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Abstract
We establish a connection between the stability of mirror descent and the information ratio by
Russo and Van Roy (2014). Our analysis shows that mirror descent with suitable loss estimators
and exploratory distributions enjoys the same bound on the adversarial regret as the bounds on
the Bayesian regret for information-directed sampling. Along the way, we develop the theory for
information-directed sampling and provide an efficient algorithm for adversarial bandits for which
the regret upper bound matches exactly the best known information-theoretic upper bound.
Keywords: Bandits, partial monitoring, mirror descent, information theory.

1. Introduction

The combination of minimax duality and the information-theoretic machinery developed by Russo
and Van Roy (2014) has yielded a series of elegant arguments bounding the minimax regret for a
variety of regret minimisation problems. The downside is that the application of minimax duality
makes the approach non-constructive: the existence of certain policies is established without iden-
tifying what those policies are. Our main contribution is to show that the information-theoretic
machinery can be translated in a natural way to the language of online linear optimisation, yielding
explicit policies. Unfortunately, these policies are not guaranteed to be efficient – they must solve a
convex optimisation problem that may be infinite dimensional. Nevertheless, our approach provides
a clear path towards algorithm design and/or improved bounds, as we illustrate with an application
to finite-armed bandits.

To maximise generality, our results are stated using a linear variant of the partial monitoring
framework, which is flexible enough to model most classical setups (Lattimore and Szepesvári,
2020b, Chapter 37). Readers who are not familiar with partial monitoring should not be put off.
Our analysis does not depend on subtle concepts specific to finite partial monitoring, like the cell
decomposition or observability. Examples are given in Table 1.

A linear partial monitoring game is defined by an action space A ⊂ Rd, a signal space Σ, a latent
space Z and two functions: a signal function Φ : A ×Z → Σ and a loss function ` : Z → Rd. Both
the signal and loss functions are known to the learner. What is special about partial monitoring is that
the learner never directly observes the realised losses, instead receiving signals that are correlated
with the losses in a way that depends on the loss and signal functions. At the start of the game, an
adversary secretly chooses a sequence (zt)

n
t=1 with zt ∈ Z . A policy is a mapping from action/signal

sequences to distributions over actions. The learner interacts with the environment over n rounds.
In each round t, the learner uses their policy to find a distribution Pt over the actions based on the
history (As)

t−1
s=1 and (σs)

t−1
s=1, where As is the action chosen in round s and σs = ΦAs(zs) is the

signal. The learner then samples At from Pt, observes the corresponding signal σs, and suffers loss
〈At, `(zt)〉.
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Regret The regret of a policy π is defined as Rn(π, (zt)) = maxa∈A E [
∑n

t=1〈At − a, `(zt)〉],
where the expectation integrates over the randomness in the actions chosen by the learner (to sim-
plify notation, we write (zt) instead of (zt)

n
t=1). The arguments π and (zt) are omitted when they

are obvious from the context. The quantity of interest is generally the minimax adversarial re-
gret, defined as R?

n = infπ sup(zt) Rn(π, (zt)), where the infimum is taken over all policies of the
learner and the supremum is over all possible choices of the adversary. Given a finitely supported
distribution µ on Z n, the Bayesian regret of policy π is

BRn(π, µ) =

∫
Zn

Rn(π, (zt)) dµ((zt)) .

A recently popular method for controlling the adversarial regret non-constructively appeals to min-
imax duality to show that

R?
n = sup

µ
inf
π

BRn(π, µ) , (1)

where the supremum is over all finitely supported priors (Bubeck et al., 2015; Bubeck and Eldan,
2018; Lattimore, 2020). The Bayesian regret is then bounded uniformly over all priors using the
information-theoretic argument of Russo and Van Roy (2014). A limitation of this approach is that
the application of minimax duality is non-constructive. It yields a bound on the minimax regret but
gives no hint towards an algorithm.

Contributions Our main contribution is to make a connection between the information-theoretic
machinery by Russo and Van Roy (2014) and online linear optimisation. Specifically, we show that
the stability of mirror descent (MD) and follow the regularised leader (FTRL), the two most popular
algorithms for the latter problem, is upper bounded by a function of the information ratio introduced
by Russo and Van Roy (2014). The new machinery partially resolves two open problems related
to zeroth-order bandit convex optimisation (Bubeck et al., 2017) and hint towards the existence
of improved algorithms for this problem. Our results also provide an effortless proof of the main
theorem of Lattimore and Szepesvári (2020a) for regret minimisation in partial monitoring. Along
the way, we further generalise the information-theoretic machinery to derive adaptive bounds and
to make it more suitable for analysing games for which the minimax regret is not Θ(n1/2). A
concrete consequence is an efficient algorithm for d-armed adversarial bandits for which Rn ≤√

2dn, improving on the best known result for an efficient algorithm that is Rn ≤
√

2dn+ 48d by
Zimmert and Lattimore (2019). A modest improvement that nevertheless illustrates the applicability
of the approach.

Related work Mirror descent has its origins in classical convex optimisation (Nemirovsky, 1979),
while follow the regularised leader goes back to the work of Gordon (1999). As far as we know,
the first application to bandits was by Abernethy et al. (2008). The information-theoretic analysis
for bandit problems was developed in two influential papers by Russo and Van Roy (2014, 2016).
These focussed on the Bayesian setting, with no connections made to the adversarial framework.
Bubeck et al. (2015) used minimax duality to argue that the minimax (adversarial) regret is equal
to the worst-case Bayesian regret and used this to derive the first proof that the minimax regret for
convex bandits in one dimension is O(

√
n log(n)). The same plan has been used for convex bandits

for larger dimensions (Bubeck and Eldan, 2018; Lattimore, 2020) and finite partial monitoring (Lat-
timore and Szepesvári, 2019), the latter of which establishes Eq. (1) in the present setup. None of
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these works yields an efficient algorithm, but these have now been found for both settings (Bubeck
et al., 2017; Lattimore and Szepesvári, 2020a), in both cases based on mirror descent. Connec-
tions between the information ratio and mirror descent were investigated by Zimmert and Lattimore
(2019), who showed that bounds on the stability of mirror descent imply bounds on the information
ratio with somewhat restrictive assumptions. These results hinted at a deeper connection, but the
analysis is somehow in the wrong direction, since the adversarial regret is a stronger notion than the
Bayesian regret. The policy we propose in Section 5 is similar to the exploration by optimisation
algorithm suggested by Lattimore and Szepesvári (2020a). The difference is that now the bias of the
loss estimators is incorporated into the optimisation problem in a more natural way, without which
the connection to the information ratio is not apparent.

2. Notation and conventions

Recall that a proper convex function F : Rd → R∪{∞} is Legendre if it is lower semi-continuous,
essentially smooth and essentially strictly convex (Rockafellar, 2015, §26). Throughout, let F :
Rd → R∪{∞} be a Legendre function and D ⊂ conv(A ) be a compact, convex set with non-empty
relative interior, where conv(A ) is the convex hull of A . We make the following assumptions:

(a) (finite action set): 1 < |A | <∞.

(b) (bounded losses): supa∈A supz∈Z |〈a, `(z)〉| <∞.

(c) (domain of potential): D ⊂ dom(F ) , {x ∈ Rd : F (x) <∞}.

(d) (bounded potential): diam(D ) = supx,y∈D F (x)− F (y) <∞.

The restriction to finite action sets avoids delicate measure-theoretic technicalities. Note, since
D is compact, (d) is automatic when F is continuous on D with the subspace topology, which holds
for all potentials considered in the literature that satisfy (c).

Basic notation Precedence is given to the expectation operator: E[X]α denotes (E[X])α for ran-
dom variables X and reals α. The relative interior of a subset A of a topological vector space is
relint(A). The standard basis vectors in Rd are e1, . . . , ed. Let P be the space of probability distri-
butions over A and P+ = {p ∈ P : p(a) > 0 ,∀a ∈ A} and Pε = {p ∈ P : p(a) ≥ ε ,∀a ∈ A}.
Occasionally elements p ∈ P are identified with vectors in R|A |. The Fenchel–Legendre dual of
F is the convex function defined by F ?(u) = supx∈Rd〈u, x〉 − F (x). Given p, q ∈ dom(F ) and
x, y ∈ dom(F ?), Bregman divergences with respect to F and F ? are

D(p, q) = F (p)− F (q)−∇p−qF (q) D?(x, y) = F ?(x)− F ?(y)−∇x−yF ?(y) ,

where ∇φF is the directional derivative of F in direction φ. The use of directional derivatives
is necessary because F and F ? are not differentiable on the boundary. The assumption that F is
Legendre ensures that duality holds so that (∇F )−1 = ∇F ? and whenever p, q ∈ int(dom(F )),
then

D(p, q) = D?(∇F (q),∇F (p)) . (2)
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Note that if q ∈ int(dom(F )), then p 7→ D(p, q) is convex, since F is differentiable on its interior
by definition. The space of finitely supported probability distributions on Z ×D is denoted by V .
Finally, let

εD = max
a∈A

min
b∈D

max
z∈Z
〈b− a, `(z)〉 ,

which is always non-negative and vanishes in the typical case that D = conv(A ).

NAME A Z Σ `(z) Φa(z)

full information {e1, . . . , ed} [0, 1]d [0, 1]d z z

d-armed bandits {e1, . . . , ed} [0, 1]d [0, 1] z za

semi-bandits ⊂ {a ∈ {0, 1}d : ‖a‖1 ≤ m} [0, 1]d [0, 1]∗ z (za : a = 1)

linear bandits arbitrary ⊂ Rd [0, 1] z 〈a, z〉

graph feedback (†) {e1, . . . , ed} [0, 1]d [0, 1]∗ z (zb : b ∈ Na)

convex bandit (‡) {e1, . . . , ed} ⊂ [0, 1]d [0, 1] z za

† A bandit with graph feedback problem depends on a directed graph over the actions represented by a collection of sets (Na)da=1
with Na the set of edges originating from action a. When playing action a the learner observes the losses for actions b ∈ Na.

‡ The set of actions for convex bandits is generally a convex set K ⊂ Rp. We linearise by finding a net {x1, . . . , xd} ⊂ K ,
where d is large enough that all actions are well-approximated. Then Z = {(f(x1), . . . , f(xd)) : f ∈ [0, 1]K is convex}.

Table 1: Examples

3. A generalised information ratio

The information ratio was introduced by Russo and Van Roy (2014) for the analysis of an algo-
rithm called information-directed sampling, which explicitly optimises the exploration/exploitation
dilemma in a Bayesian framework. This beautiful idea led to a number of short proofs bound-
ing the Bayesian regret for a variety of set-ups (Russo and Van Roy, 2014; Bubeck et al., 2015;
Russo and Van Roy, 2016; Dong and Van Roy, 2018; Dong et al., 2019; Lattimore and Szepesvári,
2019; Lattimore, 2020). We introduce a generalisation of the concept and explore the properties
of information-directed sampling. At the end of the section we outline the differences between the
generalised information ratio and the original.

Definition 1 Recall that V is the space of finitely supported probability distributions on Z ×D . A
partial monitoring game has a (generalised) information ratio of (α, β, λ) ∈ R3 if for any ν ∈ V ,
there exists a distribution p ∈ P such that when (Z,A?, A) has law ν ⊗ p, then

E[〈A−A?, `(Z)〉] ≤ α+ β1−1/λE[D(E[A?|ΦA(Z), A], E[A?])]1/λ .

The distributions p ∈ P realising the display are called exploratory distributions. As the fol-
lowing theorem shows, the Bayesian regret can be bounded in terms of the generalised information
ratio.

Theorem 2 Suppose a partial monitoring game has an information ratio of (α, β, λ) with α, β ≥ 0
and λ ≥ 1. Then, for any finitely supported distribution µ on Z n, there exists a policy π such that

BRn(π, µ) ≤ n(εD + α) + (βn)1−1/λ diam(D )1/λ .
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Proof Let (Zt)
n
t=1 be the sequence of outcomes sampled from the prior µ and Et[·] be the conditional

expectation given the observation history (As)
t
s=1, (σs)

t
s=1 and abbreviate `t = `(Zt). Let A? =

arg mina∈D
∑n

t=1〈a, `t〉 and A?t = Et−1[A?] be its expectation given the information available at
the start of round t. Consider the policy π that samples At from any distribution Pt ∈ P for which

Et−1[〈At −A?, `t〉] ≤ α+ β1−1/λEt−1[D(A?t+1, A
?
t )]

1/λ , (3)

the existence of which is guaranteed by the assumptions of the theorem. Note, that here we have
used the fact that At and (Zt, A

?) are conditionally independent given (As)
t−1
s=1 and (σs)

t−1
s=1. The

Bayesian regret of this policy is bounded by

BRn(π, µ) = E

[
max
a∈A

n∑
t=1

〈At − a, `t〉

]
≤ nεD + E

[
n∑
t=1

〈At −A?, `t〉

]

≤ n(εD + α) + E

[
n∑
t=1

β1−1/λEt−1

[
D(A?t+1, A

?
t )
]1/λ]

≤ n(εD + α) + (βn)1−1/λE

[
n∑
t=1

D(A?t+1, A
?
t )

]1/λ

≤ n(εD + α) + (βn)1−1/λ diam(D )1/λ ,

where the second inequality follows from Eq. (3), the third from Jensen’s inequality and the concav-
ity of x 7→ x1/λ. The fourth inequality follows by telescoping the Bregman divergences (Lattimore
and Szepesvári, 2019, Theorem 3).

Remark 3 The information ratio defined by Russo and Van Roy (2014) assumed that F is the
negentropy, α = 0 and λ = 2. Lattimore and Szepesvári (2019) showed that alternative potential
functions sometimes lead to improved bounds and introduced the parameter α. What is new in
Theorem 1 is that λ 6= 2 is permitted. In typical applications, α = 0, when λ determines the
dependence on the horizon and β the leading constant in the regret. Non-zero values of α generally
arise as a consequence of discretising infinite-action games, with the level of discretisation chosen
in a horizon-dependent manner to ensure that αn is negligible.

Theorem 2 suggests the following tantalising question:

Open problem 4 Assume D = conv(A ) with F being the negentropy potential. Let λ ≥ 1 be the
smallest value such that the game has an (α, β, λ) information ratio with α = 0 and some β. Is it
true that the minimax regret is R?

n = Θ(n1−1/λ)?

The result is known to be true for finite partial monitoring games, where A and Z are finite.
Note, the result is not true for any potential: the quadratic potential does not lead to O(n1/2) regret
for finite-armed bandits.

Remark 5 The assumption that the prior µ is finitely supported is needed because in Theorem 1
we only assumed the existence of a good exploratory distribution for distributions ν ∈ V . Those
concerned mostly with the Bayesian setting usually define the information ratio for a richer class
of distributions than V and correspondingly Theorem 2 would apply to more priors. The reason for
considering finitely supported priors is for the connection to the stability term in Theorem 25, where
(a) the coarse V is sufficient and (b) richer classes cause measure-theoretic challenges.
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Historical note The original information ratio was defined in a more classically Bayesian way.
A stochastic partial monitoring game is determined by a probability measure ϕ on Z (with some
σ-algebra) and then (zt)

n
t=1 is sampled from the product measure ⊗nt=1ϕ = ϕn. Of course ϕ is

unknown to the learner. The Bayesian perspective on this problem is to take a prior distribution
on the unknown ϕ. Let Θ be some parameter space and θ 7→ ϕθ be a probability kernel from Θ
to Z . The Bayesian statistician chooses a prior probability measure ξ on Θ and from this one can
construct the mixture measure on Z n by µ =

∫
ϕθ dξ(θ). Note that µ is not a product measure

anymore, but nevertheless has a special structure that is not enforced in Theorem 2 nor exploited
in Definition 1. Russo and Van Roy (2014) only used the standard Shannon entropy as a potential
function, which means the expected Bregman divergence is the conditional mutual information
between the observation and the optimal action. More formally, they defined the information ratio
in round t as

IRt =
Et−1 [〈At −A∗, `(Zt)〉]2

It−1(A?;At,Φ(At, Zt))
,

where Et−1 = E[·|A1, σ1, . . . , At, σt] and It is the mutual information with respect to conditional
probability measure P(·|A1, σ1, . . . , At, σt). There is another small difference, which is that A?

was taken to be the optimal action in expectation with respect to ϕθ where θ ∼ ξ is now included
in the probability space. Hence, the regret at the end of the day was the Bayesian pseudo-regret.
Bubeck et al. (2015) noticed that the analysis used by Russo and Van Roy (2014) did not rely
on the specific construction of the mixture distribution or the definition of the optimal action. By
relaxing this assumption they were able to combine the information-theoretic approach to prove
minimax bounds for adversarial problems. Our work builds on this by considering the possibility of
using alternative potential functions, introducing the λ parameter and making a connection to online
convex optimisation.

4. Information-directed sampling

We now explain the name ‘information ratio’ and explore some properties of the information-
directed sampling (IDS) algorithm introduced by Russo and Van Roy (2014) in the context of our
generalisation. Let ν ∈ V and define the λ-information ratio Ψν,λ : P → R ∪ {∞} by

Ψν,λ(p) =
max(0, E[〈A−A?, `(Z)〉])λ

E[D(E[A?|ΦA(Z), A], E[A?])]
with (Z,A?, A) ∼ ν ⊗ p

and where we adopt the convention that 0/0 = 0. The minimax λ-information ratio is Ψ?,λ =
supν∈V minp∈P Ψν,λ(p). By rearranging the definitions, a game has a generalised information ratio
of (α, β, λ) with α = 0 if and only if Ψ?,λ ≤ βλ−1.

We now introduce the natural generalisation of IDS that minimises the λ-information ratio.
More precisely, suppose that (Zt)

n
t=1 are sampled from a known finitely supported prior µ on Z n

and A? = arg mina∈D
∑n

t=1〈a, `(Zt)〉. The λ-IDS algorithm samples At from the distribution
Pt ∈ P minimising the λ-information ratio:

Pt = arg min
p∈P

Ψνt,λ(p) ,
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where νt is the law of (Zt, A
?) under the posterior at round t, which isP(· | A1, σ1, . . . , At−1, σt−1).

By following the corresponding theorem by Russo and Van Roy (2014), it is easy to show that
p 7→ Ψν,λ(p) is convex for λ ≥ 2 and that there exists a minimising p supported on at most two
actions.

One thing that is not so nice about the generalisation is that the algorithm now depends on both
the potential function and λ. Fortunately, if one is prepared to sacrifice a small constant factor in
the regret, then optimising Ψνt,2 is a good surrogate for Ψνt,λ for all λ ≥ 2 as the following theorem
shows.

Theorem 6 For any finitely supported prior µ on Z n and λ ≥ 2, the Bayesian regret of 2-IDS is
bounded by BRn ≤ nεD + 21−2/λn1−1/λ(Ψ?,λ diam(D ))1/λ.

Proof Let ν ∈ V and p = arg minp∈P Ψν,2(p). By Lemma 23 in the appendix, for any λ ≥ 2,

Ψν,λ(p) ≤ 2λ−2Ψ?,λ .

Combining the above with the argument (and notation) in Theorem 2,

BRn ≤ nεD + E

[
n∑
t=1

〈At −A?, `(Zt)〉

]

≤ nεD + E

[
n∑
t=1

Ψνt,λ(Pt)
1/λE[D(A?t+1, A

?
t )]

1/λ

]

≤ nεD + 21−2/λn1−1/λΨ
1/λ
?,λ E

[
n∑
t=1

E[D(A?t+1, A
?
t )]

]1/λ

≤ nεD + 21−2/λn1−1/λ(Ψ?,λ diam(D ))1/λ . �

Remark 7 Kirschner et al. (2020) showed using an ad-hoc argument that a ‘frequentist’ version of
information-directed sampling with the squared regret in the information ratio works for globally
observable games where Θ(n2/3) regret is expected.

5. Exploration by optimisation

The policy introduced in this section uses MD or FTRL and solves an optimisation problem to find
exploratory distributions and loss estimators in a way that essentially minimises the regret bound.
A similar algorithm has been seen before with a less clean form and in the context of finite partial
monitoring (Lattimore and Szepesvári, 2020a). The modification compared to that algorithm is
essential for our main result in the next section.

Optimisation problem Let G be the space of functions from A × Σ to Rd. Functions in G will
be used to estimate the losses and are called estimation functions. An estimation function g ∈ G is
called unbiased if for all z ∈ Z and actions b, c ∈ A ,〈

b− c, `(z)−
∑
a∈A

g(a,Φa(z))

〉
= 0 .
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An unbiased loss estimation function g ∈ G can be combined with importance-weighting to estimate
relative differences in losses. Specifically, given any p ∈ P+ and A ∼ p,

E

[〈
b− c, g(A,ΦA(z))

p(A)

loss estimate

〉]
= 〈b− c, `(z)〉 for all z ∈ Z .

We now define the objective for an optimisation problem that plays a central role in everything that
follows. Given q ∈ D ∩ int(dom(F )) and η > 0, define a function Λq,η : Z ×D × P+ ×G → R by

Λq,η(z, a
?, p, g) =

∑
a∈A

p(a) 〈a− a?, `(z)〉+

〈
a? − q,

∑
a∈A

g(a,Φa(z))

〉

+
1

η

∑
a∈A

p(a)Sq

(
ηg(a,Φa(z))

p(a)

)
,

where Sq(x) = D?(∇F (q)− x,∇F (q)), which is the ‘stability’ term that appears in regret bounds
of MD/FTRL (see Theorem 25). Note that x 7→ Sq(x) is convex for q ∈ dom(∇F ), and since sums
of convex functions are convex and the perspective of a convex function is convex, the function
(p, g) 7→ Λq,η(z, a

?, p, g) is convex. To give a little more intuition for Λq,η, notice that

Λq,η(z, a
?, p, g) =

∑
a∈A

p(a) 〈a− q, `(z)〉+

〈
a? − q,

∑
a∈A

g(a,Φa(z))− `(z)

〉

+
1

η

∑
a∈A

p(a)Sq

(
ηg(a,Φa(z))

p(a)

)
.

The first term measures the loss due to sampling an action from p with mean
∑

a∈A p(a)a rather
than a distribution with mean q as recommended by MD/FTRL. The second term vanishes when g
is unbiased and otherwise provides some measure of the bias. The last term measures the stability
of the online learning algorithm. Define Λ?q,η and Λ?η by

Λ?q,η = inf
p∈P+
g∈G

sup
z∈Z
a?∈D

Λq,η(z, a
?, p, g) Λ?η = sup

q∈D∩int(dom(F ))
Λ?q,η . (4)

Theorem 8 The regret of the policy defined by Algorithm 1 (using either MD or FTRL) when run
with precision ε > 0 and learning rate η > 0 is bounded by Rn ≤ diam(D )

η + n(εD + ε+ Λ?η).

Proof Let `t = `(zt) and a? = arg mina∈D
∑n

t=1〈a, `t〉 be the optimal action in D in hindsight.
Decomposing the regret relative to a? and applying the standard regret bound for MD/FTRL in the
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INPUT Learning rate η and precision ε
INITIALISE Q1 = arg minq∈D F (q)
for t = 1 to n:

Find Pt ∈ P+ and Gt ∈ G such that sup
z∈Z ,a?∈D

ΛQt,η(z, a
?, Pt, Gt) ≤ Λ?η + ε

Sample action At ∼ Pt and observe signal σt = ΦAt(zt)

Compute loss estimate ˆ̀
t = Gt(At, σt) and

Qt+1 = arg min
q∈D

〈q, ˆ̀
t〉+

1

η
D(q,Qt)

MD

or Qt+1 = arg min
q∈D

t∑
s=1

〈q, ˆ̀
s〉+

F (q)

η

FTRL

Algorithm 1: Exploration by optimisation

full information case (Theorem 25) yields

Rn ≤ nεD + E

[
n∑
t=1

∑
a∈A

Pt(a)〈a− a?, `t〉

]

= nεD + E

[
n∑
t=1

∑
a∈A

Pt(a)〈a− a?, `t〉+ 〈a? −Qt, ˆ̀
t〉+ 〈Qt − a?, ˆ̀

t〉

]

≤ nεD +
diam(D )

η
+

n∑
t=1

E

[∑
a∈A

Pt(a)〈a− a?, `t〉+ 〈a? −Qt, ˆ̀
t〉+

1

η
SQt(η ˆ̀

t)

]
(A)t

.

Using the fact that p ∈ P+ and the definition of expectation yields

E[(A)t] = E

[∑
a∈A

Pt(a)〈a− a?, `t〉+

〈
a? −Qt,

∑
a∈A

Gt(a,Φa(zt))

〉

+
1

η

∑
a∈A

Pt(a)SQt

(
ηGt(a,Φa(zt))

Pt(a)

)]
= E [ΛQt,η(zt, a

?, Pt, Gt)] ≤ Λ?η + ε ,

where the last inequality follows from the definition of Pt and Gt in Algorithm 1.

6. Stability and the information ratio

The next theorem makes a connection between the information ratio and the value of the optimi-
sation problems defined in Eq. (4). The result shows that the bound on the Bayesian regret in
Theorem 2 holds for Algorithm 1 with the adversarial regret.
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Theorem 9 Suppose a partial monitoring game has an information ratio of (α, β, λ) with λ > 1.
Then, Λ?η ≤ α+ β (1− 1/λ) (η/λ)1/(λ−1).

Combining Theorem 9 with Theorem 8 and tuning the learning rate immediately yields the
following corollary, showing that the regret of Algorithm 1 matches the bound given in Theorem 2.

Corollary 10 Under the same conditions as Theorem 9, the regret of Algorithm 1 with precision
ε > 0 and η = λ (diam(D )/(βn))1−1/λ is bounded by Rn ≤ (ε+ εD +α)n+diam(D )

1
λ (βn)1− 1

λ .

In the language of λ-information ratios, this corresponds to a regret bound of

Rn ≤ (ε+ εD )n+ (Ψ?,λ diam(D ))
1
λn1− 1

λ ,

which holds for any λ > 1.

Proof sketch of Theorem 9 The complete proof is given in Appendix A. Here we outline the
main idea, omitting measure-theoretic and topological concerns that make the rigorous proof more
involved. Let q ∈ D ∩ int(dom(F )) and abbreviate Λ = Λq,η. Assume that

inf
p∈P+
g∈G

sup
a?∈D
z∈Z

Λ(z, a?, p, g) = sup
ν∈V

inf
p∈P+
g∈G

∫
Z×D

Λ(z, a?, p, g) dν(z, a?) . (5)

One might expect such a result from minimax theory, since (p, g) 7→ Λ(z, a?, p, g) is convex. There
is, however, much delicacy. Topologies need to be chosen in such a way that certain compactness
and (semi-)continuity conditions are satisfied. At the moment we are not sure whether or not Eq. (5)
holds in general. In the rigorous proof we restrict the domains and make a limiting argument, but
for simplicity we take Eq. (5) as given for now. The next step is to bound the right-hand side of
Eq. (5). Let ν ∈ V and p ∈ P+ be arbitrary and (Z,A?, A) have law ν ⊗ p, which means that

∫
Z×D

Λ(z, a?, p, g) dν(z, a?) = E

[
〈A−A?, `(Z)〉+

〈
A? − q, g(A, σ)

p(A)

〉
+

1

η
Sq

(
ηg(A, σ)

p(A)

)]
.

The estimation function g ∈ G that minimises the right-hand side above is found by differentiating.
Precisely, given any action a ∈ A and signal σ ∈ {Φa(z) : z ∈ Z , ν({z} ×D ) > 0}, let

g(a, σ) =
p(a)

η
(∇F (q)−∇F (E[A?|Φa(Z) = σ])) ,

10
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and otherwise let g(a, σ) = 0. Next, let σ = ΦA(Z) and A?pr = E[A?] and A?po = E[A?|A,ΦA(Z)].
Then, using the definitions, non-negativity of the Bregman divergences and duality (Eq. (2)),

E

[〈
A? − q, g(A, σ)

p(A)

〉
+

1

η
Sq

(
ηg(A, σ)

p(A)

)]
=

1

η
E
[
〈A?,∇F (q)−∇F (A?po)〉+ F ?

(
∇F (A?po)

)
− F ?(∇F (q))

]
= −1

η
E
[
F ?(∇F (q))− F ?(∇F (A?pr))− 〈A?,∇F (q)−∇F (A?pr)〉

]
− 1

η
E
[
F ?(∇F (A?pr))− F ?(∇F (A?po))− 〈A?,∇F (A?pr)−∇F (A?po)〉

]
= −1

η
E
[
F ?(∇F (q))− F ?(∇F (A?pr))− 〈A?pr,∇F (q)−∇F (A?pr)〉

]
− 1

η
E
[
F ?(∇F (A?pr))− F ?(∇F (A?po))− 〈A?po,∇F (A?pr)−∇F (A?po)〉

]
= −1

η
E
[
D?(∇F (q),∇F (A?pr)) + D?(∇F (A?pr),∇F (A?po))

]
≤ −1

η
E
[
D?(∇F (A?pr),∇F (A?po))

]
= −1

η
E
[
D(A?po, A

?
pr)
]
, (6)

where the first equality follows from the definitions of Sq and g. Note, g was chosen so as to
minimise this expression. The second equality follows by adding and subtracting terms. The third
is true by the definition ofA?pr andA?po and the fourth is the definition of the Bregman divergence. The
inequality is true since Bregman divergences are always non-negative. The final equality follows
from duality (Eq. (2)), though careful readers will notice that we not have guaranteed that∇F (A?pr)
and ∇F (A?po) exist, an issue that is handled carefully in the rigorous proof. By the definition of the
information ratio there exists a p ∈ P such that

E [〈A−A?, `(Z)〉] ≤ α+ β1−1/λE
[
D(A?po, A

?
pr)
]1/λ

.

Combining this with Eq. (6), the definition of Λ and elementary optimisation shows that

E [Λ(Z,A?, p, g)] ≤ E
[
〈A−A?, `(Z)〉 − 1

η
D(A?po, A

?
pr)

]
≤ α+ β1−1/λE[D(A?po, A

?
pr)]

1/λ − 1

η
E[D(A?po, A

?
pr)]

≤ α+ β

(
1− 1

λ

)(η
λ

) 1
λ−1

,

which concludes the sketch.
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7. Computation

Given q = Qt ∈ D ∩ int(dom(F )), Algorithm 1 needs to compute p ∈ P+ and g ∈ G such that

sup
z∈Z ,a?∈D

Λq,η(z, a
?, p, g) ≤ Λ?η + ε .

While this is a convex optimisation problem, G is often infinite-dimensional and the supremum need
not have an explicit form. A fundamental case where things work out is finite partial monitoring
games (Z and A are finite). Then all relevant quantities are finite and standard convex optimisation
libraries can be used to implement Algorithm 1 efficiently. Corollary 10 shows that Algorithm 1 has
regret bounded by the same quantities as the information-theoretic bounds given by Lattimore and
Szepesvári (2019).

8. Discussion

Thompson sampling In general, Theorem 2 only establishes the existence of loss estimators and
exploratory distributions for which the stability term is well controlled. There is one fundamental
case where something can be said about which exploratory distributions yield a bound on the sta-
bility term. Thompson sampling is the policy that always samples At from the conditional law of
A?. We show in Theorem 18 that if Thompson sampling witnesses a bound on the information ratio
and A is the standard basis vectors and F is a Tsallis entropy, then mirror descent with Pt = Qt has
well-controlled stability when D = Pη4/3 is a simplex without the corners.

Finite-armed bandits The finite-armed adversarial bandit problem is modelled as a linear partial
monitoring game by A = {e1, . . . , ed}, Z = [0, 1]d, Σ = [0, 1] and `(z) = z and Φa(z) =
za. Audibert et al. (2014) configured mirror descent with the standard importance-weighted loss
estimators and the 1/2-Tsallis entropy potential: F (q) = −2

∑d
i=1

√
qi. With these choices they

were able to show that the resulting algorithm has a regret bounded by Rn ≤
√

8dn, which matches
the lower bound up to constant factors (Auer et al., 1995). By modifying the loss estimates, Zimmert
and Lattimore (2019) improved the bound to Rn ≤

√
2dn+ 48d.

Meanwhile, on the information-theoretic side, Lattimore and Szepesvári (2019) used entropy
inequalities to show that the same potential has an information ratio bounded by Ψ?,2 ≤

√
d. Com-

bining this with the elementary bound on the diameter diam(D ) ≤ 2
√
d and Corollary 10 shows

that Algorithm 1 has Rn ≤ nε +
√

2dn for arbitrarily small ε. The fact that Σ is infinite means
that the optimisation problem in Algorithm 1 is infinite-dimensional. Nevertheless, armed with the
knowledge that certain loss estimation functions exist, the challenge of finding them is less daunt-
ing. As a starting point, we guessed that (a) the estimation function could be unbiased and (b) that
mirror descent with Pt = Qt would suffice. The latter guess is partially supported by our arguments
about Thompson sampling above.

Theorem 11 The regret of Algorithm 1 using the 1/2-Tsallis entropy and Pt = Qt and

Gt(a, σ)b = 1a=b

(
σ − 1/2 +

η

8

(
1 +

1

Qt,b +
√
Qt,b

))
− ηQt,a

8(Qt,b +
√
Qt,b)

is bounded by
√

2nd.
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Convex bandits Although we do not yet have an efficient approximation of Algorithm 1 for
convex bandits, the analysis here does provide some insights to that problem. Notably, our re-
sults combined with the bound on the information ratio by Lattimore (2020) show there exist
loss estimation functions and exploratory distributions such that mirror descent has regret at most
Rn ≤ O(d2.5√n log(n)). This closes a question raised by Bubeck et al. (2017) by showing that
restarting is not necessary, at least for some loss estimators.

Adaptivity Our results naturally extend to data-dependent regret analysis, such as first order
bounds. In Appendix B we introduce an adaptive notion of the information ratio and prove ana-
logues of both the information-theoretic Bayesian regret analysis and the duality in Theorem 9.

Infinite action spaces In principle, infinite actions spaces can be handled using the same argu-
ments. But delicate measure-theoretic issues arise in the application of Sion’s theorem and some
technical assumptions may be necessary. We leave this as a fun challenge for someone with an
inclination to technical measure-theoretic details.

Is this really mirror descent? Algorithm 1 generally does not play a distribution with exactly
the same mean as recommended by mirror descent and the loss estimates are found by solving an
optimisation problem that minimises a bound. Do they deserve to be called loss estimates? Or
are we manipulating the flexibility of mirror descent to prove a poor man’s minimax theorem. A
first observation is that the distribution Pt and loss estimates only depend on Qt, so in this sense
at least some aspect of mirror descent is being used. Second, the loss estimation functions that
are solutions to the optimisation problem do satisfy certain properties that we expect of sensible
estimators. For simplicity, let us take A = {e1, . . . , ed} and D = conv(A ), which is convenient
since elements of D uniquely represent probability distributions over the actions. We will also
assume that Λ?η = O(η), which is typical for games with O(n1/2) regret, like bandits. Let q ∈
int(dom(F )) and η > 0 be fixed and suppose that (p, g) optimise the saddle-point problem in
Eq. (4). Let ¯̀(z) =

∑
a∈A g(a,Φa(z)) be the expected value of the importance-weighted loss

estimator using estimation function g. There is no hope to argue that ¯̀(z) is close to `(z). What is
true is that ¯̀(z) is often close to `(z) up to a constant shift, which reflects the fact that the learner
only needs to estimate relative losses between actions. Let ∆(z) = ¯̀(z)− `(z)−〈q, `(z)− ¯̀(z)〉1.
If ∆(z) is small (in some sense), then ¯̀(z) is close to `(z) up to shifts. Furthermore,

sup
z∈Z
〈p− q, `(z)〉+

1

2
〈q, |∆(z)|〉 ≤ sup

z∈Z
〈p− q, `(z)〉+ sup

a?∈D
〈q − a?, `(z)− ¯̀(z)〉 = O(η) ,

where the second relation follows from the positivity of the Bregman divergence and the assumption
that Λ?q,η = O(η). Hence, if (p, g) minimises the saddle-point problem, then the expected bias of
the loss estimators relative to the distribution of mirror descent cannot be large relative to the regret
gain by playing p rather than q. The dropped stability term ensures that the magnitude of the loss
estimators is not too extreme. Indeed, when F is the negentropy, then the Taylor series expansion
of the stability is the second moment of the loss estimates. Overall, the loss estimation functions
do (generally) estimate the real losses approximately up to shifts while maintaining relatively small
variance.
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Appendix A. Proof of Theorem 9

We start with a technical lemma lower bounding Λq,η.

Lemma 12 Let q ∈ D ∩ int(dom(F )) and η > 0. Then there exists a constant Cq,η such that

Λq,η(z, a
?, p, g) ≥ Cq,η

for all z ∈ Z , a? ∈ D , p ∈ P+ and g ∈ G .

15



LATTIMORE GYÖRGY

Proof By the Fenchel–Young inequality,〈
a? − q, g(a,Φa(z))

p(a)

〉
+

1

η
Sq

(
ηg(a,Φa(z))

p(a)

)
=

1

η

〈
a?,

ηg(a,Φa(z))

p(a)

〉
+

1

η
F ?
(
∇F (q)− ηg(a,Φa(z))

p(a)

)
− 1

η
F ?(∇F (q))

≥ 〈a
?,∇F (q)〉 − F (a?)− F ?(∇F (q))

η

≥ −‖a
?‖‖∇F (q)‖+ F (a?) + F ?(∇F (q))

η
.

Hence, using the definition of Λq,η,

Λq,η(z, a
?, p, g) ≥

∑
a∈A

p(a)〈a− a?, `(z)〉 − ‖a
?‖‖∇F (q)‖+ F (a?) + F ?(∇F (q))

η

≥ −‖a
?‖‖∇F (q)‖+ F (a?) + F ?(∇F (q))

η
− 2 sup

a∈A
sup
z∈Z
|〈a, `(z)〉| .

The right-hand side is lower bounded by a constant that depends only on q and η since a? ∈ D , F
has finite diameter on D and the losses are bounded by assumption.

Proof of Theorem 9 The core ingredients of the proof are an application of Sion’s minimax theorem
to exchange the inf and sup in the definition of Λ?q,η and an algebraic calculation to introduce the
information ratio. The argument is complicated by the fact that∇F need not exist on D \ relint(D ).

Step 1: Notation and setup Let q ∈ D ∩ int(dom(F )) and η > 0 be fixed and abbreviate
Λ(·) ≡ Λq,η(·). Substituting the definition of Sq gives

Sq (x) = F ? (∇F (q)− x)− F ?(∇F (q)) + 〈q, x〉 . (7)

Let y ∈ relint(D ) be arbitrary, which exists by assumption. For ε > 0 define

Dε = {(1− ε)x+ εy : x ∈ D} ⊂ relint(D ) .

For the remainder we assume that ε is small enough that q ∈ Dε. By convexity of F and the
assumption that D ⊂ dom(F ) and that F is Legendre,

sup
x∈Dε
‖∇F (x)‖∞ <∞ .

Let Vε ⊂ V be the space of finitely supported probability distributions on Z ×Dε and Gε ⊂ G be the
set of estimation functions g with maxa∈A supσ∈Σ ‖g(a, σ)‖∞ ≤ Cε where

Cε =
1

η
sup
q′∈Dε

‖∇F (q)−∇F (q′)‖∞ .

Next, let X ε ⊂ Pε ×Gε be given by

X ε =

{
(p, g) ∈ Pε ×Gε : −ηg(a, σ)

p(a)
∈ conv(∇F (Dε))−∇F (q) , K ε for all a ∈ A , σ ∈ Σ

}
.
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Since Dε ⊂ int(domF ) is compact and ∇F is continuous on int(domF ), it follows that ∇F (Dε)
is compact. And since∇F (Dε) ⊂ Rd is finite-dimension, its convex hull is also compact and hence
so too is K ε. Note also that because F is Legendre, ∇F (int(domF )) = int(dom(F ?)), which is
convex. Therefore conv(∇F (Dε)) ⊂ int(dom(F ?)). Convexity of X ε follows from convexity of
K ε and the fact that {(x, y) ∈ Rd × (0,∞) : x/y ∈ K } is convex for convex K ⊂ Rd.

Step 2: Exchanging inf and sup We will now use Sion’s theorem to exchange the inf and the
sup in the definition of Λ and show that

inf
p∈P
g∈G

sup
a?∈D
z∈Z

Λ(z, a?, p, g) ≤ lim inf
ε→0

sup
ν∈Vε

inf
(p,g)∈X ε

∫
Z×D

Λ(z, a?, p, g) dν(z, a?) . (8)

The analysis in this step depends on some topological tomfoolery and can be skipped by eager
readers. When (p, g) ∈ X ε, then using Eq. (7),

sup
a?∈Dε
z∈Z

Sq

(
ηg(a,Φa(z))

p(a)

)
≤ sup

u∈conv(∇F (Dε))
F ?(u)− F ?(∇F (q)) + η sup

v∈K ε

‖q‖‖v‖ <∞ ,

where the final inequality follows because conv(∇F (Dε)) is a compact subset of int(dom(F ?))
and K ε is compact. Hence, using the boundedness of the losses and the definition of Λ,

sup
z∈Z ,a?∈Dε

Λ(z, a?, p, g) <∞ . (9)

Combining with Lemma 12 shows that (z, a?) 7→ Λ(z, a?, p, g) is bounded when (p, g) ∈ X ε. By
choosing the discrete topology on Z×Dε, the mapping (z, a?) 7→ Λ(z, a?, p, g) is automatically con-
tinuous. Let Vε have the weak* topology and (p, g) ∈ X ε. Then ν 7→

∫
Z×Dε

Λ(z, a?, p, g) dν(z, a?)
is continuous by the definition of the weak* topology and Eq. (9). The same mapping is clearly
linear. Of course Pε has the usual topology as a subset of R|A |. Let Gε have the product topol-
ogy, which is the initial topology of the collection of maps (g 7→ g(a, σ))a∈A ,σ∈Σ. Continuity of
(p, g) 7→ Λ(z, a?, p, g) follows from the definition of the product topology and the same mapping
is convex via the perspective construction as noted in Section 5. We also claim that X ε is compact.
By Tychonoff’s theorem, Pε×Gε is compact. Hence, it suffices to show that X ε ⊂ Pε×Gε is closed,
or equivalently, that its complement (in Pε ×Gε) is open.

X ε =

{
(p, g) ∈ Pε ×Gε : −ηg(a, σ)

p(a)
∈ K ε for all a ∈ A , σ ∈ Σ

}
=

⋂
a∈A ,σ∈Σ

{
(p, g) ∈ Pε ×Gε : −ηg(a, σ)

p(a)
∈ K ε

}
.

Since the pre-image of a closed set by a continuous function is closed, the right-hand side is an
intersection of closed sets. Therefore X ε is closed and hence compact. To summarise, we have
shown that for (p, g) ∈ X ε, (z, a?) 7→ Λ(z, a?, p, g) is continuous and linear and for (z, a?) ∈
Z ×Dε, (p, g) 7→ Λ(z, a?, p, g) is continuous, convex and X ε is comapct. Since both Vε and X ε are
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convex, by Sion’s minimax theorem (Sion, 1958),

inf
(p,g)∈X ε

sup
a?∈Dε
z∈Z

Λ(z, a?, p, g) = inf
(p,g)∈X ε

sup
ν∈Vε

∫
Z×Dε

Λ(z, a?, p, g) dν(z, a?)

= sup
ν∈Vε

inf
(p,g)∈X ε

∫
Z×Dε

Λ(z, a?, p, g) dν(z, a?) .

Combining this with linearity of the map a 7→ Λ(z, a, p, g) and Lemma 12 shows that

inf
p∈P
g∈G

sup
a?∈D
z∈Z

Λ(z, a?, p, g) ≤ inf
(p,g)∈X ε

sup
a?∈D
z∈Z

Λ(z, a?, p, g)

= inf
(p,g)∈X ε

sup
a?∈D
z∈Z

Λ(z, εy + (1− ε)a?, p, g)− εΛ(z, y, p, g)

1− ε

≤ inf
(p,g)∈X ε

sup
a?∈Dε
z∈Z

Λ(z, a?, p, g)− εCq,η
1− ε

= sup
ν∈Vε

inf
(p,g)∈X ε

∫
Z×D

Λ(z, a?, p, g)

1− ε
dν(z, a?)− εCq,η

1− ε

Taking the limit as ε tends to zero establishes Eq. (8).

Step 3: Introducing the information ratio Fix ε > 0 and ν ∈ Vε and p ∈ Pε and let (Z,A?, A)
have law ν ⊗ p, which means that∫

Z×D
Λ(z, a?, p, g) dν(z, a?) = E[Λ(Z,A?, p, g)]

= E

[
〈A−A?, `(Z)〉+

〈
A? − q, g(A, σ)

p(A)

〉
+

1

η
Sq

(
ηg(A, σ)

p(A)

)]
.

The first term will be bounded using Theorem 24 and the assumptions on the information ratio. The
second term is bounded by explicitly minimising the second term. Given any action a ∈ A and
signal σ ∈ {Φa(z) : z ∈ Z , ν({z} ×Dε) > 0}, let

g(a, σ) =
p(a)

η
(∇F (q)−∇F (E[A?|Φa(Z) = σ])) ,

and otherwise let g(a, σ) = 0. Since A? ∈ Dε, it holds that E[A?|Φa(Z) = σ] ∈ Dε. Therefore
maxa∈A , supσ∈Σ ‖g(a, σ)‖∞ ≤ Cε, which implies that g ∈ Gε and hence (p, g) ∈ X ε. Next, let
σ = ΦA(Z) and A?pr = E[A?] and A?po = E[A?|A,ΦA(Z)]. Then, exactly as in Eq. (6),

E

[〈
A? − q, g(A, σ)

p(A)

〉
+

1

η
Sq

(
ηg(A, σ)

p(A)

)]
≤ −1

η
E
[
D(A?po, A

?
pr)
]
. (10)

By Theorem 24, p ∈ Pε can be chosen so that

E [〈A−A?, `(Z)〉] ≤ ε+ α+ β1−1/λE
[
D(A?po, A

?
pr)
]1/λ

.
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Combining this with Eq. (10), the definition of Λ and elementary optimisation shows that

E [Λ(Z,A?, p, g)] ≤ E
[
〈A−A?, `(Z)〉 − 1

η
D(A?po, A

?
pr)

]
≤ |A |ε+ α+ β1−1/λE[D(A?po, A

?
pr)]

1/λ − 1

η
E[D(A?po, A

?
pr)]

≤ |A |ε+ α+ β

(
1− 1

λ

)(η
λ

) 1
λ−1

.

All together we have shown that for any ε > 0 and ν ∈ Vε there exists a (p, g) ∈ X ε such that∫
Z×D

Λ(z, a?, p, g) dν(z, a?) ≤ |A |ε+ α+ β

(
1− 1

λ

)(η
λ

) 1
λ−1

.

The claim of the theorem now follows from Eq. (8).

Appendix B. Adaptivity

Data-dependent analysis of bandit algorithms based on exponential weights or FTRL has a long
history (Allenberg et al., 2006, for example). Recently, Bubeck and Sellke (2020) developed a
data-dependent version of the information-theoretic analysis that was specified towards proving
first-order bounds for combinatorial semi-bandits. Here we generalise this concept by introducing
an adaptive generalised information ratio and extending the results of earlier sections by showing
the existence of a corresponding FTRL strategy.

Definition 13 Let α ∈ R and β : Z × A → [0,∞) and λ > 1. A partial monitoring game has an
(α, β, λ) adaptive information ratio if for all ν ∈ V there exists a p ∈ P such that when (Z,A?, A)
has law ν ⊗ p, then

E[〈A−A?, `(Z)〉] ≤ α+ E[β(Z,A)]1−1/λE[D(E[A?|ΦA(Z), A], E[A?])]1/λ .

The next theorem is a straightforward generalisation of Theorem 2. That theorem is recovered
exactly when β is a constant function.

Theorem 14 Suppose a partial monitoring game has a (α, β, λ) adaptive information ratio, then
for any prior ν ∈ V , there exists a policy such that

BRn ≤ n(εD + α) + diam(D )1/λE

[
n∑
t=1

β(Zt, At)

]1−1/λ

,

where (Zt)
n
t=1 is sampled from ν.

Proof Using the same notation and argument as in Theorem 2,

BRn ≤ n(εD + α) + E

[
n∑
t=1

Et−1[β(Zt, At)]
1−1/λEt−1[D(A?t+1, A

?
t )]

1/λ

]

≤ n(εD + α) + diam(D )1/λE

[
n∑
t=1

β(Zt, At)

]1−1/λ

. �

The next theorem generalises Theorem 9.
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Theorem 15 Suppose a partial monitoring game has an (α, β, λ) adaptive information ratio and
β is bounded. Then, for any η > 0 and q ∈ D ∩ int(dom(F )),

inf
p∈P+
g∈G

sup
a?∈D
z∈Z

[
Λq,η(z, a

?, p, g)−
(

1− 1

λ

)(η
λ

) 1
λ−1

∑
a∈A

p(a)β(z, a)

]
≤ α .

Proof Given ν ∈ V and p ∈ P+, let Eν,p be the expectation with respect to measure ν ⊗ p on
Z ×D × A and let

D̄ν,p = Eν,p[D(E[A?|ΦA(Z), A], E[A?])] β̄ν,p = Eν,p[β(Z,A)] .

Notice that the term added inside the saddle point problem in the theorem statement is linear in p
and bounded by assumption. Hence, the application of minimax theorem in the proof of Theorem 9
goes through in the same manner, which shows that

inf
p∈P+,g∈G

sup
a?∈D ,z∈Z

Λq,η(z, a
?, p, g)−

(
1− 1

λ

)(η
λ

) 1
λ−1

∑
a∈A

p(a)β(z, a)

≤ sup
ν∈V

inf
p∈P+

(
Eν,p [〈A−A?, `(Z)〉]−

(
1− 1

λ

)(η
λ

) 1
λ−1

β̄ν,p −
D̄ν,p

η

)
≤ sup

ν∈V

(
α+ β̄

1−1/λ
ν,p(ν) D̄

1/λ
ν,p(ν) −

(
1− 1

λ

)(η
λ

) 1
λ−1

β̄ν,p(ν) −
D̄ν,p(ν)

η

)
≤ α ,

where the last inequality follows from elementary optimisation and p : V → P+ is a mapping
guaranteed by the adaptive information ratio for which

Eν,p(ν)[〈A−A?, `(Z)〉] ≤ α+ β̄
1−1/λ
ν,p(ν) D̄

1/λ
ν,p(ν) . �

Algorithm 1 can be made adaptive by optimising Pt and Gt so that

sup
a?∈D ,z∈Z

ΛQt,η(z, a
?, Pt, Gt)−

(
1− 1

λ

)(η
λ

) 1
λ−1

∑
a∈A

Pt(a)β(z, a) ≤ α+ ε .

By repeating the analysis in the proof of Theorem 8, it follows that

Rn ≤ n(ε+ εD + α) +
diam(D )

η
+

(
1− 1

λ

)(η
λ

) 1
λ−1

E

[
n∑
t=1

β(zt, At)

]
. (11)

There are two problems. First, the expectation in the right-hand side depends on the law of the
actions of the algorithm, which depend on η. Hence, it is not straightforward to optimise the learning
rate. Second, even if (z, a) 7→ β(z, a) can be written as a function of z only, the quantity in the
expectation is generally not known to the learner in advance. Both problems are resolved by tuning
the learning rate online and making an additional assumption on β.
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Online tuning Adaptively tuning the learning rate is possible if (z, a) 7→ β(z, a) can be written
as a function of the signal Φa(z) and a. For the remainder of the section we assume this is true and
abuse notation by writing β(σ, a). Let

ηt = λ−1/λ(λ− 1)1−1/λ

(
diam(D )

β0 +
∑t−1

s=1 β(σs, As)

)1−1/λ

, (12)

where β0 = supσ∈Σ maxa∈A β(σ, a). Consider the policy that chooses Pt ∈ P+ and Gt ∈ G such
that

sup
z∈Z
a?∈D

Ληt,Qt(z, a
?, Pt, Gt)−

(
1− 1

λ

)(ηt
λ

) 1
λ−1

∑
a∈A

Pt(a)β(Φa(z), a) ≤ ε+ α , (13)

where ηt is defined in Eq. (12) and with ˆ̀
s = Gs(As, σs),

Qt = arg min
q∈D

t−1∑
s=1

〈q, ˆ̀
s〉+

F (q)

ηt
.

Remark 16 Mirror descent can behave badly when the learning rate is non-constant, so only the
FTRL version of the algorithm is used here.

Theorem 17 The regret of the policy choosing Pt and Gt satisfying Eq. (13) is bounded by

Rn ≤ n(ε+ εD + α) +

(
λ

λ− 1

)1− 1
λ

diam(D )
1
λE

(β0 +

n−1∑
t=1

β(σt, At)

)1− 1
λ

 .
Proof Repeat the analysis in Theorem 8 to show that

Rn ≤ n(ε+ εD + α) + E

[
diam(D )

ηn
+

(
1− 1

λ

) n∑
t=1

(ηt
λ

)1−1/λ
β(σt, At)

]
.

Then combine the definition of ηt with Lemma 22 in the appendix.

The order of the expectation and x 7→ x1−1/λ has been reversed in Theorem 17 relative to The-
orem 14, which except for the marginally larger leading constant and the presence of β0 is actually
an improvement. A similar improvement is possible in Theorem 14. Let (ηt)

n
t=1 be the sequence of
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learning rates as defined in Eq. (12). Then, using the notation in the proof of Theorem 14,

BRn ≤ n(εD + α) + E

[
n∑
t=1

Et−1[β(σt, At)]
1−1/λEt−1[D(A?t+1, A

?
t )]

1/λ

]

≤ n(εD + α) + E

[
n∑
t=1

Et−1[D(A?t+1, A
?
t )]

ηt
+ (1− λ)

(ηt
λ

) 1
λ−1

β(σt, At)

]

≤ n(εD + α) + E

[
n∑
t=1

F (A?t+1)− F (A?t )

ηt
+ (1− λ)

(ηt
λ

) 1
λ−1

β(σt, At)

]

≤ n(εD + α) + E

[
diam(D )

ηn
+ (1− λ)

n∑
t=1

(ηt
λ

) 1
λ−1

β(σt, At)

]

≤ n(εD + α) +

(
λ

λ− 1

)1−1/λ

diam(D )1/λE

(β0 +

n∑
t=1

β(σt, At)

)1−1/λ
 ,

where the second inequality holds for any sequence of positive learning rates by elementary opti-
misation. The third inequality by Fatou’s lemma as in (Lattimore and Szepesvári, 2019, Theorem
3). The fourth inequality by telescoping the weighted potential and the fact that the learning rates
is non-increasing. The final inequality follows from the definition of the learning rate and standard
bounding.

Application To make things concrete, let us give an application to d-armed bandits (see Table 1).
The following argument is due to Bubeck and Sellke (2020). Let F : Rd → R ∪ {∞} be the
logarithmic barrier, which is defined on the positive orthant by F (p) = −

∑d
a=1 log(pa) and its

associated with Bregman divergence

D(p, q) = −
d∑
a=1

log

(
pa
qa

)
+ 〈1/q, p− q〉 .

Let ε ∈ (0, 1/d) and D = Pε, for which εD ≤ dε. A simple calculation shows that diam(D ) ≤
d log(1/ε). Let β(z, a) = z2

a = Φa(z)
2. The results by Bubeck and Sellke (2020) show that

whenever (Z,A?) has law ν ∈ V , then with A sampled independently from (Z,A?) with law
E[A?] ∈ P ,

E[〈A−A?, `(Z)〉] ≤
√
E[β(Z,A)]E[D(E[A?|ΦA(Z), A], E[A?])] .

Hence, by Theorem 14, the Bayesian regret for any prior can be bounded by

BRn ≤ ndε+

√√√√dE

[
n∑
t=1

`At(Zt)
2

]
log(1/ε)

≤ ndε+

√√√√d

(
BRn + E

[
n∑
t=1

`A?(Zt)

])
log(1/ε)
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Solving the quadratic shows that

BRn ≤ ndε+ d log(1/ε) +

√√√√d

(
1 + E

[
n∑
t=1

`A?(Zt)

])
log(1/ε) .

Theorem 17 shows that a suitable instantiation of FTRL achieves about the same bound, a result
which is already known (Lattimore and Szepesvári, 2020b).

Appendix C. Thompson sampling

Theorem 9 provides a bound on Λ?η in terms of the information ratio, but does not provide much
information about which policy and estimation functions yield the bound. A fundamental case
where more information can be extracted is when A = {e1, . . . , ed} and a bound on the information
ratio is witnessed by Thompson sampling, as is often the case. The next theorem relies on a class of
potential functions that are widely used in finite-armed bandits (Wei and Luo, 2018; Zimmert and
Seldin, 2019, for example). Given s ∈ R, the s-Tsallis entropy is

F (p) =
d∑
a=1

psa − spa − (1− s)
s(s− 1)

.

The limits as s→ 1 and s→ 0 correspond to the negentropy and logarithmic barrier, respectively.

Theorem 18 Suppose that F is the s-Tsallis entropy with s ∈ [0, 1] and A = {e1, . . . , ed} and
D = Pη4/3 . Assume that for any (Z,A?) with law ν ∈ V and independent A with law p = E[A?],

E [|E[〈A, `(Z)〉]− E[〈A?, `(Z)〉]|] ≤
√
βE[D(E[A?|ΦA(Z), A], E[A?])] ,

where β ≥ 0 is a constant. Then,

inf
g∈G

sup
a?∈D
z∈Z

Λq,η(z, a
?, p, g) ≤ (1 +O(η2/3))

βη

4
,

where the Big-O hides a constant depending only on β.

Note, the presence of the absolute values in the conditions of Theorem 18 is slightly stronger
than the definition of the information ratio in Theorem 1. As far as we are aware, all known bounds
on the information ratio hold for this stronger definition.

Corollary 19 Under the same assumptions as Theorem 18, There exist estimation functions such
that MD/FTRL with D = Pη4/3 and Pt = Qt and η = 2

√
diam(D )/(nβ) satisfies Rn =√

(1 + o(1))βndiam(D ).

Proof Combine Theorems 8 and 18 yields the following corollary and note that εD ≤ dη4/3, which
contributes negligibly for large n.

Let us start with a simple lemma that, like the theorem, assumes that F is the s-Tsallis entropy
for s ∈ [0, 1].
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Lemma 20 Suppose that ε ∈ [−1, 1]d and q ∈ P and r ∈ [0, 1]d, then 〈q − r, ε〉 − D(r, q) ≤
e
2〈q, ε

2〉.

Proof It suffices to prove the result when d = 1. Let fs(p) = −(ps − sp − (1 − s))/(s(s − 1)),
which has f ′′s (p) = ps−2. A tedious calculation shows that the value of r maximising the left-hand
side satisfies r ≤ eq. By Taylor’s theorem and the fact that p 7→ f ′′s (p) is decreasing,

ε(q − r)−D(r, q) ≤ ε2

2f ′′(max(q, r))
=
ε2

2
(max(q, r))2−s ≤ eqε2

2
. �

Proof of Theorem 18 Let ε > 0 be sufficiently small and (Z,A?) have law ν ∈ Vε and r = E[A?].
It suffices to show that when A has law q, then

inf
g∈Gε

E[Λ(Z,A?, p, g)] = E

[
〈A−A?, `(Z)〉 − 1

η
D(E[A?|ΦA(Z), A], r)− 1

η
D(r, q)

]
≤ (1 +O(η1/2))

ηβ

4
.

Let Ia = E[D(E[A?|Φa(Z)], E[A?])] and ∆a = |E[`a(Z)] − E[〈A?, `(Z)〉]|. Suppose first that
〈q,∆〉 ≤ 〈q, I〉/η. Then, by the positivity of the Bregman divergence,

E[Λ(Z,A?, q, g)] ≤ 〈q,∆〉 − 〈q, I〉
η
− 1

η
D(r, q) ≤ 0 .

On the other hand, if 〈q,∆〉 > 〈q, I〉/η, then

inf
g∈Gε

E[Λ(Z,A?, q, g)] ≤ 〈q,∆〉 − 〈q, I〉
η
− 1

η
D(r, q)

= 〈r,∆〉 − 〈q, I〉
η

+ 〈q − r,∆〉 − 1

η
D(r, q)

≤
√
β〈r, I〉 − 〈q, I〉

η
+ 〈q − r,∆〉 − 1

η
D(r, q)

≤
√
β〈q, I〉 − 〈q, I〉

η
+
|〈r − q, I〉|

√
β

2
√
〈q, I〉

+ 〈q − r,∆〉 − 1

η
D(r, q)

(?)

≤
√
β〈q, I〉 − 〈q, I〉

η
+ η

〈
q,

(
I
√
β√

q, I
+ 2∆

)2
〉
− 1

2η
D(r, q)

≤
√
β〈q, I〉 − 〈q, I〉

η
+

2ηβ

〈q, I〉
〈
q, I2

〉
+ 8η〈q,∆2〉 − 1

2η
D(r, q)

≤
√
β〈q, I〉 − 〈q, I〉

η
+

2β〈q, I〉
η1/3

+ 8η〈q,∆〉 − 1

2η
D(r, q)

≤
√
β〈q, I〉 −

(
1− 2βη2/3 − 8η

) 〈q, I〉
η

+ 8η

(
〈q,∆〉 − 〈q, I〉

η
− 1

η
D(r, q)

)
,

where the first inequality follows from Eq. (10), the second by assumption and the third since
(x+δ)1/2 ≤ x1/2 + 1

2 |δ|x
−1/2. The fifth inequality follows from the fact that (x+y)2 ≤ 2x2 +2y2
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and the sixth since 〈q, I2〉 ≤ 〈q, I〉2/η4/3 and ∆ ≤ 1. The last inequality follows from naive
simplification and re-arranging and by taking η suitably small. The inequality marked with a (?)
follows from Theorem 20, which is justified because

ηIa
√
β√

〈q, I〉
+ 2η∆a ≤

η
√
β〈q, I〉
qa

+ 2η∆a ≤
η
√
βη

qa
+ 2η∆a ≤ 1 ,

which holds for all sufficiently small η since qa ≥ η4/3. Rearranging shows that

E[Λ(Z,A?, q, g)] ≤ 1

1− 8η

(√
β〈q, I〉 −

(
1− 2βη2/3 − 8η

) 〈q, I〉
η

)
= (1 +O(η2/3))

ηβ

4
. �

Appendix D. Proof of Theorem 11

Since Gt is unbiased, the regret of mirror descent with Pt = Qt and this estimation function is
bounded by

Rn ≤
diam(D )

η
+

1

η
E

[
n∑
t=1

SQt

(
ηg(At,ΦAt(zt))

QtAt

)]

≤ diam(D )

η
+
n

η
sup

q∈relint(D )
z∈Z

d∑
a=1

qaSq

(
ηg(a,Φa(z))

qa

)
. (14)

≤ diam(D )

η
+
nη
√
d

4

=
√

2nd ,

where the final inequality follows by bounding diam(D ) ≤ 2
√
d and choosing η =

√
8/n and the

second inequality follows from the following lemma. Note that when n ≤ 4, then Rn ≤
√

2dn is
immediate. Hence we may assume that η ≤

√
2.

Lemma 21 Suppose that η ≤
√

2. Then stability term in the right-hand side of Eq. (14) is bounded
by

1

η
sup

q∈relint(D )
z∈Z

d∑
a=1

qaSq

(
ηg(a,Φa(z))

qa

)
≤ η
√
d

4
.

Proof Let z ∈ Z and q ∈ relint(D ) be arbitrary. Then,

1

η

d∑
a=1

p(a)Sq

(
ηg(a,Φa(z))

qa

)
= η

d∑
a=1

qa

d∑
b=1

qb

(
g(a,Φa(z))b

qa

)2

√
1
qb

+ ηg(a,Φa(z))b
qa

= η
d∑
b=1

√
qb

 d∑
a=1

qa
√
qb

(
g(a,Φa(z))b

qa

)2

√
1
qb

+ ηg(a,Φa(z))b
qa


(A)b

≤ η

4

d∑
b=1

√
qb ≤

η
√
d

4
,
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where the first inequality follows from the messy calculation below and the second inequality fol-
lows from Cauchy–Schwarz. For the messy calculation:

(A)b =
d∑
a=1

qa
√
qb

(
g(a,Φa(z))b

qa

)2

√
1
qb

+ ηg(a,Φa(z))b
qa

=
1

8

( (
η + 4(2zb − 1)

√
qb
)2

η2 + 4η(2zb − 1)
√
qb + 8qb

+
η2
(
1−√qb

)
8
(√
qb + 1

)
− η2

)

=
1

8

(
2− η2

η2 + 4η(2zb − 1)
√
qb + 8qb

+
η2
(
1−√qb

)
8
(√
qb + 1

)
− η2

)

≤ 1

8

(
2− η2

η2 + 4η
√
qb + 8qb

+
η2
(
1−√qb

)
8
(√
qb + 1

)
− η2

)
≤ 1

4
,

where the final inequality follows since η ≤
√

2.

Appendix E. Technical inequalities

Here we collect some technical results.

Lemma 22 Let λ > 1 and (βt)
n
t=0 be a sequence of positive reals with β0 ≥ βt for all 1 ≤ t ≤ n.

Then,

n∑
t=1

βt

(
t−1∑
s=0

βs

)1/λ−1

≤ λ

(
n∑
t=1

βt

)1/λ

.

Proof Let B(t) =
∫ t

0 βdse ds. Then,

n∑
t=1

βt

(
t−1∑
s=0

βs

)1/λ−1

≤
∫ n

0
B′(t)B(t)1/λ−1 dt = λB(n)1/λ = λ

(
n∑
t=1

βt

)1/λ

. �

Lemma 23 Let ν ∈ V and p = arg minp∈P Ψν,2(p). Then for all λ ≥ 2, Ψν,λ(p) ≤ 2λ−2 minq∈P Ψν,λ(q).

Proof Let (Z,A) ∼ ν and define regret and information vectors ∆, I ∈ RA by ∆a = E[〈a −
A?, `(Z)〉] and Ia = E[D(E[A?|Φa(Z)], E[A?])]. The result is immediate if 〈p,∆〉 ≤ 0, so assume
for the remainder that 〈p,∆〉 > 0. By the first-order optimality conditions

0 ≤ 〈∇Ψν,2(p), q − p〉 =
2〈q − p,∆〉〈p,∆〉

〈p, I〉
− 〈q − p, I〉〈p,∆〉

2

〈p, I〉2
.
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Rearranging shows that

〈p,∆〉
(

1 +
〈q, I〉
〈p, I〉

)
≤ 2〈q,∆〉 . (15)

Since the information gain is non-negative, it follows that 〈p,∆〉 ≤ 2〈q,∆〉. Therefore,

Ψν,λ(p) =
〈p,∆〉λ

〈p, I〉
≤ 2λ−2〈p,∆〉2〈q,∆〉λ−2

〈p, I〉
≤ 2λ−2〈q,∆〉2

〈q, I〉
= 2λ−2 min

q∈P
Ψν,λ(q) ,

where the first inequality follows form Eq. (15) and the second since p minimises Ψν,2.

The next simple lemma is used to show that the exploratory distribution can be chosen to assign
non-zero probability to all actions with arbitrarily small loss.

Lemma 24 Suppose a partial monitoring game has an information ratio of (α, β, λ) with λ ≥ 1.
Then for any ν ∈ V and ε ∈ (0, 1), there exists a q ∈ Pε such that when (Z,A?, A) is sampled from
the product measure ν ⊗ q, then

E[〈A−A?, `(Z)〉] ≤ |A |ε+ α+ β1−1/λE[D(E[A?|ΦA(Z), A], E[A?])]1/λ .

Proof Let p ∈ P be the distribution guaranteed by the definition of the information ratio and
q = (1− ε)p+ ε1. Then q ∈ Pε, and∑

a∈A

q(a)E[〈a−A?, `(Z)〉] = (1− ε)
∑
a∈A

p(a)E[〈a−A?〉, `(Z)] + ε
∑
a∈A

E[〈a−A?, `(Z)〉]

≤ |A |ε+ (1− ε)

α+ β1−1/λ

(
k∑
a=1

p(a)E[D(E[A?|Φa(Z)], E[A?])]

)1/λ


≤ |A |ε+ α+ β1−1/λ

(
k∑
a=1

q(a)E[D(E[A?|Φa(Z)], E[A?])]

)1/λ

,

where in the first inequality we used the assumption that 〈a, `(z)〉 ∈ [0, 1] for all a ∈ A and
z ∈ Z . The second follows by the non-negativity of the Bregman divergence and the fact that
(1− ε) ≤ (1− ε)1/λ since λ ≥ 1 and ε ∈ (0, 1).

Appendix F. Mirror descent and FTRL

Given a sequence of loss estimates (ˆ̀
t)
n
t=1 with ˆ̀

t ∈ Rd and a sequence of non-increasing and
strictly positive learning rates (ηt)

n
t=1, MD produces a sequence (qt)

n
t=1 with qt ∈ D defined induc-

tively by

q1 = arg min
q∈D

F (q) qt+1 = arg min
q∈D

〈q, ˆ̀
t〉+

D(q, qt)

ηt
. (16)
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Follow the regularised leader also produces a sequence (qt)
n
t=1 with qt ∈ D defined by

qt = arg min
q∈D

t−1∑
s=1

〈q, ˆ̀
s〉+

F (q)

ηt
. (17)

The next theorem bounds the regret of MD and FTRL with respect to the estimated losses. There
are many sources for results like this, though this exact version is the dual of what is normally seen,
which avoids the need for assumptions on the loss estimates.

Theorem 25 Suppose that one of the following is true:

(a) (qt)
n
t=1 are chosen according to Eq. (16) and ηt = η is constant; or

(b) (qt)
n
t=1 is chosen according to Eq. (17).

Then, max
a?∈D

n∑
t=1

〈qt − a?, ˆ̀
t〉 ≤

diam(D )

ηn
+

n∑
t=1

Sqt(ηt ˆ̀t)
ηt

.

Proof By (Lattimore and Szepesvári, 2020b, Theorem 28.4,Exercise 28.12),

max
a?∈D

n∑
t=1

〈qt − a?, ˆ̀
t〉 ≤

diam(D )

ηn
+

n∑
t=1

〈qt − qt+1, ˆ̀
t〉 −

1

ηt
D(qt+1, qt) ,

The result follows from Lemma 26 below and the fact that qt ∈ int(dom(F )), which holds since F
is Legendre.

Lemma 26 Suppose that p, q ∈ D with q ∈ int(dom(F )). Then, for any ` ∈ Rd,

〈q − p, `〉 − 1

η
D(p, q) ≤ 1

η
D?(∇F (q)− `,∇F (q))

Proof If∇F (q)−` ∈ int(dom(F ?)), then the pmaximising the left-hand side is∇F ?(∇F (q)−η`)
and the result follows from elementary calculations and duality. On the other hand, the result is
immediate if ∇F (q) − ` /∈ dom(F ?), since then the right-hand side is infinite. Suppose for the
remainder that ∇F (q) − ` ∈ dom(F ?). Since ∇F (q) ∈ int(dom(F ?)), ∇F (q) − (1 − ε)` ∈
int(dom(F ?)) for any ε > 0. Therefore,

〈q − p, `〉 − 1

η
D(p, q) ≤ ε‖p− q‖‖`‖+ 〈q − p, (1− ε)`〉 − 1

η
D(p, q)

≤ ε‖p− q‖‖`‖+
1

η
D?(∇F (q)− (1− ε)`,∇F (q))

≤ ε‖p− q‖‖`‖+
1− ε
η

D?(∇F (q)− `,∇F (q)) .

Since D is compact, the result follows by taking the limit as ε tends to 0.
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