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Abstract
A common data analysis task is the reduced-rank regression problem:

min
rank-k X

‖AX −B‖,

whereA ∈ Rn×c andB ∈ Rn×d are given large matrices and ‖·‖ is some norm. Here the unknown
matrix X ∈ Rc×d is constrained to be of rank k as it results in a significant parameter reduction
of the solution when c and d are large. In the case of Frobenius norm error, there is a standard
closed form solution to this problem and a fast algorithm to find a (1 + ε)-approximate solution.
However, for the important case of operator norm error, no closed form solution is known and the
fastest known algorithms take singular value decomposition time.

We give the first randomized algorithms for this problem running in time

(nnz(A) + nnz(B) + c2) · k/ε1.5 + (n+ d)k2/ε+ cω,

up to a polylogarithmic factor involving condition numbers, matrix dimensions, and dependence on
1/ε. Here nnz(M) denotes the number of nonzero entries of a matrix M , and ω is the exponent of
matrix multiplication. As both (1) spectral low rank approximation (A = B) and (2) linear system
solving (n = c and d = 1) are special cases, our time cannot be improved by more than a 1/ε
factor (up to polylogarithmic factors) without a major breakthrough in linear algebra. Interestingly,
known techniques for low rank approximation, such as alternating minimization or sketch-and-
solve, provably fail for this problem. Instead, our algorithm uses an existential characterization of
a solution, together with Krylov methods, low degree polynomial approximation, and sketching-
based preconditioning.

1. Introduction

Given an n×cmatrixA, an n×dmatrixB, and an integer parameter k, the reduced-rank regression
problem asks to solve for a rank at most k matrix X ∈ Rc×d for which ‖AX −B‖ is minimized in
some norm. A standard motivation is that by constraining X to have rank at most k, the solution X
can be represented using only (c+ d)k parameters rather than c · d parameters. Another important
motivation is that the rank constraint provides regularization on the solution, which often leads to
better generalization. Yet another motivation is that the solution X can be explained by at most
k latent factors, and one can try to interpret the latent factors, plot them [3], and so on. This is
commonly done in ecology, where reduced-rank regression is known as redundancy analysis [15],
and is a type of ordination method [14]. For a survey, we refer the reader to the textbook by Velu
and Reinsel [29] devoted to reduced-rank regression.

The minrank-k X ‖AX−B‖ problem is only known to have a closed form solution when the error
measure is the Frobenius norm. In this case, the solution is given by X = A+[AA+B]k (see, e.g.,
[7]). Here for a matrix M , [M ]k denotes the best rank k approximation for M in Frobenius norm
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and M+ denotes the Moore-Penrose pseudo-inverse. This has a natural geometric interpretation -
project each of the columns of B onto the column span of A and find the best rank-k approximation
to the projected matrix. By the Pythagorean theorem, one can show there is no loss in this approach,
as the optimal cost decomposes into the sum of squared distances of columns of B to the column
span of A followed by the best rank-k approximation to the projected matrix inside of the column
span of A.

In a number of applications, the Frobenius norm is not the right measure. For example, in cancer
genetics more robust versions are desired, and versions based on the sum of Euclidean lengths
instead of the sum of squared Euclidean lengths are sometimes used [25]. Still, in other applications,
the operator norm error solution may give a solution of much better quality. Indeed, ifB has a heavy
tail of singular values, as is common for data analysis and learning applications, then it has no good
rank-k approximation, much less one in the column span of A, and consequently, outputting an X ′

with ‖AX ′ −B‖2F ≤ (1 + ε)‖AXF −B‖2F, where XF is the optimal Frobenius norm solution, may
be meaningless as one could just set X ′ = 0. Indeed, this is sometimes a motivation (see, e.g., [18])
for the low rank approximation problem with operator norm error, which is a special case of our
problem when A = B, and a number of works [9; 12; 13; 28] suggest considering operator norm
error in certain contexts.

It is tempting to think that the Frobenius norm solution holds also for other unitarily invariant
norms, such as the operator norm. However, one can show this is not the case. Indeed, let XF be the
solution to minrank-k X‖AX −B‖F. It was shown by Boutsidis [2] that this is a

√
2-approximation,

namely, that ‖AXF −B‖2 ≤
√

2 · Opt where Opt = minrank-k X ‖AX −B‖2. Unfortunately, the√
2 factor is tight and there are instances where the Frobenius norm solution really does give at best

a
√

2-approximation. Suppose, for example1

A =

0 0
1 0
0 1

 , and B =

1 0
1 0
0 1 + γ

 .
For the problem minrank-1 X ‖AX −B‖F, the optimum solution is

XF =

[
0 0
0 1 + γ

]
, with AXF −B = −

1 0
1 0
0 0


and thus, ‖AXF −B‖2 =

√
2. On the other hand, for

X =

[
1 0
0 0

]
, AX −B = −

1 0
0 0
0 1 + γ

 ,
and so ‖AX − B‖2 = (1 + γ). As γ → 0, the approximation factor becomes arbitrarily close to√

2.
We note that the reduced-rank regression problem in operator norm is non-convex in X due

to the rank constraint, and it is not even clear this problem can be solved in polynomial time. Of
the few techniques that are known for rank-constrained optimization, they do not apply here. One

1. We thank Ankur Moitra for pointing out this example to us.
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common method is alternating minimization, writing the problem above as minU,V ‖AUV − B‖2,
where U ∈ Rn×k and V ∈ Rk×d. The idea is to fix U , then solve for V , then fix V and solve for U ,
and repeat. When U is fixed, then V = (AU)+B is the optimum, and when V is fixed, the solution
turns out to be U = A+BV +, though this is not as obvious, see (1.3) in [16], taking p → ∞, for
a proof. It turns out if one initializes with the Frobenius norm solution U, V , then each of these
operations does not change U or V , and so by the example above, alternating minimization gives at
best a

√
2-approximation. Other techniques include sketching to a small problem, and solving the

small problem in the sketch space; sketches are well-known not to apply to operator norm low rank
approximation problems, motivating the first open question in [31].

This issue of polynomial time solvability was raised in the control theory literature by Sou and
Rantzer [27], where a (1 + ε)-approximation was obtained, but the the time required to find the
solution was at least the time to perform a singular value decomposition (SVD) on matrices A and
B, which is prohibitive for large n, c, and d. This is a common setting of parameters and indeed,
one of the motivations for constraining X to have rank at most k in the first place. This motivates
the question:

“Are there fast algorithms for reduced-rank regression with operator norm error?”

1.1. Main Result

We answer the question above by designing a new randomized algorithm running in time

O

((
nnz(B) · k

ε
+

nnz(A) · k
ε1.5

+
c2k

ε1.5
+

(n+ d)k2

ε

)
· polylog(κ(B), n, d, k, 1/ε) + cω

)
.

Here, κ(B) denotes σ1(B)/σk+1(B). This significantly improves over Sou and Rantzer’s polyno-
mial time result, which takes Ω(nd2 + nc2) time.

We note that spectral low rank approximation is a special case in which A = B, and the best
known upper bound is O(nnz(A) · k/

√
ε) for this problem, up to logarithmic factors [18]. A major

open question in randomized numerical linear algebra is to improve this bound (see, e.g., Open
Question 1 of [31]), or show that it is not possible. We note that for k = 1, in the matrix-vector
query model, Ω(1/

√
ε) queries is known to be required if a slightly stronger guarantee than spectral

low rank approximation is desired, even for adaptive algorithms [4; 26]. Another important point
is that when n = c and d = 1, this is just the time to solve an arbitrary linear system, for which
the best known time is cω. Improving either spectral low rank approximation or linear system
solving is a major open question, and barring that, our algorithm is optimal up to a 1/ε factor and
polylogarithmic factors involving matrix dimensions and condition numbers.

1.2. Our Techniques

Throughout the paper, let Opt := inf rank-k X ‖AX −B‖2, β be such that (1 + ε)Opt ≤ β ≤
(1 + 2ε)Opt, and let ∆ := BT(I − AA+)B. The work of Sou and Rantzer [27] shows that
Xβ = A+[AA+B(β2I −∆)−1/2]k(β

2I −∆)1/2 satisfies ‖AX −B‖2 < β. For completeness, we
give a short proof of this fact in this paper. It is not a priori clear how to extract a solution from this
expression, while multiplying out all of the matrices, computing an inverse square root, and taking
an SVD would take a prohibitive amount of time. This is essentially the algorithm of [27].
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We instead show that not only the best rank k approximation of the matrix AA+B(β2I −
∆)−1/2, but even a 1 + ε approximation in spectral norm yields an overall solution of cost at most
β(1+O(ε)). To obtain such a 1+ε approximation, we next try to apply the iterative method of [18]
which computes the Krylov matrix K = [C ·G, (CCT) ·C ·G, (CCT)2 ·C ·G, . . . , (CCT)(q−1)/2 ·
C ·G] where G is a Gaussian matrix with k columns, q = O(log(d/ε)

√
1/ε) is an odd integer, and

C = AA+B(β2I − ∆)−1/2. The first problem with this approach is that we have to compute the
matrix vector product CG and to do this, in each iteration we need to (1) multiply by the square
root of an inverse (multiplication by (β2I −∆)−1/2), and then (2) project onto the column span of
A (multiplication by AA+).

Computing exact matrix-vector products with the matrices AA+ and (β2I − ∆)−1/2, is slow
when c, d are large, and finding the matricesAA+ and (β2I−∆)−1/2 takes at least Ω(nc2+nnz(B)·
c + dω) time. To avoid such a running time, we show that the Block Krylov Iteration algorithm of
Musco and Musco [18] works even with approximate matrix-vector products i.e., we only need
algorithms to compute vectors C ◦ v and CT ◦ v′ for arbitrary vectors v, v′ such that ‖C ◦ v − Cv‖2
and ‖CT ◦ v′ − CTv′‖2 are small. Here and throughout the paper, we use the notation M ◦ v to
denote an approximation to the matrix-vector product Mv.

An important idea of Musco and Musco [18] is that the Krylov matrix K spans a rank k matrix
p(C)G =

∑
odd i≤q pi(CC

T)(i−1)/2G, where p is a polynomial, such that projecting the columns
of the matrix C onto the column span of p(C)G gives a good rank k approximation. To prove
that the algorithm works even with approximate matrix-vector products, we first show that the ap-
proximations computed to matrices (CCT)(i−1)/2CG for i = 1, . . . , q are good enough to imply
that the approximate Krylov matrix K ′ spans a matrix Apx that is close to the matrix p(C)G in
Frobenius norm. To then conclude that the column space of Apx is also a good subspace to project
the matrix C onto, we need to show that (Apx )(Apx )+ ≈ (p(C)G)(p(C)G)+. We prove a simple
lemma that shows if ‖p(C)G − Apx‖F is small, and p(C)G has a good condition number, and so
then ‖(p(C)G)(p(C)G)+ − (Apx )(Apx )+‖2 is small. Crucially, as G is a Gaussian matrix that
has, with good probability a good condition number, we only have to bound σ1(p(C))/σk(p(C))
to obtain a bound on the condition number of p(C)G. Using several properties of Chebyshev poly-
nomials used to define the polynomial p(x), we show that σ1(p(C))/σk(p(C)) can be bounded in
terms of κ = σ1(C)/σk+1(C), which finally shows that the k-dimensional column span of Apx is
also a good subspace to project the columns of C.

As the parameters of the polynomial p(x) are unknown, we cannot actually compute the matrix
Apx and then project C onto the column span. But using the fact that K ′ spans Apx , we can con-
clude, similarly to the arguments of [18], that the best rank k Frobenius norm approximation of C
in the span of K ′ is a good rank k approximation to C. Using the oracle to compute approximate
matrix-vector products with the matrixC, we recover a 1+ε approximation to the best rank k Frobe-
nius norm approximation of C inside the span of K ′, which we then show is a 1 + ε approximation
to a spectral norm low rank approximation of matrixC. Our analysis that the Block Krylov Iteration
algorithm works with approximate matrix-vector products could help justify why the Block Krylov
Iteration algorithm works well when using finite precision arithmetic rather than exact arithmetic.
Our results address the comments of [19] about the stability of block Lanczos based methods for
problems such as low rank approximation. Though several analyses of the noisy power method have
been done previously [1; 10; 11], where each intermediate computation is corrupted by Gaussian
noise, we are not aware of an analysis that works for worst case corruption. Also, previous work
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bounds the amount of Gaussian noise that can be added in terms of a gap between σk and σk+1,
which can be 0, and would not work for our analysis.

We return to the task at hand, i.e., of computing a low rank approximation of AA+B(β2I −
∆)−1/2. We show that we can replace the matrix (β2I − ∆)−1/2 with the matrix (1/β)r(∆/β2),
where r(x) is a polynomial of degree Õ(1/

√
ε), using polynomial approximation techniques based

on Chebyshev polynomials (see, e.g., [24] and the references therein). Here we crucially use the
fact that (1 + 2ε)Opt ≥ β ≥ (1 + ε)Opt ≥ (1 + ε)‖(I −AA+)B‖2 to lower bound the minimum
singular value of the matrix (β2I −∆), thereby obtaining an upper bound on the number of terms
required to approximate (I− (∆/β2))−1/2 with a Taylor series. Then we replace each monomial in
the Taylor series with a low degree polynomial approximation to construct a polynomial r(x). The
replacement of (β2I−∆)−1/2 with the matrix r(∆/β2) is done as we can give very fast algorithms
to approximately multiply a vector with the matrix r(∆/β2), as discussed below.

LetM′ = AA+B · r(∆/β2). Recall ∆ = BT(I −AA+)B. To approximate the matrix-vector
product ∆u for an arbitrary vector u, we need only approximate BTAA+Bu, since BTBu can
be computed exactly in nnz(B) time. For computing an approximation to AA+(Bu), we use fast
sketching-based preconditioning methods for linear regression, which show given an arbitrary vec-
tor b and accuracy parameter εreg how to find an x for which ‖Ax−AA+b‖2 ≤ εreg‖(I −AA+)b‖2
in time O((nnz(A) + c2) log(1/εreg) + cω), where ω ≈ 2.376 is the exponent of matrix multipli-
cation [6; 17; 21]. We note that we only need to pay the cω time once to compute a preconditioner,
after which each regression problem takes O((nnz(A) + c2) log(1/εreg)) time. This algorithm to
approximately compute ∆u for an arbitrary vector u is extended to approximate r(∆/β2) · v for
an arbitrary v. After approximating the product r(∆/β2) · v with a vector y, we approximate the
vector AA+By again using the sketching-based preconditioning methods for linear regression.

Similarly we also give an algorithm to approximate M′Tv′ for an arbitrary vector v′. Thus,
as discussed above, we can obtain using a Block Krylov algorithm, a matrix Z with orthonormal
columns for which ‖ZZTM′ −M′‖2 ≤ (1 + ε)σk+1(M′) and then conclude that

‖AA+Z(AA+Z)+B −B‖2 ≤ (1 +O(ε))β = (1 +O(ε))Opt

and that the rank k matrix X = A+Z(AA+Z)+B is a 1 + O(ε) approximation for the problem
minrank-k ‖AX −B‖2.

The time complexity of our algorithm depends logarithmically on κ(B) = σ1(B)/σk+1(B)
and κ(AA+B) = σ1(AA+B)/σk+1(AA+B). We show that if B̃ = B + αGFT where G is an
n× (k+ 1) random Gaussian matrix and FT has k+ 1 orthonormal rows, then for a suitable value
of α, the condition number κ(AA+B̃) ≤ (Cn/ε)κ(B) for a constant C. We also show that a 1 + ε
approximation for reduced rank regression computed using the matrix B̃ is a 1+O(ε) approximation
for reduced rank regression on matrix B, thus removing the dependence on κ(AA+B). Note that
matrix-vector products with B̃ can be computed in nnz(B) + (n+ d)k time.

Our final dependence on ε in the running time is 1/ε3/2, ignoring polylogarithmic factors, where
a factor of 1/

√
ε is from the number of iterations in the Block Krylov Iteration algorithm of Musco

and Musco [18], a factor of 1/
√
ε is from the degree of the polynomial r(x), which is used as a proxy

for the matrix (β2I − ∆)−1/2 with a matrix r(∆/β2), and a factor of 1/
√
ε is due to the running

time of high-precision regression methods based on the accuracy with which the approximate matrix
products need to be computed.
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2. Notation and Preliminaries

For a matrix M , nnz(M) denotes the number of nonzero entries in M . We refer to the Singular
Value Decomposition (SVD) with only nonzero singular values as the “thin” SVD. Given an arbi-
trary matrix M , colpsan(M) denotes the subspace spanned by the columns of M , and the matrix
M+ denotes the Moore-Penrose pseudo-inverse of matrix M . Given a subspace V , the matrix PV
denotes the projection onto the subspace V . Therefore PV u = arg minv∈V ‖u− v‖2 for all vectors
u. Given a matrix M , we use PM to denote Pcolspan(M).

For a matrix M , the Frobenius norm (
∑

i,jM
2
i,j)

1/2 is denoted by ‖M‖F and the operator norm
(or spectral norm) supx ‖Mx‖2/‖x‖2 is denoted by ‖M‖2. For a square matrix M , tr(M ) denotes
the sum of diagonal entries. For matrices M and M ′ of the same dimensions, 〈M,M ′〉 denotes
tr(MTM ′) =

∑
i,jMi,jM

′
i,j . We use the following standard facts repeatedly throughout the paper:

for any matrix M , (1) ‖M‖2 ≤ ‖M‖F, (2) ‖M‖F ≤
√

rank(M)‖M‖2 and (3) PM = MM+.
For any matrices A,B and C, (i) tr(ABC) = tr(BCA), (ii) ‖ABC‖F ≤ ‖A‖2‖B‖F‖C‖2 and (iii)
〈A,B〉 ≤ ‖A‖F‖B‖F.

For a symmetric matrix M , define psd(M) to be the closest positive semi-definite matrix to M
in Frobenius norm. It can be shown that if M =

∑
i λiviv

T
i , then psd(M) =

∑
i:λi≥0 λiviv

T
i .

Weyl’s Inequality. For matrices A and B, Weyl’s inequality gives that σi+j−1(A + B) ≤
σi(A) + σj(B) for all i and j. In particular, if ‖A−B‖2 ≤ ε, |σi(A)− σi(B)| ≤ ε for all i.

Polynomials and Matrices. Let p(x) =
∑d

i=0 pix
i be a degree d polynomial. We define

‖p‖1 :=
∑

i |pi| to be the sum of absolute values of the coefficients of the polynomial p(x). Given
A ∈ Rn×d, let A = UΣV T be the singular value decomposition of A with Σ ∈ Rn×d. Define
p(A) := Up(Σ)V T where p(Σ) is the matrix with main diagonal entries p(σ1), . . . , p(σd). It is
easy to check that the singular values of p(A) are equal to |p(σ1)|, . . . , |p(σd)|.

Singular Value Excess. Let A ∈ Rn×d with n ≥ d be an arbitrary matrix. Let σ1 ≥ σ2 ≥
· · · ≥ σd ≥ 0 be the singular values of matrix A. The Singular Value Excess of matrix A, denoted
by sve(A), is defined as the number of singular values of matrix A that are greater than or equal to
1 i.e.,

sve(A) = |{i ∈ [d] |σi ≥ 1}|.

As eigenvalues of matrix I−ATA are 1−σ2
1 ≤ · · · ≤ 1−σ2

d, sve(A) is equal to the number of non-
positive eigenvalues of the matrix I − ATA. For any symmetric matrix M , let k−(M) denote the
number of non-positive eigenvalues of the matrix M . For any matrix A, sve(A) = k−(I −ATA).

Sketching Based Preconditioning for High-Precision Regression. Given a matrix A ∈ Rn×c
and a vector b ∈ Rn, we use fast sketching based preconditioning methods given by the following
theorem to obtain a (1+ε) approximation to the problem minx ‖Ax− b‖2. See [31] and references
therein for more background.

Theorem 1 (High Precision Regression/Approximate Projections) Given a matrix A ∈ Rn×c
and a vector b ∈ Rn, we can compute a vector x in time O((nnz(A) + c2) log(1/ε) + cω) that
satisfies ‖Ax− b‖22 ≤ (1 + ε)‖AA+b− b‖22. By the Pythagorean theorem, the vector x obtained
satisfies ‖AA+b−Ax‖22 ≤ ε‖AA+b− b‖22.

We have to pay cω only once to compute a preconditioner. Thereafter, every regression problem
can be solved in time O((nnz(A)+ c2) log(1/ε)). Throughout the paper, we use HIGHPRECISION-
REGRESSION(A, b, ε) to denote the algorithm implied by Theorem 1. We extend the notation to
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compute approximate projections of each of the columns of matrix B, instead of just a single vector
b, onto the column space of A.

Low Rank Approximation(LRA). LetA ∈ Rn×c andA = UΣV T be its “thin” Singular Value
Decomposition, where UTU = I , V TV = I and Σ = diag(σ1, . . . , σrank(A)) with σ1 ≥ σ2 ≥ · · · ≥
σrank(A) > 0. For any k ≤ rank(A), we define [A]k :=

∑k
i=1 σiU∗i(V

T)i∗, where U∗i denotes the
i-th column of matrix U and V T

i∗ denotes the i-th row of matrix V T. The matrix [A]k optimally
solves the problems minrank-k X‖A−X‖F and minrank-k X ‖A−X‖2. As computing [A]k exactly
is expensive, we use the Block Krylov Iteration algorithm of [18] to obtain a matrix Z ∈ Rn×k for
which ZZTA is a good solution to the Frobenius norm and spectral norm low rank approximation
problems.

Theorem 2 (Musco and Musco [18]) Given a matrix A ∈ Rn×d such that the products Av ∈ Rn
and ATv′ ∈ Rd can be computed in time T for any vectors v ∈ Rd and v′ ∈ Rn, the Block Krylov
Iteration algorithm runs in time

O

(
T
k log d

ε1/2
+
nk2 log2(d)

ε
+
k3 log3(d)

ε3/2

)
and returns a matrix Z ∈ Rn×k with orthonormal columns for which

‖A− ZZTA‖2 ≤ (1 + ε)‖A− [A]k‖2 and ‖A− ZZTA‖F ≤ (1 + ε)‖A− [A]k‖F.

Frobenius Norm Reduced-Rank Regression. As discussed in the introduction, there is a
closed form solution to the reduced-rank Frobenius norm regression problem.

Lemma 3 (Lemma 4.1 of [31], Lemma 2 of [18]) Given matrices A ∈ Rn×c, B ∈ Rn×d, and a
rank parameter k ≤ c, let matrix Q denote an orthonormal basis for the column span of A. Then
minrank-k X‖AX − B‖F = ‖Q[QTB]k − B‖F = ‖[AA+B]k − B‖F. If Ū Σ̄2ŪT is the SVD of
QTAATQ, and Ūk denotes the first k columns of Ū , then [QTB]k = ŪkŪ

T
k Q

TB, and therefore

min
rank-k X

‖AX −B‖F = ‖Q[QTB]k −B‖F = ‖(QŪk)(QŪk)TB −B‖F.

Chebyshev Polynomials. The Chebyshev polynomials are defined as

T0(x) = 1, T1(x) = x and Ti(x) = 2xTi−1(x)− Ti−2(x)

for all i ≥ 2. Thus Ti(x) is a polynomial of degree i. It can be shown that if i is odd, then Ti(x) has
only odd degree monomials. Chebyshev polynomial Ti has the property that ‖Ti‖1 ≤ (1 +

√
2)i for

all i. See [18] for more properties of Chebyshev polynomials.

3. Previous work

Let A ∈ Rn×c be a matrix and UΣV T be the “thin” SVD of A, where U is an orthonormal basis
for the column space of A. Note that the projection matrix onto the column space of A is given by
AA+ = UUT. The first algorithm to solve minrank-k X ‖AX −B‖2 was by Sou and Rantzer [27].
They consider the following problem:

minimize rank(X)
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such that ‖AX −B‖2 < 1. (1)

As multiplying a matrix with a projection matrix does not increase the operator norm, we have that
‖AX −B‖2 ≥ ‖(I −AA+)(AX −B)‖2 = ‖(I −AA+)B‖2. Thus the problem is feasible only
when ‖(I −AA+)B‖2 = ‖(I − UUT)B‖2 < 1. The following theorem characterizes the solution
for (1).

Theorem 4 (Sou and Rantzer [27]) Given matrices A ∈ Rn×c and a matrix B ∈ Rn×d, if there
is a matrix Y such that ‖AY −B‖2 < 1, then the optimum value of (1) is sve(B) where sve(B)
denotes the number of singular values of B that are greater than or equal to 1.

For an arbitrary s > 0, consider the problem (1) with matrices A/s and B/s. The problem is
feasible if and only if ‖(I − UUT)(B/s)‖2 < 1, i.e., if and only if ‖(I − UUT)B‖2 < s. Suppose
s is such that s > ‖(I − UUT)B‖2. Then Theorem 4 implies that there is a rank k matrix X such
that ‖(A/s)X − (B/s)‖2 < 1 if and only if k ≥ sve(B/s), i.e., σk+1(B/s) < 1. This argument
shows that for any s > max(σk+1(B), ‖(I − UUT)B‖2), there is a rank k matrix X such that
‖AX −B‖2 < s. Thus Opt = max(σk+1(B), ‖(I − UUT)B‖2).

It is interesting and perhaps surprising that the above theorem implies we can obtain a so-
lution that has a value max(σk+1(B), ‖(I − UUT)B‖2), which is a simple lower bound on the
optimum. This shows that if ‖(I − UUT)B‖2 ≤ σk+1(B), there is a rank k matrix in the col-
umn span of matrix A that is as good of an approximation to B in spectral norm as [B]k. Also,
if ‖(I − UUT)B‖2 ≥ σk+1(B), then there is a rank-k matrix in the column space of A that is as
good of an approximation to B in spectral norm as AA+B = UUTB, the projection of B onto the
column span of A.

We thus have the following corollary summarizing the discussion above. The corollary was also
observed in [see 20, Section 4] in terms of a different parameter they call the critical rank.

Corollary 5 Given matrices A ∈ Rn×c, B ∈ Rn×d and a parameter k,

inf
rank-k X

‖AX −B‖2 = max(‖(I −AA+)B‖2, σk+1(B)).

We give a proof of Theorem 4 for completeness in Appendix A.1. Our proof is similar to the proof
of Sou and Rantzer [27] with some minor changes.

4. Reduced-Rank Regression in Operator Norm

We first consider the case when c, d are small. In this case, we could assume that we can compute
matrices U and ∆, where U is an orthonormal basis for the column span of matrix A, and the
matrix ∆ = BT(I − UUT)B. We give a simple algorithm that demonstrates our techniques. We
then extend these ideas to the case when c, d are large, for which computing an orthonormal basis
for A and computing ∆ is prohibitively expensive.

From Corollary 5, we have that Opt = max(‖(I − UUT)B‖2, σk+1(B)). Let β be such that
(1 + ε)Opt ≤ β ≤ (1 + 2ε)Opt, which can be found using the Block Krylov algorithm. Throughout
the paper we assume we know the value β.

Lemma 6 If there exists a rank-k matrix X such that ‖UX −B‖2 < β, then σk+1(UTB(β2I −
∆)−1/2) < 1.

8
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Algorithm 1: Low Rank Approximation with Approximate Matrix Multiplication

Input: M ∈ Rn×d, k ∈ Z, ε > 0,OracleM : Rd × ε→ Rn,OracleMT : Rn × ε→ Rd
Output: Z ∈ Rn×k
G ∼ N (0, 1)d×k, κ← σ1(M)/σk+1(M), q ← O((1/

√
ε) log(d/ε))

ε◦ ← O
(
ε/(κ2+5qk7Cq

)
), ε• ← O

(
ε2/(48κ(κ2(

√
qk)k))

)
/* Let ◦ and • denote approximate matrix-vector products using the Oracles

with accuracy ε◦ and ε•, respectively */

K ′ ← [(MMT)◦(q−1)/2M ◦G, (MMT)◦(q−3)/2M ◦G, . . . ,M ◦G]
Q′ ← Orthonormal basis for K ′

[Ū , Σ̄2, ŪT]← SVD(Q′T(M • (MT •Q′)))
Ūk ←First k columns of Ū
Z ← Q′Ūk

The proof of this lemma is in Appendix B.1. The proof of the above lemma also shows that if we
can find a matrix Y of rank k such that ‖Y − UTB(β2I −∆)−1/2‖2 ≤ 1, then we can obtain a
matrix X = Y (β2I − ∆)1/2 such that ‖UX −B‖2 < β. Thus, we can compute the SVD of the
matrix UTB(β2I −∆)−1/2 and obtain [UTB(β2I −∆)−1/2]k and obtain a solution [UTB(β2I −
∆)−1/2]k(β

2I −∆)1/2 of cost β.

Computing an exact SVD, as required in the proof of above Lemma, is much slower than com-
puting a rank k matrix that satisfies the guarantees of the best rank k matrices approximately. The
following lemma shows that we can obtain a solution of cost close to β even if we can compute a
rank k matrix Y such that ‖Y − UTB(β2I −∆)−1/2‖2 ≤ 1 + ε.

Lemma 7 If Y is a rank k matrix such that ‖Y − UTB(β2I −∆)−1/2‖2 ≤ 1 + ε, then we obtain
that ‖UY (β2I −∆)1/2 −B‖2 ≤ (1 + ε)β. Furthermore, ‖UY (UY )+B −B‖2 ≤ (1 + ε)β.

The proof of this lemma is in Appendix B.2. The above lemma states that a 1 + ε approximation to
the best rank-k approximation of the matrix UTB(β2I − ∆)−1/2 in operator norm is sufficient to
find a solution of cost (1+ε)β to the reduced-rank regression problem. We can use the Block Krylov
algorithm to compute such an approximation. The Block Krylov algorithm of Musco and Musco
[18] only needs an oracle to compute matrix-vector products. In the case when c, d are small, we
can compute the matrices U, (β2I −∆)−1/2 and then given arbitrary vectors v, v′ we can compute
UTB(β2I −∆)−1/2v and (β2I −∆)−1/2BTUv′ and hence run the Block Krylov Algorithm. This
gives a 1 +O(ε) approximation to the reduced-rank regression problem.

When r, d are large, it is expensive to compute the matrices U,∆ and (β2I − ∆)−1/2. As the
analysis of Musco and Musco [18] works only when exact matrix-vector products can be computed,
we cannot run the Block Krylov algorithm unless we compute the matrices U,∆ or at least are able
to compute exact matrix vector products with the matrix UTB(β2I −∆)−1/2. So we analyze their
algorithm and show that it works even using approximate matrix products instead of exact matrix
products, given that the error is low enough.

9
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5. Block Krylov Iteration with Approximate Multiplication Oracle

Given a parameter k and an oracle to approximately computeMv andMTv′, given arbitrary vectors
v and v′, we would like to compute a matrix Z with k orthonormal columns such that

‖M − ZZTM‖2 ≤ (1 + ε)σk+1(M). (2)

Specifically, suppose we have an oracle that, given an arbitrary vector v and approximation param-
eter ε◦, can compute in time T (ε◦) a vector M ◦ v such that ‖Mv − (M ◦ v)‖2 ≤ ε◦‖M‖2‖v‖2,
and also given an arbitrary vector v′ and accuracy parameter ε◦ can compute in time T (ε◦) a vector
MT ◦ v′ such that ‖MTv′ −MT ◦ v′‖2 ≤ ε◦‖M‖2‖v′‖2. We are also given κ = σ1(M)/σk+1(M)
and we want to compute a matrix Z as in (2).

Our algorithm to compute such a matrix Z is Algorithm 1. It is essentially the same as the
Block Krylov algorithm of [18] with exact matrix-vector multiplication replaced by approximate
matrix-vector multiplication with accuracy parameters as defined in our algorithm. Our main result
for this section is the following theorem that states that the Block Krylov algorithm of [18] works
even with approximate matrix-vector products.

Theorem 8 Let M ∈ Rn×d, k ≤ d be a rank parameter, and ε > 0 be an accuracy parameter. Let
κ = σ1(M)/σk+1(M). Given access to an oracle that can in time T (ε◦) compute vectors M ◦ v
and MT ◦ v′ such that

‖M ◦ v −Mv‖2 ≤ ε◦‖M‖2‖v‖2 and ‖MT ◦ v′ −MTv′‖2 ≤ ε◦‖M‖2‖v′‖2,

for any vectors v and v′, Algorithm 1 computes a matrix Z ∈ Rn×k with k orthonormal columns
such that, with probability ≥ 3/5, ‖(I − ZZT)M‖2 ≤ (1 + ε)σk+1(M). The running time is

O

(
T
( ε

2κ5qk11Dq

)
qk + T

(
ε2

192κ2(
√
qk)k

)
qk

)
,

where q = O ((1/
√
ε) log(d/ε)) and D is an absolute constant. Further, if the approximations

M ◦ v are spanned by M for all v, then the columns of the matrix Z are also spanned by the matrix
M .

Proof sketch Proof of Block Krylov Iteration Algorithm of [18] first shows that there is a poly-
nomial p(x) that has only odd degree monomials such that the k-dimensional column space of the
matrix p(M)G, where G is a Gaussian matrix with k columns, spans a (1 + ε) approximation. As
we do not now how to compute this polynomial p(x), they show that the Krylov Space K spans
this matrix p(M)G and then show that the rank k Frobenius norm approximation of the matrix M
inside the Krylov Subspace K is also a 1 + ε spectral norm rank k approximation.

We adapt their proof for the case when we can compute matrix-vector products only approxi-
mately. We first show that the approximate Krylov Matrix K ′ computed by Algorithm 1 is close to
the actual Krylov MatrixK in Lemma 14. However, this lemma isn’t sufficient to directly prove that
rank-k Frobenius Norm Approximation of M inside K ′ is a 1 + ε rank-k spectral approximation as
the matrices K and K ′ can be very poorly conditioned. Therefore, similar to the matrix p(M)G in
[18], we define a rank-k matrix Apx (see Equation 7) and show that the matrix Apx is spanned by
K ′. Then we show in Lemma 21 that the matrix Apx is close to p(M)G. Using an upper bound on

10
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condition number of the matrix p(M)G (see Lemma 18), we conclude in Equation 8 that projection
matrices onto column spaces of the matrices Apx and p(M)G are close.

Similar to the argument of [18], we encounter the issue that this matrix Apx cannot be com-
puted as we don’t know the parameters of the polynomial p(x) but we do have that this matrix Apx
is spanned by column space of K ′. Using this fact, we show that an approximate rank k Frobenius
norm approximation ofM in column space ofK ′ is also a 1+ε spectral norm rank k approximation
for the matrix M . We also show that this approximate rank k Frobenius norm approximation can
be computed using approximate matrix-vector product oracles.

6. Approximate Oracles and Reduced Rank Regression

Lemma 7 shows that if Y is a rank k matrix such that ‖Y − UTB(β2I −∆)−1/2‖2 ≤ 1 + ε, then
‖UY (UY )+B −B‖2 ≤ (1+ε)β. Based on this result, we prove the following lemma which shows
that a low rank-approximation of the matrix AA+B(β2I −∆)−1/2 suffices.

Lemma 9 Let Z̃ ∈ Rn×k be a matrix with orthonormal columns such that

‖AA+B(β2I −∆)−1/2 − Z̃Z̃TAA+B(β2I −∆)−1/2‖2 ≤ 1 + ε,

then ‖(AA+Z̃)(AA+Z̃)+B −B‖2 ≤ (1 + ε)β.

Proof of the lemma is in Appendix D.1. Hence, if we can get a good k-dimensional space Z̃ for
approximating the matrixAA+B(β2I−∆)−1/2, we can then obtain a good k dimensional space for
B. We first show that we can instead find a low rank approximation for a matrix AA+BM/β, for a
suitable matrix M , which will also be a good low rank approximation for AA+B(β2I −∆)−1/2.

Lemma 10 Given that β ≥ (1 + ε)Opt, there exists a polynomial r(x) of degree at most t =
O (1/

√
ε log(κ/ε)) such that for M = r(∆/β2), if Z̃ is a matrix such that

‖AA+BM/β − Z̃Z̃T(AA+BM/β)‖2 ≤ 1 + ε,

then ‖AA+B(β2I −∆)−1/2 − Z̃Z̃TAA+B(β2I −∆)−1/2‖2 ≤ 1 + O(ε). Furthermore, ‖r‖1 =

O((1 +
√

2)O(
√

1/ε log(κ/ε)) log(κ/ε)/ε), ‖M‖2 ≤ 2/
√
ε and σmin(M) ≥ 1/2.

The proof of the above lemma is in Appendix D.2. From Theorem 8, to find a 1 + ε approximation
for rank k spectral norm low rank approximation (LRA) of the matrix M′, we need only a way
to compute the products M′v and M′Tv′ for any vectors v, v′. As r(∆/β2) is a polynomial in
the matrix ∆/β2, it is much easier to design approximate multiplication oracles for the matrix
AA+BM/β than for the matrix AA+B(β2I − ∆)−1/2. The following lemma shows that we can
compute good approximations to the matrix vector products and then compute a 1+ε approximation
to the LRA of matrixM′ = AA+B r(∆/β2)

β .

Lemma 11 Given arbitrary vectors v, v′ and an accuracy parameter εf, Algorithms 3 and 4 com-
pute vectors y, y′ such that ‖M′v − y‖2 ≤ εf‖v‖2 and ‖M′Tv′ − y′‖2 ≤ εf‖y‖2 in time

T (εf) := O(t · (nnz(B) + (nnz(A) + c2) log
(
κ(B)2‖r‖1/(εfε)

)
))

+O((nnz(A) + c2) log(κ(B)/(εfε)))

where t = O(
√

1/ε log(κ/ε)) and ‖r‖1 = (1 +
√

2)O(1/
√
ε log(κ/ε)) log(κ/ε)/ε.

11
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Algorithm 2: Operator Norm Regression

Input: A ∈ Rn×c, B ∈ Rn×d, k ∈ Z, ε > 0
Output: X ′ ∈ Rc×k, X ′′ ∈ Rk×d
β ← (1 + ε/2) max(σk+1(B), ‖(I −AA+)B‖2)

∆← BT(I −AA+)B /* Not computed explicitly */
/* Let r(x) be the polynomial given by Lemma 10 */
M′ ← (AA+B/β)r(∆/β2) /* Not computed explicitly */
Z ← Algorithm 1(M′, k, ε/2,APXPRODUCT,APXPRODCUTTRANSPOSE)
X ′ ← HIGHPRECISIONREGRESSION(A,Z, 1/2)

X ′′ ← ZT ·B

6.1. Main Theorem

We finally have our main Theorem that shows that Algorithm 2 outputs a 1 + ε approximation in
factored form. Proof of the Theorem is in Appendix D.4.

Theorem 12 Given matrices A ∈ Rn×c and B ∈ Rn×d, a rank parameter k ≤ c and an accuracy
parameter ε Algorithm 2 runs in time

O

((
nnz(B) · k

ε
+

nnz(A) · k
ε1.5

+
c2k

ε1.5

)
· polylog(κ, κ(AA+B), d, k, 1/ε) + cω

)
.

and with probability 4/5 outputs a matrix Z with k orthonormal columns and colspan(Z) ⊆
colspan(A) such that ‖ZZTB −B‖2 ≤ (1 + ε)Opt and outputs matrices X ′ ∈ Rc×k and X ′′ ∈
Rk×d such that ‖A(X ′ ·X ′′)−B‖2 = ‖ZZTB −B‖2 ≤ (1 + ε)Opt.

6.2. Removing κ(AA+B) dependence

We observe that we can add a random rank k + 1 matrix to B to obtain a matrix B̃ for which
κ(AA+B̃) is bounded in terms of κ(B). We also show that any arbitrary vector v can be multiplied
with the matrix B̃ in time comparable to nnz(B).

Lemma 13 Given any matrices A ∈ Rn×c and B ∈ Rn×d, if rank(A) ≥ k + 1, then there exists a
matrix B̃ such that if

‖AX̃ − B̃‖2 ≤ (1 + ε/2) min
rank-k X

‖AX − B̃‖2 (3)

for a rank k matrix X̃ , then
‖AX̃ −B‖2 ≤ (1 + ε)Opt.

Additionally, κ(AA†B̃) = σ1(AA+B̃)/σk+1(AA+B̃) ≤ (Cn/ε)σ1(B)/σk+1(B) and given a
vector v, B̃v can be computed in O(nnz(B) + (n+ d)k) time.

The proof of this lemma is in Appendix D.5. Therefore we run Algorithm 2 on matrix B̃ and can
compute a (1 + ε) approximate solution to the problem minrank-k X ‖AX −B‖2 in time

O

((
nnz(B) · k

ε
+

(n+ d)k2

ε
+

nnz(A) · k
ε1.5

+
c2k

ε1.5

)
· polylog(κ, n, d, k, 1/ε) + cω

)
. (4)

12
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7. Experiments and Implementation

It is evident that our algorithm is faster than the algorithm of Sou and Rantzer [27] for large matrices
A and B as their algorithm cannot make use of the sparsity of the matrices and also has to compute
eigen value decomposition of a dense and large d × d matrix. Let n = d = 7000, c = 100 and
k = 30. We instantiate an n×d matrix B with 5% of the entries being nonzero where each nonzero
entry is sampled independently from a uniform distribution on [0, 1]. The n×cmatrixA is obtained
by taking first c columns of the matrixB. With ε = 0.05, our algorithm runs in less than 20 seconds
whereas an implementation of Sou and Rantzer’s algorithm runs in around 10 minutes. For even
larger values of n and d, our algorithm will be faster by an even larger factor. An implementation
of our algorithm and the above example is available here 2.
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Appendix A. Omitted Proofs from Section 3

A.1. Proof of Theorem 4

Proof Without loss of generality, we prove the theorem assuming A has orthonormal columns.
Thus U = A. Let X be an arbitrary matrix such that ‖UX −B‖2 < 1. We will give a series of
statements equivalent to ‖UX −B‖2 < 1 that prove the theorem. Using the fact that for any matrix
A, ‖A‖2 < 1 if and only if ATA ≺ I , we obtain the equivalent statement

(UX −B)T(UX −B) ≺ I.

Writing B as UUTB + (I − UUT)B, we get another equivalent statement

(UX − UUTB)T(UX − UUTB) ≺ I −BT(I − UUT)B = I −∆.

As the LHS of the above relation is a positive semi-definite matrix, we obtain that I −∆ � 0 and
hence invertible. Thus the above condition can be equivalently written as

(I −∆)−1/2(UX − UUTB)T(UX − UUTB)(I −∆)−1/2 ≺ I.

Using the fact that ∆ is symmetric and UTU = I , we get that the above condition is the same as

‖X(I −∆)−1/2 − UTB(I −∆)−1/2‖2 < 1.

Thus we obtain that in the case that ‖(I − UUT)B‖2 < 1, for an arbitrary matrix X , the condition
that ‖UX −B‖2 < 1 is equivalent to ‖X(I −∆)−1/2 − UTB(I −∆)−1/2‖2 < 1. Let B̂ :=
UTB(I −∆)−1/2. It is easy to see that X = [B̂]sve(B̂)(I −∆)1/2 satisfies ‖UX −B‖2 < 1 and

that any matrixX that satisfies ‖UX −B‖2 < 1 must have rank at least sve(B̂). All that remains to
show is that sve(B̂) = sve(B). We will show that k−(I−B̂TB̂) = k−(I−BTB) which completes
the proof.

I − B̂TB̂ = I − (I −∆)−1/2BTUUTB(I −∆)−1/2

= I − (I −∆)−1/2(BTB −∆)(I −∆)−1/2

= I − (I −∆)−1/2(BTB − I + I −∆)(I −∆)−1/2

= I − I + (I −∆)−1/2(I −BTB)(I −∆)−1/2

= (I −∆)−1/2(I −BTB)(I −∆)−1/2.

Thus k−(I − B̂TB̂) = k−((I −∆)−1/2(I −BTB)(I −∆)−1/2). By Sylvester’s law of inertia [5,
p313], k−((I −∆)−1/2(I −BTB)(I −∆)−1/2) = k−(I −BTB). Therefore

sve(B̂) = k−(I − B̂TB̂) = k−(I −BTB) = sve(B).

Thus sve(B) is the optimum value for (1) if it is feasible.
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Appendix B. Omitted Proofs from Section 4

B.1. Proof of Lemma 6

Proof The proof of this lemma is very similar to the proof of Theorem 4. Suppose there exists
a rank-k matrix X such that ‖UX −B‖2 < β. We already have β > ‖(I − UUT)B‖2. The
statement ‖UX −B‖2 < β implies that

(UX −B)T(UX −B) � β2I.

We can writeB = UUTB+(I−UUT)B and obtain that for any matrixX , (UX−B)T(UX−B) =
(UX − UUTB)T(UX − UUTB) + ∆ which implies that

(UX − UUTB)T(UX − UUTB) � β2I −∆.

As ‖∆‖2 = ‖(I − UUT)B‖22 < β2, β2I −∆ is invertible which implies that

(β2I −∆)−1/2(UX − UUTB)T(UX − UUTB)(β2I −∆)−1/2 � I.

Thus we have ‖(UX − UUTB)(β2I −∆)−1/2‖2 = ‖X(β2I −∆)−1/2 − UTB(β2I −∆)−1/2‖2
is less than or equal to 1. As X is a matrix of rank k, the matrix X(β2I −∆)−1/2 also has rank k.
Therefore

σk+1(UTB(β2I −∆)−1/2) = ‖[UTB(β2I −∆)−1/2]k − UTB(β2I −∆)−1/2‖2
≤ ‖X(β2I −∆)−1/2 − UTB(β2I −∆)−1/2‖2
≤ 1.

B.2. Proof of Lemma 7

Proof Suppose Y is a rank k matrix such that ‖Y − UTB(β2I −∆)−1/2‖2 ≤ 1+ε. Then we have
‖Y (β2I −∆)1/2(β2I −∆)−1/2 − UTB(β2I −∆)−1/2‖2 ≤ 1 + ε and therefore

(β2I −∆)−1/2(Y (β2I −∆)1/2 − UTB)T(Y (β2I −∆)1/2 − UTB)(β2I −∆)−1/2 � (1 + ε)2I.

Multiplying the above relation on both sides with (β2I −∆)1/2 on the left and the right, we obtain

(Y (β2I −∆)1/2 − UTB)T(Y (β2I −∆)1/2 − UTB) � (1 + ε)2(β2I −∆).

Using UTU = I and adding ∆ to both sides, we conclude that

‖UY (β2I −∆)1/2 −B‖2 ≤
√
‖(1 + ε)2β2I‖2 ≤ (1 + ε)β.

Now Y is a matrix that has rank at most k. We also have ‖UY Z −B‖2 ≥ ‖UY (UY )+B −B‖2
for any matrix Z. Therefore ‖UY (UY )+B −B‖2 ≤ ‖UY (β2I −∆)1/2 −B‖2 ≤ (1 + ε)β.

17
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Appendix C. Omitted Proofs from Section 5

C.1. Error in Computing Krylov Subspace

Given a matrix M ∈ Rn×d, an integer k ≤ d and an odd integer q ≥ 0, the Krylov Subspace is
defined by

K = [(MMT)(q−1)/2MG, (MMT)(q−3)/2MG, · · · , (MMT)1MG, MG]

where G is a d× k matrix with i.i.d normal entries. Using the algorithm to approximately multiply
a vector with the matrices M and MT, we compute an approximation to the matrix K defined
above. For any vector v, define (MMT)◦0v := v and for i > 0, define (MMT)◦iv := M ◦
(MT ◦ ((MMT)◦(i−1)v)) (recall M ◦ v is the approximation for Mv computed by the oracle). The
notation is similarly extended to approximate matrix multiplication using the oracle. Now we define
the matrix

K ′ = [(MMT)◦(q−1)/2M ◦G, (MMT)◦(q−3)/2M ◦G, · · · , (MMT)◦1M ◦G, M ◦G].

Let Q, Q′ denote orthonormal bases for the matrices K and K ′ respectively. We now bound ‖K −
K ′‖F and the time required to compute K ′ using the following lemma.

Lemma 14 For any matrix M ∈ Rn×d, matrix G ∈ Rd×k and an odd integer q, let ∆i,G :=
(MMT)(i−1)/2MG − (MMT)◦(i−1)/2M ◦ G and matrices K,K ′ ∈ Rn×qk be as defined above.
Then

Ei,G := ‖∆i,G‖F ≤ 8ε◦(2
i/2‖M‖i2‖G‖F)

for i = 1, 3, 5, . . . , q and ‖K − K ′‖F ≤ O(ε◦‖G‖F‖M‖q+1
2 2(q+1)/2). The matrix K ′ can be

computed in O(T (ε◦)qk).

Proof For an arbitrary vector v and i odd, let ∆i := (MMT)(i−1)/2Mv − (MMT)◦(i−1)/2M ◦ v.
Let Ei = ‖∆i‖2. We have E1 = ‖∆1‖2 = ‖Mv −M ◦ v‖2 ≤ ‖M‖2‖v‖2. We now define a
recurrence relation between Ei and Ei−2 and then bound Ei using this recurrence. We have

∆i = (MMT)(i−1)/2Mv − (MMT)◦(i−1)/2M ◦ v
= (MMT)(MMT)(i−3)/2Mv − (MMT)◦1(MMT)◦(i−3)/2M ◦ v
= (MMT)[(MMT)(i−3)/2Mv − (MMT)◦(i−3)/2M ◦ v]

+ [(MMT)1(MMT)◦(i−3)/2M ◦ v − (MMT)◦1(MMT)◦(i−3)/2M ◦ v]

= (MMT)∆i−2 + [(MMT)1(MMT)◦(i−3)/2M ◦ v − (MMT)◦1(MMT)◦(i−3)/2M ◦ v].

Therefore by triangle inequality of ‖·‖2,

Ei ≤ ‖MMT∆i−2‖2 + ‖(MMT)1(MMT)◦(i−3)/2M ◦ v − (MMT)◦1(MMT)◦(i−3)/2M ◦ v‖2
≤ ‖M‖22Ei−2 + ‖(MMT)1(MMT)◦(i−3)/2M ◦ v − (MMT)◦1(MMT)◦(i−3)/2M ◦ v‖2.

Let v′ := (MMT)◦(i−3)/2M ◦ v. We now bound ‖MMTv′ − (MMT)◦1v′‖2.

‖MMTv′ − (MMT)◦1v′‖2 = ‖MMTv′ −M ◦ (M ◦ v′)‖2
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≤ ‖MMTv′ −M(MT ◦ v′)‖2 + ‖M(MT ◦ v′)−M ◦ (MT ◦ v′)‖2
≤ ‖M‖2‖MTv′ −MT ◦ v′‖2 + ε◦‖M‖2‖MT ◦ v′‖2
≤ ε◦‖M‖22‖v′‖2 + ε◦‖M‖2(ε◦‖M‖2‖v′‖2 + ‖MTv′‖2)

≤ 3ε◦‖M‖22‖v′‖2.

As v′ = (MMT)(i−3)/2Mv − ∆i−2, we get ‖v′‖2 ≤ ‖(MMT)(i−3)/2Mv‖2 + ‖∆i−2‖2 ≤
‖M‖i−2

2 ‖v‖2 + Ei−2. Therefore we finally obtain that

Ei ≤ ‖M‖22Ei−2 + 3ε◦‖M‖22‖v′‖2 ≤ ‖M‖22Ei−2 + 3ε◦‖M‖22(‖M‖i−2
2 ‖v‖2 + Ei−2)

≤ (1 + 3ε◦)‖M‖22Ei−2 + 3ε◦‖M‖i2‖v‖2.

Solving this recurrence relation we obtain that

Ei ≤ (1 + 3ε◦)
(i−1)/2‖M‖i−1

2 E1 + (1 + (1 + 3ε◦) + · · ·+ (1 + 3ε◦)
(i−3)/2)(3ε◦‖M‖i2‖v‖2)

≤ ε◦(1 + 2(i−1)/2(3ε◦))‖M‖i2‖v‖2 + 2(i−1)/2(3ε◦)‖M‖i2‖v‖2
≤ 8(ε◦2

i/2‖M‖i2‖v‖2).

In the above inequalities, we used the standard inequality (1 + x)n ≤ 1 + 2nx if 0 ≤ x ≤ 1. Thus
for any arbitrary vector v, ‖(MMT)◦(i−1)/2M ◦ v − (MMT)(i−1)/2Mv‖2 ≤ 8ε◦2

i/2‖M‖i2‖v‖2
and therefore for the Gaussian matrix G,

Ei,G = ‖(MMT)◦(i−1)/2M ◦G− (MMT)(i−1)/2MG‖F ≤ 8ε◦2
i/2‖M‖i2‖G‖F.

We then have that ‖K − K ′‖F ≤ O(ε◦‖G‖F‖M‖q+1
2 2(q+1)/2). In computing the matrix K ′ we

make O(qk) calls to each of the oracles and therefore take O(T (ε◦)qk) time.

Musco and Musco [18] consider a polynomial p(x) such that the column space of the ma-
trix p(M)G is spanned by K. They then argue that the column span of p(M)G is a “good” k-
dimensional subspace to project M onto and then conclude that the best rank k approximation of
M inside the span of K satisfies (2). Although we have an upper bound on ‖K − K ′‖F from the
above lemma, we cannot directly argue that the best rank k approximation of M inside K ′ satisfies
the guarantee of (2), as the matrix K might be very poorly conditioned.

To overcome this issue, we first show that the matrix p(M)G has a bounded condition number
with O(1) probability and that K ′ spans a matrix Apx that is close to p(M)G. We then show that
the span of the matrix Apx is a good subspace to project the matrix M onto and then conclude that
the best rank k approximation of M inside the span of K ′ satisfies (2).

C.2. Condition Number of the matrix p(M)G and existence of good rank k subspace inside
an approximate Krylov Subspace

Throughout this section let α = σk+1(M) and γ = ε/2. Let q be an odd integer and T (x) be the
degree q Chebyshev polynomial. Define

p(x) := (1 + γ)α
T (x/α)

T (1 + γ)
. (5)

The following lemma bounds σ1(p(M))/σk+1(p(M)) which lets us bound κ(p(M)G).
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Lemma 15 If M ∈ Rn×d is a matrix such that σ1(M)/σk+1(M) = κ, then

σ1(p(M))/σk+1(p(M)) ≤ (3κ)q.

First, we have the following lemma that shows that T (x) ≥ 1 for all x ≥ 1 for the Chebyshev
Polynomial T of any degree d.

Lemma 16 If Td(x) is the degree d Chebyshev Polynomial, then for all d ≥ 0 and for all x ≥ 1,
Td+1(x) ≥ Td(x) ≥ 1.

Proof We prove the theorem using induction on the degree d. We have T0(x) = 1 and T1(x) = x.
Thus T1(x) ≥ T0(x) ≥ 1 for x ≥ 1. Assume that for all d < n and x ≥ 1, Td+1(x) ≥ Td(x) ≥ 1.
If we now prove that Tn+1(x) ≥ Tn(x) ≥ 1, we are done by induction.

We have Tn+1(x) = 2xTn(x)− Tn−1(x) = Tn(x) + [Tn(x)− Tn−1(x)] + (2x− 2)Tn(x). As
x ≥ 1 and by induction hypothesis Tn(x) ≥ Tn−1(x) ≥ 1, we obtain that Tn+1(x) ≥ Tn(x) ≥ 1.
Thus for all d ≥ 0 and x ≥ 1, Td+1(x) ≥ Td(x) ≥ 1.

Recall p(x) = (1 + γ)α T (x/α)
T (1+γ) = (1 + ε/2)σk+1

T (x/α)
T (1+γ) .

Lemma 17 If x ≥ α > 0, then p(x) ≤ (1 + γ)α3q(x/α)q

T (1+γ) .

Proof By a standard property, the sum of absolute values of coefficients of the degree-q Chebyshev
polynomial is bounded above by 3q. Thus T (x/α) =

∑q
i=1 Ti(x/α)i ≤

∑q
i=1 |Ti|(x/α)i ≤

(x/α)q
∑q

i=1 |Ti| ≤ 3q(x/α)q, where we use the fact that (x/α) ≥ 1. Thus p(x) = (1 +
γ)αT (x/α)/T (1 + γ) ≤ (1 + γ)α3q(x/α)q/T (1 + γ).

Proof [Proof of Lemma 15] We bound σ1(p(M)) and σk+1(p(M)) then infer an upper bound on
σ1(p(M))
σk+1(p(M)) . Let σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 be the singular values of the matrixM . Then we have that
|p(σ1)|, |p(σ2)|, . . . , |p(σd)| are the singular values of the matrix p(M). Consider any i ≤ k + 1.
We have σi ≥ σk+1 = α. Therefore,

p(σi) = (1 + γ)σk+1
T (σi/σk+1)

T (1 + γ)
≥ (1 + γ)σk+1

T (1 + γ)
.

Here we use Lemma 16 to lower bound the value of T (σi/σk+1) by 1. Therefore at least k + 1

singular values of p(M) are at least (1+γ)σk+1

T (1+γ) which implies σk+1(p(M)) ≥ (1+γ)σk+1

T (1+γ) .
Now for any i ≤ k+1, p(σi) ≤ (1+γ)σk+1(3qκq)/T (1+γ) by Lemma 17. For any i ≥ k+1,

we have that σi ≤ σk+1 and |p(σi)| = (1+γ)σk+1|T (σi/σk+1)|/T (1+γ) ≤ (1+γ)σk+1/T (1+γ)
by a well known property of Chebyshev polynomials that |T (x)| ≤ 1 for all x ∈ [−1, 1]. Therefore

‖p(M)‖2 = σ1(p(M)) = max
i
|p(σi(M))| ≤ (1 + γ)σk+1

3qκq

T (1 + γ)
. (6)

Thus, σ1(p(M))/σk+1(p(M)) ≤ 3qκq.

We now bound the condition number of the matrix p(M)G where G is a Gaussian matrix with
k columns. We use results from [23] to bound the maximum and minimum singular values of G
with O(1) probability and then use the above lemma to obtain bounds on extreme singular values
of p(M)G.
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Lemma 18 If G ∈ Rd×k is a matrix of i.i.d. normal entries and M ∈ Rn×d is a matrix such that
σ1(M)/σk+1(M) = κ, then with probability ≥ 4/5,

κ(p(M)G) = σmax(p(M)G)/σmin(p(M)G) ≤ Ck3qκq,

for an absolute constant C > 0.

Lemma 19 If A ∈ Rn×d is a matrix with σ1(A)/σk(A) ≤ κ1 and G ∈ Rd×k is a matrix with i.i.d.
normal entries, then for d greater than a constant, with probability ≥ 4/5, the matrix AG has full
rank and has σ1(AG)/σk(AG) ≤ Ck(σ1(A)/σk(A)) where C > 0 is an absolute constant.

Proof Let A = UΣV T be the singular value decomposition of A with U ∈ Rn×n,Σ ∈ Rn×d and
V T ∈ Rd×d. Let G′ = V TG. As rows of V T are orthonormal and entries of G are i.i.d. normal
random variables, we obtain thatG′ is a also a matrix of i.i.d. normal random variables of size d×k.
Let Σk ∈ Rk×d be the first k rows of Σ. For any vector x,

‖AGx‖2 = ‖UΣV TGx‖2 = ‖ΣG′x‖2 ≥ ‖ΣkG
′x‖2.

Thus, minx:‖x‖2=1 ‖AGx‖2 ≥ minx:‖x‖2=1 ‖ΣkG
′x‖2. We have that

Pr[σmin(G′) ≤ 1

20C
(
√
d−
√
k − 1)] ≤

(
1

20

)d−k+1

+ e−cd

for some absolute constants c and C by Theorem 1.1 of [22]. Thus for large enough d, with proba-
bility ≥ 9/10, we have

σmin(G′) ≥ 1

20C
(
√
d−
√
k − 1).

Thus minx:‖x‖2=1 ‖ΣkG
′x‖2 ≥ σmin(Σk)σmin(G′) ≥ σk(A)

20C (
√
d −
√
k − 1). Similarly, for large

enough d, we have with probability≥ 9/10 that σmax(G′) ≤ D(
√
d+
√
k) for an absolute constant

D by Proposition 2.4 of [23] and therefore maxx:‖x‖2=1 ‖AGx‖2 = maxx:‖x‖2=1 ‖ΣG′x‖2 ≤
Dσ1(A)(

√
d+
√
k). Therefore with probability ≥ 4/5,

κ(AG) =
σmax(AG)

σmin(AG)
≤ 20CD

σ1(A)

σk(A)

√
d+
√
k√

d−
√
k − 1

.

The maximum of this expression occurs at d = k and is at most 4k. Therefore with probability
≥ 4/5, for d at least some constant, κ(AG) ≤ 40CDk(σ1(A)/σk(A)).

Proof [Proof of Lemma 18] Using the above lemma, we have that with probability ≥ 4/5,

κ(p(M)G) =
σmax(p(M)G)

σmin(p(M)G)
≤ Ckσ1(p(M))

σk(p(M))
≤ Ck σ1(p(M))

σk+1(p(M))

for an absolute constant C. The last inequality follows from σk(p(M)) ≥ σk+1(p(M)). From
Lemma 15, we have σ1(p(M))

σk+1(p(M)) ≤ 3qκq. Therefore κ(p(M)G) ≤ Ck3qκq with probability ≥ 4/5.

The bound on the condition number of p(M)G enables us to conclude that if the Frobenius
norm error between p(M)G and a matrix Apx is small, the projection matrices onto the column
spaces of the matrices p(M)G and Apx are close. Specifically, we use the following lemma.
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Lemma 20 Let A and B be full column rank matrices such that ‖A−B‖2 ≤ δ‖A‖2. Let κ(A)
denote the condition number of the matrix A i.e., κ(A) = σmax(A)/σmin(A). Let U and V
denote orthonormal basis for matrices A and B respectively. If δ ≤ 1/(2κ(A)) ≤ 1, then
‖AA+ −BB+‖2 = ‖UUT − V V T‖2 ≤ 20δκ(A)4.

Proof As A and B are full rank matrices, we have A+ = (ATA)−1AT and B+ = (BTB)−1BT.
Let A−B = ∆. We have ‖∆‖2 ≤ δ‖A‖2. We first have

‖AA+ −BB+‖2 = ‖AA+ − (A−∆)B+‖2
≤ ‖A‖2‖A+ −B+‖2 + ‖∆‖2‖B+‖2

≤ ‖A‖2‖A+ −B+‖2 +
‖∆‖2
σmin(B)

.

Note that ATA = (B + ∆)T(B + ∆) = BTB + ∆TB +BT∆ + ∆T∆. Now,

‖A+ −B+‖2 = ‖(ATA)−1AT − (BTB)−1BT‖2
= ‖(ATA)−1AT − (BTB)−1(AT −∆T)‖2
≤ ‖(ATA)−1 − (BTB)−1‖2‖A‖2 + ‖(BTB)−1‖2‖∆‖2

≤ ‖(ATA)−1 − (BTB)−1‖2‖A‖2 +
‖∆‖2

σmin(B)2
.

We finally bound ‖(ATA)−1 − (BTB)−1‖2.

‖(ATA)−1 − (BTB)−1‖2 ≤
1

σmin(ATA)
‖(ATA)((ATA)−1 − (BTB)−1)‖2

≤ 1

σmin(ATA)
‖I − (ATA)(BTB)−1‖2

≤ 1

σmin(ATA)
‖I − (BTB + ∆TB +BT∆ + ∆T∆)(BTB)−1‖2

≤ 1

σmin(ATA)
‖I − I − (∆TB +BT∆ + ∆T∆)(BTB)−1‖2

≤ 2‖∆‖2‖B‖2 + ‖∆‖22
σmin(ATA)σmin(BTB)

.

We therefore obtain

‖AA+ −BB+‖2 ≤ ‖A‖22‖(ATA)−1 − (BTB)−1‖2 +
‖∆‖2‖A‖2
σmin(BTB)

+
‖∆‖2
σmin(B)

≤ ‖A‖22
σmin(ATA)

2‖∆‖2‖B‖2 + ‖∆‖22
σmin(BTB)

+
‖∆‖2‖A‖2
σmin(BTB)

+
‖∆‖2
σmin(B)

.

As ‖A−B‖2 ≤ δ‖A‖2, we get that (1 − δ)‖A‖2 ≤ ‖B‖2 ≤ (1 + δ)‖A‖2. We also have that
σmin(B) ≥ σmin(A) − ‖A−B‖2 ≥ ‖A‖2/κ(A) − δ‖A‖2 ≥ ‖A‖2/2κ(A) = σmin(A)/2 if
δ < 1/2κ(A). We can therefore conclude that ‖AA+ −BB+‖2 ≤ 20δκ(A)4.

The condition that δ must be less than 1/2κ(A) in the above lemma makes sense as otherwise
20δκ(A)4 ≥ 10κ(A)3 ≥ 10, which is a trivial upper bound on the norm.
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Now we construct a matrix Apx that has its columns spanned by K ′ and is close to the matrix
p(M)G. Using the bound on the condition number of the matrix p(M)G, we can conclude that
projection matrices onto column spans of Apx and p(M)G, respectively, are close.

Recall p(x) from (5). For q odd, the Chebyshev polynomial of degree q contains only odd
degree monomials. So we have T (x) = Tqx

q +Tq−2x
q−2 + . . .+T1x and therefore the polynomial

p(x) = (1+γ)α
T (1+γ)

(
Tq
αq x

q +
Tq−2

αq−2x
q−2 + · · ·+ T1

α1
x
)

which implies

p(M)G =
(1 + γ)α

T (1 + γ)

(
Tq
αq

(MMT)(q−1)/2MG+ · · ·+ T1

α1
MG

)
.

We now define

Apx =
(1 + γ)α

T (1 + γ)

(
Tq
αq

(MMT)◦(q−1)/2M ◦G+ · · ·+ T1

α1
M ◦G

)
. (7)

Clearly, the matrix Apx is spanned by the columns of the matrix K ′. Using Lemma 14 and proper-
ties of Gaussian matrices, the following lemma bounds ‖Apx − p(M)G‖2.

Lemma 21 For the matrices p(M)G and Apx defined above, we have with probability ≥ 3/5

‖p(M)G−Apx‖2 ≤ ‖p(M)G−Apx‖F ≤ 64Cε◦k
3/2(3

√
2κ)q‖p(M)G‖2.

Proof By the triangle inequality,

‖p(M)G−Apx‖F

≤ (1 + γ)α

T (1 + γ)

∑
odd i ≤ q

|Ti|
αi
‖(MMT)(i−1)/2MG− (MMT)◦(i−1)/2M ◦G‖F

≤ (1 + γ)α

T (1 + γ)

∑
odd i ≤ q

|Ti|
αi

Ei,G

≤ (1 + γ)α

T (1 + γ)

∑
odd i ≤ q

|Ti|
αi

8ε◦(2
i/2‖M‖i2‖G‖F) (Lemma 14)

≤ (1 + γ)σk+1(M)

T (1 + γ)
8ε◦‖G‖F

∑
odd i ≤ q

|Ti|(
√

2κ)i (α = σk+1(M))

≤ (1 + γ)σk+1(M)

T (1 + γ)
8ε◦‖G‖F(3

√
2κ)q (

∑
i

|Ti| ≤ 3q)

≤ ‖p(M)‖28ε◦‖G‖F(3
√

2κ)q. (Equation 6)

We also condition on the following events both of which hold simultaneously with probability ≥
4/5.

• ‖G‖F ≤ 4
√
dk, and

• ‖p(M)G‖2 ≥ (1/C)‖p(M)‖2(
√
d−
√
k − 1) ≥ (1/2C)‖p(M)‖2

√
d.
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Thus, with probability ≥ 4/5, if d ≥ 4k,

‖p(M)G−Apx‖F ≤ ‖p(M)‖2(32ε◦)
√
dk(3
√

2κ)q ≤ 64Cε◦
√
k(3
√

2κ)q‖p(M)G‖2.

If k ≤ d ≤ 4k, then ‖p(M)G‖2 ≥ (1/C)‖p(M)‖2(
√
d −
√
k − 1) ≥ (1/2C)‖p(M)‖2(1/

√
k)

and ‖p(M)G−Apx‖F ≤ 64Cε◦k
3/2(3

√
2κ)q‖p(M)G‖2.

Let Y1 ∈ Rn×k be an orthonormal basis for the column span of p(M)G and Y ∈ Rn×k be an
orthonormal basis for the matrix Apx . We now have from Lemmas 20 and 21 that

‖Y Y T − Y1Y
T

1 ‖2 ≤ O(ε◦k
3/2(3

√
2κ)qκ(p(M)G)4) = O(ε◦k

3/2(3
√

2κ)q(k434qκ4q))

= ε◦C
qk6κ5q

for some constant C. Let δ := ε◦C
qk6κ5q. Hence

‖Y1Y
T

1 − Y Y T‖2 ≤ δ. (8)

For l ≤ k such that σl(M) ≥ (1 + ε)σk+1(M), let El = ‖[M ]l‖2F − ‖Y1Y
T

1 [M ]l‖2F and E ′l =
‖[M ]l‖2F − ‖Y Y T[M ]l‖2F. Musco and Musco [18, Equation 7] show that

El = ‖[M ]l‖2F − ‖Y1Y
T

1 [M ]l‖2F ≤ (ε/2)σk+1(M)2.

Bounding El is one of the important steps in the analysis of [18]. We obtain a similar bound on E ′l .
We further show that ifMK′,l is the best rank l Frobenius norm approximation ofM in colspan(K ′),
then ‖[M ]l‖2F − ‖MK′,l‖2F ≤ (3ε/4)σk+1(M)2, showing that there is a very good rank-l approxi-
mation for M in colspan(K ′). We have the following lemma.

Lemma 22 Given a matrix A and a parameter k, let Y1 be an orthonormal basis for a k dimen-
sional subspace such that El = ‖[M ]l‖2F − ‖Y1Y

T
1 [M ]l‖2F ≤ (ε/2)σ2

k+1 for all l ≤ k satisfying
σl(M) ≥ (1 + ε)σk+1(M). If Y is an orthonormal basis for another k dimensional subspace for
which ‖Y Y T − Y1Y

T
1 ‖2 ≤ ε/(16κ2

√
k), where κ = σ1(M)/σk+1(M), then for all such l,

E ′l = ‖[M ]l‖2F − ‖Y Y T[M ]l‖2F ≤ (3ε/4)σ2
k+1.

There also exists a matrix Y l with l orthonormal columns with colspan(Y l) ⊆ colspan(K ′) such
that ‖[M ]l‖2F − ‖Y l(Y l)TM‖2F ≤ (3ε/4)σ2

k+1.

Proof For any 1 > εs > 0

‖Y1Y
T

1 Ml‖2F ≤ (1 + εs)‖Y Y TMl‖2F + (1 +
1

εs
)‖(Y Y T − Y1Y

T
1 )Ml‖2F

≤ (1 + εs)‖Y Y TMl‖2F + (2/εs)2kδ
2σ1(M)2.

The last inequality follows from the fact that Y Y T − Y1Y
T

1 has rank at most 2k. Therefore

‖Y Y TMl‖2F ≥
1

1 + εs
‖Y1Y

T
1 Ml‖2F −

4kσ1(M)2

εs
δ2

which implies that

E ′l = ‖Ml‖2F − ‖Y Y TMl‖2F
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≤ ‖Ml‖2F −
1

1 + εs
‖Y1Y

T
1 Ml‖2F +

4kσ1(M)2

εs
δ2

≤ 1

1 + εs
(‖Ml‖2F − ‖Y1Y

T
1 Ml‖2F) + εs‖Ml‖2F +

4kσ1(M)2

εs
δ2

≤ 1

1 + εs

ε

2
σk+1(M)2 + εskσ1(M)2 +

4kσ1(M)2

εs
δ2.

Picking εs = ε/(8kκ2) and if δ ≤ ε/(16κ2
√
k), we obtain that

E ′l = ‖Ml‖2F − ‖Y Y TMl‖2F ≤
3ε

4
σ2
k+1.

Recall here that κ = σ1(M)/σk+1(M). The matrix Y Y TMl is a rank l approximation for matrix
M inside the column span of Y and hence in the column span of K ′. Let Y l be a rank l matrix that
forms a basis for the best rank l approximation of M inside the column space of K ′ i.e.,

min
rank-l B:colspan(B)⊆colspan(K′)

‖M −B‖2F = ‖M − Y lY lM‖2F.

From Lemma 3, note that if Ū Σ̄2V̄ T is the singular value decomposition of the matrixQ′TMMTQ′

(recall Q′ denotes an orthonormal basis for the matrix K ′), then Y l = Q′Ūl where Ūl denotes the
first l columns of the matrix Ū . By the optimality of Y l, ‖M − Y l(Y l)TM‖2F ≤ ‖M − Y Y TMl‖2F
which implies that ‖Y Y TMl‖2F ≤ ‖Y l(Y l)TM‖2F. Thus ‖Ml‖2F − ‖Y l(Y l)TM‖2F ≤ ‖Ml‖2F −
‖Y Y TMl‖2F = E ′l ≤ (3ε/4)σ2

k+1.

The proof also shows that if Ū Σ̄2ŪT is the singular value decomposition of the positive semi-
definite matrix Q′TMMTQ′, then Y l = Q′Ūl where Ūl denotes the matrix that contains the first l
columns of Ū . Let m ≤ k be the largest integer for which σm(M) ≥ (1 + ε)σk+1(M). From the
above lemma, the matrix Y m satisfies ‖Ml‖2F − ‖Y m(Y m)TM‖2F ≤ (3ε/4)σk+1(M)2. We later
show that this implies ‖M − Y m(Y m)TM‖2 ≤ (1 + 3ε/2)σk+1(M). Unfortunately, we cannot
compute the matrix Q′TMMTQ′ exactly as we only have access to an oracle that computes vector
products with matricesM,MT approximately. Nevertheless we show that we can compute a matrix
Ŷ m based on an approximation to the matrixQ′TMMTQ′ and it still satisfies the desired guarantees
approximately.

First we have the following lemma that shows if a subspace Y m is a good approximation for
Frobenius norm low rank approximation of M in m dimensions, then the subspace Y m is also
a good subspace for spectral norm rank-k approximation of matrix M . It also shows that even
if Ŷ m only approximately satisfies the properties of Y m, the matrix Ŷ m spans a good low rank
approximation for M .

Lemma 23 Given an arbitrary matrix M , if an orthonormal basis Y m to an m-dimensional sub-
space, where m ≤ k is the largest integer such that σm(M) ≥ (1 + ε)σk+1(M), satisfies

‖Mm‖2F − ‖Y m(Y m)TM‖2F ≤ εσk+1(M)2,

then ‖M − Y m(Y m)TM‖2 ≤ (1 + 2ε)σk+1(M). Additionally if Ŷ m is a matrix with m orthonor-
mal columns such that

‖M − Ŷ m(Ŷ m)TM‖2F ≤ ‖M − Y m(Y m)TM‖2F + δ,

then ‖M − Ŷ m(Ŷ m)TM‖2 ≤ (1 + 2ε)σk+1(M) +
√
δ.

25



KACHAM WOODRUFF

Proof As ‖Mm‖2F − ‖Y m(Y m)TM‖2F = ‖M‖2F − ‖M −Mm‖2F − ‖Y m(Y m)TM‖2F = ‖M −
Y m(Y m)TM‖2F − ‖M −Mm‖2F, we obtain that

‖M − Y m(Y m)TM‖2F ≤ ‖M −Mm‖2F + εσk+1(M)2.

As an additive error in Frobenius norm translates to additive error in spectral norm for the above
case (see Theorem 3.2 from [8]), we obtain

‖M − Y m(Y m)TM‖22 ≤ ‖M −Mm‖22 + εσk+1(M)2 ≤ σm+1(M)2 + εσk+1(M)2

≤ (1 + 4ε)σk+1(M)2.

Thus ‖M − Y m(Y m)TM‖2 ≤ (1 + 2ε)σk+1(M). Similarly, we have that

‖M − Ŷ m(Ŷ m)TM‖2F ≤ ‖M −Mm‖2F + εσk+1(M)2 + δ

which implies that

‖M − Ŷ m(Ŷ m)TM‖22 ≤ ‖M −Mm‖22 + εσk+1(M)2 + δ ≤ (1 + 4ε)σk+1(M)2 + δ

which shows ‖M − Ŷ m(Ŷ m)TM‖2 ≤ (1 + 2ε)σk+1(M) +
√
δ.

The above lemma shows that we need only compute a matrix Ŷ m such that ‖M−Ŷ m(Ŷ m)TM‖2F ≈
‖M − Y m(Y m)TM‖2F.

We show that using an approximation to matrix Q′TMMTQ′T we can compute such a matrix
Ŷ m which shows that ‖M − Ŷ m(Ŷ m)TM‖2 ≤ (1 + O(ε))σk+1(M). As the value of m ≤ k is
not known, we further show that we can compute a matrix Ŷ k with k orthonormal columns such
that colspan(M) ⊇ colspan(K ′) ⊇ colspan(Ŷ k) ⊇ colspan(Ŷ m). Therefore we can conclude that
‖M − Ŷ k(Ŷ k)TM‖2 ≤ ‖M − Ŷ k(Ŷ k)TM‖2 ≤ (1 + O(ε))σk+1(M). We thus have our final
result for low rank approximation.

C.3. Proof of Theorem 8

Computing top k singular vectors of the matrix Q′TMMTQ′ We now show that if Ŷ m are top
m singular vectors of the matrix Q′T((MMT) ◦Q′), then

‖M − Ŷ m(Ŷ m)TM‖2F ≈ ‖M − Y m(Y m)TM‖2F.

Lemma 24 If Zm are the topm orthonormal eigenvectors of the matrixMMT, then for any matrix
Y with m orthonormal columns,

tr(ZT
mMMTZm) ≥ tr(Y TMMTY ).

Proof We have tr(ZT
mMMTZm) = ‖ZmZT

mM‖2F and tr(Y TMMTY ) = ‖Y Y TM‖2F. We are
given that Zm are top m eigenvectors of the matrix MMT and therefore Zm are top m singular
vectors of the matrix M . Therefore for any matrix Y with m orthonormal columns, we have that
‖ZmZT

mM‖2F ≥ ‖Y Y TM‖2F and therefore that tr(ZT
mMMTZm) ≥ tr(Y TMMTY ).
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Lemma 25 Let M be a matrix and Q be an orthonormal basis for an arbitrary r dimensional
space. Let B be a positive semi-definite matrix such that B −QTMMTQ = ∆. Let Z be a matrix
whose columns are the top k eigenvectors of the matrix B. Then if Zm denotes the matrix with first
m columns of Z for m = 1, . . . , k we have

‖M − (QZm)(QZm)TM‖2F ≤ ‖M −Q(QTM)m‖2F + 2m‖∆‖F.

Proof Let Z∗ be the matrix whose columns are the top k eigenvectors of the matrixQTMMTQ and
Z∗m be the first m columns of Z∗. Thus Q(QTM)m = Q(Z∗m(Z∗m)TQTM) = (QZ∗m)(QZ∗m)TM .
Now,

‖(QZm)(QZm)TM‖2F = ‖(QZm)TM‖2F
= tr(ZT

mQ
TMMTQZm)

= tr(ZT
m(QTMMTQ+ ∆)Zm)− tr(ZT

m∆Zm)

= tr(ZT
mBZm)− tr(ZT

m∆Zm)

≥ tr((Z∗m)TBZ∗m)−m‖∆‖F
(Since tr(ZT

m∆Zm) = tr(∆ZmZT
m) ≤ ‖∆‖F‖ZmZT

m‖F ≤ ‖∆‖F ·m)

= tr((Z∗m)T(QTMMTQ)Z∗m)− tr((Z∗m)T∆Z∗m)−m‖∆‖F
= tr(QZ∗m(Z∗m)TQTMMTQZ∗m(Z∗m)TQT)− tr((Z∗m)T∆Z∗m)−m‖∆‖F
≥ ‖(QZ∗m)(QZ∗m)TM‖2F − 2m‖∆‖F.

Thus,
‖M − (QZm)(QZm)TM‖2F ≤ ‖M − (QZ∗m)(QZ∗m)TM‖2F + 2m‖∆‖F,

which concludes the proof.

Hence if Ãpx is a positive semi-definite matrix such that ‖Ãpx − Q′TMMTQ′‖F is small and if
Zm denotes the top m singular vectors of the matrix Ãpx , we can conclude by Lemma 23 that
‖M − (Q′Zm)(Q′Zm)TM‖2 is close to σk+1(M).

We now show that we can compute such a matrix Ãpx . Let Ξ = Q′T((MMT) ◦Q′) (recall that
◦ denotes matrix multiplication using the noisy oracle). Let Ãpx = psd((Ξ + ΞT)/2). Then the
following lemma shows that Ãpx is close to Q′TMMTQ′.

Lemma 26 Given matrices M ∈ Rn×d and Q′ ∈ Rn×t where Q′ is a matrix with t orthonormal
columns, if for all vectors v, v′, ‖M ◦ v −Mv‖2 ≤ ε◦‖M‖2‖v‖2 and ‖MT ◦ v′ −MTv′‖2 ≤
ε◦‖M‖2‖v′‖2, and Ξ := Q′T(MMT) ◦Q′, then

‖psd((Ξ + ΞT)/2)−Q′TMMTQ′‖F ≤ (6ε◦‖M‖22)
√
t.

Let Ãpx = psd((Ξ + ΞT)/2). The matrix Ãpx can be computed in time O(2tT (ε◦) + t3).

Proof Let ki be the ith column of the matrix K ′ and Ei = ‖Q′T(MMT) ◦ ki −Q′T(MMT)ki‖2.
Then

Ei = ‖Q′T(MMT) ◦ ki −Q′T(MMT)ki‖2
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≤ ‖(MMT) ◦ ki − (MMT)ki‖2
= ‖M ◦ (MT ◦ ki)−M(MTki)‖2
≤ ‖M ◦ (MT ◦ ki)−M(MT ◦ ki) +M(MT ◦ ki)−M(MTki)‖2
≤ ‖M ◦ (MT ◦ ki)−M(MT ◦ ki)‖2 + ‖M(MT ◦ ki)−M(MTki)‖2
≤ ε◦‖M‖2‖MT ◦ ki‖2 + ‖M‖2ε◦‖M‖2‖ki‖2
≤ ε◦‖M‖2(‖MTki‖2 + ε◦‖M‖2‖ki‖2) + ‖M‖22ε◦‖ki‖2
≤ 3ε◦‖M‖22. (Since ‖ki‖2 = 1)

Thus ‖Q′TMMTQ′ − Ξ‖2F =
∑t

i=1 ‖Q′TMMTki −Q′T(MMT) ◦ ki‖22 ≤ (3ε◦‖M‖22)2t which
implies that ‖Q′TMMTQ′ − Ξ‖F ≤ (3ε◦‖M‖22)

√
t. Now as Q′TMMTQ′ is a symmetric matrix,

‖Q′TMMTQ′− (Ξ + ΞT)/2‖F ≤ (3ε◦‖M‖22)
√
t. As Q′TMMTQ′ is itself a positive semidefinite

matrix,

‖psd((Ξ + ΞT)/2)− (Ξ + ΞT)/2‖F ≤ ‖Q′TMMTQ′ − (Ξ + ΞT)/2‖F ≤ (3ε◦‖M‖22)
√
t.

Finally, by the triangle inequality we obtain that ‖Q′TMMTQ′ − Ãpx‖F = ‖Q′TMMTQ′ −
psd((Ξ + ΞT)/2)‖F ≤ 6ε◦‖M‖22

√
t. The time required to compute matrix Ξ is 2tT (ε◦) + nt2 and

psd((Ξ + ΞT)/2) can be computed in time O(t3). Thus the matrix Ãpx can be computed in time
O(2tT (ε◦) + t3).

Proof [Proof of Theorem 8] Let q = O((1/
√
ε) log(d/ε)). Algorithm 1 computes the Krylov

Subspace K ′ with
ε◦ =

ε

16κ2+5qk7Cq

for an absolute constantC. Let Y1 be an orthonormal basis for p(M)G and Y be an orthonormal ba-
sis for the matrix Apx (defined in (7)). Then by (8) we have that ‖Y Y T − Y1Y

T
1 ‖2 ≤ ε/(16κ2

√
k).

If m ≤ k is the largest integer such that σm(M) ≥ (1 + ε)σk+1(M), by Lemma 22, there exists a
d dimensional subspace Y m inside the column span of K ′ such that

‖Mm‖2F − ‖Y m(Y m)TA‖2F ≤ (3ε/4)σ2
k+1.

If Ξ is now computed with εo = ε2/(48κ2(
√
qk)k), then by Lemma 26,

‖Q′TMMTQ′ − Ãpx‖F ≤
ε

8k
σ2
k+1.

Now if Zk denote the first k singular vectors of the matrix Ãpx and Zm denote the first m columns
of Zk, then by Lemma 25, we get that

‖M − (Q′Zm)(Q′Zm)TM‖2F ≤ ‖M −Q′(Q′TM)m‖2F + 2m(
ε2

8k
σ2
k+1)

≤ ‖M −Q′(Q′TM)m‖2F +
ε2

4
σ2
k+1.

Finally, by Lemma 23, we obtain that

‖M − (Q′Zm)(Q′Zm)TM‖2 ≤ (1 + 3ε/2)σk+1 +
√

(ε2/4)σ2
k+1 ≤ (1 + 2ε)σk+1.
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Also ‖M − (Q′Zk)(Q
′Zk)

TM‖2 ≤ ‖M − (Q′Zm)(Q′Zm)TM‖2 ≤ (1+2ε)σk+1(M) sinceQ′Zk
has orthonormal columns and colspan(Q′Zk) ⊇ colspan(Q′Zm). Thus in time

T
( ε

κ5qk7Cq

)
qk + T

(
ε2

48κ2(
√
qk)k

)
qk

Algorithm 1 computes a 1 + 2ε approximation. Scaling the value of ε gives us the result. If the
approximations M ◦ v are spanned by column space of M for all vectors v, then the columns of K ′

are spanned by the matrix M . Thus the columns of Q′ are also spanned by M which implies that
columns of the matrix Q′Zm is spanned by M .

Appendix D. Omitted Proofs in Section 6

D.1. Proof of Lemma 9

Proof Define Z := UT Z̃. We have

1 + ε ≥ ‖AA+B(β2I −∆)−1/2 − Z̃Z̃TAA+B(β2I −∆)−1/2‖2
≥ ‖UUTB(β2I −∆)−1/2 − Z̃Z̃TUUTB(β2I −∆)−1/2‖2
≥ ‖UUTB(β2I −∆)−1/2 − UUTZ̃Z̃TUUTB(β2I −∆)−1/2‖2
= ‖UUTB(β2I −∆)−1/2 − UZZTUTB(β2I −∆)−1/2‖2
= ‖UTB(β2I −∆)−1/2 − ZZTUTB(β2I −∆)−1/2‖2

which implies using Lemma 7 that UZ = UUTZ̃ = AA+Z̃ is a good space to project the columns
of B onto i.e.,

‖(AA+Z̃)(AA+Z̃)+B −B‖2 ≤ (1 + ε)β.

D.2. Proof of Lemma 10

Polynomial Approximation of (1 − x)−1/2. We want to obtain a polynomial p(x) such that
|p(x) − (1 − x)−1/2| ≤ δ in the interval x ∈ [0, 1/(1 + ε)]. Consider the Taylor expansion of
(1− x)−1/2:

(1− x)−1/2 =
∞∑
j=0

(2j)!

22jj!2
xj .

The above series converges for all |x| < 1. Consider q(x) to be the Taylor series up to T terms.
Then for 1 > x ≥ 0, we have 0 ≤ q(x) ≤ (1− x)−1/2 and for 0 ≤ x ≤ 1/(1 + ε)

(1− x)−1/2 − q(x) =
∞∑
j=T

(2j)!

22jj!2
xj ≤

∞∑
j=T

xj =
xT

1− x
≤ (1 + ε)

ε(1 + ε)T
=

1

ε(1 + ε)T−1
.

Thus, if T − 1 ≥ 4 log(1/(εδ))/ε ≥ log(1/εδ)/ log(1 + ε), we have (1 + ε)T−1 ≥ 1/εδ which
implies that

0 ≤ (1− x)−1/2 − q(x) ≤ δ
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for all 0 ≤ x ≤ 1/(1 + ε). So, there is a degree t = O(log(1/εδ)/ε) polynomial that uniformly
approximates (1−x)−1/2 upto an error δ in the interval [0, 1/(1+ε)]. Now, we further approximate
the degree t polynomial q(x) with a degree Õ(

√
t) polynomial.

First we have the following Theorem.

Theorem 27 (Theorem 3.3 of [24]) For any positive integers s and d, there is a degree d polyno-
mial ps,d(x) that satisfies

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2e−d
2/2s.

Further, this polynomial ps,d is defined as follows

ps,d(x) = EY1,...,Ys [T|D|(x)I[|D| ≤ d]]

where Y1, . . . , Ys are independent Rademacher random variables, D =
∑s

i=1 Yi and I denotes the
indicator function.

Clearly the polynomial ps,d is defined as a weighted linear combination of Chebyshev Polynomials
of various degrees at most d. With d =

√
2s log(1/δ), we have that

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2e
− log(1/δ) ≤ 2δ.

Thus, given an arbitrary degree t polynomial q(x) =
∑t

i=0 qix
i where q0, . . . , qt are the coefficients

of the polynomial, then the degree d polynomial r(x) =
∑t

i=0 qipi,d(x) with d =
√

2t log(1/δ)
satisfies

sup
x∈[−1,1]

|q(x)− r(x)| = sup
x∈[−1,1]

|
t∑
i=0

qix
i −

t∑
i=0

qipi,d(x)|

≤ sup
x∈[−1,1]

t∑
i=0

|qi||xi − pi,d(x)|

≤ sup
x∈[−1,1]

t∑
i=0

|qi|2δ

= 2‖q‖1δ.

We now bound ‖r‖1. We have

‖r‖1 = ‖
∑
i

qipi,d(x)‖ ≤
∑
i

|qi|‖pi,d(x)‖1

=
∑
i

|qi|‖EY1,...,Ys [T|D|(x)I[|D| ≤ d]]‖1

≤
∑
i

|qi|EY1,...,Ys [‖T|D|(x)I[|D| ≤ d]]‖1]

≤
∑
i

|qi|
1

2
(1 +

√
2)d =

1

2
(1 +

√
2)d‖q‖1.

Here we use the fact that ‖ · ‖1 is convex over polynomials and that the sum of absolute values of
coefficients of a Chebyshev polynomial of degree d is bounded by (1 +

√
2)d. Thus we have the

following lemma.
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Lemma 28 Given any polynomial q(x) of degree t, there exists a polynomial r(x) of degree d =√
2t log(2‖q‖1/δ) such that

sup
x∈[−1,1]

|q(x)− r(x)| ≤ δ

and ‖r‖1 ≤ (1 +
√

2)d‖q‖1.

We already saw that the polynomial q(x) =
∑t

j=0
(2j)!

22jj!2
xj satisfies |q(x)−(1−x)−1/2| ≤ δ for

x ∈ [0, 1/(1 + ε)] if t = O(log(1/εδ)/ε). We also have ‖q‖1 =
∑t

j=0 |(2j)!/(22j(j!)2)| ≤ t+ 1.
Thus by the above lemma, we can compute a polynomial r(x) of degree d = O(

√
t log(t/δ)) =

O( 1√
ε

log(1/εδ)) such that

sup
x∈[0,1/(1+ε)]

|r(x)− (1−x)−1/2| ≤ sup
x∈[0,1/(1+ε)]

|(1−x)−1/2− q(x)|+ sup
x∈[−1,1]

|q(x)− r(x)| ≤ 2δ.

and we also have ‖r‖1 = O((1 +
√

2)dt) = O((1 +
√

2)O(
√

1/ε log(1/εδ)) log(1/εδ)/ε). We sum-
marize this in the following lemma.

Lemma 29 Given ε, δ > 0, there exists a polynomial r(x) of degree O( 1√
ε

log(1/εδ)) and ‖r‖1 =

O((1 +
√

2)O(
√

1/ε log(1/εδ)) log(1/εδ)/ε) such that

sup
x∈[0,1/(1+ε)]

|r(x)− (1− x)−1/2| ≤ δ.

Lemma 30 (Matrix Approximation Lemma) If A ∈ Rn×n is a positive semidefinite matrix with
λmax(A) < 1 and if r(x) is a polynomial such that

sup
x∈[0,λmax(A)]

|r(x)− (1− x)−1/2| ≤ δ

then ‖r(A)− (I −A)−1/2‖2 ≤ δ.

Proof Let A = V DV T be the eigenvalue decomposition of D with D = diag(λ1, . . . , λn) where
λmax = λ1 ≥ . . . ≥ λn ≥ 0. Then (I − A)−1/2 = V (I − D)−1/2V T and r(A) = V r(D)V T.
Therefore

‖r(A)− (I −A)−1/2‖2 = ‖V ((I −D)−1/2 − r(D))V T‖2
= ‖(I −D)−1/2 − r(D)‖2
= max

i
|(1− λi)−1/2 − r(λi)|

≤ sup
x∈[0,λmax(A)]

|(1− x)−1/2 − r(x)| ≤ δ.

Here we use the fact that 0 ≤ λ1, . . . , λn ≤ λmax(A).

As ∆ is a positive semidefinite matrix such that β2 ≥ (1 + ε)‖∆‖2, then ‖∆/β2‖2 ≤ 1/(1 + ε) and
hence we can compute a polynomial r(x) of degree O( 1√

ε
log(1/εδ)) such that

‖r(∆/β2)− (I −∆/β2)−1/2‖2 ≤ δ.
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Modified Problem. Instead of considering the matrixM = AA+B(β2I −∆)−1/2 for low rank
approximation, we consider the matrixM′ = AA+BM/β for M = r(∆/β2), where r(x) is a low
degree polynomial, and argue that a 1+ε LRA solution for the matrixM′ is a 1+2ε approximation
for the LRA problem on matrixM.
Proof [Proof of Lemma 10] Recall ∆ = BT(I −AA+)B and therefore ‖∆‖2 = ‖(I −AA+)B‖22.
Given that β ≥ (1 + ε) max(‖(I −AA+)B‖2, σk+1(B)), we have β2 ≥ (1 + ε)2‖∆‖2 ≥ (1 +
ε)‖∆‖2. Thus, ‖∆/β2‖2 ≤ 1/(1 + ε).

As ‖∆/β2‖2 ≤ 1/(1 + ε), we approximate (I − ∆/β2)−1/2 with the matrix M = r(∆/β2)
where r(x) =

∑t
i=0 rix

i is a polynomial of degree t = O( 1√
ε

log( 1
εδ )) given by Lemma 29. By

Lemma 30, the matrix r(∆/β2) =
∑t

i=0 ri(∆/β
2)i satisfies

‖(I −∆/β2)−1/2 −M‖2 = ‖(I −∆/β2)−1/2 − r(∆/β2)‖2

= ‖(I −∆/β2)−1/2 −
t∑
i=0

ri

(
∆

β2

)i
‖2 ≤ δ.

As ‖∆/β2‖2 ≤ 1/(1 + ε) and ∆/β2 is a positive semidefinite matrix, we have σmax(I −∆/β2) ≤
1 and σmin(I − ∆/β2) ≥ ε/(1 + ε). Therefore σmax((I − ∆/β2)−1/2) ≤

√
(1 + ε)/ε and

σmin((I −∆/β2)−1/2) ≥ 1. By Weyl’s inequality, we obtain that

σmax(M) ≤
√

(1 + ε)/ε+ δ and σmin(M) ≥ 1− δ.

By sub-multiplicativity of the spectral norm

‖AA+B(β2I −∆)−1/2 − AA+BM

β
‖2 ≤

‖AA+B‖2
β

‖(I − (∆/β2))−1/2 −M‖2

≤ ‖AA
+B‖2
β

δ.

Using Weyl’s inequality, we obtain

σk+1

(
AA+BM

β

)
≤ σk+1(AA+B(β2I −∆)−1/2) +

‖AA+B‖2
β

δ ≤ 1 +
‖AA+B‖2

β
δ. (9)

The last inequality follows as there exists a rank k matrix with ‖AX −B‖2 ≤ β. If we can now
find a rank k matrix Z with orthonormal columns such that

‖ZZTAA
+BM

β
− AA+BM

β
‖2 ≤ (1 + ε)σk+1

(
AA+BM

β

)
, (10)

then

‖ZZTAA+B(β2I −∆)−1/2 −AA+B(β2I −∆)−1/2‖2

≤ ‖ZZTAA
+BM

β
− AA+BM

β
‖2 + ‖(I − ZZT)

(
AA+BM

β
−AA+B(β2I −∆)−1/2

)
‖2

≤ (1 + ε)σk+1

(
AA+BM

β

)
+
‖AA+B‖2

β
δ
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Algorithm 3: OracleM′

Input: v ∈ Rd, εr > 0
Output: y ∈ Rn
/* Let r(x) be the polynomial as in Lemma 10 */
t← degree(r)
εreg ← O (εr/κ‖r‖1)
y ← 0
Apx 0 ← v
for i = 0, . . . , t do

y ← y + riApx i
Apx i+1 ← BTB ·Apx i −BT · (HIGHPRECISIONREGRESSION(A,B ·Apx i, εreg))

end
y ← (HighPrecisionRegression(A,B · y, εreg))/β

≤ (1 + ε)(1 + 2‖AA+B‖2(δ/β)).

The last inequality follows from (9). If δ is chosen to be less than ε/4κwhere κ = σ1(B)/σk+1(B),
then

‖ZZTAA+B(β2I −∆)−1/2 −AA+B(β2I −∆)−1/2‖2
≤ (1 + ε)

(
1 + 2‖AA+B‖2(δ/β)

)
≤ (1 + ε)

(
1 + 2

‖AA+B‖2
β

εσk+1(B)

4σ1(B)

)
≤ 1 + 2ε

as ‖AA+B‖2 ≤ σ1(B) and β ≥ (1 + ε)σk+1(B). This implies that if (1− x)−1/2 is approximated
by a polynomial r(x) uniformly in the interval [0, 1/(1+ε)] with an error at most ε/4κ and if matrix
Z is an orthonormal basis for a space that spans a 1 + ε rank k approximation in spectral norm for
the matrix AA+B r(∆/β2)

β , then

‖AA+Z(AA+Z)+B −B‖2 ≤ (1 + 6ε)β = (1 +O(ε))Opt.

We obtain the proof by appropriately scaling ε.

D.3. Proof of Lemma 11

Throughout the analysis, we assume ‖AA+B‖2 ≥ ε‖B‖2. Suppose if ‖AA+B‖2 ≤ ε‖B‖2. Let z
be the top singular vector of matrix B. Then

‖B‖22 = ‖Bz‖22
= ‖AA+Bz‖22 + ‖(I −AA+)Bz‖22
≤ ε2‖B‖22 + ‖(I −AA+)Bz‖22.
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Algorithm 4: OracleM′T

Input: v ∈ Rd, εr > 0
Output: y ∈ Rn
/* Let r(x) be the polynomial as in Lemma 10 */
t← degree(r)
εreg ← O (εr/κ‖r‖1)
y ← 0

Apx 0 ← BT · (HIGHPRECISIONREGRESSION(A, v, εreg))
for i = 0, . . . , t do

y ← y + riApx i
Apx i+1 ← BTB ·Apx i −BT · (HIGHPRECISIONREGRESSION(A,B ·Apx i, εreg))

end
y ← y/β

Thus, ‖(I −AA+)B‖22 ≥ ‖(I −AA+)Bz‖22 ≥ (1 − ε2)‖B‖22. Therefore Opt ≥
√

1− ε2‖B‖2
which implies ‖B‖2 ≤ (1/

√
1− ε2)Opt ≤ (1 + ε)Opt for ε ≤ 1/2. Thus ‖A(0)−B‖2 ≤ (1 +

ε)Opt and hence we have a trivial (1 + ε) approximate solution. Thus we can assume ‖AA+B‖2 ≥
ε‖B‖2.

Based on Theorem 1, we compute approximate projections onto the column span of A. The
following lemma states that a matrix-vector product with the matrix (∆/β2) can be approximated
well.

Lemma 31 Given an arbitrary vector v ∈ Rd, we can compute a vector y ∈ Rd such that

‖y − (1/β2)∆v‖2 ≤ εregκ‖v‖2

in time O(nnz(B) + (nnz(A) + c2) log(1/εreg)).

Proof Recall that ∆ = BT(I − AA+)B. Therefore, for a vector v, ∆v = BTBv − BTAA+Bv.
After computingBv exactly, we can compute ỹ by Theorem 1 inO((nnz(A)+c2) log(1/εreg)) time
such that

‖AA+Bv − ỹ‖2 ≤ εreg‖(I −AA+)Bv‖2.

Let y = BTBv − BTỹ which can be computed in O(nnz(B)) time. Then ∆v − y = BT(ỹ −
AA+Bv) which implies ‖∆v − y‖2 ≤ ‖B‖2‖ỹ −AA+Bv‖2 ≤ εreg‖B‖2‖(I −AA+)B‖2‖v‖2.

Thus given a vector v, we can compute (∆/β2)v up to an error of

εreg‖B‖2‖(I −AA+)B‖2‖v‖2/β2 ≤ εregκ‖v‖2

since β ≥ max(‖(I −AA+)B‖2, σk+1(B)).

Lemma 32 Given an arbitrary vector v ∈ Rd, for matrix M = r
(
∆/β2

)
=
∑t

j=0 rj
(
∆/β2

)j
where the degree t = O((1/

√
ε) log(κ/ε)) and ‖r‖1 = O((1 +

√
2)O(
√

1/ε log(κ/ε)) log(κ/ε)), we
can compute a vector y such that ‖Mv − y‖2 ≤ εr‖v‖2 in time

O
(
t ·
(
nnz(B) + (nnz(A) + c2) log (κ‖r‖1/εr)

))
.
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Proof Let Apx 0 := v and for i ≥ 1, define Apx i to be the approximation computed for the product
(∆/β2)Apx i−1 by Lemma 31. Define

Ei := ‖(∆/β2)iv −Apx i‖2.

We have the following recurrence

Ei = ‖
(

∆

β2

)i
v −Apx i‖2 ≤ ‖(∆/β2)iv − (∆/β2)Apxi−1‖2 + ‖(∆/β2)Apx i−1 −Apx i‖2

≤ ‖(∆/β2)‖2Ei−1 + εregκ‖Apx i−1‖2
≤ ‖(∆/β2)‖2Ei−1 + εregκ · (‖∆/β2‖i−1

2 ‖v‖2 + Ei−1)

≤ (‖∆‖2/β2 + εregκ)Ei−1 + εregκ‖∆/β2‖i−1
2 ‖v‖2.

As β ≥ (1 + ε)‖(I −AA+)B‖2, we have that ‖∆/β2‖2 ≤ 1/(1 + ε)2. If εregκ ≤ ε/4, then
‖∆/β2‖2 + εregκ ≤ 1/(1 + ε)2 + ε/4 ≤ 1/(1 + ε). Therefore

Ei ≤
Ei−1

1 + ε
+

εregκ

(1 + ε)2(i−1)
‖v‖2.

which implies upon solving the recurrence that

Ei ≤ εregκ‖v‖2

for all i. Then

‖Mv −
t∑

j=0

rjApx j‖2 ≤
t∑

j=0

|rj |‖(∆/β2)jv −Apx j‖2

≤
t∑

j=0

|rj |Ej ≤ εregκ‖v‖2
t∑

j=0

|rj | = εregκ‖v‖2‖r‖1.

So for any arbitrary vector v, we can compute a vector y such that

‖Mv − y‖2 ≤ εr‖v‖2.

by setting εreg = O( εr
κ‖r‖1 ) ≤ ε/4κ for all t approximate products and and thus y can be computed

by Lemma 31 in time

O(t · (nnz(B) + (nnz(A) + r2) log (κ‖r‖1/εr))).

This concludes the proof of the lemma.

Thus for an arbitrary vector v, we can compute a vector y such that ‖Mv − y‖2 ≤ εr‖v‖2.
Proof [Proof of Lemma 11] Recall thatM′ = (AA+BM)/β, ‖M‖2 ≤ 2/

√
ε and σmin(M) ≥ 1/2

from Lemma 10. We have ‖AA+BM‖2 ≥ ‖AA+B‖2σmin(M) ≥ ‖AA+B‖2/2 ≥ ε‖B‖2/2
where the last ineqaulity follows from our assumption that ‖AA+B‖2 ≥ ε‖B‖2. Thus ‖M′‖2 ≥
ε‖B‖2/2β ≥ ε/4 as β ≤ (1 + ε)‖B‖2.

Now we show how to compute approximations toM′v andM′Tv′ for arbitrary vectors v, v′.
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To compute an approximation toM′v, we first obtain a vector y1 using the above lemma such
that ‖Mv − y1‖2 ≤ εr‖v‖2. Then we compute the product By1 exactly in time O(nnz(B)). There-
after we compute a vector y2 by Theorem 1 such that

‖y2 −AA+By1‖2 ≤ εreg‖(I −AA+)By1‖2 ≤ εreg‖(I −AA+)B‖2‖y1‖2.

We also have ‖AA+By1 −AA+BMv‖2 ≤ εr‖AA+B‖2‖v‖2. Therefore by triangle inequality,
‖AA+BMv − y2‖2 ≤ εr‖AA+B‖2‖v‖2 + εreg‖(I −AA+)B‖2‖y1‖2. Hence

‖M′v − (y2/β)‖2 ≤ εr
‖AA+B‖2

β
‖v‖2 + εreg‖y1‖2 ≤ εrκ‖v‖2 + εreg(εr‖v‖2 + ‖M‖2v)

≤ εr(κ+ 1)‖v‖2 +
2εreg√
ε
‖v‖2.

Thus if εr = O(εfε/κ) and εreg = O(εfε
3/2), we have that ‖M′v − (y2/β)‖2 ≤ εfε‖v‖2 ≤

εf‖M′‖2‖v‖2. Therefore a vector y2/β can be computed in time O(t · (nnz(B) + (nnz(A) +

c2) log
(
κ2‖r‖1
εfε

)
)) +O((nnz(A) + c2) log( 1

εfε
)).

Now we compute an approximation forM′Tv = (MTBTAA+/β)v for an arbitrary vector v.
We first compute a vector y1 such that

‖AA+v − y1‖2 ≤ εreg‖(I −AA+)v‖2 ≤ εreg‖v‖2.

Then we compute BTy1 exactly. Then we compute a vector y2 such that ‖MBTy1 − y2‖2 ≤
εr‖BTy1‖2 ≤ εr‖B‖2(1 + εreg)‖v‖2 . We further have

‖MBTAA+v −MBTy1‖2 ≤ εreg‖MBT‖2‖v‖2 ≤ εreg
2‖B‖2√

ε
‖v‖2.

Thus

‖y2 −MBTAA+v‖2 ≤ 2εr‖B‖2‖v‖2 + εreg
2‖B‖2√

ε
‖v‖2

and hence
‖y2/β −M′Tv‖2 ≤ 2εrκ‖v‖2 + εreg

2κ√
ε
‖v‖2

Now picking εr = O(εfε/κ) and εreg = O(εfε
3/2/κ), we obtain that

‖(y2/β)−M′Tv‖2 ≤ εfε‖v‖2 ≤ εf‖M′‖2‖v‖2.

Thus this approximation can be computed in time O(t · (nnz(B) + (nnz(A) + c2) log
(
κ2‖r‖1
εfε

)
)) +

O((nnz(A)+c2) log( κ
εfε

)). So, given an accuracy parameter εf we can compute approximate matrix-
vector products withM′ andM′T in time at most

T (εf) = O(t · (nnz(B) + (nnz(A) + c2) log
(
κ(B)2‖r‖1/(εfε)

)
))

+O((nnz(A) + c2) log(κ(B)/(εfε))).
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D.4. Proof of Theorem 12

Proof From Lemma 10,

σ1(M′) ≤ σ1

(
AA+B

β

)
‖M‖2 ≤ σ1

(
AA+B

β

)
2√
ε

and
σk+1(M′) ≥ σk+1(AA+B/β) · σmin(M) ≥ σk+1(AA+B/β)(1/2).

Therefore κ(M′) ≤ σ1(AA+B/β)(2/
√
ε)/σk+1(AA+B/β)/2 ≤ (4/

√
ε)κ(AA+B). By Theo-

rem 8, we can compute a matrix Z ∈ Rn×k such that ‖(I − ZZT)M′‖2 ≤ (1 + 2ε)σk+1(M′) in
time

T

(
ε

κ(M′)5qk11Cq

)
qk + T

(
ε2

48κ(M′2(
√
qk)k)

)
qk

where q = O((1/
√
ε) log(d/ε)). Thus the total time required is

O

(
tqk ·

(
nnz(B) + (nnz(A) + c2) log

(
κ2‖r‖1κ(M′)5qk11Cq

ε2

)))
.

As ‖r‖1 = (1 +
√

2)O(1/
√
ε log(κ/ε)) log(κ/ε)/ε and κ(M′) = κ(AA+B)/

√
ε, we obtain that the

total time required is O(tqk · nnz(B) + tqk · ( 1√
ε

log(κ/ε) + q) log(κ·κ(M′)·k
ε ) · (nnz(A) + c2)).

Substituting t = O(
√

1/ε log(κ/ε)), we obtain that the total running time is

O

((
nnz(B) · k

ε
+

nnz(A) · k
ε1.5

+
c2k

ε1.5

)
· polylog(κ, κ(AA+B), d, k, 1/ε)

)
(11)

and an additional cω for computing a preconditioner. By Lemmas 9 and 10, we obtain that

‖(AA+Z)(AA+Z)+B −B‖2 = ‖ZZTB −B‖2 ≤ (1 +O(ε))Opt.

The equality is from the fact that Z is spanned by columns of matrix A by Theorem 8 and therefore
AA+Z = Z. Thus there exists a matrix X1 ∈ Rc×k such that AX1 = Z and the matrix X1 can be
computed in time O((nnz(A) + c2)k + cω) using sketching-based preconditioning techniques. Let
Y1 = ZTB which can be computed in time O(nnz(B) · k). Therefore,

‖AX1Y1 −B‖2 = ‖ZZTB −B‖2 ≤ (1 +O(ε))Opt.

Thus X1 · Y1 is a 1 + O(ε) approximation for the regression problem. By appropriately scaling ε,
we obtain the proof.

D.5. Proof of Lemma 13

Proof Let G ∼ N(0, 1)n×(k+1) and FT ∈ R(k+1)×d be a matrix with k + 1 orthonormal rows.
Let α be a parameter to be chosen later and B̃ := B + αGFT. For all matrices X , by the triangle
inequality,

‖AX − B̃‖2 ∈ ‖AX −B‖2 ± α‖GFT‖2.
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With probability ≥ 9/10, ‖G‖2 ≤ 2
√
n. Thus ‖AX − B̃‖2 ∈ ‖AX −B‖2 ± 2α

√
n. Therefore, if

X̃ is a 1 + ε approximation for minrank-k X ‖AX − B̃‖2, then ‖AX̃ −B‖2 ≤ (1 + ε)Opt + 6α
√
n.

We now have σ1(AA+B̃) ≤ ‖B̃‖2 ≤ ‖B‖2 + 2α
√
n from above discussion. We now lower

bound σk+1(AA+B̃). Let U be an orthonormal basis for columns of A. Therefore AA+ = UUT.

σk+1(AA+B̃) = σk+1(UUTB̃)

= σk+1(UTB̃)

= σk+1(UTB + αUTGFT)

≥ σk+1(UTBFFT + αUTGFT)

≥ σk+1(UTBF + αUTG).

As the rows of UT are orthonormal, the matrix G′ = UTG is a matrix of i.i.d. normal random
variables. Assuming A is of full rank, then G′ is a c × (k + 1) matrix. Assuming c ≥ k + 1,
let E be the top (k + 1) × (k + 1) sub-matrix of UTBF + αG′. Then E can be seen as a fixed
(k+1)×(k+1) matrix where each entry is perturbed by a Gaussian random variable of variance α2.
From Theorem 2.2 of [30], we obtain that σmin(E) ≥ α/(C

√
k) for a constant C with probability

≥ 9/10. Thus σk+1(UTBF + αUTG) ≥ σmin(E) ≥ α/(C
√
k).

Thus, σ1(AA+B̃)/σk+1(AA+B̃) ≤ (‖B‖2 + 2α
√
n)/(α/(C

√
k)). For α =

εσk+1(B)

(6
√
n)

, we
obtain that

σ1(AA+B̃)/σk+1(AA+B̃) ≤ Cn

ε
κ

for a constant C with probability ≥ 4/5. Also, if X̃ is a 1 + ε approximation as mentioned above,
‖AX̃ −B‖2 ≤ (1 + ε)Opt + εσk+1(B) ≤ (1 + 2ε)Opt. We obtain the proof by scaling ε appro-
priately.
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