
PX (R)– that is mk is β-pseudo-moment-

consistent on every set R.

Proof Set RT+1 = R. From Lemma 13, we get

T+1∑
t=1

ψtPX (Rt)
(
mt
k(R

t)− m̃k,µ(Rt)
)
≤ 1

2η
+
η

2

T+1∑
t=1

PX (Rt) ≤
√
T + 1

=⇒ PX (RT+1)
∣∣∣mT+1

k (RT+1)− m̃k,µ(RT+1)
∣∣∣ ≤ √T + 1− βT = β
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Lemma 14 Assume µ is such that for all G ∈ G and i, j ∈ [m], µ is α-mean consistent on every
set G(µ,mk, i, j)):

|µ(G(µ,mk, i, j))− µ(G(µ,mk, i, j))| ≤
α

PX (G(µ,mk, i, j))
.

Assume also that mk is β-pseudo-moment-consistent with respect to µ on every set G(µ,mk, i, j))
for G ∈ G and i, j ∈ [m]:

|mk(G(µ,mk, i, j))− m̃k,µ(G(µ,mk, i, j))| ≤
β

PX (G(µ,mk, i, j))
.

Then, for every G ∈ G, i, j ∈ [m], we have

|mk(G(µ,mk, i, j))−mk(G(µ,mk, i, j))| ≤
β + kα

PX (G(µ,mk, i, j)
+
k

m
.

This implies in particular that (µ,mk) are (α, β′, ε)-mean-conditioned moment multicalibrated with
respect to G, for β′ = β + kα and ε = k

m .

Proof Fix G ∈ G and i, j ∈ [m] and let S ≡ G(µ,mk, i, j). Because µ is α-mean consistent on S,
we have that:

|µ(S)− µ(S)| ≤ α

PX (S)
. (1)

We can use this to bound the difference between the true moment mk(S) and the pseudo-moment
m̃k,µ(S) on S. First, note that:

mk(S) = EP
[
(y − µ(S))k

∣∣∣x ∈ S] ,
= EP

[
[(y − µ(x)) + (µ(x)− µ(S))]k

∣∣∣x ∈ S] .
We will make use of the following fact:

Lemma 15 For any a, b ∈ [0, 1], |ak − bk| ≤ k|a− b|.

Proof Observe that:

|ak − bk| =

∣∣∣∣∣(a− b)
(
k−1∑
`=0

a`bk−1−`

)∣∣∣∣∣ ≤ |a− b||k(max(a, b))k−1| ≤ k|a− b|.

Finally, we conclude that:

|mk(S)− m̃k,µ(S)| =
∣∣∣EP [((y − µ(x)) + (µ(x)− µ(S)))k − (y − µ(x))k

∣∣∣x ∈ S]∣∣∣
≤ kEP [|µ(x)− µ(S)||x ∈ S]

≤ k (EP [|µ(x)− µ(S)||x ∈ S] + |µ(S)− µ(S)|)

≤ k
(

1

m
+

α

PX (S)

)
.
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The first inequality follows from Lemma 15 with a = (y − µ(x))+(µ(x)− µ(S)) and b = y−µ(x).
The final inequality follows from (1) (mean consistency) together with the fact that µ(x) falls within
a bucket of width 1

m for any x ∈ S (recall that by definition, S = G(µ,mk, i, j)), and so does µ(S)
Finally, because mk is β-pseudo-moment consistent on S with respect to µ we can invoke the

triangle inequality to conclude:

|mk(S)−mk(S)| ≤ |mk(S)− m̃k,µ(S)|+ |m̃k,µ(S)−mk(S)| ,

≤ β

PX (S)
+ k

(
1

m
+

α

PX (S)

)
.

Appendix C. Details and Proofs from Section 3.3

µ(x) =

{
project[0,1](µ(x)− αλ) if x ∈ S,
µ(x) otherwise.

return µ
Algorithm 3: MeanConsistencyUpdate(µ, S, λ)

1: define pseudo-moment labels m̃a,µ(x) = E [(y − µ(x))a|x] for all x
2: while ∃R = G(µ,ma, i, j) for some G ∈ G, i, j ∈ [m] s.t. |ma(R)− m̃a,µ(R)| ≥ β

PX (R) do
3: ψ = sign(mk(R)− m̃k,µ(R))

4: ma(x) =

{
project[0,1](ma(x)− βψ) if x ∈ R
ma(x) otherwise.

5: return mk

Algorithm 4: PseudoMomentConsistency(a, β, µ,ma,G)

1: initialize µ1(x) = 0 for all x
2: for all 1 < a ≤ k, initialize m1

a(x) = 0 for all x
3: t = 1
4: while ∃St = G(µt, i) or St = G(µt,mt

a, i, j) for some G ∈ G, i, j ∈ [m], 1 < a ≤ k s.t.∣∣µt(St)− µ(St)
∣∣ ≥ α

PX (St) do
5: λt = sign(µ(St)− µ(St))
6: µt+1 = MeanConsistencyUpdate(µt, St, λt)
7: for a = 2, . . . , k do
8: mt+1

a = PseudoMomentConsistency(a, β, µt+1,mt
a,G).

9: t = t+ 1
10: return (µt, {mt

a}ka=2)

Algorithm 5: AlternatingGradientDescent(α, β,G)

Theorem 11 Let T be the final iterate t of Algorithm 5 (i.e. its output is (µT , {mT
a }ka=2). Algorithm

5 has the following guarantees:
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1. Total Iterations: The algorithm halts. The final iterate T is s.t. T ≤ 1
α2 −1. The total number

of gradient descent update operations is at most
(

1
α2 − 1

) (
1 + (k − 1)

(
1
β2 − 1

))
.

2. Mean multicalibration: Output µT is α-mean multicalibrated with respect to G.

3. Mean Conditioned Moment multicalibration: For every a ∈ {2, . . . , k}, the pair (µT ,mT
a )

is (α, β + aα, am)-mean-conditioned moment-multicalibrated with respect to G.

Proof We prove each guarantee in turn.

Total Iterations: Every step t of the while loop in Algorithm 5 performs a gradient descent update
using MeanConsistencyUpdate on a pair (λt, St) such that:

λt
(
µt(St)− µ(St)

)
≥ α

PX (St)
.

By Theorem 7, this process can continue for at most T ≤ 1
α2 − 1 many iterations. Within each

iteration t of the loop, the algorithm makes one call to PseudoMomentConsistency for each 1 <
a ≤ k for a total of (k− 1) calls per iteration. Each of these calls performs at most 1

β2 − 1 iterations
of gradient descent, by Theorem 9.

Mean multicalibration: Suppose for a contradiction that Algorithm 5 terminates at t = T with
output µT which is not mean multicalibrated, i.e. there exists a set S ≡ G(µT , i) for some G ∈ G,
i ∈ [m] such that |µt(S) − µ(S)| ≥ α

PX (S) . Then, by construction of the while loop in Algorithm
5, T cannot be the final iterate of t.

Mean Conditioned Moment multicalibration: The While loop in Algorithm 5 will continue as
long as there exists a set St ≡ G(µt,mt

a, i, j) for some G ∈ G, i, j ∈ [m] such that |µt(St) −
µ(St)| ≥ α

PX (St) . Hence we can conclude that at termination, µT is α-mean consistent on every
set G(µT ,mT

a , i, j) for some G ∈ G, i, j ∈ [m]. Moreover, during the final iteration, for each 1 <
a ≤ k,mT

a was constructed by running PseudoMomentConsistency(a, β, µT ,mT−1
a ,G). Therefore,

by Theorem 9 we know that mT
a is β-pseudo-moment consistent on every set G(µT ,mT

a , i, j). To
see this, note that if PseudoMomentConsistency runs for 1

β2 − 1 many rounds, then it is β-pseudo-
moment consistent on every set. On the other hand, the only way it can halt before that many rounds
(by construction of the halting condition in its While loop) is if mT

a is β-pseudo-moment consistent
on every set G(µT ,mT

a , i, j).
Therefore, µT and {mT

a }ka=2 jointly satisfy the conditions of Lemma 10. It follows from the
Lemma that they are mean-conditioned moment-multicalibrated at the desired parameters.

Appendix D. Implementation with Finite Sample and Runtime Guarantees

In Section 3 we analyzed a version of our algorithm as if we had direct access to the true distribution,
P . In particular, in both Algorithm 4 and Algorithm 5, access to P was needed in (only) two places.
First, to identify a set St such that

∣∣µt(St)− µ(St)
∣∣ ≥ α

PX (St) . Second, to identify a set R such

that |ma(R)− m̃a,µ(R)| ≥ β
PX (R) . In this section, we show how to perform these operations

approximately by using a small finite sample of points drawn from P , and hence to obtain a finite
sample version of our main result together with sample complexity and running time bounds.
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There are two issues at play here: the first issue is purely statistical: how many samples are
needed to execute the two checks needed to implement our algorithm? Our finite sample algorithm
will essentially use a sufficiently large fresh sample of data at every iteration to guarantee uniform
convergence of the quantities to be estimated over all of the sets that must be checked at that iter-
ation. The second issue is computational: even if we have enough samples so that we can check
in-sample quantities as proxies for the distributional quantities we care about, what is the running
time of our algorithm? We are performing gradient descent in a potentially infinite dimensional
space, and so we cannot explicitly maintain the weights µt(x),mt

a(x) for all x. Instead, we main-
tain these weights implicitly as a weighted linear combination of the indicator functions for each of
the sets St, R, used to perform updates (recall that we have assumed that each set G ∈ G can be
represented by an indicator function computed by a polynomially sized circuit, so we have concise
implicit representations of every set that our algorithm must manipulate). Ostensibly one must ex-
haustively enumerate the collection of sets S,R, for which our algorithm must perform some check
(in fact their indicator functions), which takes time that scales with m2 · |G|. We first focus on
the statistical problem, showing that the number of samples needed to implement our algorithm is
small, and then we observe that if we have an agnostic learning algorithm for G, we can use it to
replace exhaustive enumeration. In both cases—although the details differ—we handle these issues
in largely the same way they were handled by Hébert-Johnson et al. (2018), so many of the proofs
and calculations will be deferred to the Appendix.

Finally, we remark that it is essential that we draw a fresh sample of n data points each time
we try to find a set for consistency violation because `, `, as well as the collection of sets S that
we are auditing, are not fixed a priori but change adaptively (i.e. as a function of the data) between
rounds. Due to the adaptive nature of the statistical tests that need to be performed, we cannot
simply union bound over these queries. We remark that we could have applied adaptive data analysis
techniques (see e.g. (Dwork et al., 2015; Bassily et al., 2016; Jung et al., 2020)) to partially re-use
the data, which would save a quadratic factor in the sample complexity (or for finite data domains, an
exponential improvement in some of the existing parameters, at the cost of an additional dependence
on log |X | by using the private multiplicative weights algorithm of Hardt and Rothblum (2010)).
This idea is applied in Hébert-Johnson et al. (2018); it applies here in the same manner; interested
readers can refer to Hébert-Johnson et al. (2018).

D.1. Sample Complexity Bounds and a Finite Sample Algorithm via Exhaustive Group
Enumeration

First, recall that pseudo-moment consistency is mean consistency with respect to the artificially
created label m̃k,µ(x) = (y − µ(x))k. To avoid needless repetition, we focus on achieving mean
consistency for an arbitrary label defined by a label function `(x, y) with a predictor `(x). Then,
auditing for mean consistency for µ and pseudo-moment consistency for mk follows by setting

`(x) = µ(x) and `(x, y) = y

`(x) = mk(x) and `(x, y) = (y − µ(x))k

for mean consistency and pseudo-moment consistency respectively. For economy of notation set,

`(S) = EP [`(x)|x ∈ S] and `(S) = EP [`(x, y)|x ∈ S],
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for all S ⊆ X . For any set S ⊆ X , given a dataset D, we refer to DS as the subset of the data
where the corresponding points lie in S (i.e. DS = {(x, y) ∈ D : x ∈ S}). If dataset DS has
n′ points each drawn independently from P conditional on x ∈ S, we can appeal to the Chernoff
bound (Theorem 29) to argue that empirical averages must be close to their expectations.

We can also appeal to the Chernoff bound to argue that when we sample data points from P ,
the number of points that fall into some set S (e.g. G(µ,mk, i, j)) scales roughly with nPX (S)
(Lemma 30).

Throughout the execution of our algorithm, we need to audit the current mean and moment
estimators for α-mean consistency violations. This is important, because the analysis of the running
time of the algorithm (e.g. the fact that it converges after at most T = 1

α2 − 1 iterations) relies on
making a minimum amount of progress guaranteed by α-mean inconsistency. In the next lemma,
we provide a condition that can be checked using empirical estimates which guarantees α-mean
inconsistency (on the true, unknown distribution) whenever the sample is appropriately close to the
distribution; it follows from two applications of a Chernoff bound that this approximate closeness
condition will occur with high probability. We encapsulate this empirical check in Algorithm 6.

if n′ > 0 and
∣∣∣ 1n′ ∑n′

b=1 `(xb)−
1
n′
∑n′

b=1 `(xb, yb)
∣∣∣− 2

√
ln( 2

δ
)

2n′ ≥
α

n′
n
−

√
ln( 2

δ
)

2n

then

λ = sign( 1
n′
∑n′

b=1 `(xb)−
1
n′
∑n′

b=1 `(xb, yb))
Output Y ES, λ (A Consistency Violation has been found)

else
Output No

Algorithm 6: Auditor(`, `, α, δ, {(xb, yb)}n
′
b=1)

Definition 16 Fix any set S ⊆ X . Given a set of n data points D and its associated DS =
{(xb, yb)}n

′
b=1, we say that D is approximately close to P with respect to (S, `, `), if the following

inequalities hold true:

n′ > 0∣∣∣∣n′n − PX (S)

∣∣∣∣ ≤
√

ln(2δ )

2n
(2a)∣∣∣∣∣ 1

n′

n′∑
b=1

`(xb)− `(S)

∣∣∣∣∣ ≤
√

ln(2δ )

2n′
(2b)

∣∣∣∣∣ 1

n′

n′∑
b=1

`(xb, yb)− `(S)

∣∣∣∣∣ ≤
√

ln(2δ )

2n′
(2c)

Lemma 17 Fix any set S ⊆ X . If dataset D is approximately close to P with respect to (S, `, `),
then we have

Auditor(`, `, α,DS) = (YES, λ) =⇒
∣∣`(S)− `(S)

∣∣ ≥ α

PX (S)
and λ = sign(`(S)− `(S))
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Lemma 17 implies that when we find an empirical consistency violation using Algorithm 6, it
is indeed a real α-consistency violation with respect to the true distribution, allowing us to make
progress — this guarantees that our algorithm will not run for too many iterations. But we need a
converse condition, in order to make sure that we don’t halt too early: we must show that if there
are no empirical α′-consistency violations for some α′ > α, then there are also no α-consistency
violations with respect to the true distribution. This is what we do in Lemma 18. Observe, that
without loss of generality, we can restrict attention to sets such that PX (S) ≥ α because any
estimator in the range [0, 1] is trivially α-mean consistent on every set with measure < α.

Lemma 18 Fix any set S ⊆ X such that PX (S) ≥ α. Assume n is sufficiently large such that

2

√
ln( 2

δ
)

2n < α If D is approximately close to P with respect to (S, `, `), we have

∣∣`(S)− `(S)
∣∣ ≥ α′

PX (S)
=⇒ Auditor(`, `, α,DS) = YES,

where α′ = α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
.

The Auditor subroutine above performs a consistency check on a single set. We now use it to
audit for mean consistency and pseudo-moment consistency across a collection of sets.

for S ∈ S do
if |DS | > 0 and Auditor(`, `, α, δ,DS) = Y ES, λ then

return S, λ
return NULL
Algorithm 7: ConsistencyAuditor(`, `, α, δ,D,S)

Corollary 19 Fix `, `, α, δ, and a collection of sets S . Given a set of n pointsD drawn i.i.d. fromP

where α > 2

√
ln( 2

δ
)

2n , ConsistencyAuditor(µ, α,D,S) has the following guarantee with probability
1− 3δ|S| over the randomness of D:

1. If ConsistencyAuditor does output some set S and λ, then∣∣`(S)− `(S)
∣∣ ≥ α

PX (S)
and λ = sign(`(S)− `(S)).

2. If ConsistencyAuditor outputs NULL, then for all S ∈ S,

∣∣`(S)− `(S)
∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
.
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Thus, to detect a set S with α-mean consistency violation in line 4 of Algorithm 5, we can
leverage Algorithm 7 by drawing a fresh sample of size n and setting `(x) = µ(x), `(x, y) = y,
and S = {G(µ, i) : G ∈ G, i ∈ [m]} ∪ {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}.
Likewise, for every a ∈ {2, . . . , k}, to detect a set S with β-pseudo-moment consistency violation
in line 2 of Algorithm 4, we can leverage Algorithm 7 by drawing a fresh sample of size n and
setting `(x) = mk(x), `(x, y) = (y − µ(x))k, and S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}. We
write out the pseudocode of this process below.

D = {(xb, yb)}nb=1 ∼ Pn
S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}
`(x) = ma(x)
`(x, y) = (y − µ(x))a

R,ψ = ConsistencyAuditor(`, `, β, δ,D,S)
while R,ψ 6= NULL do

ma(x) =

{
project[0,1](ma(x)− βψ) if x ∈ R
ma(x) otherwise.

D = {(xb, yb)}nb=1 ∼ Pn
S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}
`(x) = ma(x)
R,ψ = ConsistencyAuditor(`, `, β, δ,D,S)

return mk

Algorithm 8: PseudoMomentConsistencyFinite(a, β, δ, µ,ma, n,G)

initialize µ1(x) = 0 for all x
for all 1 < a ≤ k, initialize m1

a(x) = 0 for all x
t = 1
`
t
(x) = µ1(x)

`(x, y) = y
Dt = {(xb, yb)}nb=1 ∼ Pn
St = {G(µt, i) : G ∈ G, i ∈ [m]} ∪ {G(µt,mt

a, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = ConsistencyAuditor(`

t
, `, α, δ,D,S)

while St, λt 6= NULL do
µt+1 = MeanConsistencyUpdate(µt, St, λt)
for a = 2, . . . , k do
mt+1
a = PseudoMomentConsistencyFinite(a, β, δ, µt+1,mt

a, n,G).
t = t+ 1
`
t
(x) = µt(x)

Dt = {(xb, yb)}nb=1 ∼ Pn
St = {G(µt, i) : G ∈ G, i ∈ [m]} ∪ {G(µt,mt

a, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = ConsistencyAuditor(`

t
, `, α, δ,Dt,St)

return (µt, {mt
a}ka=2)

Algorithm 9: AlternatingGradientDescentFinite(α, β, δ, n,G)
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Theorem 20 Let T be the final iterate of Algorithm 9. If 2

√
ln( 2

δ
)

2n ≤ α and 2

√
ln( 2

δ
)

2n ≤ β, we have
the following guarantees:

1. Total Iterations: With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
over the randomness

of our samples, the final iterate T is s.t. T ≤ 1
α2 − 1 and the total number of gradient descent

update operations will be at most Q, where

Qα =
1

α2
− 1, Qβ = (k − 1)

(
1

β2
− 1

)
, Q = Qα(1 +Qβ).

In particular, the algorithm uses at most nQ samples from P .

2. Mean multicalibration: With probability 1 − 3δ(m2 + m)|G|, output µT is α′-mean multi-
calibrated with respect to G where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n

 .

3. Mean Conditioned Moment multicalibration: With probability 1−3δ|G|(km2 +m), for any
a ∈ {2, . . . , k}, pair (µT ,mT

a ) is (α′, aα′ + β′, am)-mean-conditioned-moment calibrated
where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n


β′ = β + 4

√
ln
(
2
δ

)
2n

+

β − 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n


The following corollary derives the sample complexity of our algorithm, implied by Theo-

rem 20, for a target set of parameters. Observe that the sample complexity is polynomial in
k,m, 1/α, 1/β, 1/ε, log(1/δ), and log |G|.

Corollary 21 Fix target parameters α′, β′, δ′ and ε > 0 such that ε < α′ and ε < β′. Define

Q =
6|G|km2(

α′−ε
6+ 2

ε2

)2(
β′−ε
6+ 2

ε2

)2 , δ =
δ′

max(3|G|(km2 +m), Q)
, nα =

ln(2Qδ )

2

(
α′−ε
6+ 2

ε2

)2 , nβ =
ln(2Qδ )

2

(
β′−ε
6+ 2

ε2

)2 .

Then, AlternatingGradientDescentFinite(α, β, δ, n,G) where

α = 2

√
ln(2Qδ )

2nα
+ ε, β = 2

√√√√ ln(2Qδ )

2nβ
+ ε,

n = max

(
ln(2Qδ )

ln(2δ )
nα,

ln(2Qδ )

ln(2δ )
nβ,

2 ln(2δ )

α2
,
2 ln(2δ )

β2

)
has the following guarantees with probability 1− δ′:
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1. The total number of gradient descent updates will be at most Q, where Q is as defined in
Theorem 20.

2. µT is α′-mean-calibrated.

3. For every a ∈ {2, . . . , k}, (µT ,mT
a ) is (α′, aα′ + β′, am)-mean-conditioned-moment cali-

brated.

Finally, we state the running time of the algorithm in the following Theorem.

Theorem 22 With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
, the running time of Algorithm

9 is O
(
Q|G|m2n

)
= O

(
k|G|m2n
α2β2

)
where Qα, Qβ , and Q are as defined in Theorem 20.

D.2. Oracle Efficient Implementation

In Section D.1 we analyzed an algorithm that had favorable sample-complexity bounds, but was
computationally expensive when G was large: although it ran for only a small number of iterations,
each iteration required a complete enumeration of every set in G. In this section, we show how to
replace this expensive step with a call to an algorithm which can solve learning problems over G,
if one is available. Because the remaining portion of the algorithm is computationally efficient —
even if G is very large — this yields what is sometimes known as an “oracle efficient algorithm”.
Similar reductions have been given in Hébert-Johnson et al. (2018); Kearns et al. (2018); Kim et al.
(2019).

Definition 23 For some ρ ∈ [0, 1] and non-increasing function p : N → [0, 1], A is a (ρ, p)-
agnostic learning oracle for hypothesis class H ⊆ 2X with respect to a label function r(x, y) ∈
[−1, 1], if for any distribution P , given n random samples from P , it outputs f : X → {0, 1} such
that with probability 1− p(n),

E(x,y)∼P [f(x) · r(x, y)] + ρ ≥ sup
h∈H

E(x,y)∼P [h(x) · r(x, y)].

We write τ(n) to denote the running time of the oracle A when n data points are used, which
we assume is at least Ω(n).

Remark 24 A more common definition of an agnostic learning oracle would use hypotheses with
range {−1, 1} rather than {0, 1}. But this definition will be more convenient for us, and is equiva-
lent (up to a constant factor in the parameters) via a linear transformation.

We will use a learning algorithm for any classH such that G ⊆ H to replace the set enumeration
steps of our algorithm. In particular, to find a set of the formG(µ, i) on which our existing predictor
µ fails to be mean consistent, we run our learning algorithm on the subset of our sample that inter-
sects with X (µ, i), labelled with the positive and negative residuals of our predictor — i.e. on the
labels r+R(x, y) = µ(x)− y and r−R = y − µ(x). Similarly, to find a set of the form G(µ,ma, i, j),
we run our learning algorithm on the sets X (µ,ma, i, j) labeled with both the positive and nega-
tive residuals. Finding sets on which we fail to be moment pseudo-consistent with respect to µ is
similar. All in all, this requires O(k ·m2) runs of our learning algorithm per gradient descent step,
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replacing the complete enumeration of the collection of sets G. We make this process more pre-
cise in Algorithm 11 and state the guarantees in Theorem 26. We also include the pseudocode for
the correspondingly updated AlternatingGradientDescentFinite using Algorithm 11 as the auditing
subroutine in the appendix – see Algorithm 13.

r+R(x, y) =

{
`(x)− `(x, y) if x ∈ R
0 otherwise

and D+
R = {(xb, r+R(x, y))}nb=1

r−R(x, y) =

{
`(x, y)− `(x) if x ∈ R
0 otherwise

and D−R = {(xb, r−R(x, y))}nb=1

χS+ = A(D+
R ,H)

χS− = A(D−R ,H)
return (S+, S−)

Algorithm 10: LearningOracleConsistencyAuditor(`, `, α, δ,D,R,A)

V = {}
for R ∈ R do

if |DR| > 0 then
S+, S− = LearningOracleConsistencyAuditor(`, `, α, δ,D,Dcheck, R,A)
V = V ∪ {(S+ ∩R), (S− ∩R)}

return ConsistencyAuditor(`, `, α,Dcheck,V)

Algorithm 11: LearningOracleConsistencyAuditorWrapper(`, `, α, δ,D,Dcheck,R, A)

First we observe that the objective of the agnostic learning oracle on the sets we run it on
corresponds directly to the (positive and negative) violation of mean consistency on these sets,
weighted by the measure of the sets.

Lemma 25 For each R ∈ R and any χS:

E(x,y)[χS(x) · r+R(x, y)] = PX (R ∩ S)
(
`(R ∩ S)− `(R ∩ S)

)
E(x,y)[χS(x) · r−R(x, y)] = PX (R ∩ S)

(
`(R ∩ S)− `(R ∩ S)

)
Using this, we can show that our learning oracle based consistency auditor has comparable

guarantees to the consistency auditor that operated via set enumeration:

Theorem 26 Assume n is sufficiently large such that α > 2

√
ln( 2

δ
)

2n . Algorithm 11 has the following
guarantees:

1. If it returns some S and λ, then with probability 1− 3δ|R| over the randomness of Dcheck,

|`(S)− `(S)| ≥ α

PX (S)
.
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2. If it returns NULL, then with probability 1 − |R|(3δ + 2p(n)) over the randomness of D
and Dcheck, for all χS ∈ H and R ∈ R,

|`(R ∩ S)− `(R ∩ S)| ≤ α′ + ρ

PX (R ∩ S)
,

where α′ is as defined in Corollary 19.

Observe that when G ⊆ H and R = {X (µ,ma, i, j) : i, j ∈ [m]}, then, the collection of
intersections R ∩ S over all χS ∈ H and R ∈ R contains {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}.
The same observation applies when R = {X (µ, i) : i ∈ [m]} ∪ {X (µ,ma, i, j) : i, j ∈ [m]} – the
collection of intersections includes {G(µ, i) : G ∈ G, i ∈ [m]} ∪ {X (µ,ma, i, j) : G ∈ G, i, j ∈
[m]}.

We now present the guarantees of a version of AlternatingGradientDescent that uses Algorithm
11 as the auditor. Its pseudo-code can be found as Algorithm 13 in the appendix. We elide the proof
as it is almost identical to that of Theorem 11 and Theorem 20.

Theorem 27 Assume G ⊆ H. Let T be the final iterate of Algorithm 13. If 2

√
ln( 2

δ
)

2n ≤ α,

2

√
ln( 2

δ
)

2n ≤ β, and G ⊆ H, we have the following guarantees:

1. Total Iterations: With probability 1 − 3δQα
(
(m2 +m) +m2Qβ

)
over the randomness of

our samples, the final iterate T is such that T ≤ 1
α2 − 1 and the total number of gradient

descent update operations will be at most Q, where Qα, Qβ , and Q are all as defined in
Theorem 20.

In particular, the algorithm uses at most O(nQ) samples from P .

2. Mean multicalibration: With probability 1− (m2 +m)(3δ + 2p(n)), output µT is α′′-mean
multicalibrated with respect to G where α′′ = α′ + ρ and α′ is as defined in Theorem 20.

3. Mean Conditioned Moment multicalibration: With probability 1− (km2 +m)(3δ+2p(n)),
for any a ∈ {2, . . . , k}, pair (µT ,mT

a ) is (α′′, aα′′ + β′′, am)-mean-conditioned-moment cal-
ibrated where β′′ = β′ + ρ and β′ is as defined in Theorem 20.

Finally, we state the running time of Algorithm 13.

Theorem 28 With probability at least 1− 3δQα
(
(m2 +m) +m2Qβ

)
, the running time of Algo-

rithm 13 is bounded by O(Qm2τ(n)), where Q is the total number of gradient descent operations
as defined in Theorem 20.

Appendix E. Details and Proofs from Section D

Theorem 29 (Chernoff Bound) Fix distributionP and some function f(x, y) ∈ [0, 1]. Let {(xb, yb)}nb=1

be n points sampled i.i.d. from P . Then, we have for any δ ∈ [0, 1],

Pr
{(xb,yb)}nb=1∼Pn

∣∣∣∣∣ 1n
n∑
b=1

f(xb, yb)− E(x,y)∼P [f(x, y)]

∣∣∣∣∣ ≥
√

ln(2δ )

2n

 ≤ δ.
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Lemma 30 For any set S ⊆ X ,

Pr
D∼Pn

∣∣∣∣∣ 1n
n∑
b=1

1(xb ∈ S)− PX (S)

∣∣∣∣∣ >
√

ln(2δ )

2n

 ≤ δ
Proof We apply a Chernoff bound (Theorem 29) with f(x, y) = 1(x ∈ S). Observe that E[f(x, y)] =
PX (S).

Lemma 31 Fix any set S ⊆ X . If dataset D is approximately close to P with respect to (S, `, `),
then we have

Auditor(`, `, α,DS) = (YES, λ) =⇒
∣∣`(S)− `(S)

∣∣ ≥ α

PX (S)
and λ = sign(`(S)− `(S))

Proof To see this, observe that

∣∣`(S)− `(S)
∣∣

≥

∣∣∣∣∣ 1

n′

n′∑
b=1

`(xb)−
1

n′

n′∑
b=1

`(xb, yb)

∣∣∣∣∣− 2

√
ln(2δ )

2n′

≥ α

n′

n −
√

ln( 2
δ
)

2n

≥ α

PX (S)

Here, the first inequality follows from the (2b) and (2c), the second from the condition of Algorithm
6, and the last inequality follows from (2a).

Finally, if 1
n′
∑n′

b=1 `(xb) ≥
1
n′
∑n′

b=1 `(xb, yb), then

`(S) ≥ 1

n′

n′∑
b=1

`(xb)−

√
ln(2δ )

2n′
≥ 1

n′

n′∑
b=1

`(xb, yb) +

√
ln(2δ )

2n′
≥ `(S).

The same argument applies when 1
n′
∑n′

b=1 `(xb) <
1
n′
∑n′

b=1 `(xb, yb). Therefore, sign( 1
n′
∑n′

b=1 `(xb)−
1
n′
∑n′

b=1 `(xb, yb)) = sign(`(S)− `(S)).

Lemma 32 Fix any set S ⊆ X such that PX (S) ≥ α. Assume n is sufficiently large such that

2

√
ln( 2

δ
)

2n < α If D is approximately close to P with respect to (S, `, `), we have

∣∣`(S)− `(S)
∣∣ ≥ α′

PX (S)
=⇒ Auditor(`, `, α,DS) = YES,

where α′ = α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
.
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Proof The pre-condition implies that∣∣∣∣∣ 1

n′

n′∑
b=1

`(xb)−
1

n′

n′∑
b=1

`(xb, yb)

∣∣∣∣∣− 2

√
ln(2δ )

2n′

≥
∣∣`(S)− `(S)

∣∣− 4

√
ln(2δ )

2n′

≥ α′

PX (S)
− 4

√
ln(2δ )

2n′
.

Therefore it is sufficient to show that α′

PX (S) − 4

√
ln( 2

δ
)

2n′ ≥
α

n′
n
−

√
ln( 2

δ
)

2n

.

α′

PX (S)
=

α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
PX (S)

≥
α+ 4

√
1
2n ln(2δ )

PX (S)− 2

√
ln( 2

δ
)

2n

(3)

≥ α

PX (S)− 2

√
ln( 2

δ
)

2n

+
4
√

1
2n ln(2δ )

PX (S)−
√

ln( 2
δ
)

2n

≥ α

PX (S)− 2

√
ln( 2

δ
)

2n

+ 4

√√√√ ln(2δ )

2n(PX (S)−
√

ln( 2
δ
)

2n )

∀x ∈ [0, 1] : x ≤
√
x

≥ α

PX (S)− 2

√
ln( 2

δ
)

2n

+ 4

√
ln(2δ )

2n′
by (2a)

≥ α

n′

n −
√

ln( 2
δ
)

2n

+ 4

√
ln(2δ )

2n′
by (2a)

Inequality (3) comes from Lemma 33, where we plug in x = PX (S), c = α+ 4
√

1
2n ln(2δ ) and

ε = 2

√
ln( 2

δ
)

2n .

Lemma 33 For any 0 < ε ≤ α ≤ x ≤ 1 and 0 < c ≤ 1,

c+ ε
(α−ε)2

x
≥ c

x− ε
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Proof Because
c+ ε

(α−ε)2

x
≥ c

x
+

ε

(α− ε)2
,

it is sufficient to show that
c

x
+

ε

(α− ε)2
≥ c

x− ε
.

Because f(x) = c
x is convex, it’s easy to see that:

f(x− ε) + εf ′(x− ε) ≤ f(x)
c

x− ε
− cε

(x− ε)2
≤ c

x
.

Now, because ε ≤ α ≤ x and 0 < c ≤ 1, we have
c

x− ε
− ε

(α− ε)2
≤ c

x
.

Corollary 34 Fix `, `, α, δ, and a collection of sets S. Given a set of n pointsD drawn i.i.d. from P

where α > 2

√
ln( 2

δ
)

2n , ConsistencyAuditor(µ, α,D,S) has the following guarantee with probability
1− 3δ|S| over the randomness of D:

1. If ConsistencyAuditor does output some set S and λ, then∣∣`(S)− `(S)
∣∣ ≥ α

PX (S)
and λ = sign(`(S)− `(S)).

2. If ConsistencyAuditor outputs NULL, then for all S ∈ S,∣∣`(S)− `(S)
∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
.

Proof For each set S ∈ S, we write DS = {(xSb , ySb )}n
′
S
b=1 to denote the points from D that fall in S.

First, by union bounding the failure probabilities of Lemma 30 over every S ∈ S, we have with
probability 1− δ|S|, ∣∣∣∣n′Sn − PX (S)

∣∣∣∣ >
√

ln(2δ )

2n
.

We apply the Chernoff bound again for every set S where n′S > 0 and take the union bound to
argue that with probability at least 1− 2|S|δ, for all such sets S where n′S > 0,∣∣∣∣∣∣ 1

n′S

n′S∑
b=1

`(xSb )− `(S)

∣∣∣∣∣∣ ≤
√

ln(2δ )

2n′S∣∣∣∣∣∣ 1

n′S

n′S∑
b=1

`(xSb , y
S
b )− `(S)

∣∣∣∣∣∣ ≤
√

ln(2δ )

2n′S
.
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Observe that despite the fact that n′S is not fixed before we draw the sample, we can still apply
a Chernoff bound here because for every realized value of n′S , the distribution, conditional on the
value of n′S , of points (x, y) such that (x, y) ∈ S remains a product distribution, with individual
such points distributed as P|x ∈ S. Now, we go through each scenario:

1. ConsistencyAuditor outputs some set S and λ: In this case, S would have been returned
only if n′S > 0 due to the if condition in Algorithm 6. Therefore, D must be approximately
close to P with respect to (S, `, `). By Lemma 18, we have

|`(S)− `(S)| ≥ α

PX (S)
and λ = sign(`(S)− `(S))

2. ConsistencyAuditor outputs NULL: For any set S, PX (S) < α directly implies that

|`(S)− `(S)| ≤ 1 <
α

PX (S)
≤ α′

PX (S)
.

Therefore, we focus only on sets S where PX (S) ≥ α. For these sets, we have n′S > 0
because

n′S
n
≥ PX (S)−

√
ln(2δ )

2n
≥ α−

√
ln(2δ )

2n
>

√
ln(2δ )

2n
> 0,

as we assumed α > 2

√
ln( 2

δ
)

2n . Therefore, for every set S where PX (S) ≥ α, we must have
that D must be approximately close to P with respect to (S, `, `). Thus, by applying Lemma
18 to these sets S, we have ∣∣`(S)− `(S)

∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(2δ ) +

(
α− 2

√
ln( 2

δ
)

2n

)−2(
2

√
ln( 2

δ
)

2n

)
.

Theorem 20 Let T be the final iterate of Algorithm 9. If 2

√
ln( 2

δ
)

2n ≤ α and 2

√
ln( 2

δ
)

2n ≤ β, we have
the following guarantees:

1. Total Iterations: With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
over the randomness

of our samples, the final iterate T is s.t. T ≤ 1
α2 − 1 and the total number of gradient descent

update operations will be at most Q, where

Qα =
1

α2
− 1, Qβ = (k − 1)

(
1

β2
− 1

)
, Q = Qα(1 +Qβ).

In particular, the algorithm uses at most nQ samples from P .
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2. Mean multicalibration: With probability 1 − 3δ(m2 + m)|G|, output µT is α′-mean multi-
calibrated with respect to G where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n

 .

3. Mean Conditioned Moment multicalibration: With probability 1−3δ|G|(km2 +m), for any
a ∈ {2, . . . , k}, pair (µT ,mT

a ) is (α′, aα′ + β′, am)-mean-conditioned-moment calibrated
where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n



β′ = β + 4

√
ln
(
2
δ

)
2n

+

β − 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n


Proof We prove each guarantee in turn.

Total Iterations: As argued in Theorem 11, if the auditor can successfully find a set S on which
there is α-mean inconsistency and β-pseudo-moment inconsistency respectively in AlternatingGra-
dientDescentFinite (Algorithm 9) and PseudoMomentConsistencyFinite (Algorithm 8), Theorem 7
guarantees that T will be at most 1

α2 − 1 and Theorem 9 guarantees that the total number of gra-
dient descent operations in each PseudoMomentconsistencyFinite will be at most 1

β2 − 1. Then,
because in each iteration of AlternatingGradientDescentFinite, there are k − 1 calls to PseudoMo-
mentconsistencyFinite, the total number of number of gradient descent operations will be at most
Q = Qα(1 +Qβ) where Qα = 1

α2 − 1 and Qβ = (k − 1)( 1
β2 − 1).

Therefore, it is sufficient for us to show that there is α-mean inconsistency and β-pseudo-
moment inconsistency on every St and R returned by ConsistencyAuditor (Algorithm 7) for Al-
ternatingGradientDescentFinite and PseudoMomentconsistencyFinite respectively.

For AlternatingGradientDescentFinite, because we set `
t
(x) = µt(x), `(x, y) = y, and St =

{G(µ, i) : G ∈ G, i ∈ [m]} ∪ {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}, Corollary
19 guarantees that with probability 1 − 3δ|G|(m2 + m), µt is α-mean inconsistent on St with n
λt = sign(µt(St)− µ(St)) as desired. Because T is at most Qα, by a union bound, µt is α-mean-
inconsistent on St for every t ∈ [T ] with probability 1− 3δ|G|(m2 +m)Qα.

Likewise, for PseudoMomentconsistencyFinite, we set `(x) = mk(x), `(x, y) = (y − µ(x))a,
and S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}. Hence, by union bounding over
every a ∈ {2, . . . , k}, Corollary 19 promises us that with probability 1− 3δ|G|m2QαQβ , ma is β-
pseudo-moment inconsistent on R throughout every iteration of PseudoMomentConsistencyFinite
for every a ∈ {2, . . . , k} and ψ = sign(ma(S) − m̃a,µ(S) as desired. Note that there are a total
of Qβ calls to ConsistencyAuditor from each PseudoMomentConsistencyFinite, which is invoked a
total of Qα many times.

Mean Multi-Calibration: Our algorithm halts only if ConsistencyAuditor doesn’t find S in Alter-
natingGradientDescentFinite. Corollary 19 promises us that with probability 1−3δ(m2+m)|G|, µT
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must be α′-mean-consistent on every set S ∈ ST . Because S includes {G(µT , i) : G ∈ G, i ∈ [m]},
it must be that µT is α′-mean multi-calibrated with respect to G.

Mean Conditioned Moment Multi-Calibration: In the last round T , consider each mT
a for a ∈

{2, . . . , k}. PseudoMomentConsistencyFinite returnsmT
a only if ConsistencyAuditor doesn’t return

any R. Corollary 19 guarantees us that with probability 1 − 3δm2|G|, mT
a must be β′-pseudo-

moment-consistent. Because µT is α′-mean consistent and mT
a is pseudo-moment-consistent on

{G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}, Lemma 10 tells us that (µT ,mT
a ) must be

(α′, aα + β′, am)-mean-conditioned-moment multicalibrated. By union bounding over each a ∈
{2, . . . , k} the total failure probability is 1− 3δ|G|(km2 +m).

Corollary 35 Fix target parameters α′, β′, δ′ and ε > 0 such that ε < α′ and ε < β′. Define

Q =
6|G|km2(

α′−ε
6+ 2

ε2

)2(
β′−ε
6+ 2

ε2

)2 , δ =
δ′

max(3|G|(km2 +m), Q)
, nα =

ln(2Qδ )

2

(
α′−ε
6+ 2

ε2

)2 , nβ =
ln(2Qδ )

2

(
β′−ε
6+ 2

ε2

)2 .

Then, AlternatingGradientDescentFinite(α, β, δ, n,G) where

α = 2

√
ln(2Qδ )

2nα
+ ε, β = 2

√√√√ ln(2Qδ )

2nβ
+ ε,

n = max

(
ln(2Qδ )

ln(2δ )
nα,

ln(2Qδ )

ln(2δ )
nβ,

2 ln(2δ )

α2
,
2 ln(2δ )

β2

)

has the following guarantees with probability 1− δ′:

1. The total number of gradient descent updates will be at most Q, where Q is as defined in
Theorem 20.

2. µT is α′-mean-calibrated.

3. For every a ∈ {2, . . . , k}, (µT ,mT
a ) is (α′, aα′ + β′, am)-mean-conditioned-moment cali-

brated.

Proof Note that by construction, we have

α > 2

√
ln(2δ )

2n
and β > 2

√
ln(2δ )

2n
.
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Therefore, in Theorem 20, the level of mean calibration for µT will be

α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ )

2n



≤ α+ 4

√√√√ ln
(
2Q
δ

)
2nα

+

α− 2

√√√√ ln
(
2Q
δ

)
2nα


−22

√
ln(2Qδ )

2nα



= 2

√
ln(2Qδ )

2nα
+ ε+ 4

√√√√ ln
(
2Q
δ

)
2nα

+

(
2

√
ln( 2Q

δ
)

2nα

)
ε2

=

√
ln(2Qδ )

2nα

(
6 +

2

ε2

)
+ ε

= α′,

where the first inequality follows because n ≥ ln( 2Q
δ
)

ln( 2
δ
)
nα and the last equality from the definition of

nα.

Applying the same analysis, we can show that we satisfy pseudo-moment-consistency at level
β′. Therefore, for any a ∈ {2, . . . , k}, (µt,mT

a ) satisfy (α′, aα′ + β′, am)-mean-conditioned-
moment multicalibration.

The failure probabilities for mean muticalibration and that of mean-conditioned-moment multi-
calibration are both less than δ′, as 3δ(m2+m)|G| ≤ 3δ|G|(km2+m) ≤ δ′ and 3δ|G|(km2+m) ≤
δ′.
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The failure probability for termination is

3δ|G|
(

1

α2
− 1

)(
(m2 +m) +m2(k − 1)

(
1

β2
− 1

))
≤ 3δ|G|

(
1

α2

)
2km2

β2

= 6|G|km2δ · 1(√
ln( 2Q

δ
)

2nα
+ ε

)2(√
ln( 2Q

δ
)

2nβ
+ ε

)2

≤ 6|G|km2δ · 1

ln( 2Q
δ
)

2nα

ln( 2Q
δ
)

2nβ

≤ 24|G|km2δ · 1(
ln(2Qδ )

)2nαnβ
= 24|G|km2δ · 1(

ln(2Qδ )
)2 ln(2Qδ )

2

(
α′−ε
6+ 2

ε2

)2

ln(2Qδ )

2

(
β′−ε
6+ 2

ε2

)2

≤ 6|G|km2δ · 1(
α′−ε
6+ 2

ε2

)2(
β′−ε
6+ 2

ε2

)2

= Qδ

≤ δ′

Theorem 22 With probability 1−3δ|G|Qα
(
(m2 +m) +m2Qβ

)
, the running time of Algorithm 9

is O
(
Q|G|m2n

)
= O

(
k|G|m2n
α2β2

)
where Qα, Qβ , and Q are as defined in Theorem 20.

Proof Theorem 20 tells us that except with probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
, the

algorithm will halt after at mostQmany gradient descent updates. For each gradient descent update,
it must have been that Algorithm 7 was invoked with either S = {G(µ, i) : G ∈ G, i ∈ [m]} ∪
{G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}} or S = {G(µ,ma, i, j) : G ∈ G, i, j ∈
[m], a ∈ {2, . . . , k}}. Note that Algorithm 7 needs to iterate through each set S in S, whose size is
at most O(|G|m2) in either case. And processing each set S through Algorithm 6 requires finding
the average of at most O(n) elements twice. Therefore, the algorithm will take time O

(
Q|G|m2n

)
with probability 1− 3δ|G|Qα

(
(m2 +m) +m2Qβ

)
Q.
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D = {(xb, yb)}nb=1 ∼ Pn
Dcheck ∼ Pn
S = {X (µ,ma, i, j) : i, j ∈ [m]}
`(x) = ma(x)
`(x, y) = (y − µ(x))a

R,ψ = LearningOracleConsistencyAuditorWrapper(`, `, β, δ,D,Dcheck,S, A)
while R,ψ 6= NULL do

ma(x) =

{
project[0,1](ma(x)− βψ) if x ∈ R
ma(x) otherwise.

D = {(xb, yb)}nb=1 ∼ Pn
S = {X (µ,ma, i, j) : i, j ∈ [m]}
`(x) = ma(x)
D = {(xb, yb)}nb=1 ∼ Pn
Dcheck ∼ Pn
R,ψ = LearningOracleConsistencyAuditorWrapper(`, `, β, δ,D,Dcheck,S, A)

return mk

Algorithm 12: PseudoMomentConsistencyWithOracle(a, β, δ, µ,ma, n,G)

initialize µ1(x) = 0 for all x
for all 1 < a ≤ k, initialize m1

a(x) = 0 for all x
t = 1
`
t
(x) = µ(x)

`(x, y) = y
Dt =∼ Pn
Dcheckt ∼ Pn
St = {X (µt, i) : i ∈ [m]} ∪ {X (µt,mt

a, i, j) : i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = LearningOracleConsistencyAuditorWrapper(`

t
, `, β, δ,Dt, Dcheckt,St, A)

while St, λt 6= NULL do
µt+1 = MeanConsistencyUpdate(µt, St, λt)
for a = 2, . . . , k do
mt+1
a = PseudoMomentConsistencyFinite(a, β, δ, µt+1,mt

a, n,G).
t = t+ 1
`
t
(x) = µ(x)

Dt ∼ Pn
Dcheckt ∼ Pn
St = {X (µt, i) : i ∈ [m]} ∪ {X (µt,mt

a, i, j) : i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = LearningOracleConsistencyAuditorWrapper(`

t
, `, β, δ,Dt, Dcheckt,St, A)

return (µt, {mt
a}ka=2)

Algorithm 13: AlternatingGradientDescentWithOracle(α, β, δ, n,G, A)

Lemma 36 For each R ∈ R and any χS:

E(x,y)[χS(x) · r+R(x, y)] = PX (R ∩ S)
(
`(R ∩ S)− `(R ∩ S)

)
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E(x,y)[χS(x) · r−R(x, y)] = PX (R ∩ S)
(
`(R ∩ S)− `(R ∩ S)

)
Proof

E(x,y)[χS(x) · r+R(x, y)] =
∑
x,y

P(x, y)χS(x)r+R(x, y)

=
∑

x,y:x∈S,x∈R
P(x, y)(`(x)− `(x, y))

= PX (R ∩ S)
(
`(R ∩ S)− `(R ∩ S)

)
The same argument applies for r−R as well.

Theorem 26 Assume n is sufficiently large such that α > 2

√
ln( 2

δ
)

2n . Algorithm 11 has the following
guarantees:

1. If it returns some S and λ, then with probability 1− 3δ|R| over the randomness of Dcheck,

|`(S)− `(S)| ≥ α

PX (S)
.

2. If it returns NULL, then with probability 1 − |R|(3δ + 2p(n)) over the randomness of D
and Dcheck, for all χS ∈ H and R ∈ R,

|`(R ∩ S)− `(R ∩ S)| ≤ α′ + ρ

PX (R ∩ S)
,

where α′ is as defined in Corollary 19.

Proof With probability at least 1 − 3|R|δ (since |R| ≥ |V|), Corollary 19 gives us the following
guarantees:

1. If S, λ is returned, then∣∣`(S)− `(S)
∣∣ ≥ α

PX (S)
and λ = sign(`(S)− `(S)).

2. If NULL is returned, then for all V ∈ V ,

|`(V )− `(V )| ≤ α′

PX (V )
(4)

Whenever the distributional closeness conditions of Definition 16 hold (which occur with the same

1− 3|R|δ success probability of Corollary 19), and α > 2

√
ln( 2

δ
)

2n , it must be that if |DR| = 0 then
PX (R) ≤ α. And for any such R we have that PX (R∩S′) ≤ α for any other set S′, which implies
that we trivially satisfy (α′ + ρ)-mean consistency for R ∩ S′. More precisely, if PX (R) ≤ α, then

sup
χS′∈H

|`(R ∩ S′)− `(R ∩ S′)| ≤ 1 ≤ α

PX (R ∩ S′)
≤ α′ + ρ

PX (R ∩ S′)
.
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We can therefore restrict our attention to thoseR ∈ R that satisfy |DR| > 0, since we only have
a non-trivial statement to prove for sets R with PX (R) > α. Using Lemma 25 and the definition of
an agnostic learning oracle, we know that for each V = R ∩ S+, with probability 1− p(n),

PX (R ∩ S+)
(
`(R ∩ S+)− `(R ∩ S+)

)
+ ρ

= E(x,y)[χS+(x) · r+R(x, y)] + ρ

≥ sup
χS′∈H

E(x,y)[χS′(x) · r+R(x, y)]

= sup
χS′∈H

PX (R ∩ S′)
(
`(R ∩ S′)− `(R ∩ S′)

)
(5)

The same argument applies for V = R ∩ S−, and we obtain

PX (R ∩ S+)
(
`(R ∩ S−)− `(R ∩ S−)

)
+ ρ ≥ sup

χS′∈H
PX (R ∩ S′)

(
`(R ∩ S′)− `(R ∩ S′)

)
.

(6)

Combining (4), (5), and (6), we get that with probability 1− 2|R|p(n),

sup
χS′∈H

|`(R ∩ S′)− `(R ∩ S′)| ≤ α′ + ρ

PX (R ∩ S′)

Theorem 28 With probability at least 1 − 3δQα
(
(m2 +m) +m2Qβ

)
, the running time of Algo-

rithm 13 is bounded by O(Qm2τ(n)), where Q is the total number of gradient descent operations
as defined in Theorem 20.

Proof The running time of Algorithm 11 isO(m2τ(n)), as we always call it with |R| = O(m2) and
we assumed τ(n) = Ω(n), meaning the running time of the learning oracle dominates the calcula-
tions in the empirical check. And Theorem 27 gives that with probability 1−3δQα

(
(m2 +m) +m2Qβ

)
,

there will be at most Q gradient descent operations. Because the number of gradient descent op-
erations is equal to the number of subroutine calls to Algorithm 11, the overall running time is
O(Qm2τ(n)).

Appendix F. Marginal Prediction Intervals

We now present an application of our results. Given subgroups of interest G, we have shown how
to to construct a multicalibrated mean predictor µ and moment predictors (ma)

k
a=2 that are si-

multaneously mean-conditioned moment-multicalibrated. A key question is whether we can use
mean-conditioned moment multicalibrated predictors in applications in which we would use real
distributional moments, were they available.

In this section, we show that the answer is yes in an important application. Mean-conditioned
moment multicalibrated predictors can be used in tail bounds just as real moments could be to
compute prediction intervals. Where real moments would yield prediction intervals conditioned on
an individual vector of features x, mean-conditioned moment-multicalibrated predictors when used
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in the same computations yield marginal prediction intervals that are simultaneously valid for every
sufficiently large subgroup. In particular, given a coverage failure probability δ and a group size γ
we show how to construct just from mean and moment predictions, for every x ∈ X , an interval
I(x, γ) such that for every G ∈ G and for every pair of predictions i, j such that G(µ,ma, i, j) has
mass at least γ we have: Pr(x,y)[y ∈ I(x, γ)|x ∈ G(µ,ma, i, j)] ≥ 1− δ.

Recall the following tail inequality (a simple consequence of Markov’s inequality: when k = 2,
it is known as Chebyshev’s inequality):

Lemma 37 Let X be a random variable with mean µ. Then for even k, t > 0:

Pr[|X − µ| ≥ t] ≤ E[(X − µ)k]

tk
.

Suppose we knew the real moments mk(x) of the distribution on y conditional on features x: A
direct application of the above lemma would allow us to conclude that for any even moment k:

Pr

[
y 6∈

[
µ(x)−

(
mk(x)

δ

) 1
k

, µ(x) +

(
mk(x)

δ

) 1
k

]∣∣∣∣∣x
]
≤ δ.

Bounds of this form are simple, but also strong: there is always an integer moment k such that
the above bound is at least as tight as a generalized Chernoff bound7 (Philips and Nelson, 1995),
and only the first k ≤ O(log(1/δ)) moments are necessary to match Chernoff bounds at coverage
probability 1− δ (Schmidt et al., 1995).

If we had exactly mean-conditioned moment-calibrated predictors (µ,mk) for some k even,
over a set of groupsG, we would obtain exactly the same bound using these predictors as a marginal
prediction interval: i.e. we would obtain for every G ∈ G, and every i, j:

Pr
(x,y)

[
y 6∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x ∈ G(µ,mk, i, j)

]
≤ δ.

This is because mean-conditioned moment-multicalibrated predictors actually do provide real
distributional moments, over the selection of a random point within any setG(µ,mk, i, j). Of course
we only have approximately mean-conditioned-moment multicalibrated predictors. Given (α, β, ε)-
mean-conditioned-moment multicalibrated predictors (µ,mk), k even, with respect to some col-
lection of groups G, we can endow our predictions with (marginal) prediction intervals that have
coverage probability 1− δ as follows. The width of our prediction interval for a point x will be:

∆γ,k(x) =
α

γ
+ ε+

1

m
+

(
mk(x) + ε+ 1

m + β
γ

δ

) 1
k

,

Our prediction interval for x will be centered at its predicted mean, and is defined as follows:

Iγ,k(x) = [µ(x)−∆γ,k(x), µ(x) + ∆γ,k(x)].

These are valid marginal prediction intervals as averaged over any set of the formG(µ,mk, i, j)
that has measure larger than γ. Note that all of the approximation terms α, β, ε, 1/m are terms that
we can drive to zero at polynomial cost in running time and sample complexity.

7. Chernoff’s bound is Pr[X ≥ t] ≤ infθ≥0MX(θ)e−θt, where MX(θ) is the moment generating function for X
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Theorem 38 Assume that µ,mk is (α, β, ε)-mean-conditioned moment multicalibrated with re-
spect to G, with k even. Then for any groupG ∈ G and any setG(µ,mk, i, j) such thatPX [G(µ,mk, i, j)] ≥
γ, we have:

P[y 6∈ Iγ,k(x)|x ∈ G(µ,mk, i, j)] ≤ δ

Proof To see this note that:

P[y 6∈ Iγ,k(x)|x ∈ G(µ,mk, i, j)]

=P

|y − µ(x)| ≥ α

γ
+

1

m
+ ε+

(
mk(x) + 1

m + ε+ β
γ

δ

) 1
k

∣∣∣∣∣∣x ∈ G(µ,mk, i, j)


≤P

|y − µ(G(µ,mk, i, j))| ≥
α

γ
+ ε+

(
mk(G(µ,mk, i, j)) + β

γ + ε

δ

) 1
k

∣∣∣∣∣∣x ∈ G(µ,mk, i, j)


≤P

[
|y − µ(G(µ,mk, i, j))| ≥

(
mk(G(µ,mk, i, j))

δ

) 1
k

∣∣∣∣∣x ∈ G(µ,mk, i, j)

]
≤δ

Here, the first inequality follows from the fact that all x ∈ G(µ,mk, i, j) are (by definition) such
that |µ(x) − i

m | ≤
1
2m and |mk(x) − j

m | ≤
1
2m , and hence |µ(x) − µ(G(µ,mk, i, j))| ≤ 1

m and
|mk(x)−mk(G(µ,mk, i, j)))| ≤ 1

m . The second inequality follows from the definition of (α, β)-
mean conditioned moment multicalibration and the fact that P[G(µ,mk, i, j)] ≥ γ. Finally, once
we have replaced our mean and moment estimates with the true mean and moment ofG(µ,mk, i, j),
the final inequality follows as an application of Lemma 37.

This theorem shows how—given (α, β, ε) mean-conditioned moment-multicalibrated predic-
tors µ,mk—we can construct prediction intervals for any set G(µ,mk, i, j) with probability larger
than γ.8 However, we have more information available to us: We have mean conditioned moment-
calibrated predictors for all moments 2 thru k, (ma)

k
a=2. A straightforward valid solution is to pick

some even moment a s.t. 1 < a ≤ k, and then construct prediction intervals as above. We could
optimize our choice of a so as to minimize e.g. the expected width of the prediction intervals over a
random choice of x. But this leads to the question of whether we can do better by using more than
one moment estimator at a time. In Appendix G we show that this problem reduces to the venerable
submodular-cost set-cover problem. Known approximation guarantees for this problem are rela-
tively weak in this context (scaling with log |X |, which will typically be linear in the dimension of
the data). We leave the question of how to optimally use multiple mean-conditioned moment mul-
ticalibrated predictors—taking advantage of multiple moments simultaneously—to future research.

8. We showed this just for even moments k — but a version of Lemma 37 also holds for k odd, i.e. for any r.v. X with
mean µ, any number k, and any t > 0, we have Pr[|X − µ| ≥ t] ≤ E[|(X−µ)k]

tk
. We can use this to construct valid

confidence intervals using “absolute central moments” of any degree, even or odd. Note also that our algorithms and
analysis apply identically if the goal was to provide mean-conditioned, multicalibrated predictors of absolute central
moments (i.e. the analog of Definition 4 but where instead of mk(·), we calibrate our predictor to the analogous
absolute central moment).
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Appendix G. A Submodular Set-Cover Formulation

We can define the following problem. Theorem 38 shows us that for every even a, and every
G ∈ G, i, j ∈ [m], Iγ,a(x) forms a valid marginal prediction interval for every set G(µ,ma, i, j)
with probability at least γ under PX . Can we construct tighter prediction intervals using all bk2c
moments?

We make the following simplifying assumptions in this section:

1. X is a set with finite cardinality.

2. PX is known exactly (note that we do not assume we know the distribution on labels y, which
preserves the core motivation of the problem).

3. For every x ∈ X , there exists G ∈ G, a even s.t. 1 < a ≤ k, and i, j ∈ [m] such that
x ∈ G(µ,ma, i, j) and PX (G(µ,ma, i, j)) ≥ γ (otherwise there is no way to give a valid
marginal prediction interval for such an x).

Let us define the set of all relevant sets as

S ≡ {G(µ,ma, i, j) : ∀G ∈ G, i, j ∈ [m], 1 < a ≤ k, a even s.t. PX (G(µ,ma, i, j)) ≥ δ}.

With each set S ∈ S, we associate the width ∆S(·) in the obvious way.
Given any S ′ ⊆ S we say that S ′ covers X if ∀x ∈ X , ∃S ∈ S ′ s.t. x ∈ S. Given any S ′ ⊆ S

that covers X , we can construct valid marginal prediction intervals for all x ∈ X:

∆S′(x) ≡ max
S∈S′|x∈S

∆S(x),

IS′(x) = [µ(x)−∆S′(x), µ(x) + ∆S′(x)].

To see that this will result in a valid prediction interval, observe that for any x ∈ X , it is covered
by some S ∈ S ′. By definition of S ′, S = G(µ,ma, i, j) for some a even, i, j ∈ [m], G ∈ G. Note
that Iγ,a(x) ⊆ IS′(x) by construction of IS′(·). Therefore Theorem 38 ensures that these prediction
intervals are valid for any S ∈ S ′, and indeed, therefore valid for any group G ∈ G.

A natural optimization problem is to find a subset S ′ that covers X so as to minimize the ex-
pected width of the marginal prediction intervals that can be produced in this way, i.e. solves
(exactly or approximately)

min
S′⊆S

Ex∼PX [∆S′(x)]

s.t. S ′ covers X .

We can rewrite the problem in the following way. LetA be a 0−1 matrix of dimension |X |×|S|.
The columns correspond to sets S ∈ S and the rows to elements x ∈ X . If AxS = 1 this means that
element x ∈ X is contained in set S ∈ S. Associated with each column S there is a function ∆S .
Recall that PX (x) denotes the probability of x.
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We can denote any subset of S ′ ⊆ S by a 0/1 vector w ∈ {0, 1}|S| such that wS = 1 if S ∈ S ′.
We can therefore recast the optimization problem:

min
z,w

∑
x∈X
PX (x)zx

s.t. zx −∆S(x)AxSwS ≥ 0 ∀x ∈ X∑
S∈S

AxSwS ≥ 1 ∀x ∈ X .

For any subset S ′ ⊆ S let fx(S ′) = maxS∈S′ ∆S(x)AxS . Notice fx(S ′) is a non-decreasing
and submodular function of S ′. Let f(S ′) =

∑
x PX (x)fx(S ′), clearly f(·) is non-decreasing and

submodular. Similarly, for any S ′ ⊆ S let w be the associated 0/1 vector and define g(S ′) = |{x :∑
S∈S AxSwS ≥ 1}|. Again g(·) is a non-decreasing and submodular function of S ′. Observe that

can write our problem as:

min
S′⊆S

f(S ′),

s.t. g(S ′) ≥ |X |.

Therefore our problem is the submodular cost submodular cover problem.
We can now hope to apply known results to solve it. For example, Wan et al. (2010) show that the

greedy solution (to iteratively add the set with the smallest average width) is approximately optimal.
In particular, their Theorem 2.1 guarantees that the greedy solution provides a k

2H-approximate to
our optimization problem where H is the `th-harmonic number, ` = max{|S| : S ∈ S}, and k is
the number of moments we have access to.

Unfortunately in this context, these guarantees are unsatisfactory: the approximation grows with
the number of moments k we have access to, and with log |X |, which will typically be linear in the
data dimension. Note that Wan et al. (2010) study general submodular objective functions and does
not exploit the specific structure of the objective function here. We leave the question of whether
guarantees can be offered for this problem to future research. Another natural question is how to
approximate this optimization when PX is not known, i.e. we only have a finite sample from P .
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