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We study the minimal error of the Empirical Risk Minimization (ERM) procedure in the task of regres-
sion, both in the random and the fixed design settings, with a convex class of regression functionsF .1 We are
given n data points X1, . . . , Xn (distributed i.i.d. according to P in random design, or chosen deterministi-
cally in fixed design) and n observations of Yi = f∗(Xi)+ξi, 1 ≤ i ≤ n, where f∗ ∈ F and ξi ∼

i.i.d.
N(0, 1).

The ERM procedure with respect to the squared loss (equivalently, constrained least squares) is

f̂n := argmin
f∈F

n∑
i=1

(Yi − f(Xi))
2.

The minimal error of ERM in the random and the fixed designs, is defined, respectively, as

inf
f∗∈F

Eξ,X
∫
(f̂n − f∗)2dP and inf

f∗∈F
Eξ

1

n

n∑
i=1

(f̂n − f∗)2(Xi).

These quantities represent the error that ERM will always incur for any underlying function f∗ ∈ F , no
matter how ‘simple’ it is. The minimal error should be contrasted with the classical risk formulation for the
worst-case regression function f∗ ∈ F .

In this work, we provide sharp lower bounds for the aforementioned quantities. Specifically, in the fixed
design setting, we prove the left-hand side of the following inequality:

64−1(Wx(F)− C1n
−1)2 ≤ inf

f∗∈F
Eξ

1

n

n∑
i=1

(f̂n − f∗)2(Xi) ≤ sup
f∗∈F

Eξ
1

n

n∑
i=1

(f̂n − f∗)2(Xi) ≤ 4Wx(F)

where C1 ≥ 0 is an absolute constant,Wx(F) := Eξ supf∈F 1
n

∑n
i=1 ξif(Xi) is the Gaussian complexity

of the class F with respect to X1, . . . , Xn, and F is assumed to be uniformly bounded by 1. Informally
speaking, in the fixed design setting, we show that the minimal error is governed by the global squared
Gaussian complexity of the entire function class. This points to the lack of adaptivity of ERM to a favorable
f∗ for “rich” function classes.

1. Extended abstract. Full version appears as [arXiv:2102.12066]
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In contrast, in the random design setting, ERM may enjoy faster rates of convergence (that is, adapt to
simpler f∗), but only if the local neighborhoods around the regression function are nearly as complex as
the class itself, a somewhat counter-intuitive conclusion. Specifically, we prove the left-hand side of the
following inequality:

∀f∗ ∈ F c1 ·min{W(F)2, tn,P(f∗,F)2} ≤ Ex,ξ
∫

(f̂n − f∗)2dP ≤ 64 · W(F),

whereW(F) = EWx(F) and the “critical” radius tn,P(f∗,F) is defined as

min{t ∈ (0, 2) :W(BP(f
∗, t)) ≤ c2W(F)} and BP(f

∗, t) := {f ∈ F :

∫
(f∗ − f)2dP ≤ t2}

for some absolute constants c1, c2 ∈ (0, 1). As an application for our bounds, we provide sharp lower
bounds for performance of ERM for both Donsker and non-Donsker classes. We also discuss our results
through the lens of recent studies on interpolation in overparameterized models.
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