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Abstract
Despite many applications, dimensionality reduction in the `1-norm is much less understood than
in the Euclidean norm. We give two new oblivious dimensionality reduction techniques for the
`1-norm which improve exponentially over prior ones:

1. We design a distribution over random matrices S ∈ Rr×n, where r = 2poly(d/(εδ)), such that given
any matrix A ∈ Rn×d, with probability at least 1 − δ, simultaneously for all x, ‖SAx‖1 = (1 ±
ε)‖Ax‖1. Note that S is linear, does not depend on A, and maps `1 into `1. Our distribution provides
an exponential improvement on the previous best known map of Wang and Woodruff (SODA, 2019),
which required r = 22

Ω(d)

, even for constant ε and δ. Our bound is optimal, up to a polynomial factor
in the exponent, given a known 2poly(d) lower bound for constant ε and δ.

2. We design a distribution over matrices S ∈ Rk×n, where k = 2O(q2)(ε−1q log d)O(q), such that
given any q-mode tensor A ∈ (Rd)⊗q , one can estimate the entrywise `1-norm ‖A‖1 from S(A).
Moreover, S = S1 ⊗ S2 ⊗ · · · ⊗ Sq and so given vectors u1, . . . ,uq ∈ Rd, one can compute S(u1 ⊗
u2⊗ · · · ⊗uq) in time 2O(q2)(ε−1q log d)O(q), which is much faster than the dq time required to form
u1⊗u2⊗ · · · ⊗uq . Our linear map gives a streaming algorithm for independence testing using space
2O(q2)(ε−1q log d)O(q), improving the previous doubly exponential (ε−1 log d)q

O(q)

space bound of
Braverman and Ostrovsky (STOC, 2010).

For subspace embeddings, we also study the setting when A is itself drawn from distributions with
independent entries, and obtain a polynomial embedding dimension. For independence testing, we
also give algorithms for any distance measure with a polylogarithmic-sized sketch and satisfying
an approximate triangle inequality.
Keywords: Subspace embeddings, independence testing, dimension reduction

1. Introduction

Dimensionality reduction refers to mapping a set of high-dimensional vectors to a set of low-
dimensional vectors while preserving their lengths and pairwise distances. A celebrated result is
the Johnson-Lindenstrauss embedding, which asserts that for a random linear map S : Rn → Rr,
for any fixed x ∈ Rn, we have ‖Sx‖2 = (1 ± ε)‖x‖2 with probability 1 − δ. It is necessary and
sufficient for the sketching dimension r to be Θ(ε−2 log(1/δ)) Johnson and Lindenstrauss (1984);
Larsen and Nelson (2017). A key property of S is that it is linear and oblivious, meaning that it
is a linear map that does not depend on the point set. This makes it applicable in settings such as
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the widely used streaming model, where one sees coordinates or updates to coordinates one at a
time (see, e.g., Muthukrishnan (2005); Cormode et al. (2012) for surveys) and the distributed model
where points are shared across servers (see, e.g., Boutsidis et al. (2016), for a discussion of different
models). Here it is crucial that for points x and y, S(x + y) = Sx + Sy, and S does not depend
on x or y. In this case, if one receives a new point z chosen independently of S, then S still has a
good probability of preserving the length of z, whereas data-dependent linear maps S may change
with the addition of z, and are often slower Indyk et al. (2000). For these reasons, our focus is on
linear oblivious dimensionality reduction, often referred to as “sketching”.

For many problems, the 1-norm ‖x‖1 =
∑n

i=1 |xi| is more appropriate than the Euclidean
norm. Indeed, this norm is used in applications demanding robustness since it is less sensitive to
changes in individual coordinates. As the 1-norm is twice the variation distance between distri-
butions, it is often the metric of choice for comparing distributions Indyk and McGregor (2008);
Braverman et al. (2010); Braverman and Ostrovsky (2010a); McGregor and Vu (2015). A sample
of applications involving the 1-norm includes clustering Feldman et al. (2010); Labib and Vemuri
(2005), regression Clarkson (2005); Sohler and Woodruff (2011); Clarkson et al. (2013); Meng and
Mahoney (2013); Woodruff and Zhang (2013); Clarkson and Woodruff (2015, 2017); Woodruff
(2014), time series analysis Dodge (1992); Lawrence (2019), internet traffic monitoring Feigen-
baum et al. (2002), multimodal and similarity search Aggarwal et al. (2001); Lin and Shim (1995).
As stated in Aggarwal et al. (2001), “the Manhattan distance metric is consistently more preferable
than the Euclidean distance metric for high dimensional data mining applications”.

While useful for the Euclidean norm, the Johnson-Lindenstrauss embedding completely fails if
one wants for a vector x, that ‖Sx‖1 = (1 ± ε)‖x‖1 with probability 1 − δ. Indeed, the results
of Wang and Woodruff Wang and Woodruff (2019) imply nearly tight bounds: for constant ε and
δ, a sketching dimension of 2poly(n) is necessary and sufficient1. Indyk Indyk (2006b) shows that
if instead one embeds x into a non-normed space, namely, performs a “median of absolute values”
estimator of Sx, then the dimension can be reduced to O((log n)/ε2). Such a mapping is still linear
and oblivious, and this estimator is useful if one desires to approximate the norm of a single vector,
for which the dimension becomes O((log(1/δ))/ε2) and the failure probability is δ. However,
this estimator is less useful in optimization problems as it requires solving a non-convex problem
after sketching. Thus, there is a huge difference in dimensionality reduction for the Euclidean and
1-norms.

This work is motivated by our poor understanding of dimensionality reduction in the 1-norm,
as exemplified by two existing doubly exponential bounds for important problems: preserving a
subspace of points and preserving a sum of tensor products, both of which are well-understood for
the Euclidean norm.

Subspace Embeddings. In this problem, one would like a distribution on linear maps S ∈ Rr×n,
for which with constant probability over the choice of S, for any matrix A ∈ Rn×d, simultaneously
for all x ∈ Rd, ‖SAx‖1 = (1± ε)‖Ax‖1. Note that S preserves the lengths of an infinite number
of vectors, namely, the entire column span of A. Subspace embeddings arise in least absolute de-
viation regression Sohler and Woodruff (2011); Clarkson et al. (2013); Meng and Mahoney (2013);
Woodruff and Zhang (2013); Clarkson and Woodruff (2017) and entrywise `1-low rank approxima-
tion Song et al. (2017); Ban et al. (2019); Mahankali and Woodruff (2021), among other places.

1. Their bounds are stated for subspaces, but when applied to n arbitrary points result in this as both an upper and a
lower bound, with differing polynomial factors in the exponent. We give more details in Remark A.6 of Section A.
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Since a subspace embedding maps the entire subspace into a lower dimensional subspace of `1, one
can impose arbitrary constraints on x, e.g., non-negativity, manifold constraints, regularization, and
so on, after computing SA. The resulting problem in the sketch space is convex if the constraints
are convex.

For the analogous problem in the Euclidean norm, there is a linear oblivious sketching matrix
S with O((d + log(1/δ))/ε2) rows, which is best possible Clarkson and Woodruff (2009); Nelson
and Nguyen (2014); Woodruff (2014).

For the 1-norm, we understand much less. The best upper bound Wang and Woodruff (2019)
for an oblivious subspace embedding is for constant ε and δ and gives a sketching dimension of
22O(d)

. This bound is obtained by instantiating the 2poly(n) bound above with n = dO(d), and union
bounding over the points in a net of a subspace. The lower bound on the sketching dimension is,
however, only 2Ω(

√
d), representing an exponential gap in our understanding for this fundamental

problem Wang and Woodruff (2019).

Independence Testing. Another important problem using dimensionality reduction for `1 is test-
ing independence in a stream. This problem was introduced by Indyk and McGregor Indyk and
McGregor (2008) and is the following: letting [d] = {1, 2, . . . , d}, suppose you are given a stream
of items (i1, . . . , iq) ∈ [d]q. These define an empirical joint distribution P on the q modes defined
as follows: if f(i1, ..., iq) is the number of occurrences of (i1, . . . , iq) in a stream of length m,
then P (i1, . . . , iq) = 1

mf(i1, . . . , iq). One can also define the marginal distributions Pj , for j =
1, 2, . . . , q, where for i ∈ [d] we have Pj(i) = 1

m

∑
i1,...,ij−1,ij+1,...iq

f(i1, . . . , ij−1, i, ij+1, . . . iq).
The goal is to compute ‖P −Q‖1 withQ = P1⊗P2⊗· · ·⊗Pq, that is, the 1-norm of the difference
of the joint distribution and the product of marginals. If the q modes were independent, then this
difference would be 0, as P would be a product distribution. In general this measures the distance
to independence.

It is important to note that if one were givenP1, . . . , Pq andP , then one could explicitly compute
P1 ⊗ P2 ⊗ · · · ⊗ Pq, and then compute the median-based sketch S(P − P1 ⊗ P2 ⊗ · · · ⊗ Pq) of
Indyk Indyk (2006b) above. The issue is that in the data stream model, the vectors P, P1, . . . , Pq
are too large to store, and while it is easy to update S(P ) given a new tuple in the stream (namely,
S(P ) ← S(P ) + Si1,...,iq , where Si1,...,iq is the column of S indexed by the new stream element
(i1, . . . , iq)), it is not clear how to update S(P1 ⊗ P2 ⊗ · · · ⊗ Pq) in a stream. Consequently, a
natural approach is to maintain sketches S1P1,S

2P2, . . . ,S
qPq as well as SP , and combine these

at the end of the stream. A natural way to combine them is to let S = (S1)⊗ (S2)⊗ · · · ⊗ (Sq) be
the tensor product of the sketches on each mode.

For the corresponding problem of estimating the Euclidean distance ‖P −P1⊗P2⊗· · ·⊗Pq‖2,
recent work Ahle et al. (2020) implies that this can be done with a very small sketching dimension
of O(n/ε2), though such work makes use of the Johnson Lindenstrauss lemma and completely fails
for the 1-norm.

Despite a number of works on independence testing for the 1-norm in a stream Indyk and Mc-
Gregor (2008); Braverman et al. (2010); Braverman and Ostrovsky (2010a); McGregor and Vu
(2015), the best upper bound is due to Braverman and Ostrovsky Braverman and Ostrovsky (2010a)
with a sketching dimension of (ε−1 log d)q

O(q)
, which, while logarithmic in d, is doubly exponential

in q. A natural question is whether this can be improved.
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1.1. Our Results

We give exponential improvements in the sketching dimension of linear oblivious maps for both
`1-subspace embeddings and `1-independence testing.

Subspace Embeddings: We design a distribution over random matrices S ∈ Rr×n, where r =
2poly(d/(εδ)), so that given any matrix A ∈ Rn×d, with probability at least 1− δ, simultaneously for
all x, ‖SAx‖1 = (1± ε)‖Ax‖1. We present both a sparse embedding which has a dependence of
log n in the base of the exponent, as well as a dense embedding which removes this dependence on
n entirely.

Theorem 1.1 (Sparse embedding, restatement of Theorem B.1) Let ε ∈ (0, 1) and δ ∈ (0, 1).
Then there exists a sparse oblivious `1 subspace embedding S into k dimensions with

k = poly(d, ε−1, δ−1, log n)d/δε

such that for any A ∈ Rn×d,

Pr{(1− ε)‖Ax‖1 6 ‖SAx‖1 6 (1 + ε)‖Ax‖1} > 1− δ.

Corollary 1.2 (Dense embedding, restatement of Corollary B.2) Let ε ∈ (0, 1) and δ ∈ (0, 1).
Then there exists an oblivious `1 subspace embedding S into k dimensions with

k = exp
(
Õ(d2/δε3))

)

such that for any A ∈ Rn×d,

Pr{(1− ε)‖Ax‖1 6 ‖SAx‖1 6 (1 + ε)‖Ax‖1} > 1− δ.

This is an exponential improvement over the previous bound of r = 22Ω(d)
Wang and Woodruff

(2019), which held for constant ε and δ. Our bound is optimal, up to a polynomial factor in the
exponent, given the 2poly(d) lower bound for constant ε and δ Wang and Woodruff (2019). An im-
portant feature of S is that S ·A can be computed in an expected O(nnz(A)) time, where nnz(A)
denotes the number of non-zero entries of A. This is in contrast to the embedding of Wang and
Woodruff (2019), which requires 22Ω(d) · nnz(A) time.

Independence Testing: We design a distribution over matrices S ∈ Rk×n, where k = poly(qε−1 log d),
so that given any q-mode tensor A ∈ (Rd)⊗q, one can estimate the entrywise 1-norm ‖A‖1
from S(A). Moreover, S = T⊗q and so given vectors u1, . . . ,uq ∈ Rd, one can compute
S(u1 ⊗ u2 ⊗ · · · ⊗ uq) in time 2O(q2)(ε−1q log d)O(q), which is much faster than the dq time
required to form u1 ⊗ u2 ⊗ · · · ⊗ uq. Our linear map can be applied in a stream since we can
sketch each marginal and then take the tensor product of sketches, yielding a streaming algorithm
for independence testing using 2O(q2)(ε−1q log d)O(q) bits of space.

Theorem 1.3 (Restatement of Theorem 5) Suppose that the stream length m = poly(dq). There
is a randomized sketching algorithm which outputs a (1 ± ε)-approximation to ‖P − Q‖1 with
probability at least 0.9, using exp(O(q2 + q log(q/ε) + q log log d)) bits of space. The update time
is exp(O(q2 + q log(q/ε) + q log log d)).
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This improves the previous doubly exponential (ε−1 log d)q
O(q)

space bound Braverman and
Ostrovsky (2010a).

For subspace embeddings, we also study the setting when A is itself drawn from distributions with
certain properties, and obtain a polynomial embedding dimension. This captures natural statistical
problems when the design matrix A for regression, is itself random. Our various results here are
discussed in Section E.

A byproduct of our sketch is the ability to preserve the 1-norm of a matrix P by left and right
multiplying by independent draws S1 and S2 of our sketch, where we show that Θ(‖P‖1) 6
‖S1PS2‖1 = O(1/α2)‖P‖1 where S1PS2 is a dα × dα matrix. Here α ∈ (0, 1) can be any
constant; previously, no such trade-off was known.

Theorem 1.4 (Restatement of Theorem C.2) Let δ ∈ (0, 1) and α ∈ (0, 1). Then there exists a
sparse oblivious `1 entrywise embedding S into k dimensions with

k =

(
d

δ
log n

)α
poly(δ−1, log n)

such that for any A ∈ Rn×d,

Pr

{
Ω(1)‖A‖1 6 ‖SA‖1 6 O

(
1

δα

)
‖A‖1

}
> 1− δ.

We also give a matching lower bound showing that for any oblivious sketch S1 with r rows, the
distortion between ‖S1P‖1 and ‖P‖1 is Ω

(
log d
log r

)
. Thus, with r = dα dimensions, the distortion

must be at least
log d

log r
=

log d

log dα
=

1

α
.

Theorem 1.5 (Restatement of Theorem C.8) Let S be a fixed r× d matrix. Then there is a distri-
bution µ over d× d matrices such that if

Pr
A∼µ

(‖A‖1 6 ‖SA‖1 6 κ‖A‖1) >
2

3

then κ = Ω((log d)/(log r)).

For independence testing, we also give algorithms for any distance measure with a polylogarithmic-
sized sketch and satisfying an approximate triangle inequality; these include many functions in
Braverman and Ostrovsky (2010b). For example, we handle the robust Huber loss and `p-measures
for 0 < p < 2.

1.2. Our Techniques

We begin by explaining our techniques for subspace embeddings, and then transition to indepen-
dence testing.
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1.2.1. SUBSPACE EMBEDDINGS

The linear oblivious sketch we use is a twist, both algorithmically and analytically, to a method-
ology originating from the data stream literature for approximating frequency moments Indyk and
Woodruff (2005); Bhuvanagiri et al. (2006). These methods involve sketches which subsample the
coordinates of a vector at geometrically decreasing rates 1, 1/2, 1/4, 1/8, . . . , 1/n, and apply an
independent CountSketch matrix Charikar et al. (2002) (see Definition A.1) to the surviving coor-
dinates at each scale. Analyses of this sketch for data streams does not apply here, since it involves
nonlinear median operations, but here we must embed `1 into `1. These sketches have been used
for embedding single vectors or matrices in `1 into `1, called the Rademacher sketch in Verbin and
Zhang (2012), and the M -sketch in Clarkson and Woodruff (2015). However the approximation
guarantees in these works are significantly worse than what we achieve, and we improve them by
(1) changing the actual sketch to “randomized boundaries” and (2) changing the analysis of the
sketch to track the behavior of the `1-leverage score vector, which captures the entire subspace, and
tracking it via a new mix of expected and high probability events.

We now explain these ideas in more detail. To motivate our sketch, we first explain the pitfalls
of previous sketches.

Cauchy Sketches Sohler and Woodruff (2011); Wang and Woodruff (2019). The previous best
O(1) distortion `1 oblivious subspace embedding of Wang and Woodruff (2019), which achieved a
sketching dimension of 22O(d)

, was based on analyzing a sketch S of i.i.d. Cauchy random variables.
The only analyses of such random variables we are aware of, in the context of subspace embeddings,
works by truncating the random variables so that they have a finite expectation, and then analyzing
the behavior of the random variable ‖Sy‖1, for an input vector y in expectation. It turns out that
the expectation of this random variable can be much larger than the value it takes with constant
probability, as it is very heavy-tailed. Namely, the expected value of ‖Sy‖1 after truncation is
Θ(log n)‖y‖1, which makes it unsuitable for the sketching dimension that we seek.

Rademacher andM Sketches Verbin and Zhang (2012); Clarkson and Woodruff (2015). Us-
ing techniques from the data stream literature, the Rademacher sketch of Verbin and Zhang (2012)
and the M -sketch of Clarkson and Woodruff (2015) achieve an O(1)-approximation for a sin-
gle vector by subsampling rows of y with probability p and rescaling by 1/p at O(log n) scales
p = 1, 1/2, 1/4, 1/8, . . . , 1/n. This approach allows us to more finely track the random variables
in our sketch, and serves as the starting point of our sketch. Note that for a single scale p and a
single coordinate yi, the expected contribution of the subsampled and rescaled coordinate is

1

p
· p · |yi| = |yi|.

Then in expectation, the O(log n) subsampling levels give a O(log n) factor approximation, which
is the same as that of a Cauchy sketch. However, due to the geometrically decreasing sampling rates,
we are able to argue that with good probability the coordinate does not survive more than O(1)
levels. Thus we effectively “beat the expectation”, showing that the random variable is much less
than what its expectation would predict, with good probability. We illustrate this with an example.

Suppose the first
√
n coordinates of y equal 1√

n
, and remaining n − √n coordinates equal

1
n . Then ‖y‖1 = 2(1 − o(1)). If we subsample at geometric rates 1, 1/2, 1/4, . . . , 1/n and use
t = O(1) hash buckets in CountSketch in each scale, then for rates larger than 1/

√
n, the random
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signs in each CountSketch bucket cancel out and the absolute value of the bucket concentrates to its
Euclidean norm, which is much smaller than its 1-norm. At the rate p = 1/

√
n, we expect a single

survivor from the first
√
n coordinates of y. We call this the ideal rate for the first

√
n coordinates

of y. There are also about
√
n survivors from the remaining n −√n coordinates of y at this ideal

rate, but these
√
n survivors concentrate to their Euclidean norm in each CountSketch bucket,

which will be about 1/n3/4, and negligible compared to the value 1/
√
n. This lone survivor will

be scaled up by
√
n, giving a contribution of 1 to the overall 1-norm. Similarly, at the subsampling

rate of 1/n, we expect one surviving coordinate of y, it is scaled up by n, and it gives an additional
contribution of about 1 to the overall 1-norm. Overall, this gives a good approximation to ‖y‖1,
which is 2(1− o(1)).

While the above gives a good approximation, the expected value of the 1-norm of Sy is a much
larger Θ(log n). Indeed, consider subsampling rates 1/(2

√
n), 1/(4

√
n), 1/(8

√
n), . . .. For each

of these, the single survivor of the first
√
n coordinates of y has probability 1/2, 1/4, 1/8, . . . ,

of surviving each successive level. If it survives, it is scaled up by 2, 4, 8, . . . , giving an overall
expectation of Θ(log n). Thus, the expectation is not what we should be looking at, but rather we
should be conditioning on the event that no items among the first

√
n surviving beyond the rate

1/
√
n.

Ingredient 1: Aggressive Subsampling and Randomized Boundaries. So far, this is standard.
Indeed, the Rademacher sketch in Verbin and Zhang (2012) and the M-Sketch in Clarkson and
Woodruff (2015) achieve an O(1)-approximation for a single vector and argue this way. But these
works cannot achieve (1+ε)-approximation with good probability, since it is already problematic if
the single survivor of the first

√
n coordinates of y survives one additional subsampling rate beyond

its ideal rate, and this happens with constant probability. This motivates our first fix: instead of
subsampling at rates 1/2i, for i = 0, 1, 2, . . . , O(log n), we subsample at a much more aggressive
exp(ε−1 polylog(n))i for i = 0, 1, 2, . . . , O(log n), and furthermore, randomly shift these subsam-
pling rates as well.

δ ε−2 log δ−1

No entries sampled
w.p. 1− δ

by union bound

Randomized boundaries
+ Markov

(1± ε) approx. w.p. 1− δ
by Chernoff

Figure 1: Casework on pm

To see why this is a good idea, consider a level set of weight w, which is the multiset of co-
ordinates of y with absolute value Θ(w) (think of w as [2j , 2j+1) for some j) that is subsampled
at rate p and rescaled by 1/p. Let the size of the level set be m. We case on pm (see Figure 1).
If pm > ε−2 log 1

δ , then Chernoff bounds imply that this concentrates to the expected mass of pm
with probability at least 1 − δ. On the other hand, if pm < δ, then by a union bound, there is a δ
probability that any of the m elements in the level set are sampled. By taking δ = 1/ log2 n, we
see that by a union bound over the at most log n level sets and log n sampling rates p, any level
set with size m and subsampling rate p with pm /∈ [δ, ε−2 log δ−1] either samples (1 ± ε) of the
expected mass, or doesn’t sample the level at all, with constant probability. Then, for these levels,
our earlier analyses involving CountSketch apply and in fact give us a (1±O(ε)) approximation.

7



LI WOODRUFF YASUDA

However, for the level sets and the sampling rates with pm ∈ [δ, ε−2 log δ−1], we cannot make
any meaningful statements about these levels with high accuracy and probability. To remedy this
situation, we randomize our choice of the sampling rates p themselves and bound the contribution
from these levels with a Markov expectation bound. To this end, we let W = ε−2δ−1 log δ−1 be
the size of this bad window, we let B = exp(ε−1 logW ) be our branching factor, and we choose
our sampling rates to be pi = B−uB−i for a uniformly random u ∼ [0, 1]. Note then that the
probability that a given sampling level pi falls in the window pim ∈ [δ, ε−2 log δ−1] is at most ε,
since after taking logarithms, the bad window is an ε fraction of the range of the uniformly random
shift u. Now note that for each level set of sizem and weight w, there are onlyO(1) sampling levels
pi that have a nonzero probability such that pim ∈ [δ, ε−2 log δ−1], and these levels contribute an
expected ε · p · p−1 ·m ·w = εmw amount of `1 mass, so summing over all level sets, the expected
contribution from these bad sampling rates is at most an ε fraction of the total `1 mass ‖y‖1.

This is an example of how subsampling gives us more flexibility than sketches using Cauchy
random variables - even though the expectation is large, we can argue with arbitrarily large constant
probability we obtain a (1 +O(ε))-approximation by separating the analysis into an expectation for
some levels and a union bound for others. One also needs to argue that no vector has its 1-norm
shrink by more than a (1 − ε)-factor, which is simpler and similar to previous work Clarkson and
Woodruff (2015). Here the idea is that for every level set of coordinates of y, by Chernoff bounds,
there are enough survivors in a level set at its ideal rate and that the noise in CountSketch buckets
will be small. Our analysis so far is novel, and we note that prior analyses of subsampling Verbin
and Zhang (2012); Clarkson and Woodruff (2015) could not obtain a 1 +O(ε)-approximation even
for a fixed vector.

However, we are still in trouble - the above analysis gives a (1+O(ε))-approximation, but only a
constant probability of success due to the Markov bound applied to the bad sampling rates. We could
more aggressively subsample, namely, at rate roughly 1/22O(d)

and with 22O(d)
buckets, and then we

could make the failure probability (ε)O(d) for a fixed vector, which is now small enough to union
bound over an ε-net of vectors in a d-dimensional subspace. This is enough to recover the same
sketching dimension as the sketch in Wang and Woodruff (2019), which instead consisted of an r×n
matrix of i.i.d. Cauchy random variables. There it was shown that with probability 1−O

(
log log r

log r

)
,

for any fixed vector y, ‖Sy‖1 = Θ(1)‖y‖1. The idea was then to take a union bound over 2O(d)

vectors in a net for the subspace, which constrains log log r
log r 6 2−Θ(d), resulting in an r = 22O(d)

overall dependence. With minor modifications, one can achieve ‖SAx‖1 = (1 ± ε)‖Ax‖1 for all

x by setting r = 22O(d/ε2)
. This is the best one can achieve for an arbitrary set of 2O(d) vectors, as

can be deduced from the lower bound in Wang and Woodruff (2019); see Section A for details.

Ingredient 2: `1 Leverage Scores. One might suspect that the above approach is optimal, since
union bounding over 2O(d) arbitrary points does give an optimal sketching dimension for subspace
embeddings for the Euclidean norm. It turns out though that for the 1-norm this is not the case,
and one can do exponentially better by using the fact that these 2O(d) points all live in the same d-
dimensional subspace. Indeed, instead of making a net argument, our analysis proceeds through the
`1-leverage score vector (see Definition B.11), which provides a nonuniform importance sampling
distribution that is analogous to the standard leverage scores for `2.

With these `1 leverage scores in hand, we proceed as discussed previously, choosing a uniformly
random shift u ∈ [0, 1] and subsampling at rates 1/((log n)poly((d/ε)(i+u)) for i = 0, 1, 2, . . . , O(log n),

8



EXPONENTIALLY IMPROVED DIMENSIONALITY REDUCTION FOR `1

and also increasing our number of CountSketch buckets in each subsampling level to (log n)poly(d/ε).
Now we can show that the expected `1-norm of the `1 leverage score vector λ that survives an ad-
ditional level is only ε‖λ‖1/d. Noting that ‖λ‖1 = d, this bound is O(ε) with constant probability.
But the entries of λ uniformly bound the corresponding entries of any vector y in the subspace with
‖y‖1 = 1, and thus we obtain that for all vectors in the subspace, the total expected `1-contribution
from level sets that are one subsampling rate beyond their ideal rate is O(ε)‖y‖1. Since the sub-
sampling rate is (log n)− poly(d/ε), the expected number of survivors two or more levels out is small
enough to union bound over all net vectors. Finally, to remove the log n factor in our sketch, mak-
ing it independent of the original dimension n, we can compose our embedding with the 22O(d)

`1 oblivious subspace embedding of Wang and Woodruff (2019); we are able to adapt their O(1)-

approximation to achieve a (1 + ε)-approximation with 22O(d/ε2)
dimensions, and consequently in

our sketch, log n = 2O(d/ε2). Our full discussion is in Section B.

1.2.2. A TRANSITION TO TENSORS

One could hope to use our techniques for subspaces to obtain sketches for the sum of q-mode
tensors, which could then be used for independence testing in a stream. Consider the simple example
of a 2-mode tensor, i.e., a d × d matrix P. As described above, a streaming-amenable way of
sketching this would be to find a sketch S : Rd2 → Rk2

of the form S = S1 ⊗ S2, where S1,S2

are maps from Rd to Rk. In this case, we have that S(P) = S1 ·P · (S2)>, where · denotes matrix
multiplication.

One aspect of our sketch above is that we can achieve a tradeoff: instead of looking at one
subsampling rate beyond the ideal rate for a given level set of a vector, we can look at 1/α rates
for α ∈ (0, 1). Then if we look at ‖Sy‖1 for a column y of P, its expected cost for these 1/α
rates is O(1/α)‖Sy‖1. If we use roughly (d log d)α buckets in each CountSketch, together with
subsampling rate roughly (d log d)−α, then afterO(1/α) rates beyond the ideal rate for a given level

set of a vector, the probability the level set survives is at most
(

1
(d log d)α

)O(1/α)
� O

(
1

d log d

)
,

which is so small that we can union bound over all columns of P and all level sets in each column.
Consequently, we can condition on this event, and take an expectation over theO(1/α) rates nearest
to the ideal rate of each level set in each column to obtain an overall O(1/α) approximation with
roughly (d log d)α memory. One can also show that with constant probability, the 1-norm does not
decrease by more than a constant factor, and thus, with constant overall probability, Ω(‖P‖1) 6
‖S1P‖1 = O(1/α)‖P‖1. Applying S2 to the matrix S1P we can conclude that with constant
overall probability, Ω(‖P‖1) 6 ‖S1PS2‖1 = O(1/α2)‖P‖1. Our overall sketching dimension is
d2α � d if α � 1. Thus, the memory we achieve is a significant improvement over the trivial d2

bound, our sketch S = S1 ⊗ S2 is a tensor product, and we achieve an O(1/α2)-approximation.
Ours is the first sketch to achieve a tradeoff, as the Rademacher sketch of Verbin and Zhang (2012)
does not apply in this case2.

Unfortunately, if we want constant distortion, our single-mode sketch size k will be d2α, which
means for constant α, it is not strong enough to obtain a polylogarithmic dependence on d. In fact,
we show that for any d × d matrix P, if you compute SP for an oblivious sketch S with t rows,
the estimator ‖SP‖1 is at best an O

(
log d
log t

)
-approximation to ‖P‖1. Indeed, one can show this

2. The notion of the Rademacher dimension in Verbin and Zhang (2012) is at least
√
d, and their sketch size is at least

the Rademacher dimension to the 5-th power.
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already for the distribution in which with probability 1/2, P ∈ Rd×d is an i.i.d. Cauchy matrix,
and with probability 1/2, P has its first t columns being i.i.d. Cauchy random variables, scaled by
d/t, and remaining columns equal to 0. In both cases ‖P‖1 = Θ(d2 log d), but in the first case
‖SP‖1 = O(d log t‖S‖1), while in the second case ‖SP‖1 = Ω(d log d‖S‖1), both with constant
probability. These algorithms and lower bounds are discussed in Section C.

Fortunately, for independence testing, we only need to approximate the 1-norm of a single
tensor, and so our estimator can be a non-convex median-based estimator, which we now show how
to utilize.

1.2.3. INDEPENDENCE TESTING

Our sketch S = S1 ⊗ S2 ⊗ · · · ⊗ Sq is a tensor product of q sketches, each itself being a sketch
for estimating the 1-norm of a d-dimensional vector with a log(1/δ) dependence. We must choose
the Si carefully, and cannot take the Si to be an arbitrary black box sketch for estimating the 1-
norm, even with a non-linear high probability estimator. As an illustration, suppose q = 2 and we
have a d × d matrix P and we compute S1PS2, where S1 and S2 are i.i.d. Cauchy matrices with
r = O(ε−1 log d) small dimension with corresponding median of absolute values estimator, i.e.,
the sketch of Indyk (2006a) above. Then, applying the estimator of S2 to each row of S1P, we
would have that our overall estimate is (1 ± ε)‖S1P‖1 with probability 1 − 1/poly(d). The issue
is that, for constant ε, if P = (1, 1, 1, . . . , 1) ⊗ (1, 0, 0, . . . , 0), then ‖S1P‖1 = Θ(d log r) with
large probability, while if P = Id, the d× d identity matrix, then ‖S1P‖1 = Θ(d log d) with large
probability. To see this, if P = (1, 1, 1, . . . , 1) ⊗ (1, 0, 0, . . . , 0), note that the i-th row of S1P =
d · (Ci, 0, . . . , 0), where Ci is a standard Cauchy, and the C1, . . . , Cr are independent. About a
Θ(2−j) fraction of the |Ci| will be 2j , and so with constant probability ‖S1P‖1 = Θ(d log r). On
the other hand, if P = Id, then S1P = S1, which is an r × d matrix of i.i.d. Cauchy random
variables, and the same reasoning shows with constant probability that ‖S1P‖1 = Θ(d log(rd)),
which is almost a log d factor larger than the other case. Thus, we cannot decode mode by mode
with a generic high probability sketch for the 1-norm.

Perhaps surprisingly, we show that a different choice of Si, which is itself an existing sketch
for estimating the 1-norm of a d-dimensional vector with a log(1/δ) dependence, does work. In
more detail, the sketch of Indyk and Woodruff (2005) works by defining level sets of coordinates
of x according to their magnitudes and subsamples the coordinates at different rates. For each
level set, if it contributes a non-negligible fraction to ‖x‖1, there is a subsampling level for which
(1) there are sufficiently many survivors from the level set in this subsampling level and (2) these
survivors are so-called `2-heavy hitters (see, e.g., Charikar et al. (2002)) among all the survivors
in this subsampling level. Hence, recovering the heavy hitters at each subsampling rate allows
us to estimate the contribution of each level set to ‖x‖1. Here a median is used when applying
CountSketch to ensure that we succeed with high probability. This single mode sketch has been
applied to `1-estimation in various places Andoni et al. (2009); Levin et al. (2018). We refer to this
as a SubsamplingHeavyHitters sketch in the following discussion.

Our overall sketch S = S1 ⊗ S2 ⊗ · · · ⊗ Sq, where each Si is a SubsamplingHeavyHitters
sketch. Moreover, S = S1 ⊗ · · · ⊗ Sq, and so given vectors P 1, . . . , P q ∈ Rd in a stream, one can
maintain SiP i for i = 1, . . . , q, as well as SP for any vector P ∈ Rdq . In particular, in the context
of independence testing, the P i could be the empirical marginal distributions and P the empirical
joint distribution. We show that S can be used to estimate the `1-norm of an underlying arbitrary
vector x ∈ Rdq (which will be taken to be P − P 1 ⊗ · · · ⊗ P q). We do this by viewing Sq as being

10
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applied to each row of a flattened tq−1 × d matrix, where t is the common sketching dimension of
the Si. This matrix is defined as follows. We flatten x to a dq−1 × d matrix X . We then consider
the “partially sketched” dq−1× d matrix, where the i-th column is S1⊗S2⊗ · · · ⊗Sq−1 applied to
the i-th column X∗,i of X . This gives us a tq−1× d matrix Y , and this is the matrix whose rows we
apply Sq to. Now Sq is a SubsamplingHeavyHitters sketch, but instead of having a signed sum
of single coordinates in each CountSketch bucket, we have a signed sum of columns of Y in each
bucket, which are themselves sketches of dq−1-dimensional vectors, where the sketching matrix is
itself a tensor product of smaller sketching matrices.

The problem is that Sq estimates the number of columns of a matrix in a level set (here the
level sets are groups of columns with approximately the same 1-norm) by hashing columns together
and estimating the size of each level set, where columns are in the same level set if they have
approximately the same 1-norm. Fortunately, since S1 ⊗ · · · ⊗ Sq−1 is still a linear map, hashing
the sketched columns (sketched by S1 ⊗ · · · ⊗ Sq−1) together is the same as taking the sketch (by
S1 ⊗ · · · ⊗ Sq−1) of the hashed columns together. However, it is still unclear what the 1-norm of
the sketch of the hashed columns is. In fact, it cannot be concentrated with high probability by the
above discussion. Fortunately, for each bucket in a CountSketch associated with a subsampling
rate in Sq, we can use our knowledge of S1 ⊗ · · · ⊗ Sq−1 to recursively estimate the 1-norm inside
of that bucket. This recursive estimation involves applying Sq−1 to the rows of a tq−2×d matrix Z,
computing recursive estimates, and so on. Finally, we use these recursive estimates to estimate the
level sets of columns of the matrixX , and ultimately build and output the estimator provided by Sq.

The main issue we still face is how to handle the blowup in approximation ratio and error
probability in each recursive step. In each Si we would like to randomize boundaries to avoid
overcounting when estimating level set sizes in the estimator. However, the approximation error
grows as we decode more modes. The most natural approach, if the error after decoding the i-
th mode is (1 + η), is to randomize boundaries so that the probability is O(η) of landing near a
boundary, and consequently not being included in the estimator, when decoding Si+1. However,
this blows up the approximation to (1 + η)2. Unfolding the recursion, we get a (1 + ε)Õ(2q) overall
approximation. Setting our initial ε to ε/2Õ(q), we can make the overall approximation 1 + ε.
This yields a 2O(q) factor in the sketching dimension on each mode and thus a 2O(q2) factor in the
sketching dimension in the overall tensor product.

It seems difficult to improve the 2O(q2) bound. To improve this bound, we need to make the
error smaller than (1 + η)2 in the (i + 1)-st mode after obtaining a multiplicative error of (1 + η)
factor in the i-th mode. Imagine that we flatten the first (i + 1)-modes as a d × di matrix. It is
tempting to view one’s estimate in the (i+ 1)-st mode as providing an approximation to the 1-norm
of the vector of estimates of rows produced by Si. Since we hash the rows (the first i modes) into
buckets as in a CountSketch structure, a heavy row in a bucket is perturbed by some small noise
and we need to claim that this small perturbation only incurs a small error in the estimate of the row
by Si. An issue arises that a small perturbation in 1-norm on the first i modes may appear larger
for a heavy row on the first (i − 1) modes, or, equivalently, the first (i + 1) modes can tolerate a
constant-factor smaller perturbation under Si+1 than the first imodes under Si, and thus Si+1 needs
to use a constant-factor more number of buckets than Si to reduce the error in each bucket, resulting
in the same 2O(q2) factor in the overall sketching dimension. To see that the shrinking perturbation
on higher modes is indeed possible, see Figures 2 and 3 for example. In Figure 2, the d× d matrix
has norm Θ(d) and exactly one ε-heavy row. To recover the heavy row, the rows are hashed into
1/ε2 buckets and the heavy row is combined with exactly one value of ε2d at the specified entry in
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εd copies

1

ε2
copies

add ε2d
to this entry

Figure 2: Hard instance for the at-
tempted improvement when
q = 2. The algorithm first
hashes rows into buckets.

1 1 · · · 1 0 · · · 0 0 · · · 0

0

...

0

...

0
ε 3d

...

ε 3d
ε 3d

ε 3d

...

ε 3d

0

...
0

0

...
0

ε2d copies

1

ε2
copies

1

ε3
copies

column

row

add ε3d
to this entry

Figure 3: Hard instance for the attempted improve-
ment when q = 3. The algorithm first hashes
horizontal slices into buckets (parallel to the
shaded slice), then the sub-algorithm for
each bucket (which contains a linear combi-
nation of horizontal slices) hashes rows into
buckets.

some bucket. Note that the entry is an ε-heavy hitter in the combined row. Adding a value of ε2d to
the specified entry is only an ε2-factor perturbation to the overall matrix but an ε-factor perturbation
to the bucket and a constant-factor perturbation to that entry. Similarly, in Figure 3, adding a value
of ε3d to the specified entry is only an ε3-factor perturbation to the overall d × d × d cube but an
ε2-factor perturbation to the only ε-heavy slice (shaded) and an ε-factor perturbation to the only
ε-heavy row on that slice.

It is important to note that the work of Braverman and Ostrovsky Braverman and Ostrovsky
(2010a) also applies `1-sketches in the context of tensor products. However, the subroutines used in
Braverman and Ostrovsky (2010a) define both level sets and subsampling rates in power of 1 + ε,
and ε can be shown to become polynomially smaller in each recursive step, and consequently,
when iterating this process for a general tensor of order q, at the base level it requires a (1 + ε2q)-
approximation to the relevant quantities, resulting in a doubly exponential Ω(1/ε2q) amount of
memory. Removing the 1/ε2q term from their space complexity does not appear to be straightfor-
ward Braverman (2020). In contrast, our algorithm is a more direct analogue of TENSORSKETCH

Pagh (2013); Pham and Pagh (2013); Avron et al. (2014); Ahle et al. (2020) but for the 1-norm, and
admits a simpler analysis, leading to a singly exponential sketching dimension as well as a singly
exponential memory bound in a data stream.

Given the simplicity and modular components of our algorithm, we can extend it to any distance
measure with a (1) small so-called Rademacher dimension, a (2) black box sketching algorithm, and
(3) an approximate triangle inequality.
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1.2.4. POLYNOMIAL-SIZED SUBSPACE EMBEDDINGS

In order to obtain even better oblivious subspace embeddings into `1, we consider the case when
the input matrix A itself has i.i.d. entries. This models settings in statistics with random design
matrices for regression, and our results can be viewed from the lens of average-case complexity.
The important property from the distribution on each entry of A is its tail.

We give the intuition for our improved upper bounds when A is a matrix of i.i.d. Cauchy random
variables. We obtain an O((log n)/ log d)-approximation by simply using a CountSketch matrix
S with poly(d) rows. When n is at most a polynomial in d, this gives an O(1)-approximation,
bypassing the Ω(d/ log2 d) lower bound of Wang and Woodruff (2019) for arbitrary input matrices
A. The idea is that by looking at the rows of A containing the largest poly(d) entries in A - call this
submatrix of rows Atop - then we can show ‖Atopx‖1 > n(log d)‖x‖1 for all x. On the other hand,
one can show that for any x, ‖Ax‖1 6 ‖Atopx‖1 +(n log n)‖x‖1, by concentration bounds applied
to the rows not containing a large entry. Finally, we use that (1) CountSketch does not increase
the 1-norm of any vector it is applied to, and (2) it perfectly hashes the rows in Atop. Putting these
statements together gives us an O((log n)/ log d)-approximation.

We also give a number of lower bounds, showing that our algorithms for random A are also
nearly optimal in their sketching dimension. These results are presented in Section E.

1.3. Additional Related Work

Our focus is on linear oblivious maps. Besides being a fundamental mathematical object, such maps
are essential for the data stream and distributed models above, allowing for very fast update time
under updates. There are other, non-oblivious embeddings for n points in `1, achieving O(n/ε2)
dimensions Newman and Rabinovich (2010); Schechtman (1987); Talagrand (1990), which is nearly
optimal Charikar and Sahai (2002); Brinkman and Charikar (2005); Andoni et al. (2011). See also
Cohen and Peng (2015); Talagrand (1990) for non-oblivious subspace embeddings based on Lewis
weights.

For oblivious subspace embeddings, one can achieve O(d log d) distortion with a sketching
dimension of O(d log d) using a matrix of Cauchy random variables Sohler and Woodruff (2011).
This is a significantly larger distortion than the distortion we seek here. It does not contradict the
lower bound of Wang and Woodruff (2019) which grows roughly as Ω(d/ log2 r), where r is the
sketching dimension.
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Appendix A. Preliminaries

A.1. Subspace embeddings

We record some results in the literature that are standard ingredients in the construction and analysis
of subspace embeddings. We first recall the CountSketch construction.

Definition A.1 (CountSketch Charikar et al. (2002)) CountSketch is a distribution over r×n
matrices that samples a random matrix S as follows.

– Let H : [n]→ [r] be a random hash function, so that H(i) = r′ for r′ ∈ [r] with probability
1/r.

– For each i ∈ [n], let Λi ∼ {±1}.

– S is an r × n matrix taking values in {−1, 0, 1} such that SH(i),i = Λi for each i ∈ [n] and
0s everywhere else.

Remark A.2 The CountSketch construction originated in the data stream literature Charikar
et al. (2002) and has been successfully applied to problems in numerical linear algebra in works
such as Dasgupta et al. (2010); Clarkson and Woodruff (2017, 2015).
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The next lemma is useful for net arguments:

Lemma A.3 (Net argument) Let A ∈ Rn×d and let S :=
{
Ax : x ∈ Rd, ‖Ax‖ = 1

}
. Let ε ∈

(0, 1/2).

– There exists an `1 ε-netN of size at most (3/ε)d = exp(d log(3/ε)) over S, that is, for every
y ∈ S there exists a y′ ∈ N such that ‖y − y′‖1 6 ε Bourgain et al. (1989).

– Let y ∈ S. Then, y =
∑∞

i=0 y
(i) where each nonzero y(i) has y(i)/‖y(i)‖1 ∈ N and

‖y(i)‖1 6 εi (Wang and Woodruff, 2019, implicit in Theorem 3.5).

The next lemma uses a standard balls and bins martingale argument (e.g., Lee (2016)) to show
concentration for uniquely hashed items. This is used in Clarkson and Woodruff (2015) to analyze
the M -sketch.

Lemma A.4 (Concentration for unique hashing) Let h : [n] → [r] be a random hash function.
Let S ⊆ T ⊆ [n], p ∈ (0, 1], and ε ∈ (0, 1) with εr > p|T |. Consider the process that samples
each element i ∈ [n] with probability p and hashes it to a bucket in [r] if it was sampled. Let X be
the number of elements i ∈ S that are sampled and hashed to a bucket containing no other member
of T . Then,

Pr
(
X > (1− ε)2p|S|

)
6 2 exp

(
− ε

2

12
p|S|

)
.

Proof The proof is deferred to Appendix F.

Theorem A.5 (Improvement of Theorem 3.5, Wang and Woodruff (2019)) Let ε ∈ (0, 1), r =
exp(exp(O(dε−2 log ε−1 + ε−2 log δ−1))), and let S be an r×n matrix of i.i.d. Cauchys. Then for
any A ∈ Rn×d,

Pr{(1− ε)‖Ax‖1 6 ‖SAx‖1 6 (1 + ε)‖Ax‖1} > 1− δ.

Proof The proof is deferred to Appendix F.

Remark A.6 Note that the above dense sketch preserves an arbitrary fixed vector with probability
at least 1 − δ using a sketching dimension of 21/δ. Thus, for preserving the 1-norm of n arbitrary
vectors, it suffices to set δ = O(1/n). On the other hand, the lower bound argument of (Wang and
Woodruff, 2019, Theorem 1.1) proves a distortion lower bound for sketching matrices that preserve
even just the columns of the input matrix A. Thus, we can place our n vectors along the columns of
a matrix, so that for constant distortion, a sketch needs r dimensions, for

n

log2 r
= O(1) =⇒ r = Ω(2

√
n).
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Appendix B. Singly Exponential (1 + ε) `1 Subspace Embeddings

In this section, we prove the following theorem:

Theorem B.1 Let ε ∈ (0, 1) and δ ∈ (0, 1). Then there exists a sparse oblivious `1 subspace
embedding S into r dimensions with

r = poly(d, ε−1, δ−1, log n)d/δε

such that for any A ∈ Rn×d,

Pr
S

{
∀x ∈ Rd, (1− ε)‖Ax‖1 6 ‖SAx‖1 6 (1 + ε)‖Ax‖1,

}
> 1− δ.

Our main contribution towards proving this result is in showing the “no dilation” direction
‖SAx‖1 6 (1 + ε)‖Ax‖1. The “no contraction” direction of ‖SAx‖1 > (1− ε)‖Ax‖1 direction
was already known in Clarkson and Woodruff (2015), and we defer the details of handling our minor
changes to Appendix G.

If we settle for dense embeddings, then we are able to get an improved sketching dimension
that is independent of n by first applying the dense `1 subspace embedding of Theorem A.5, which
maps our subspace down to a subspace of dimension independent of n and preserves 1-norms up to
a (1 + ε) factor distortion:

Corollary B.2 Let ε ∈ (0, 1) and δ ∈ (0, 1). Then there exists an oblivious `1 subspace embedding
S into r dimensions with

r = exp
(
Õ(d2/δε3))

)

such that for any A ∈ Rn×d,

Pr
S

{
∀x ∈ Rd, (1− ε)‖Ax‖1 6 ‖SAx‖1 6 (1 + ε)‖Ax‖1

}
> 1− δ.

Proof By applying the sketch of Theorem A.5 first, we can take log log n 6 d/δε2. Then, the
bounds for Theorem B.1 yield the desired result.

By a known lower bound in Theorem 1.1 of Wang and Woodruff (2019), the dependence on d
is optimal up to polynomial factors in the exponent.

B.1. The embedding

We first collect constants that will be used. The constants can all be written in terms of the dimen-
sions n and d of the input matrix, the accuracy parameter ε, and the failure rate δ.
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Definition B.3 (Useful constants)

hmax := log2(n/ε) = O(log(n/ε)) Sampling levels

qmax := log2(ndhmax/δε) = O(log(nd/ε)) Weight classes

α := 2 exp(d log(3/ε))qmax/δ = O

(
exp(d/ε) log(nd/ε)

δ

)
Net union bounding

mcrowd := 300
d11

ε9δ4
log5(n) = O(poly(d, ε−1, δ−1, log n)) Overcrowding hash buckets

B := (mcrowdhmaxqmax/δ)
d/δε = O

(
poly(d, ε−1, δ−1, log n)d/δε

)
Branching factor

N0 :=
12Buqmax

ε3
logα Hash buckets in 0th level

N := B
8d2 log d

ε6
qmax(logα)

(
log

B

ε

)
= O(B log n poly(d, ε−1)) Hash buckets per level

As described in the introduction, the construction of our embedding is essentially a variant
of M -sketch Clarkson and Woodruff (2015). However, instead of using fixed subsampling rates
of 1/poly(d), we use randomized subsampling rates which drop off geometrically by factors of
B = O

(
poly(d, ε−1, δ−1, log n)d/δε

)
.

Definition B.4 Let u ∼ [0, 1] and define subsampling rates

ph := B−(u+h−1)

for each h ∈ [hmax].

Definition B.5 For each i ∈ [n] and h ∈ [hmax], let

bi,h :=

{
1 w.p. ph
0 w.p. 1− ph

,

and let mh :=
∑

i∈[n] bi,h.

Definition B.6 For each i ∈ [n], let Λi ∼ {±1}. Let H0 : [n] → [N0] and Hh : [mh] → [N ] for
each h ∈ [hmax] be a random hash functions.

Definition B.7 (Random-boundary M -sketch) Let C(0) be anN0×nCountSketch matrix (Def-
inition A.1) with random signs Λi and hash function H0, that is,

C
(0)
H0(i),i

:= Λi

for every i ∈ [n] and 0s everywhere else. For each h ∈ [hmax], let S(h) be the mh × n scaled
sampling matrix given by

e>j S
(h)ei =

{
1
ph

j =
∑

i′∈[i] bi′,h

0 otherwise
.
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For each h ∈ [hmax], let C(h) be an N ×mh CountSketch matrix with random signs Λi and hash
function Hh, that is,

C
(h)
Hh(i),i

:= Λi

for each yi that was sampled, i.e., bi,h = 1, and 0s everywhere else. Then, our random-boundary
M -sketch is given by

S :=




C(0)

C(1)S(1)

C(2)S(2)

...
C(hmax)S(hmax)



.

B.2. Notation for analysis

We first recall some notation from the analysis of M -sketch in Clarkson and Woodruff (2015), as
well as a few other definitions.

Definition B.8 Let y ∈ Rn be a unit `1 vector and let q ∈ N. We define weight classes

Wq(y) :=
{
yi : 2−q 6 |yi| 6 21−q}.

When the y is clear from context, we simply write Wq for brevity. For a set Q ⊆ N, we write

WQ :=
⋃

q∈Q
Wq.

We also write |Wq| for the size of Wq and

‖Wq‖1 :=
∑

y∈Wq

|y|.

Definition B.9 For h ∈ [hmax] and k ∈ [N ], we write Lh,k for the multiset of elements that get
sampled and hashed to the kth bucket in the hth level.

We briefly digress to recall `1 leverage score vectors.

Definition B.10 (`1 well-conditioned basis (Definition 2, Clarkson et al. (2013), see also Dasgupta et al. (2009)))
A basis U for the range of an n×dmatrix A is (α, β)-conditioned if ‖U‖1 6 α and for all x ∈ Rd,
‖x‖∞ 6 β‖Ux‖1. We say that U is well-conditioned if α and β are low-degree polynomials d,
independent of n. It is known that an Auerbach basis for A is (d, 1)-conditioned.

Definition B.11 (`1 leverage scores (Definition 3, Clarkson et al. (2013))) Given a (d, 1)-conditioned
basis U (see Definition B.10) for the column space of A ∈ Rn×d, define the vector λ ∈ Rn of nor-
malized `1 leverage scores of A to be

λi :=
‖e>i U‖1

d
.
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Remark B.12 As noted in Clarkson et al. (2013), the `1 leverage scores are not defined uniquely.
We also note that for convenience of notation, our normalization of the leverage scores is off by a
factor of d from standard definitions in the literature.

In our analysis, we consider weight classes Wq(λ) of the `1 leverage score vector λ. For each
weight class Wq, we set

hq := blogB|Wq|c

so that Bhq 6 |Wq| < Bhq+1.

Definition B.13 For a pair (h, q) ∈ [hmax]× N and an interval I , define the event

Eh,q(I) := {ph|Wq(λ)| ∈ I}

in which sampling the weight classWq(λ) at rate ph has an expected number of items in the window
I .

Definition B.14 (Scaled leverage score samples) For each (h, q) ∈ [hmax]× [qmax] and an inter-
val I , define the random variables

Sh,q :=
1

ph

∑

λi∈Wq

bi,hλi

Th,q(I) :=
1

ph

∑

λi∈Wq

bi,hλi1(Eh,q(I))

In the following sections, we give upper bounds on the mass of the sketch depending on the
weight class of the leverage scores that we look at. We have the following intervals:

– Dead levels ph|Wq(λ)| ∈ [0, δ/hmaxqmax): In this interval, we sample none of these entries
with high probability.

– Badly concentrated levels ph|Wq(λ)| ∈ [δ/hmaxqmax,mcrowd): The expected mass of lever-
age scores coming from this level is at most O(ε/d), which means that with constant proba-
bility, the mass contribution for all subspace vectors is O(ε).

– Golidlocks levels ph|Wq(λ)| ∈ [mcrowd, Bmcrowd): In this interval, we can show that the
mass contribution is at most a (1 + ε) factor more than the expected mass coming from this
interval with high probability. This level is counted only once, since the size of the interval is
less than a B factor.

– Oversampled levels ph|Wq(λ)| ∈ [Bmcrowd,∞): In this interval, we sample so many of
these entries that it overcrowds the CountSketch hash buckets, which makes the mass con-
tribution at most an ε fraction due to the random sign cancellations.
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B.3. Bounding badly concentrated levels

For levels with expected mass in the interval [1/α, logα] at subsampling rate ph, we cannot hope to
reason about the mass contribution of this level with high enough probability to union bound over a
net, since we need expectation at most 1/α for the level to get completely missed by the sampling,
and we need at least logα in order to get concentration. However, we show that because of our
randomization of subsampling rates, the leverage score mass contribution from these rows is only
an O(ε/d) fraction of the total mass of the leverage scores in expectation, which means it is only an
O(ε) fraction of the total mass of any subspace vector with constant probability by a combination
of properties of leverage scores and a Markov bound.

Lemma B.15 (Randomized sampling rates) Let δ′ ∈ (0, 1), let 0 < a < 1 and b > 1, and let
B′ := (b/a)1/δ′ . Let u ∼ [0, 1], p = B′−u, and let t ∈ R. Then,

Pr(pt ∈ [a, b]) 6

{
0 if t > b or B′t 6 a

δ otherwise.

Proof The first bound follows from the fact that t = B′0t 6 pt 6 B′1t = B′t. For the second
bound, we calculate

Pr(pt ∈ [a, b]) = Pr(u ∈ logB′ t+ [− logB′ b,− logB′ a]) 6 logB′(b/a) = δ′
log(b/a)

log(b/a)
= δ′.

Corollary B.16 For every h ∈ [hmax] and q ∈ [qmax],

Pr(Ei([δ/hmaxqmax,mcrowd))) = Pr
u

(ph|Wq| ∈ [δ/hmaxqmax,mcrowd)) 6

{
0 if h /∈ {hq, hq + 1}
δε
d otherwise

.

Proof Note that for h > hq + 2,

B−h|Wq| 6 B−h+hq+1 6 B−1 6
δ

hmaxqmax

and for h 6 hq − 1,
B−h|Wq| > B−h+hq > B1 > mcrowd

so for h /∈ {hq, hq + 1},

Pr
u

(ph|Wq| ∈ [δ/hmaxqmax,mcrowd)) = Pr
u

(
B−u

(
B−h|Wq|

)
∈ [δ/hmaxqmax,mcrowd)

)
= 0.

On the other hand, for h ∈ {hq, hq + 1},

Pr
u

(ph|Wq| ∈ [δ/hmaxqmax,mcrowd)) 6
δε

d

by Lemma B.15.

Note that by Corollary B.16, Eh,q([δ/hmaxqmax,mcrowd)) has nonzero probability for only h ∈
{hq, hq + 1}.
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Lemma B.17 (Expected mass of bad leverage scores)

E
u,b


 ∑

q∈[qmax]

∑

h∈[hmax]

Th,q([δ/hmaxqmax,mcrowd))


 6

4δε

d
.

Proof Let I := [δ/hmaxqmax,mcrowd). Then,

E
u,b


 ∑

q∈[qmax]

∑

h∈[hmax]

Th,q(I)


 = E

u,b


 ∑

q∈[qmax]

∑

h∈{hq ,hq+1}

Th,q(I)




=
∑

q∈[qmax]

∑

h∈{hq ,hq+1}

E
u,b
Th,q(I)

=
∑

q∈[qmax]

∑

h∈{hq ,hq+1}

∑

λi∈Wq

E
u,b

[
1

ph
bi,hλi1(Eh,q(I))

]

6
∑

q∈[qmax]

∑

h∈{hq ,hq+1}

∑

λi∈Wq

21−q E
u

(1(Eh,q(I)))

6
∑

q∈[qmax]

∑

h∈{hq ,hq+1}

∑

λi∈Wq

21−q δε

d

=
∑

q∈[qmax]

22−q|Wq|
δε

d

6
4δε

d
.

Lemma B.18 For any x ∈ Rd and i ∈ [n], we have that

|e>i Ax|
‖Ax‖1

6 dλi

Proof Let y ∈ Rd be such that Ax = Uy. Then,

|e>i Ax|
‖Ax‖1

=
|e>i Uy|
‖Uy‖1

6
‖e>i U‖1‖y‖∞
‖y‖∞

= ‖e>i U‖1 = dλi

where the first inequality follows from properties of well-conditioned bases.

B.4. Bounding Goldilocks levels

In this level, the expected sampled mass is large enough to get concentration, but not large enough
to overflow the hash buckets of the CountSketch. In this level, we show that the mass contribution
is at most a (1 + ε) factor more than the expected mass. The main idea for getting concentration
here is using the bounds on the leverage scores to bound outliers, and using a Bernstein bound to
get concentration on the rest of the entries with a good bound on the variance.
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Definition B.19 Define A(q) to be the n×d matrix formed by taking the rows of A that correspond
to leverage scores belonging to weight class Wq(λ), and 0s everywhere else.

Lemma B.20 Let (h, q) ∈ [hmax] × [qmax] with ph|Wq(λ)| > 3d2ε−4 logα and let x ∈ Rd with
‖x‖1 = 1. Then with probability at least 1− 2/α, we have that

‖S(h)A(q)x‖1 =
∑

λi∈Wq(λ)

|e>i Ax|
ph

bi,h 6 (1 + ε)‖A(q)x‖1 + 4ε‖Wq‖1‖Ax‖1.

Proof The average absolute value of an entry of A(q)x is µq := ‖A(q)x‖1/|Wq(λ)|. Then by
averaging, there is at most an ε/d fraction of rows with absolute value greater than dµq/ε. Now for
each λi ∈Wq(λ), define the event

Fi :=

{
|e>i Ax| > dµq

ε

}

and the sample
X =

∑

λi∈Wq

bi,h1(Fi).

Note that

EX =
εph|Wq|

d
>
d logα

ε4
> 3 logα

so by the Chernoff bound,

Pr(X > 2EX) 6 exp

(
−EX

3

)
6

1

α
.

Conditioned on the complement event, the mass contribution from rows i for which Fi happens is
at most
∑

λi∈Wq

|e>i Ax|
ph

bi,h1(Fi) 6 2
εph|Wq|

d

|e>i Ax|
ph

6 2ε
|Wq|
d

dλi‖Ax‖1 6 4ε2−q|Wq|‖Ax‖1 6 4ε‖Wq‖1‖Ax‖1

where the second to last inequality follows from Lemma B.18.
We now consider the sample

Y =
∑

λi∈Wq

Yi

where

Yi :=
|e>i Ax|
ph

bi,h1(¬Fi).

Note that

EY 6 ‖A(q)x‖1 = |Wq|µq

Yi 6
1

ph

dµq
ε

Var(Yi) 6 ph

(
1

ph

dµq
ε

)2

=
1

ph

(
dµq
ε

)2
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Then by Bernstein’s inequality,

Pr(Y −EY > ε|Wq|µq) 6 exp

(
−1

2

(ε|Wq|µq)2

|Wq|(dµq/ε)2/ph + (ε|Wq|µq)(dµq/εph)/3

)

= exp

(
−1

2

ph|Wq|ε2

(d/ε)2 + d/3

)
6 exp

(
−ph|Wq|

3d2ε−4

)
6

1

α
.

We conclude by combining the two bounds.

B.5. Bounding oversampled levels

When we expect to sample a large enough number of entries per hash bucket from a level, these
entries cancel each other out due to the random signs. These levels fall under this criterion.

Lemma B.21 Let (h, q) ∈ [hmax]×[qmax] with ph|Wq(λ)| > bN for b = 12(dhmax
ε )2 log(Nhmaxqmax/δ).

Then with probability at least 1− 4δ/hmaxqmax,

‖C(h)S(h)A(q)x‖1 6
ε

hmax
‖Wq(λ)‖1‖Ax‖1.

Similarly, if |Wq(λ)| > bN0 , then with probability at least 1− 4δ,

‖C(0)A(q)x‖1 6
ε

hmax
‖Wq(λ)‖1‖Ax‖1.

Proof We just show the first bound since the second is nearly identical. Note that by Lemma B.18,
|e>i A(q)x|/‖Ax‖1 6 dλi 6 d21−q for all λi ∈Wq(λ).

By Chernoff’s bound, the probability that a bucket L in level h gets X = (1 ± 1/2)ph|Wq|/N
elements from Wq is at least

Pr

(
|X − ph|Wq|

N
| > 1

2

ph|Wq|
N

)
6 2 exp

(
−(1/2)2ph|Wq|

3

)
= 2 exp

(
−ph|Wq|

12

)
6 2δ.

We condition on this event. Then by Hoeffding’s bound, the inner product of m elements {ai}mi=1

in the interval [d2−q‖Ax‖1, d21−q‖Ax‖1] with random signs εi concentrates around its mean as

Pr

(
m∑

i=1

εiai > d21−q‖Ax‖1
√
m
√

log(Nhmaxqmax/δ)

)
6 exp

(
−(d21−q‖Ax‖1

√
m
√

log(Nhmaxqmax/δ))
2

2d222−2q‖Ax‖21m

)

6
δ

Nhmaxqmax
.
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Then by a union bound over N buckets, with probability at least 1 − 2δ/hmaxqmax, we have for
every bucket L at this level that

∣∣∣∣∣∣
1

ph

∑

yi∈L
Λibi,hyi

∣∣∣∣∣∣
6 d21−q‖Ax‖1

√
X
√

log(N/δ)

6
1

ph
d21−q‖Ax‖1

√
3

2

ph|Wq|
N

√
log(N/δ)

6
1

ph

ε

dhmax
d2−q‖Ax‖1

ph|Wq|
N

6
ε

hmax

‖Wq‖1
N
‖Ax‖1

which gives the desired bound upon summing over the N buckets. The overall success probability
is at least 1− 4δ/hmaxqmax.

B.6. Net argument

In this section, we collect the bounds obtained in previous sections and conclude with a net argu-
ment.

Lemma B.22 With probability at least 1− 6δ, we have for all x ∈ Rd that
∑

h∈[hmax]

∑

q∈[qmax]

‖C(h)S(h)A(q)x‖11(Fh,q) 6 5ε‖Ax‖1

where
Fh,q = {ph|Wq| ∈ [0,mcrowd) ∪ [Bmcrowd,∞)}

Proof We case on ph|Wq| by intervals [0, δ/hmaxqmax), [δ/hmaxqmax,mcrowd), and [Bmcrowd,∞).

– Dead levels: First consider the h for which ph|Wq| < δ/hmaxqmax. In this case, the probabil-
ity that we sample any row corresponding to some λi ∈Wq is at most ph|Wq| < δ/hmaxqmax

by a union bound. Then by a further union bound over all (h, q) ∈ [hmax]× [qmax], this cate-
gory of levels contributes no mass with probability at least 1− δ.

– Badly concentrated levels: Consider the subsampling levels with ph|Wq| ∈ [δ/hmaxqmax,mcrowd).
By Lemma B.17, the total expected leverage score mass contribution from all such pairs
(h, q) ∈ [hmax] × [qmax] is at most 4δε/d. Then by Markov’s inequality, with probability at
least 1− δ, the total expected leverage score mass is at most 4ε/d. Conditioned on this event,
we have that

∑

h∈[hmax]

∑

q∈[qmax]

1

ph

∑

λi∈Wq

bi,h|e>i Ax|1(Eh,q([δ/hmaxqmax,mcrowd))

6 d‖Ax‖1
∑

h∈[hmax]

∑

q∈[qmax]

1

ph

∑

λi∈Wq

bi,hλi1(Eh,q([δ/hmaxqmax,mcrowd)) Lemma B.18

6 d
4ε

d
‖Ax‖1 = 4ε‖Ax‖1 Lemma B.17
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– Oversampled levels: Consider the subsampling levels with ph|Wq| ∈ [Bmcrowd,∞). Note
thatBmcrowd > bN is large enough to apply Lemma B.21. By union bounding and summing
over h and q for the result of the lemma, we have that
∑

h∈[hmax]

∑

q∈[qmax]

‖C(h)S(h)A(q)x‖11(Eh,q([Bmcrowd,∞)) 6
∑

h∈[hmax]

∑

q∈[qmax]

ε

hmax
‖Wq‖1‖Ax‖1 6 ε‖Ax‖1

with probability at least 1− 4δ.

We thus conclude by a union bound over the above three events.

Lemma B.23 (Tiny weight classes) Let q > qmax. Then with probability at least 1 − δ, it holds
for all x ∈ Rd that ∑

h∈[hmax]

∑

q>qmax

‖S(h)A(q)x‖1 6 ε‖Ax‖1.

Proof For the weight classes q > qmax, the total leverage score mass contribution is bounded by

∑

q>qmax

‖Wq(λ)‖1 6
∑

q>qmax

21−q|Wq| 6
δε

dnhmax

∑

q>qmax

|Wq| 6
δε

dhmax
.

Then in expectation, the sum of the scaled leverage score samples (Definition B.14) is bounded by

E


 ∑

h∈[hmax]

∑

q>qmax

Sh,q


 =

∑

h∈[hmax]

∑

q>qmax

∑

λi∈Wq

E

(
1

ph
bi,hλi

)

=
∑

h∈[hmax]

∑

q>qmax

‖Wq(λ)‖1

6
∑

h∈[hmax]

δε

dhmax

=
δε

d
.

Then with probability at least 1−δ, the above sum is at most ε/d. We condition on this event. Then,
for all x ∈ Rd,

∑

h∈[hmax]

∑

q>qmax

‖S(h)A(q)x‖1 =
∑

h∈[hmax]

∑

q>qmax

∑

λi∈Wq

1

ph
bi,h(e>i Ax)

6 d‖Ax‖1
∑

h∈[hmax]

∑

q>qmax

∑

λi∈Wq

1

ph
bi,hλi Lemma B.18

6 d‖Ax‖1
ε

d
= ε‖Ax‖1

as desired.
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Lemma B.24 There is an event with probability 1 − 11δ such that conditioned on this event, for
every x ∈ Rd,

Pr(‖SAx‖1 6 (1 + 8ε)‖Ax‖1) > 1− 2qmax

α
.

Proof By Lemma B.23, the contribution from weight classes q > qmax is at most ε‖Ax‖1 with
probability at least 1− δ. We let this event be E1 and restrict our attention to q 6 qmax.

For each q ∈ [qmax], we bound the mass contribution of rows corresponding to Wq(λ) at each
subsampling level {0} ∪ [hmax]. Note that by Lemma B.22, there is an event E2 with probability at
least 1−6δ such that all levels h, q except for those such that h = 0 or ph|Wq| ∈ [mcrowd, Bmcrowd)
are bounded by at most 5ε‖Ax‖1, so it remains to bound these levels. These are the 0th level of
subsampling (i.e., no subsampling) and the Goldilocks levels.

Note that there exists at most one Goldilocks level h ∈ [hmax] such that ph|Wq| ∈ [mcrowd, Bmcrowd).
In this case, Lemma B.20 applies since mcrowd > 3d2ε−1 logα, and we have that

‖S(h)A(q)x‖1 =
∑

λi∈Wq(λ)

|e>i Ax|
ph

bi,h 6 (1 + ε)‖A(q)x‖1 + 4ε‖Wq‖1‖Ax‖1.

with probability at least 1− 2/α. If such a Goldilocks subsampling level h exists, then note that

ph|Wq| > mcrowd =⇒ |Wq| > Bu+h−1mcrowd > Bumcrowd > bN0.

Then by Lemma B.21, the 0th level of subsampling level contributes mass at most (ε/hmax)‖Wq(λ)‖1
with probability at least 1 − 4δ/hmaxqmax. Thus by a union bound over all qs with a Goldilocks
level and summing over these, the 0th level contributes at most

∑

q∈qmax

‖C(0A(q)x‖11(∃h : ph|Wq| ∈ [mcrowd, Bmcrowd)) 6
∑

q∈qmax

ε

hmax
‖Wq(λ)‖1‖Ax‖1 6 ε‖Ax‖1.

Let this be event E3. On the other hand, for the Goldilocks level itself, there is a 1 − 2qmax/α
probability that

∑

h∈[hmax]

∑

q∈[qmax]

‖S(h)A(q)x‖1(Eh,q([mcrowd, Bmcrowd)))

6
∑

q∈[qmax]

(1 + ε)‖A(q)x‖11(∃h : ph|Wq| ∈ [mcrowd, Bmcrowd)) + 4ε‖Wq‖1‖Ax‖1

6 4ε‖Ax‖1 +
∑

q∈[qmax]

(1 + ε)‖A(q)x‖11(∃h : ph|Wq| ∈ [mcrowd, Bmcrowd))

by a union bound over the at most qmax weight classes.
Otherwise, if a weight class q has no Goldilocks level, then we have by the triangle inequality

that
‖C(0A(q)x‖1 6 ‖A(q)x‖1

and thus we simply bound the contribution of the 0th level by ‖A(q)x‖1.
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Note that E1 ∩ E2 ∩ E3 occurs with probability at least 1− 11δ. Then conditioned on this event,
every x ∈ Rd has a 1− 2qmax/α probability that

‖SAx‖1 =

[ ∑

q>qmax

‖SA(q)x‖1
]

+
∑

q∈[qmax]


‖C(0A(q)x‖1 +

∑

h∈[hmax]

‖C(h)S(h)(A(q)x‖1




6 ε‖Ax‖1 + (1 + ε)‖Ax‖1︸ ︷︷ ︸
Goldilocks or 0th level

+ ε‖Ax‖1︸ ︷︷ ︸
0th level if Goldilocks level exists

+ 5ε‖Ax‖1︸ ︷︷ ︸
badly concentrated and oversampled levels

6 (1 + 8ε)‖Ax‖1

which is the desired bound.

We conclude by a standard net argument.

Theorem B.25 (No expansion) With probability at least 1− 11δ, we have that for all x ∈ Rd,

‖SAx‖1 6 (1 + 11ε)‖Ax‖1.

Proof By Lemma B.24, there is an event with probability at least 1− 10δ such that conditioned on
this event, for each x, there is a 1− 2/α probability that

‖SAx‖1 6 (1 + 8ε)‖Ax‖1. (1)

It is well-known (see e.g., Bourgain et al. (1989)), that there exists an ε-net N of size at most
(3/ε)d = exp(d log(3/ε)) over the set

{
Ax : x ∈ Rd, ‖Ax‖ = 1

}
. Then by a union bound over

the net, Equation 1 holds for every Ax ∈ N with probability at least 1− δ.
Finally, let x ∈ Rd be arbitrary with ‖Ax‖1 = 1. It is shown in (Wang and Woodruff, 2019,

Theorem 3.5) that Ax =
∑∞

i=0 y
(i) where each nonzero y(i) has y(i)/‖y(i)‖1 ∈ N and ‖y(i)‖1 6

εi. We then have that

‖SAx‖1 =

∥∥∥∥∥S
∞∑

i=0

y(i)

∥∥∥∥∥
1

6
∞∑

i=0

∥∥∥Sy(i)
∥∥∥

1
6 (1 + 8ε)

∞∑

i=0

∥∥∥y(i)
∥∥∥

1
6 (1 + 8ε)

∞∑

i=0

εi 6 1 + 11ε.

We conclude by homogeneity.

Appendix C. Near Optimal Trade-offs for `1 Entrywise Embeddings

In this section, we obtain algorithmic trade-offs between sketching dimension and distortion for `1
entrywise embeddings, and show that this is nearly tight for d× d matrices.

C.1. Algorithm

Our algorithm is an M -sketch with subsampling rates ph = B−h, where B = (dδ log n)α for
α ∈ (0, 1), and CountSketch hashes into Θ̃(Bδ log n) buckets. By homogeneity, we assume that
‖A‖1 = 1 throughout this section.
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Definition C.1 (Useful constants)

B :=

(
d

δ
log n

)α

hmax := logB n

qmax := log2

ndhmax

δ

ph := B−h, h ∈ [hmax]

Theorem C.2 Let δ ∈ (0, 1) and α ∈ (0, 1). Then there exists a sparse oblivious `1 entrywise
embedding S into k dimensions with

k =

(
d

δ
log n

)α
poly(δ−1, log n)

such that for any A ∈ Rn×d,

Pr

{
Ω(1)‖A‖1 6 ‖SA‖1 6 O

(
1

δα

)
‖A‖1

}
> 1− δ.

Our analysis revolves around the vector of row norms.

Definition C.3 (Row norms vector) For an n × d matrix A with ‖A‖1 = 1, we define the row
norms vector a ∈ Rn by ai = ‖e>i A‖1. Using this vector, we define weight classes Wq(a) and
restrictions A(q) of A to our weight classes, analogously to the analysis in Section B.

In order to avoid shrinking the vector a by more than a constant factor with probability at least
δ, we apply Lemma G.1 with failure rate δ and constant ε, which gives an M -sketch with 0th level
hash bucket size

N0 = Õ

(
B

δ
log logn

)

and hth level hash bucket size
N = Õ(B log n).

We now show that this does not dilate the entrywise 1-norm of A by more than O(1/α). As in
the analysis in Verbin and Zhang (2012), we use the Rademacher dimension.

Lemma C.4 (Rademacher dimension of `d1) Let {xi}si=1 ⊆ Rd with ‖xi‖1 6 1 for each i ∈ [s],
and let δ ∈ (0, 1). Let {εi}si=1 be independent Rademacher variables. Then with probability at
least 1− δ, ∥∥∥∥∥

s∑

i=1

εixi

∥∥∥∥∥
1

6 d

√
1

2
log

2d

δ

√
s.

Proof The proof uses standard concentration inequalities and is similar to (Verbin and Zhang, 2012,
Lemma 1). The details are deferred to Appendix H.

We follow the approach of Verbin and Zhang (2012). Using the Rademacher dimension, we
first show that if we sample too many elements, then the contribution from this level is at most a
negligible fraction of the total mass.

32



EXPONENTIALLY IMPROVED DIMENSIONALITY REDUCTION FOR `1

Lemma C.5 Let q ∈ [qmax]. Let ph|Wq(a)| > bN for

b = 2d2h2
maxq

2
max log

(
2dNhmaxqmax

δ

)

Then with probability at least 1− δ/qmax,
∑

h:ph|Wq(a)|>bN

‖C(h)S(h)A(q)‖1 6
1

qmax
‖A(q)‖1

Proof By Chernoff bounds, the probability that we sample (1± 1/2)ph|Wq(a)|/2N elements in a
given bucket in the hth level is at most

exp

(
−(1/2)2ph|Wq(a)|/N

3

)
6 exp

(
− b

12

)
6 exp

(
− log

(
Nhmaxqmax

δ

))
=

δ

Nhmaxqmax

so by a union bound over the N buckets, this holds simultaneously for all buckets at the hth level
with probability at least δ/hmaxqmax.

We condition on the above event. Then, each bucket L is a randomly signed sum of s > b
elements e>i A with ‖e>i A‖1 6 21−q. Thus by Lemma C.4, with probability at least δ/Nhmaxqmax,

∥∥∥∥∥∥
∑

ai∈Lh,k

Λie
>
i A

∥∥∥∥∥∥
1

6 21−qd

√
1

2
log

2dNhmaxqmax

δ

√
s

6
‖Wq(a)‖1

N

2d√
s

√
1

2
log

2dNhmaxqmax

δ

6
‖Wq(a)‖1
Nhmaxqmax

as we have set

2d√
s

√
1

2
log

2dNhmaxqmax

δ
6

2d√
b

√
1

2
log

2dNhmaxqmax

δ
6

ε

hmaxqmax
.

Summing over the buckets k ∈ [N ] and union bounding and summing over h ∈ [hmax] yields the
desired result.

Next, we handle the remaining levels. We pay the price of having smaller hash buckets in the
distortion at this point.

Lemma C.6 Let q ∈ [qmax]. Then with probability at least 1− 2δ/qmax,

∑

h:ph|Wq(a)|<bN

‖S(h)A(q)‖1 6 O

(
1

δα

)
‖A(q)‖1

Proof Note that if ph|Wq(a)| 6 δ/hmaxqmax, then by a union bound over the at most hmax levels of
h, none of these levels h sample any elements from weight class q with probability at least δ/qmax.
Then for each weight class q, only the subsampling levels h for

δ

hmaxqmax
6 ph|Wq(a)| 6 bN
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can contribute to the mass of the sketch ‖SA‖1. Note that this is only

logB

(
bNhmaxqmax

δ

)
= logB

[
poly(d, log n, δ−1)

]
= O

(
1

α

)

levels of subsampling, where each level contributes at most

E‖C(h)S(h)A(q)‖1 6 E‖S(h)A(q)‖1 = ‖A(q)‖1

in expectation. We thus conclude by summing over h with ph|Wq(a)| < bN and then applying a
Markov bound.

Putting the above pieces together yield the following:
Proof [Proof of Theorem C.2] As previously discussed in this section, the “no contraction” direc-
tion of ‖SA‖1 > Ω(1)‖A‖1 is handled in Lemma G.1, so we focus on proving the “no dilation”
direction of ‖SA‖1 > O(1/δα)‖A‖1.

We union bound and sum over the results from Lemmas C.5 and C.6 for q ∈ [qmax] to see that
with probability at least 1− 3δ,

∑

h∈[hmax]

∑

q∈[qmax]

‖C(h)S(h)A(q)‖1 6 O

(
1

δα

) ∑

q∈[qmax]

‖A(q)‖.

We also note that ‖C(0A‖1 6 ‖A‖1 by the triangle inequality. Finally, we have that in expectation,
the weight classes q > qmax contribute at most

∑

q>qmax

∑

h∈[hmax]

E‖C(h)S(h)A(q)‖1 6
∑

q>qmax

∑

h∈[hmax]

‖A(q)‖1

6
∑

h∈[hmax]

2δ

ndhmax
‖A‖1

∑

q>qmax

|Wq(a)|

6 2δ‖A‖1.

Then by Markov’s inequality, with probability at least 1− δ, these levels contribute at most 2‖A‖1.
Summing these three results, we find that

‖SA‖1 6 ‖C(0A‖1 +
∑

h∈[hmax]

∑

q∈[qmax]

‖C(h)S(h)A(q)‖1 +
∑

h∈[hmax]

∑

q>qmax

‖C(h)S(h)A(q)‖1

6 3‖A‖1 +O

(
1

δα

) ∑

q∈[qmax]

‖A‖1

6 O

(
1

δα

)
‖A‖1

as desired.
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C.2. Lower bound

We show that for d × d matrices, the above trade-off between the sketching dimension and dis-
tortion is nearly optimal, up to log factors. Note that for constant δ, the above result gives a
dα poly log d sized sketch with distortion 1/α. We show that with a sketch of size r, a distortion of
Ω((log d)/(log r)) is necessary.

By Yao’s minimax principle, we assume that the r × d sketch matrix S is fixed, and show that
the distortion is Ω((log d)/(log r)) with constant probability over a distribution over input matrices
A.

The following simple lemma is central to our analysis:

Lemma C.7 Let S be an r × n matrix, and let A be drawn as an n × d matrix with all of its
columns drawn as i.i.d. Cauchy variables. Then,

Pr{Ω(d log d)‖S‖1 6 ‖SA‖1 6 O(d log(rd))‖S‖1} >
99

100
.

Proof The proof relies on standard tricks and is deferred to Appendix H.

Theorem C.8 Let S be a fixed r × d matrix. Then there is a distribution µ over d × d matrices
such that if

Pr
A∼µ

(‖A‖1 6 ‖SA‖1 6 κ‖A‖1) >
2

3

then κ = Ω((log d)/(log r)).

Proof We draw our matrix A from µ as follows. Let µ1 be the distribution that draws A as a d× d
i.i.d. matrix with Cauchy entries, and let µ2 be the distribution that draws A with its first r columns
as a d× r i.i.d. matrix with Cauchy entries scaled by d/r, and the rest of the d− r columns all 0s.
Then, µ draws from µ1 with probability 1/2 and µ2 with probability 1/2.

Note that by Lemmas 2.10 and 2.12 of Wang and Woodruff (2019),

Pr
A∼µ1

(
Ω(d2 log d) 6 ‖A‖1 6 O(d2 log d)

)
>

99

100

Pr
A∼µ2

(
d

r
Ω(rd log(rd)) 6 ‖A‖1 6

d

r
O(rd log(rd))

)
>

99

100

By Lemma C.7, if A ∼ µ1, then ‖SA‖1 = Ω(d log d)‖S‖1 with probability at least 99/100.
Now suppose for contradiction that ‖S‖1 = ω(κd). Then with probability at least 1− (1/3 + 1/2 +
1/100 + 1/100) > 0, we have that

ω(κd2 log d) = Ω(d log d)‖S‖1 6 ‖SA‖1 6 κ‖A‖1 = O(κd2 log d)

which is a contradiction. Thus, ‖S‖1 = O(κd).
Now consider A ∼ µ2. By Lemma C.7, ‖SA‖1 6 O(r log r)‖S‖1 with probability at least

99/100. Then, with probability at least 1− (1/3 + 1/2 + 1/100 + 1/100) > 0,

Ω(d2 log d) 6 ‖A‖1 6 ‖SA‖1 6 O(d log r)‖S‖1 = O(κd2 log r)

so

κ = Ω

(
log d

log r

)

as desired.
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Appendix D. Independence Testing in the `1 norm

In this section, we present our result for estimating ‖P −Q‖1, where P is the joint distribution and
Q the product distribution defined by the marginals, which are determined by the stream items as
introduced in Section 1. We first prepare a heavy hitter data structure in Section D.1 and present
our (1 + ε)-approximation algorithm to the `1 norm of order-2 tensors in Section D.2. To move to
higher dimensions, we need a rough estimator for the product distribution in Section D.3. Finally,
we apply the result for order-2 tensors iteratively in Section D.4 to obtain a (1 + ε)-approximation
to ‖P −Q‖1.

D.1. Heavy Hitters

This subsection is devoted to a data structure, called the HEAVYHITTER structure, which is anal-
ogous to the classical CountSketch data structure for a general functional f on a general linear
space.

Suppose that f : R→ R is function satisfying the following properties:
1. f(0) = 0;
2. f(x) = f(−x);
3. f(x) is increasing on [0,∞);
4. There exists a constantCf such that it holds for any integer s > 1 and any x1, . . . , xs, y1, . . . , ys ∈

R that
∑s

i=1 f(xi + yi) 6 Cf (
∑s

i=1(f(xi) + f(yi))).
5. There exists a function h : [0,∞)→ [0,∞) such that

(a) limε→0+ h(ε) = 0;
(b) it holds for any integer s > 1 and any x1, . . . , xs, y1, . . . , ys ∈ R that |∑s

i=1 f(xi +
yi)−

∑s
i=1 f(xi)| 6 h(ε)

∑
i f(xi) whenever

∑
i f(yi) 6 ε

∑
i f(xi).

We abuse notation and define for x ∈ Rm that f(x) =
∑

i f(xi).
We define a different Rademacher dimension as follows. The Rademacher dimension B =

B(f ; η) is the smallest integer such that the following holds for any integer s > 1. Let σ1, . . . , σs
be i.i.d. Rademacher variables and ξ1, . . . , ξs be i.i.d. Bernoulli variables such that E ξi = 1/B. It
holds for any x1, . . . , xs ∈ Rm that

Pr

{
f

(∑

i

σiξixi

)
6 η

∑

i

f(xi)

}
> 0.9.

Lemma 1 Let γ, ζ ∈ (0, 1/3), there exists r = r(γ, ζ) and a randomized linear map T : Rm →
Rr, and a subrecovery algorithm B such that for each x ∈ Rm, with probability at least 1 − ζ, it
holds that (1− γ)f(x) 6 B(Tx) 6 (1 + γ)f(x).

Then, for θ, δ ∈ (0, 1/3), there exists a randomized linear function M : (Rm)d → RS , where
S = O(B log(d/δ) · r(γ, ζ ′)) for B = B(f ;h−1(θ)θ) and ζ ′ = O(ζ/(B log(d/δ)), and a recovery
algorithm A satisfying the following. For any x = (x1, . . . , xn) ∈ (Rm)d with probability >
1− δ − ζ, A reads Mx and outputs an estimate f̃i for each i ∈ [d] such that

1. |f̃i − f(xi)| 6 (γ + θ + γθ)f(xi) whenever f(xi) > θf(x);

2. |f̃i| 6 Cfθ(1 + γ)(1 + h(θ))f(x) whenever f(xi) < θf(x).
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Proof The linear sketch M is essentially a CountSketch data structure, which hashes {Txi}i into
B = B(f ; min{ε2, h(θ)}η) buckets under a hash function h. The b-th bucket contains

Tb =
∑

i:h(i)=b

σiTxi.

For i∗ such that f(xi∗) > θf(x), the algorithm will just return f̃i∗ = B(Th(i∗)). Next we analyse the
estimation error. Let b = h(i∗). Note that

∑
i:h(i)=b σiTxi is identically distributed as Txi∗ + Tν,

where ν =
∑

i 6=i∗:h(i)=b σixi. Since B = B(f ;h−1(θ)θ), it holds with probability at least 0.9 that

f(ν) 6 h−1(θ)θf(x) 6 h−1(θ)f(xi∗),

which implies that
(1− θ) f(xi∗) 6 f (xi∗ + ν) 6 (1 + θ) f(xi∗).

and, with probability at least 0.9− ζ that

(1− γ)(1− θ)B(Txi∗) 6 B(Tb) 6 (1 + γ)(1 + θ)B(Txi∗).

On the other hand, when f(xi∗) 6 θf(x),

f(xi∗ + ν) 6 Cf (f(xi∗) + f(ν)) 6 Cf (θ + h(θ)θ)f(x)

and, with probability at least 1− ζ,

B(Tb) 6 Cfθ(1 + γ)(1 + h(θ))f(x).

Repeat Θ(log(d/δ)) times to drive the failure probability down to δ/d to take a union bound over
all i∗.

The data structure described in Lemma 1 is our HeavyHitter structure, parameterized with
(θ, δ).

D.2. (1 + ε)-Approximator

Suppose that for any γ, ζ ∈ (0, 1) that are small enough, there exist t = t(γ, ζ), a randomized linear
map T : Rm → Rt and a subrecovery algorithm B such that for each x ∈ X , with probability at
least 1− ζ, it holds that (1− γ)f(x) 6 B(Tx) 6 (1 + γ)f(x).

Let x = (x1, . . . , xN ) ∈ (Rm)N . In this subsection, we consider the problem of approximating
M =

∑
i f(xi) up to a (1 + ε)-factor. We also assume that we have an approximation M̂ to M

such that M 6 M̂ 6 KM .
Our algorithm is inspired from arguments in Andoni et al. (2009). We prepare the following

data structure (Algorithm 1) with the entry update algorithm (Algorithm 2). The recovery algorithm
is presented in Algorithm 3.

Theorem 2 Let ε ∈ (0, 1) be small enough and K > 2 be a power of 2. Let θ,B,Q be as
defined in Algorithm 1. There exists an absolute constant α < 1 and a randomized linear sketch
Π : (Rm)N → RS , where S = O(Q · t(αε/2, 0.05/Q)) and a recovery algorithm A satisfying the
following.

For any x = (x1, . . . , xN ) ∈ XN and an approximation M̂ >M =
∑

i f(xi), with probability
at least 0.6, A reads Πx and outputs M̃(x) such that
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Algorithm 1: Data Structure for constant failure probability algorithm
(SubsamplingHeavyHitter)

Require: ε, δ,K,N, t, ζ
1 L← log(KN/ε)

2 L̂← logN
3 θ ← min{Θ(ε3/(CfL

3)), h−1(αε/3), αε/4}
4 B ← B(f ;h−1(θ)θ})
5 Q← O(B(L̂+ 1) log(NL̂))

6 Instantiate a subsampling function H , which hashes [N ] into L̂ levels such that the sampling
probability for the `-th level is 2−` and is pairwise independent

7 for each ` = 0, 1, . . . , L̂ do
8 Instantiate a HeavyHitter structure D` with parameters (θ, 0.05/(L̂+ 1)), in which each

bucket stores a vector of length t = t(αε/2, ζ/Q)

9 end

Algorithm 2: Algorithm for an update to xi for our constant failure probability algorithm
Input: an update of the form xi ← xi + ∆xi

1 for each ` = 0, . . . , L̂ do
2 if H hashes i into level ` then . Assume H hashes every i to level 0
3 b` ← index of the bucket containing i in D`
4 Add T (∆xi) to the b`-th bucket
5 end
6 end
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Algorithm 3: (1 + ε)-approximator to f(x) with constant failure probability
Require: (i) A subsampling scheme H such that the i-th level has subsampling probability

pi = 2−i; (ii) L̂+ 1 HeavyHitter structures D0, . . . ,DL̂ with the same parameters
(θ, δ), where L̂ = logN , θ = min{Θ( ε3

CfL3 ), αε4 , h
−1(αε3 )} and δ = 1

20(L̂+1)
; (iii) an

approximation M̂ such that M 6 M̂ ; (iv) an integer K > 2 which is a power of 2.
1 L← log(2N/ε)

2 L̂← logN

3 for j = 0, . . . , L̂ do
4 Λj ← top Θ(L3/ε3) heavy hitters from Dj
5 end
6 j0 ← log(4Kε−3L3)
7 ζ ← uniform variable in [1/2, 1]
8 for j = 0, . . . , j0 do
9 Let λ(j)

1 , . . . , λ
(j)
s be the elements in Λ0 contained in [(1 + ε)ζ M̂

2j
, (2− ε)ζ M̂

2j
]

10 M̃j ← f(λ
(j)
1 ) + · · ·+ f(λ

(j)
s )

11 end
12 for j = j0 + 1, . . . , L do
13 Find the biggest ` such that Λ` contains s elements λ(j)

1 , . . . , λ
(j)
s in

[(1 + ε)ζ M̂
2j
, (2− ε)ζ M̂

2j
] for (1−

√
20ε)L

2

ε2
6 s 6 2(1 +

√
20ε)L

2

ε2

14 if such ` exists then
15 M̃j ← (f(λ

(j)
1 ) + · · ·+ f(λ

(j)
s ))2`

16 else
17 M̃j ← 0
18 end
19 end
20 return M̃ ←∑

j M̃j

39



LI WOODRUFF YASUDA

1. (1− ε)M 6 M̃(x) 6 (1 + ε)M if M̂ ∈ [(K/2)M,KM ];

2. M̃(x) 6 (1 + ε)M otherwise.

Proof There are Θ(log(1/δ)) repetitions. In each repetition, there are (L̂+ 1) HeavyHitter struc-
tures of O(B log(NL̂)) buckets. There are O(B(L̂+ 1) log(NL̂)) buckets in each repetition. Each
bucket stores a sketch of length t(αε/2, 0.05/Q). The total space complexity follows.

Since for each bucket the failure probability is 0.05/Q, we can take a union bound over all
buckets and assume that B gives accurate answers on all buckets in a repetition with probability at
least 0.95. Then the claimed result follows from Theorem 6 for M̂ ∈ [(K/2)M,KM ] and from
Lemma 11 for M̂ > KM and Lemma 12 for M̂ < (K/2)M .

Next we extend the algorithm to handle the case where M̂ < (K/2)M .

Theorem 3 Let ε, θ, B,Q, S be as in Theorem 2 and δ ∈ (0, 1). There exists an absolute constant
α < 1 and a randomized linear sketch Π : (Rm)N → RS′ , where S′ = O(S logK ·log(δ−1 logK))
and a recovery algorithm A satisfying the following.

For any x = (x1, . . . , xN ) ∈ XN and an approximation M̂ such that M 6 M̂ 6 KM ,
where M =

∑
i f(xi), with probability at least 1 − δ, A reads Πx and outputs M̃(x) such that

(1− ε)M 6 M̃(x) 6 (1 + ε)M .

Proof First, in view of Theorem 2, repeating the Algorithm 3 Θ(log(1/ζ)) times and taking the
median reduces the failure probability of a single run to ζ. Hence, with sketch lengthO(S log(1/ζ)),
we have an algorithm outputting M̃ such that (1 − ε)M 6 M̃(x) 6 (1 + ε)M , provided that
(K/2)M 6 M̂ 6 KM .

For a general M̂ , we run logK instances of the aforesaid algorithm in parallel, where the pa-
rameterK in Algorithm 3 takes values 2, 4, 8, . . . ,K, respectively. Note that M̂ ∈ [(K/2)M,KM ]

in one of these instances and, with probability at least 1− ζ, the output M̂ of this instance satisfies
that M̂ ∈ [(1 − ε)M, (1 + ε)M ]. For each other instance, with probability at 1 − ζ, the outputted
M̂ 6 (1 + ε)M . Setting ζ = δ/(logK) and taking the maximum output M̂ among the logK
instances with a union bound over logK instances, we obtain an estimate in [(1− ε)M, (1 + ε)M ]
with probability at least 1− δ, as desired.

D.3. Rough Approximator for `1-Norm

Consider the problem of estimating ‖x‖1 up to a constant factor for x ∈ Zdq in the turnstile stream-
ing model, where each update changes a coordinate by a +1 or a −1. Let N = dq. The following
result is due to Braverman and Ostrovsky Braverman and Ostrovsky (2009).

Theorem 4 (Rough approximation; Corollary 6.6 and Lemma 6.7 in Braverman and Ostrovsky (2009))
There exists a randomized linear sketch Π : ZN → ZS for S = Õ(q log(md)) and a recov-

ery algorithm A satisfying the following. For any x ∈ ZN given in the aforementioned turnstile
streaming model of length m, with probability at least 0.95, A reads Πx and outputs M̂ such that
‖x‖1 6 M̂ 6 4q

2
(log d)q‖x‖1.
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D.4. Estimation of Total Variation Distance

Now we wish to estimate ‖P −Q‖1. Recall that P is a general joint distribution and Q the product
distribution induced by the marginals of P .

We apply the data structure iteratively in Section D.2. For `1-norm, f(x) = h(x) = x, Cf = 1,
B(f ; ε) = Θ(1/ε2). Therefore, in Theorem 3, one can takeBi = (L/ε)c for some absolute constant
c > 4. The basic setup is presented in Algorithm 4. For each i, we apply Theorem 3 and obtain a
linear sketch Π(i) and a recovery algorithm Ai. The sub-recovery algorithm for D(i)

` is Ai−1. The
entry update calls EntryUpdate(i1, . . . , iq,∆, q) on the final sketch (see Algorithm 5) if there is
an entry update of ∆ at position (i1, . . . , iq). For notational convenience, we assume it is always
true that a subsampling hash function hashes all coordinates into level 0. The overall decoding
algorithm calls Decode(q), see Algorithm 6.

Algorithm 4: Data Structure for P

εq ← ε, δq ← δ, K ← 4q
2

logq d, Nq ← d, Lq ← log(KNq/εq)
for each i = q − 1, . . . , 1 do

εi ← αεi+1

Ni ← d
Li ← log(KNi/εi)
δi ← O(1/(Li/εi)

c)

end
t0 ← 1
for each i = 1, . . . , q do

ti ← O((Li/εi)
cti−1 logK log(K/δi)) . sketch length in each bucket

1 Ri ← Θ(log(1/δi)) . number of repetitions
2 for each r = 1, . . . , Ri do
3 Initialize H(i,r),D(i,r)

0 , . . . ,D(i,r)
logN+1 as in Algorithm 1 for parameters

εi, δi,K,Ni, ti−1

4 end
end

Theorem 5 Suppose that the stream length m = poly(dq). There is a randomized sketching
algorithm which outputs a (1± ε)-approximation to ‖P −Q‖1 with probability at least 0.9, using
exp(O(q2 + q log(q/ε) + q log log d)) bits of space. The update time is exp(O(q2 + q log(q/ε) +
q log log d)).

Proof Let P f be the frequency vector of the empirical distribution of the input stream and P fi be
the corresponding frequency vector for the marginal on Xi. We have P = P f/m and Pi = P fi /m.

Let Π(q) be the final linear sketch described above. In parallel we run the rough approximator
(Theorem 4), which applies in our setting because the stream items are samples from the distribution
and we are counting the empirical frequency. We maintain Π(P f ) as described in Algorithm 2. For
the marginals P fi , we maintain sketches S(i)

0 P fi , . . . , S
(i)
L′ P

f
i as in Algorithm 7 and Algorithm 8. At

the end of the stream, we construct Π(q)Qf for Qf = P f1 ⊗ · · · ⊗ P fn as in Algorithm 9. Then we
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Algorithm 5: Update algorithm for P : an entry update of ∆ at position (i1, . . . , iq)

Function EntryUpdate(i1, . . . , iq,∆, d): . invoked on some sketch structure
1 for each pair (r, `) ∈ [Rd]× {0, . . . , logNd} do
2 if H(d,r) hashes id into the `-th level then
3 B ← set of indices of buckets containing id in D(d,r)

`

4 for each bucket b ∈ B do
5 if d > 1 then
6 ∆′ ← EntryUpdate(i1, . . . , iq,∆, d− 1) on bucket b
7 Add ∆′ to b
8 else
9 Add T (∆) to b

10 end
11 end
12 end
13 end
14 return the incremental vector to the sketch under Π(d)

Algorithm 6: Decoding algorithm Ad (for P and P −Q)

Function Decode(d): . This is Ad
1 for each r = 1, . . . , Rd do
2 Zr ← Output of Algorithm 3 with subdecoding algorithm Ad−1

3 end
4 return medianr Zr

Algorithm 7: Data Structure for Q

Let εi, δi,K,Ri be the same as in Algorithm 4

Let the HeavyHitter sketches D̂(i,r)
` be the same as D(i,r)

` in Algorithm 1 (same hash
functions) except for ti = 1

Algorithm 8: Entry update for Q
Input: an update of ∆ at position (i1, . . . , iq)

1 for each d = 1, . . . , q do
2 for each (r, `) ∈ [Rd]× {0, . . . , logNd} do
3 if H(d,r) hashes id in level ` then
4 B ← set of indices of buckets containing id in D̂(j,r)

`

5 Add ∆ to bucket b for every b ∈ B
6 end
7 end
8 end
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Algorithm 9: Tensorization of Q: construct the sketch for P f1 ⊗ · · · ⊗ P fn
v(0) = 1
for each i = 1, . . . , d do

for each (r, `) ∈ [Rd]× {0, . . . , logNd} do
if H(d,r) hashes id in level ` then

B ← set of indices of buckets containing id in D(j,r)
`

for each b ∈ B do
a← bucket value of bucket b in D̂(j,r)

`

Add a · v(i−1) to bucket b
end

end
end
Form v(i) which conforms to the structure of Π(i)

end

compute mq−1Π(q)P f −Π(q)Qf = mqΠ(P −Q), from which we can recover an approximation to
‖P −Q‖1 by invoking Aq.

Next we analyze the space complexity. Let Ni = d. Since we are sketching mq(P −Q), whose
`1 norm is an integer and is at most 2mq, we see that K 6 2mq = dΘ(q2) by our assumption that
m = poly(dq). Set εq = ε and δq = O(1), then

εi−1 = αεi, δi−1 = poly

(
εi

log(KNi/εi)

)

for all i. This implies that

εq−i = αi−1ε, δq−i =
εΘ(i)

qΘ(i) logΘ(i)( qdε )

Therefore the target dimension of Π(i) is

ti+1 6 C

(
log(KNi/εi+1)

εi+1

)c
· ti · logK log

(
K

δi+1

)

6 C ′
(

q2

αq−iε

)Θ(1)

· ti · (q − i) polylog

(
qd

ε

)

with t1 = 1. This implies that

tn 6 (C ′)q
qΘ(q)

αΘ(q2)εΘ(q)
· q! · logO(q)

(
qd

ε

)
= exp

(
O
(
q2 + q log

q

ε
+ q log log d

))
.

This space dominates the space needed by the rough estimator. Each coordinate requiresO(log(mq)) =
O(q2 log d) bits and the overall space complexity (in bits) follows.

The update time is clearly dominated by the update time for P , which is dominated by the sketch
length.
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D.5. Correctness of Algorithm 3

We adopt the notation from Section D.2. Recall that our goal is to estimate M =
∑

i f(xi) up to
a (1 + ε)-factor and we also assume that we have an approximation M̂ to M which satisfies that
(K/2)M 6 M̂ 6 KM .

Let ζ be a uniform random variable on [1/2, 1]. For a magnitude level j, define

Tj = ζ
M̂

2j
,

and
Sj = {i ∈ U : f(xi) ∈ (Tj , 2Tj ]} , sj = |Sj |.

Observe that if we scale K by a factor of 2t, the magnitude levels are shifted by t levels (new top
levels are empty). It is easy to see that the behaviour of Algorithm 3 is invariant under the concurrent
scaling of K and shifting of the magnitude levels (since the bucket contents in the HeavyHitter
structures remain the same), we may, with loss of generality, assume that K = 2 and M 6 M̂ 6
2M .

Observe that
∑

j>1

∑
i∈Sj f(xi) = M . Note that each element in level j > log(2N/ε) is at

most M̂/2j < (ε/(2N))M̂ < (ε/N)M , so it contribute at most εM and thus can be omitted. That
is, we only need to consider the levels up to L = log(2N/ε).

We call a level j important if
sj
2j

>
ε

2L

and we let J denote the set of important levels j. The non-important levels contributes at most

∑

j 6∈J

∑

i∈Sj

f(xi) 6
∑

j 6∈J

2ε

2L
M 6 εM̂ 6 2εM.

The goal of this section is to prove the following theorem.

Theorem 6 Algorithm 3 returns an estimate M̃ , which with probability at least 0.7 (over ζ and
subsampling) satisfies that

(1−O(ε))M 6 M̃ 6 (1 +O(ε))M.

The rest of the section is devoted to the proof of the theorem. We assume that all COUNT-MIN

structures return correct values, at the loss of 0.05 probability. The main argument is decomposed
into the following lemmas.

Lemma 7 With probability at least 0.95 (over subsampling), the following holds for all j > j0 and
j ∈ J . There exists an ` such that the substream induced by H` contains at least (1−O(ε))L2/ε2

and at most 2(1 + O(ε))L2/ε2 elements of Sj . Furthermore, it holds 3
4L

2/ε2 6 sj2
−` 6 9

4L
2/ε2

for any such `.

Proof Since j ∈ J and j > j0,

sj >
ε

2L
· 2j0 =

4

ε2
L2.
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Let Nj,` denote the number of survivors in the `-th subsampling level. For ` = 1, we have

ENj,` = sj2
−` >

4L2

ε2
2−` =

2L2

ε2
.

Note that sj 6 2j , and thus for ` = j − log(ε−2L2) > 0, we have

ENj,` = sj2
−` 6 2j−` = ε−2L2

survivors after sampling. Hence, there exists ` such that ε−2L2 6 ENj,` 6 2ε−2L2. For any such
`, since H` is pairwise independent, we have Var(Nj,`) 6 ENj,` and it follows from Chebyshev’s
inequality that with probability at least 1− 1/(20L2),

Nj,` = ENj,` ±
√

20L2 ·ENj,`,

that is,

(1−
√

20ε)
L2

ε2
6 Nj,` 6 2(1 +

√
20ε)

L2

ε2
. (2)

A similar argument shows that for each `, with probability at least 1 − 1/(20L2), we have Nj,` >
9
4(1−

√
20ε)L2/ε2 if ENj,` >

9
4L

2/ε2 andNj,` 6
3
4(1+

√
20ε)L2/ε2 if ENj,` 6

3
4L

2/ε2. Taking
a union bound over all L, we have that with probability at least 1− 1/(20L) there exists a unique `
such that (2) holds; furthermore, sj2−` = ENj,` = Θ(ε−2L2) for this `.

The claimed result follows from a union bound over j.

Let α ∈ (0, 1) be a small constant. Define

S∗j = {i ∈ Sj : f(xi) ∈ [(1 + (1− α)ε)Tj , (2− (1− α)ε)Tj ]}
S∗∗j = {i ∈ Sj : f(xi) ∈ [(1 + (1 + α)ε)Tj , (2− (1 + α)ε)Tj ]}

and
M∗j =

∑

i∈S∗j

f(xi), M∗∗j =
∑

i∈S∗∗j

f(xi).

Suppose that the event in Lemma 7 occurs.

Lemma 8 With probability at least 0.9 (over the subsamplings), it holds for each j ∈ J and j > j0
that (1−O(η))Mj 6 E M̃j 6 (1 +O(η)), where the expectation is taken over the subsampling.

Proof Let I` ⊆ [N ] be the set of indices in subsampling level `, where ` is found in Step 13 of
Algorithm 3. Then

E f(xI`) =
f(x)

2`
.

By Lemma 7 and our choice of β, we have

sj
2`

6
9

4
· L

2

ε2
. (3)
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Together with the assumption that j ∈ J ,

2j 6
L

ε
sj 6

9

4
· L

3

ε3
2`,

which implies that (by adjusting constants)

ε3

L3
E f(xI`) 6

9

4

f(x)

2j
=

9

4

1

ζ
Tj 6

9

2
Tj .

Except with probability 0.05/L, we have

ε3

180L3
f(xI`) 6 Tj .

Now, let θ = min{ε3/(180CfL
3), αε/4, h−1(αε/3)} in Lemma 1, we have the guarantees that (1)

if f(xi) > θTj then it is estimated up to an additive error of at most

(γ + θ + γθ)f(xi) 6 (γ + 2θ)f(xi) 6
(αε

2
+ 2 · αε

4

)
f(xi) = αεf(xi),

and (2) if f(xi) 6 θTj we obtain an estimate at most

Cfθ(1 + γ)(1 + h(θ))f(xI`) 6
ε3

40L3
(1 + γ)(1 + h(θ))f(xI`) 6 (1 + γ)(1 + h(θ))Tj

6
(

1 +
αε

2

)(
1 +

αε

3

)
Tj

6 (1 + αε)Tj .

Hence, all survivors in level S∗∗j will be recovered and all survivors in the higher levels will not be
mistakenly recovered in level j; survivors from lower levels will not collude to form a heavy hitter.

Let R(j) = {i1, . . . , is}, we have λ(j)
r = (1 +O(ε))f(xir) for all r ∈ [s]. Then

M̃j = (λ
(j)
1 + · · ·+ λ(j)

s )2` = (1± (O(ε))M̃ ′j ,

where

M̃ ′j = 2`
s∑

r=1

f(xir)

will be our focus. Combining Lemma 7 with the recovery guarantee of D`, we see that all elements
in Sj that survives the subsampling at level ` will be recovered. Hence, Pr{i ∈ R(j)} 6 2−` for
i ∈ S∗j (because it may not be recovered in our range) and Pr{i ∈ R(j)} = 2−` for i ∈ S∗∗j
(because if it survives the subsampling it would be recovered). Hence

E M̃ ′j = 2`
∑

i∈S∗j

f(xi)Pr{i ∈ R(j)} 6 2`
∑

i∈S∗j

f(xi)2
−` = M∗j

and
E M̃ ′j > 2`

∑

i∈S∗∗j

f(xi)Pr{i ∈ R(j)} = 2`
∑

i∈S∗∗j

f(xi)2
−` = M∗∗j
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Lemma 9 With probability at least 0.95 (over the subsamplings), it holds for all j 6 j0 that
(1−O(ε))M∗∗j 6 M̃j 6 (1 +O(ε))M∗j .

Proof The argument is similar to the preceding lemma. Note that there are at most 2j0+1 = 4L3/ε3

elements of interest in this case, and D0 is guaranteed to recover all of them, since

f(xi) > ξ2−j0f(x) >
ε3

4L3
f(x)

and we choose θ = min{ε3/(4CfL
3), αε/4, h−1(αε/3)} for D0, where C is an absolute constant.

Each f(xi) is estimated up to an (1 +O(ε))-factor.

Lemma 10 With probability at least 0.8 (over subsamplings) it holds that

(1−O(ε))
∑

j∈J
M∗∗j −O(εM) 6

∑

j∈J
M̃j 6 (1 +O(ε))M.

Proof Note that f(xi) are within a factor of 2 from each other for i ∈ S∗j , thus

∑

i∈S∗j

f(xi)
2 6

4

|S∗j |


∑

i∈S∗j

f(xi)




2

=
4

|S∗j |
(M∗j )2.

When j > j0 and j ∈ J , we showed that |S∗j | > ε−2L2 (Lemma 7), thus

∑

i∈S∗j

f(xi)
2 = O

(
ε2

L2
(M∗j )2

)
.

It follows from Chebyshev’s inequality that with probability at least 0.95,
∣∣∣∣∣∣
∑

j>j0,j∈J
M̃j −E

∑

j>j0,j∈J
M̃j

∣∣∣∣∣∣
= O


ε

∑

j>j0,j∈J
M∗j




Combining with Lemma 8, we have with probability at least 0.85,

(1−O(ε))
∑

j>j0,j∈J
M∗∗j −O(ε)

∑

j>j0,j∈J
M∗j 6

∑

j>j0,j∈J
M̃j 6 (1 +O(ε))

∑

j>j0,j∈J
M∗j

Further combining with Lemma 9, we have with probability at least 0.8,

(1−O(ε))
∑

j∈J
M∗∗j −O(ε)

∑

j>j0,j∈J
M∗j 6

∑

j∈J
M̃j 6 (1 +O(ε))

∑

j∈J
M∗j

The result follows from the observation that
∑

jM
∗
j 6M .
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Note that the levels j 6∈ J contribute at most O(εM) in expectation to the total norm. By
Markov’s inequality, except with probability 0.05 (over subsampling), they contribute at mostO(εM).
Combining with the preceding lemma, we have concluded that with probability at least 0.75,

(1−O(ε))
∑

j>1

M∗∗j −O(εM) 6
∑

j>1

M̃j 6 (1 +O(ε))M.

Over the randomness of ζ, for each i, with probability at least 1−O(ε), we have i ∈ S∗∗j′ for some
j′. This implies that

E


M −

∑

j>1

M∗∗j


 = O(εM).

By Markov’s inequality, we have with probability (over ζ) at least 0.95 that

(1−O(ε))M 6
∑

j>1

M∗∗j 6M.

Finally, combining with the failure probability of the HeavyHitter structures, we conclude that with
probability at least 0.7,

(1−O(ε))M 6
∑

j>1

M̃j 6 (1 +O(ε))M.

D.6. Analysis of Algorithm 3 with Bad M̂

We have proved that Algorithm 3, when provided a good overestimate M̂ , gives a good estimate M̃
toM in the preceding Section D.5. In this section, we show that the algorithm does not overestimate
when M̂ is bad. We follow the notations in the preceding section and assume likewise that K = 2.

Lemma 11 Suppose that M̂ > 2M . Algorithm 3 returns an estimate M̃ , which with probability at
least 0.7 (over ζ and subsampling) satisfies that M̃ 6 (1 +O(ε))M .

Proof There exists j∗ < K such that M̂∗ = M̂/2j
∗ ∈ [M, 2M ]. We compare the behavior of

Algorithm 3 on estimate M̂ and M̂∗, under the same randomness in the subsampling functions,
heavy hitter structures and ζ. Denote the magnitude levels associated with M̂∗ by S∗1 , S

∗
2 , . . . and

the levels associated with M̂ by S1, S2 . . . . It is clear that S1 = · · · = Sj∗ = ∅ and Sj = S∗j−j∗
for j > j∗. Hence for j 6 j0, we can still recover all items in S∗1 , . . . , S

∗
j∗0

for j∗0 = j0 − j∗, that
is, all items in S1, . . . , Sj∗0 +j∗ . Observe that j∗ < logK and so j∗0 + j∗ < j0, and so it is possible
that we miss the levels Sj for j = j∗0 + j∗ + 1, . . . , j0 since the subsequent for-loop starts with
Sj0+1. All the recovered levels are within (1 ± O(ε))-factor of their true values, according to the
proof of Theorem 6, with probability at least 0.7. Therefore, we shall never overestimate, that is,
M̃ 6 (1 +O(ε))M .

Lemma 12 Suppose that M̂ < M . Algorithm 3 returns an estimate M̃ , which with probability at
least 0.7 (over ζ and subsampling) satisfies that M̃ 6 (1 +O(ε))M .
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Proof There exists j∗ such that 2j
∗
M̂ = M̂∗ ∈ [M, 2M ]. Similar to the proof of Lemma 11, we

compare the behavior of Algorithm 3 on estimate M̂ and M̂∗, under the same randomness in the
subsampling functions, heavy hitter structures and ζ. Let {S∗j } and {Sj} be as defined in the proof
of Lemma 11. Now we have Sj = S∗j+j∗ and may miss the bands S∗1 , . . . , S

∗
j∗ . The rest follows as

in Lemma 11.

Appendix E. `1 Subspace Embeddings for i.i.d. Random Design Matrices

In this section we present oblivious `1 subspace embeddings for i.i.d. random design matrices. This
allows us to achieve a polynomial-sized sketch without paying the general case distortion lower
bound of Ω(d/ log2 r) of Wang and Woodruff (2019).

In consideration of practical applications, we specifically focus on heavy-tailed distributions. In
fact, as we will see, these are the most interesting from a theoretical perspective as well. Our model
for our heavy-tailed distributions will be symmetric power law distributions of index p, which are
distributions that satisfy

1− F (x) ∼ cx−p

for a constant c. In the literature, works such as Zhang and Zhou (2018); Balkema and Embrechts
(2018) have considered linear regression in the `1 norm with heavy tailed i.i.d. design matrices.

p Distortion upper bound Distortion lower bound
p ∈ (0, 1) O(1) (Theorem E.8) 1

p = 1 O
(

logn
log(r/d2 log d)

)
(Theorem E.9) Ω

(
logn
log r

)
(Theorem E.24)

p ∈ (1, 2)
O
(

d1/p

(r/d2)1−1/p

)
, n1−1/p > d1/p log d (Theorem E.18)

O
(

d1/p log d
(r/d2 log d)1−1/p

)
, n1−1/p 6 d1/p log d (Theorem E.19)

Ω
(

d1/p

r1−1/p

)
(Theorem E.25)

p > 2 1 + ε (Theorem E.23) 1

Table 1: Results for i.i.d. symmetric power law design matrices

Throughout this section, let D be a symmetric power law distribution with index p > 0, and let
A ∼ Dn×d be a matrix drawn with i.i.d. entries drawn from D, unless noted otherwise.

E.1. Setup for analysis

Let v ∈ Rn be a vector. We will frequently refer to the kth level set v(k) of v, which takes on the
values of v whenever it has absolute value in [2k, 2k+1), and 0 otherwise.

Definition E.1 (Level sets of a vector) We define the kth level set v(k) of v ∈ Rn coordinate-wise
by

e>i v(k) :=

{
e>i v if |e>i v| ∈ [2k, 2k+1)

0 otherwise
.

For k = 0, we set

e>i v(0) :=

{
e>i v if |e>i v| ∈ [0, 2)

0 otherwise
.

49



LI WOODRUFF YASUDA

We will repeatedly make use of the following simple lemmas about CountSketch and symmet-
ric power law distributions.

Lemma E.2 (No expansion) Let S be drawn as an r×n CountSketch matrix with random signs
σ : [n]→ {±1} and hash functions h : [n]→ [r]. Then for all v ∈ Rn,

‖Sv‖1 6 ‖v‖1.

Proof

‖Sv‖1 =
r∑

i=1

∣∣∣∣∣∣

n∑

j:h(j)=i

σivi

∣∣∣∣∣∣
6

r∑

i=1

n∑

j:h(j)=i

|σivi| =
n∑

j=1

|vi| = ‖v‖1

Lemma E.3 Let D be a symmetric power law distribution with index p > 0. Then, for k a large
enough constant depending on D,

Pr
X∼D

(
|X| ∈ [2k, 2k+1)

)
= Θ(2−kp)

and
Pr

v∼Dn

(
‖v(k)‖0 = Θ(n2−kp)

)
> 1− exp

(
Θ(n2−kp)

)

Proof For a large enough k, we have that

Pr
X∼D

(
|X| ∈ [2k, 2k+1)

)
= F (2k)− F (2k) = Θ

(
1

2kp
− 1

2(k+1)p

)
= Θ(2−kp).

Then in expectation,
‖v(k)‖0 = Θ(n2−kp)

so we conclude by Chernoff bounds.

Lemma E.4 Let D be a symmetric power law distribution with index p > 0. Then,

Pr
A∼Dn×d

(
‖A‖∞ 6 O

(
(nd/δ)1/p

))
> 1− δ

Proof Each entry is at most O((nd/δ)1/p) with probability at least δ/nd, so we conclude by a
union bound over the nd entries.

Definition E.5 (Truncation) For T > 0 and x ∈ R, define

truncT (x) :=

{
x |x| 6 T

0 otherwise
.

For a distribution D, we define truncT (D) to be the distribution that draws truncT (X) for X ∼ D.
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Lemma E.6 (Moments of truncated power laws) Let D be a power law distribution with index
p > 0. Let T > 0 be sufficiently large. Then

E
X∼truncT (D)

|X| =





Θ(T 1−p) if p ∈ (0, 1)

Θ(log T ) if p = 1

Θ(1) if p > 1

E
X∼truncT (D)

X2 =





Θ(T 2−p) if p ∈ (0, 2)

Θ(log T ) if p = 2

Θ(1) if p > 2

Proof The proof is deferred to Appendix I.

Definition E.7 Let A ∈ Rn×d and let T > 0. Then, we write A = AH + AL where AH is the
submatrix of A formed by the rows containing an entry with absolute value at least T , and AL is
the rest of the rows.

E.2. Algorithms for p < 1

We first present the results that for tails that are very heavy admit O(1) distortion embeddings in
poly(d) dimensions for a very simple reason: when p < 1, then the largest entry in every vector is
a good approximation of the entire `1 mass of the vector.

Theorem E.8 Let D be a symmetric power law distribution with index p ∈ (0, 1). Let S be drawn
as a CountSketch matrix with r = O(d2 log2 d) rows. Then

Pr
S,A

(
Ω(1)‖Ax‖1 6 ‖SAx‖1 6 ‖Ax‖1,∀x ∈ Rd

)
>

99

100
.

Proof The proof proceeds similarly to the case of p = 1, and is deferred to Appendix I.

Thus, we focus on the regime of p > 1.

E.3. Algorithms for p = 1

In this section, we prove the following:

Theorem E.9 Let D be a symmetric power law distribution with index p = 1. Let S ∈ Rr×n be
drawn as a CountSketch matrix. Then, for any C(d log d)2 6 r 6 o(

√
n) for C a large enough

constant, we have

Pr
A∼Dn×d

{
1

κ
‖Ax‖1 6 ‖SAx‖1 6 ‖Ax‖1,∀x ∈ Rd

}
>

99

100

for

κ = O

(
log n

log(r/d2 log d)

)
.
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The idea is that with r rows of CountSketch, we can preserve the top r entries of Ax, which has
mass approximately Ω(n log r)‖x‖1, while the rest of the entries have mass at mostO(n log n)‖x‖1.
We formalize this idea in the following several lemmas.

Lemma E.10 (Mass of small entries) Let D be a power law distribution with index p = 1 and let
A ∼ Dn×d. Let poly(d) 6 T 6 n and let A = AH + AL as in Definition E.7. Then,

Pr
(
‖ALx‖1 6 O(n log T )‖x‖1, ∀x ∈ Rd

)
> 0.99

Proof Note that AL is drawn i.i.d. from truncT (D) so by Lemma E.6, it has entries with first two
moments

µ := E
X∼D

(|X| | |X| 6 T ) = Θ(log T )

σ2 := E
X∼D

(
X2 | |X| 6 T

)
= Θ(T )

Then for a single column ALej for j ∈ [d], by Bernstein’s inequality,

Pr
(
‖ALej‖1 > 2µn

)
6 exp

(
−1

2

(µn)2

σ2n+ µnT/3

)
6 exp(−Ω(log T )) =

1

poly(T )
.

Then since T > poly(d), we may union bound over the d columns so that ‖ALej‖1 = O(µn) =
O(n log T ) for all columns j ∈ [d] with probability at least 1 − 1/ poly(d). Conditioned on this
event, we have for all x ∈ Rd that

‖ALx‖1 6
d∑

j=1

|xj |‖ALej‖1 = O(n log T )‖x‖1.

Lemma E.11 (Unique hashing of large entry rows) LetD be a power law distribution with index
p > 0 and cdf F , and let A ∼ Dn×d. Let t and r be parameters such that r > C(d log d)2 for a
sufficiently large constant C and r = o(

√
n), and define

τ1 := F−1

(
1− C ′ log d

n

)
= Θ((n/ log d)1/p)

τ2 := F−1

(
1− r/d2 log d

n

)
= Θ((nd2 log d/r)1/p)

R1 :=
{
i ∈ [n] : ∃j ∈ [d], |e>i Aej | > τ1

}

R2 :=
{
i ∈ [n] : ∃j ∈ [d], |e>i Aej | > τ2

}

for a sufficiently large constant C ′. Then if we hash each row of A into O(r) hash buckets, with
probability at least 0.95:

– Every row ofR1 is hashed to a bucket with no other row fromR2.
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– For every column j ∈ [d] and every integer log2 τ2 6 k 6 log2 τ1 has Θ(n/2kp) rows with
a large entry with absolute value in [2k, 2k+1) that are hashed to a bucket with no other row
fromR2.

– Let R be the set of rows which are hashed with no other row from R2, which we refer to as
uniquely hashed rows. Then |R| = Θ(r/d log d) and every one of these large entries is on a
distinct row.

Proof For each j ∈ [d], the number of expected entries in the jth column with absolute value at least
τ1 is C ′ log d, so by Chernoff bounds, with probability at least 1−exp(Θ(log d)) = 1−1/ poly(d),
there are at most O(log d) such entries. By a union bound over the d columns, this is true for all d
columns with probability at least 0.99.

Similarly, for log2 τ2 6 k 6 log2 τ1, we have by Lemma E.3 that

Pr
(
‖(Aej)(k)‖0 = Θ(n/2kp)

)
> 1− exp

(
Θ(n/2kp)

)
.

Then summing over k, we have that

Pr




log2 τ1⋂

k=log2 τ2

{
‖(Aej)(k)‖0 = Θ(n/2kp)

}

 > 1−

log2 τ1∑

k=log2 τ2

exp(Θ(n/2kp))

> 1− exp(Θ(C ′ log d)) = 1− 1

poly(d)
.

By a union bound over the d columns, every large entry level set of every column Aej has the ex-
pected number of elements, up to constant factors, simultaneously with probability at least 99/100.
Conditioned on this event, |R1| = O(d log d).

Note that across the d columns, there are Θ(r/d log d) rows corresponding to level sets k for
log2 τ2 6 k 6 log2 τ1. Then withO(r) hash buckets, each pair of rows fromR1×R2 is hashed to a
separate bucket with probabilityO(1/|R1×R2|) = O(1/r), so every row inR1 is uniquely hashed
with probability 0.99 by a union bound. Furthermore, with O(r) = ω(r/d log d) hash buckets, we
have by Lemma A.4 that for each level set v(k), half of the Θ(n/2kp) rows in the kth level set get
hashed to a bucket with no other row fromR with probability at least

1− 2 exp

(
(1/2)2

12
Θ(n/2kp)

)
= 1− exp

(
Θ(n/2kp)

)
.

Then again by a union bound over the level sets and columns, every large entry level set of ev-
ery column has at least half of their rows hashed with no other row from R, simultaneously with
probability at least 99/100.

The probability that any two of the large entries lie on the same row is O(|R2|2/n) = o(1).
Then by a union bound, the total success probability for the entire lemma is at least 0.95.

We apply the lemma above to show that when we write A = AH + AL as in Definition E.7,
then ‖SAHx‖1 = Ω(n log(r/d))‖x‖1 for all x ∈ Rd when we choose T = nd2 log d/r.
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Lemma E.12 (Mass of large entries) Let Let A = AH + AL as in Definition E.7 with T =
nd2 log d/r. Let S be a CountSketch matrix with r rows. Then with probability at least 0.95,

‖SAHx‖1 > ‖SB′x‖1 > Ω(‖AHx‖1) > Ω(n log(r/d2 log d))‖x‖1

for all x ∈ Rd, where B′ is the subset of uniquely hashed rows of AH given by Lemma E.11.

Proof Let B′ be the subset of rows of AH given by Lemma E.11 that are hashed to locations
without any other rows of AH . Recall also τ1 and τ2 from the lemma.

We first have that ‖SB′x‖1 = Ω(‖AHx‖1) since the rows containing entries larger than τ1

are perfectly hashed, while rows containing entries between τ2 and τ1 are preserved up to constant
factors.

Let B′ = B′>T + B′6T where B′>T contains the entries of B′ that have absolute value greater
than T and B′6T contains the rest of the entries. Note then that B′>T has at most one nonzero entry
per row, and B′6T has at most O(d · r/d log d) = O(r/ log d) nonzero entries and thus by Lemma
E.4, ‖B′6T ‖∞ 6 O(r) with probability at least 0.99. We condition on this event. Then for all x,

‖SAHx‖1 > ‖SB′x‖1
> ‖SB′>Tx‖1 − ‖SB′6Tx‖1

=

d∑

j=1

|xj |‖B′>Tej‖1 − ‖SB′6Tx‖1 Since the B′>Tej have disjoint support

>
d∑

j=1

|xj |
log2 τ1∑

k=log2 τ2

2kΘ(n/2k)− ‖B′6Tx‖1 Lemmas E.11 and E.2

= Ω(n(log2 τ1 − log2 τ2))‖x‖1 −O(r)‖B′6T ‖∞‖x‖1 Hölder’s inequality

= Ω(n log(r/d2 log d))‖x‖1 −O(r2)‖x‖1
= Ω(n log(r/d2 log d))‖x‖1

as desired.

The last thing we need to bound is the mass contribution of the rows of AL that are hashed
together with the uniquely hashed rows of AH . We first bound the columns of the matrix S′AL,
where S′ is a subset of hash buckets.

Lemma E.13 Let D be a symmetric power law distribution with index p ∈ (0, 2) with cdf F . Let
T := F−1(1− r/nd2 log d) = Θ((nd2 log d/r)1/p), r′ < r. Let S′ be a subset of r′ rows of a r×n
CountSketch matrix S. Let C ∼ truncT (D)n×d. Then for each j ∈ [d],

Pr
(
‖S′Cej‖1 6 O

(
r′ + λ

√
r′
)

(d2 log d)1/p−1/2(n/r)1/p
)
> 1− 1

λ
.

Proof The proof is just a second moment bound and is deferred to Appendix I.

Given the above bounds, the rest of the proof is just Hölder’s inequality.
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Lemma E.14 Let r > C(d log d)2 for a large enough constant C. Let A = AH + AL as in
Definition E.7 with T = (nd2 log d/r)1/p. Let S be a CountSketch matrix with r rows. Let
AL = C1 + C2, where C1 is the submatrix formed by the rows of AL that are hashed together
with the uniquely hashed rows of AH by S (c.f. Lemma E.11), and C2 is the submatrix formed by
the rest of the rows. Then with probability at least 0.99, for all x ∈ Rd,

‖SC1x‖1 6 O

(
1√

log d

n1/p

(r/d2 log d)1/p−1

)
‖x‖1.

Proof Let S′ be the submatrix of S formed by the set of r′ uniquely hashed rows from Lemma
E.11, with r′ = O(r/d log d). Setting λ = 100d, we have that

r′ + λ
√
r′ = O(r′) = O

(
r

d log d

)

so

Pr

(
‖SC1ej‖1 6 O

(
r′
)
(d2 log d)1/p−1/2

(n
r

)1/p
)

= Pr

(
‖S′ALej‖1 6 O

(
1√

log d

n1/p

(r/d2 log d)1/p−1

))

> 1− 1

100d
.

By a union bound over the d columns, this is true for all k ∈ [d] with probability at least 0.99.
Conditioned on this event, we have by the triangle inequality that

‖SC1x‖1 6
d∑

k=1

|xk|
∑

i∈S
Yi,k 6 O

(
1√

log d

n1/p

(r/d2 log d)1/p−1

)
‖x‖1

as desired.

With the above lemmas in place, we prove Theorem E.9.
Proof [Proof of Theorem E.9] The “no dilation” bound is just Lemma E.2. We thus focus on the
“no contraction” bound.

We condition on the results of Lemmas E.10, E.12, and E.14. By a union bound, these all hold
simultaneously with probability at least 0.9. Then, we have for all x that

1

κ
>
‖SAx‖1
‖Ax‖1

>
‖SAHx‖1 − ‖SC1x‖1
‖AHx‖1 + ‖ALx‖1

>
Ω(‖AHx‖1 + n log(r/d2 log d))‖x‖1
O(‖AHx‖1 + n log(nd2 log d/r))‖x‖1

> Ω

(
log(r/d2 log d)

log n

)
.

E.4. Algorithms for p ∈ (1, 2)

For power law distributions with index p ∈ (1, 2), we need different algorithms based on the pa-
rameter regime: when n is rather large, then the distribution looks relatively flat so that sampling
is approximately optimal, while when n is rather small, then the variance is large enough so that
CountSketch helps capture and preserve large values that make up a significant fraction of the
mass.
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E.4.1. LARGE n: SAMPLING

When n is large, we shall see that by concentration, sampling alone will give us nearly tight distor-
tion bounds.

We first prove concentration in the upper tail.

Lemma E.15 (Upper tail concentration) LetD be a power law distribution with index p ∈ (1, 2)
and let A ∼ Dn×d. Then,

Pr

{
‖Ax‖1 6 O

(
1 +

d1/p log d

n1−1/p

)
‖x‖1n, ∀x ∈ Rd

}
> 0.99.

Proof By a union bound, ‖A‖∞ 6 B = O((nd)1/p) with probability at least 0.999. Conditioned
on this event, each entry of A is distributed as truncB(D). Note that for a random variable X ∼
truncB(D), we have by Lemma E.6 that

E|X| = Θ(1)

E|X|2 = Θ(B2−p)

Now let v ∼ truncB(D)n. By the upper tail Bernstein bound,

Pr{‖v‖1 − nE|X| > λ} 6 exp

(
−1

2

λ2

B2−pn+Bλ/3

)
.

Then with λ = κn for

κ =
d1/p log d

n1−1/p
,

we have

λ =
d1/p log d

n1−1/p
n = (nd)1/p log d > B log d

and

λ2 =
d2/p log2 d

n2−2/p
n2 = (nd)2/p log2 d = (nd)

1
p

(2−p)
(nd) log2 d > B2−pn log d

so we have that with probability at least 1− 1/ poly(d),

‖v‖1 − nE|X| 6 λ =⇒ ‖v‖1 6 nE|X|+ κn = Θ

(
1 +

d1/p log d

n1−1/p

)
n.

By a union bound over the d columns of A, this holds simultaneously for all columns of A with
probability at least 1−1/poly(d). We condition on this event. It then follows that for every x ∈ Rd,

‖Ax‖ 6 ‖x‖1
d

max
j=1
‖Aej‖1 6 Θ

(
1 +

d1/p log d

n1−1/p

)
n.

To prove concentration in the lower tail, we first need the following lemma.
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Lemma E.16 Let D be a symmetric power law distribution with index p ∈ (1, 2). Let x ∈ Rd.
Then

Pr
v∼Dd

(|〈v,x〉| > Ω(‖x‖p)) = Ω(1). (4)

Proof The proof is distracting from this discussion and is deferred to Appendix I.

Lemma E.17 (Lower tail concentration) LetD be a symmetric power law distribution with index
p ∈ (1, 2). Let n > d log d. Then,

Pr
A∼Dn×d

{
‖Ax‖1 > Ω(n‖x‖p),∀x ∈ Rd

}
> 0.99.

Proof Let x ∈ Rd with ‖x‖1 = 1 and let v ∼ Dd. Then by Lemma E.16,

Pr
v∼Dd

(|〈v,x〉| > Ω(‖x‖p)) = Ω(1).

Then by Chernoff bounds, at least Ω(n) of the n rows of Ax are at least Ω(‖x‖p) with probability
at least 1− exp(n) = 1− exp(d log d). We conclude by a standard net argument.

We put the above two parts together for a sketching algorithm based on sampling.

Theorem E.18 Let n > d log d and let A be drawn as an n × d matrix of i.i.d. draws from a
p-stable distribution. Let

κn = Θ

(
1 +

d1/p log d

n1−1/p

)

κr = Θ

(
1 +

d1/p log d

r1−1/p

)

be the distortion upper bound from Lemma E.15 for when the number of rows is n and r, respec-
tively. Let S ∈ Rr×n be the matrix that samples r rows of A, and then scales by κnd1−1/pn/r.
Then,

Pr
{
‖Ax‖1 6 ‖SAx‖1 6 κnκrd

2(1−1/p)‖Ax‖1, ∀x ∈ Rd
}
> 0.9

In particular, if
n1−1/p > d1/p log d ⇐⇒ n > d

1
p−1 log

p
p−1 d,

then

Pr

{
‖Ax‖1 6 ‖SAx‖1 6 O

(
1 +

d1/p

(r/d2)1−1/p

)
, ∀x ∈ Rd

}
> 0.9.

Proof By applying lemmas E.15 and E.17, we have that for all x,

Ω(1)‖x‖pn 6 ‖Ax‖1 6 κn‖x‖1n.

Furthermore, we can apply the lemmas to SA as well, which gives us

Ω(1)κnd
1−1/p‖x‖pn 6 ‖SAx‖1 6 κrκnd

1−1/p‖x‖1n.
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By Hölder’s inequality, we have that for all x ∈ Rd,

‖x‖p 6 ‖x‖1 6 d1−1/p‖x‖p.

Thus,
‖Ax‖1 6 κn‖x‖1n 6 κnd

1−1/p‖x‖pn 6 ‖SAx‖1
so the sketch does not underestimate norms. On the other hand,

‖SAx‖1 6 κrκnd
1−1/p‖x‖1n 6 κrκnd

2(1−1/p)‖x‖pn 6 κrκnd
2(1−1/p)‖Ax‖1

so the sketch does not overestimate norms by more than κrκnd2(1−1/p), as claimed.

E.4.2. SMALL n: COUNTSKETCH

In the previous section, we have handled the case when n1−1/p > d1/p log d. On the other hand,
when n1−1/p 6 d1/p log d we will instead use CountSketch to hash the largest entries of each
column of A. These entries are of size around n1/p, while the entries of vectors with size smaller
than this have mass at most n. Thus, we approximate the mass up to a factor of

n

n1/p
= n1−1/p 6 d1/p log d,

which is roughly what we are shooting for.

Theorem E.19 Let n1−1/p 6 d1/p log d. Let S be drawn as a CountSketch matrix with r rows.
Then

Pr
S,A

(
Ω

(
1

κ

)
‖Ax‖1 6 ‖SAx‖1 6 ‖Ax‖1,∀x ∈ Rd

)
>

99

100
.

where

κ = O

((
n

(r/d2 log d)

)1−1/p
)

= O

(
d1/p log d

(r/d2 log d)1−1/p

)
.

Proof The distortion upper bound again is just Lemma E.2. The distortion lower bound argument
is similar to the one presented for the cases of p ∈ (0, 1] and thus is deferred to Appendix I.

E.5. Algorithms for p > 2

When p > 2, we show that any m× d i.i.d. matrix with m > poly(d) has with constant probability,
‖Ax‖1 = Θ(m‖x2‖) for all x ∈ Rd. This shows that a uniform sampling matrix with poly(d)
rows works as a sketch. The following result shows this in expectation.

Lemma E.20 Let p > 2 and let D be a symmetric power law with index p. Let x ∈ Rd. Then,

E
v∼Dd

|〈v,x〉| = Θ(‖x‖2)
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Proof The proof is standard and is deferred to Appendix I.

Our strategy then is to show that conditioned on every entry of v ∼ Dd being smaller than some
large value B > poly(d), the expectation remains approximately unchanged. We then use this in a
Bernstein bound to argue the result with high enough probability to union bound over a net.

Lemma E.21 Let p > 2 and let D be a symmetric power law with index p. Let ε ∈ (0, 1/4) and
let B > max{ε−1, (d

√
d/ε)1/p}. Let v ∼ Dd and fix a vector x ∈ Rd. Define the events

Ei := {|vi| 6 B}

E :=

d⋂

i=1

Ei

Then for B large enough,

E(|〈v,x〉| | E) > (1−O(ε))E|〈v,x〉|.

Proof The proof is standard and is deferred to Appendix I.

The following lemma implements the Bernstein bound and applies a standard net argument.

Lemma E.22 Let p > 2 and let D be a symmetric power law with index p. Let A ∼ Dm×d with
m > Θ(max

{
ε−p, (d3/2+1/pε−1 log ε−1)p/(p−1)

}
). For x ∈ Rd, let µx := Ev∼Dd〈v,x〉. Then,

Pr
(
‖Ax‖1 = (1±O(ε))mµx,∀x ∈ Rd

)
> 0.95.

Proof Note that with probability at least 0.99, ‖A‖∞ = O((md)1/p). Let this event be E . Then
conditioned on E , A is distributed as an i.i.d. matrix drawn from D′, where D′ is the truncation of
D at

B = O((md)1/p) > max
{
ε−1, (d

√
d/ε)1/p

}

where the bound on B follows by our choice of m.

High probability bounds. Now fix x ∈ Rd. By Lemmas E.20 and E.21,

µ := E(‖Ax‖1 | E) =

m∑

i=1

E
(
|e>i Ax| | E

)
= (1± ε)

m∑

i=1

E|e>i Ax| = (1± ε)mµx = Θ(m‖x‖2)

(5)
and

σ2 := Var(‖Ax‖1 | E) =
m∑

i=1

Var(|e>i Ax| | E) 6 O(m‖x‖22).

Then by Bernstein bounds, we have that

Pr(|‖Ax‖1 − µ| > εµ | E) 6 2 exp

(
−1

2

(εµ)2

σ2 + εµB/3

)
6 exp

(
−Θ(d log ε−1)

)

where the last inequality follows by our choice of m. Then chaining together with Equation 5,

Pr(‖Ax‖1 = (1±O(ε))mµx | E) 6 exp
(
−Θ(d log ε−1)

)
. (6)
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Net argument. We now proceed by a standard net argument. Recall the set S and the ε-net
N as given in Lemma A.3. Now conditioned on E , we have by a union bound that ‖Ax‖1 =
(1 ± O(ε))mµx for every Ax ∈ N , with probability at least 0.99. We condition on this event as
well. Now for any y ∈ S, write y =

∑∞
i=0 y

(i) as given in Lemma A.3. Then,

‖SAx‖1 =

∥∥∥∥∥S
∞∑

i=0

y(i)

∥∥∥∥∥
1

6
∞∑

i=0

∥∥∥Sy(i)
∥∥∥

1
6 (1+O(ε))

∞∑

i=0

∥∥∥y(i)
∥∥∥

1
6 (1+O(ε))

∞∑

i=0

εi 6 1+O(ε).

We conclude by homogeneity.

Given the above lemma, our subspace embedding follows simply from uniform sampling and
rescaling.

Theorem E.23 Let p > 2 and let D be a symmetric power law with index p. Let ε ∈ (0, 1/2), let

r = Θ(max
{
ε−p, (d3/2+1/pε−1 log ε−1)p/(p−1)

}
)

and let S ∈ Rr×n be a matrix that uniform samples r rows and scales by n/r. Then,

Pr
(
‖SAx‖1 = (1±O(ε))‖Ax‖1, ∀x ∈ Rd

)
> 0.9

Proof By Lemma E.22, we have with probability at least 0.95 that for all x ∈ Rd,

‖Ax‖1 = (1±O(ε))nµx

and with probability at least 0.95 that for all x ∈ Rd,

‖SAx‖1 =
n

r
· (1±O(ε))rµx = (1±O(ε))nµx.

Combining these two bounds, we have that with probability at least 0.9, for all x ∈ Rd,

‖SAx‖1 = (1±O(ε))‖Ax‖1.

E.6. Lower bound

In this section, we work towards proving a lower bound for a general class of random matrices
with each column drawn i.i.d. from a different distribution. When specialized to our i.i.d. matrices
from the above, we obtain nearly tight bounds. We do not have a single general theorem, but
rather a number of different possible arguments that give better bounds depending on the underlying
distribution. This can be shown to approximately recover the result of (Wang and Woodruff, 2019,
Theorem 1.1), and additional yields new bounds, for example, the following tight results:
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Theorem E.24 Let log n 6 O(d) and let S be a r × n matrix such that

Pr
A∼Cauchyn×d

(‖A‖1 6 ‖SA‖1 6 κ‖A‖1) >
99

100

Then,

κ = Ω

(
log n

log r

)

Theorem E.25 Let S be a r × n matrix such that

Pr
A∼Dn×d

(‖A‖1 6 ‖SA‖1 6 κ‖A‖1) >
99

100

where D is a p-stable distribution. Then,

κ = Ω

(
d1/p

r1−1/p

)

Definition E.26 Let Dj for j ∈ [d] be distributions and consider the distribution DA over n × d
matrices A that draws column j from Dnj . Let

Mj := median
u∼Dnj

‖u‖1.

We then define the distribution Dmax that draws entries as

d
max
j=1

|vj |
Mj

, vj ∼ Dj

and let its cdf be FDmax .

Throughout this section, let S be a r × n matrix such that

Pr
A∼DA

(‖A‖1 6 ‖SA‖1 6 κ‖A‖1) > 1− δ.

E.6.1. PRELIMINARY BOUNDS ON S

Lemma E.27 For every i ∈ [n], we have that

‖Sei‖1 6 2κ
1 + F−1

Dmax
(4δ)

F−1
Dmax

(4δ)

Proof Note that for every row i of A, with probability at least 4δ, one of the d columns of e>i A,
say column j ∈ [d], has absolute value at least

|e>i Aej |
Mj

> F−1
Dmax

(4δ) ⇐⇒ |e>i Aej | > F−1
Dmax

(4δ)Mj .
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Independently, with probability at least 1/2, the `1 norm of the rest of the entries of the column is
at most ∑

i′∈[n]\{i}

|e>i′Aej | 6Mj .

Then with probability 2δ both of these happen simultaneously, so that

‖Aej‖1 6 (1 + F−1
Dmax

(4δ))Mj

Let this event be Ei.
Now suppose for contradiction that there is some column i ∈ [n] such that ‖Sei‖1 > 2κ/F−1

Dmax
(4δ).

We then condition on Ei. Then with probability at least 1/2,

‖SAej‖1 = ‖Sei(e>i Aej) +
∑

i′ 6=i
Sei′(e

>
i′Aej)‖1 >

1

2
‖Sei(e>i Aej)‖1

>
1

2

(
2κ

1 + F−1
Dmax

(4δ)

F−1
Dmax

(4δ)

)
F−1
Dmax

(4δ)Mj = κ(1 + F−1
Dmax

(4δ))Mj > κ‖Aej‖1

so S fails to sketch A with probability at least δ, which is a contradiction.

Lemma E.28 Let F−1
Dmax

(4δ) < x < 1. Then there are at most

1

1− FDmax(x)

columns of S with `1 norm more than

2κ
1 + x

x
.

Proof Let
p := Pr

X∼Dmax

{X > x} = 1− FDmax(x)

and suppose for contradiction that there are more than 1/p columns of S with `1 norm more than
2κ/x. Note that for each row i of these 1/p rows, there is a p probability that one of the d columns
of e>i A, say column j ∈ [d], has absolute value at least

|e>i Aej |
Mj

> x ⇐⇒ |e>i Aej | > xMj .

Then the probability that one of the 1/p rows, say row i, has an entry of absolute value at least xMj

is at least
1− (1− p)1/p > 1− e−1.

Independently, with probability at least 1/2, the `1 norm of the rest of the entries of this column is
at most ∑

i′∈[i]\{i}

|e>i′Aej | 6Mj .
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Thus with probability at least (1 − e−1)/2, both of these events happen simultaneously, so there is
row i ∈ [n] and a column j ∈ [d] such that





|e>i Aej | > xMj

‖Aej‖1 6 (1 + x)Mj

‖Sei‖ > 2κ1+x
x

.

We condition on this event. Then with probability at least 1/2,

‖SAej‖1 = ‖Sei(e>i Aej) +
∑

i′ 6=i
Sei′(e

>
i′Aej)‖1 >

1

2
‖Sei(e>i Aej)‖1

>
1

2
2κ

1 + x

x
· xMj = κ(1 + x)Mj > κ‖Aej‖1

so S fails to sketch A with probability at least (1− e−1)/4 > δ, which is a contradiction.

E.6.2. DISTORTION LOWER BOUND

Fix any x ∈ Rd with ‖x‖1 = 1 and let v = Ax. Following Wang and Woodruff (2019), our strategy
is to bound ‖Sv‖1 from above in terms of κ, and then derive a lower bound on κ by bounding ‖Sv‖1
below by ‖v‖1.

Note that the bound of Lemma E.28 is useless when

1

1− FDmax(x)
> n ⇐⇒ FDmax(x) > 1− 1

n
⇐⇒ x > F−1

Dmax

(
1− 1

n

)
.

We thus set SH to be the matrix formed by taking the columns of S with `1 norm at least

2κ
1 + F−1

Dmax
(1− 1/n)

F−1
Dmax

(1− 1/n)

and SL to be the columns of S with `1 norm at most this, and individually bound SHv and SLv.
Now consider the distribution Dx with cdf Fx that draws its entries as |〈x,w〉| with w ∼∏d

j=1Dj . By a union bound, the largest absolute value entry in v = Ax is at mostMx := F−1
x (1−

1/2n) with probability at least 1/2. Let this event be

E := {‖v‖∞ 6Mx}.

Throughout this section, we condition on E . We also define

Fx,∧(x) :=
Fx(x)1(x 6Mx)

Pr(E)

to be the conditional cdf of the capped version of v.
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E.6.3. BOUNDING THE HIGH-NORM COLUMNS OF S

We first bound ‖SHv‖1. We will need the following simple lemma:

Lemma E.29 Let u,v ∈ Rn be vectors with nonnegative entries and unit `1 norm. Let P be a
uniformly random permutation matrix. Then,

E
P
〈u,Pv〉 =

1

n
.

Proof We have that

E
P
〈u,Pv〉 =

n∑

i=1

uiE
P

(e>i Pv) =
n∑

i=1

ui

n∑

j=1

vj
n

=
1

n
.

The main result for this section then is the following:

Lemma E.30 Let

Lmax := F−1
Dmax

(
1− 1

n

)

Lmin := F−1
Dmax

(4δ)

Then,

Pr





∥∥∥∥SH
v

‖v‖1

∥∥∥∥
1

6 400
κ

n

log2 Lmax∑

k=log2 Lmin

1 + 2k−1

2k(1− FDmax(2k))



 >

99

100
.

Proof Note that i.i.d. distributions are permutation invariant. We first fix the entries of v, which
fixes ‖v‖1, but not the permutation of the entries. Now by Lemma E.29, we have

E
P

∥∥∥∥SHP
v

‖v‖1

∥∥∥∥
1

=
r∑

i=1

‖e>i SH‖1 E
P
|
〈

e>SH

‖e>i SH‖1
,P

v

‖v‖1

〉
| 6

r∑

i=1

‖e>i SH‖1
1

n
=

1

n

n∑

j=1

‖SHej‖1.

By Lemma E.28, we have that for each integer k between log2 Lmin and log2 Lmax, there are at
most

1

1− FDmax(2k)

columns of S with `1 norm more than 2κ(1 + 1/2k). Thus, there are at most (1 − FDmax(2k))−1

columns with `1 norm in [2κ(1 + 1/2k), 2κ(1 + 1/2k−1)]. Then, summing over the bounds over
these intervals, we have that

n∑

j=1

‖SHej‖1 6
log2 Lmax∑

k=log2 Lmin

2κ

(
1 +

1

2k−1

)
1

1− FDmax(2k)
= κ

log2 Lmax∑

k=log2 Lmin

4(1 + 2k−1)

2k(1− FDmax(2k))
.

Chaining together the inequalities gives the bound

E
P

∥∥∥∥SHP
v

‖v‖1

∥∥∥∥
1

6
κ

n

log2 Lmax∑

k=log2 Lmin

4(1 + 2k−1)

2k(1− FDmax(2k))
.

We then conclude by Markov’s inequality.
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E.6.4. BOUNDING THE LOW-NORM COLUMNS OF S

The idea for bounding ‖SLv‖1 is that different arguments are needed for different level sets of
v, depending on how “spiky” it is. That is, a relatively flat level vk should benefit from the sign
cancellations in the product e>i S

Lvk, while a very spiky vector such as standard basis vectors should
just apply the triangle inequality and bound only the few columns of SL that it touches. This idea is
formalized in the following lemma.

Lemma E.31 Let S ∈ Rr×n be a fixed matrix such that ‖Sei‖1 6 1 for each i ∈ [n], and let w ∈
Rn be a vector with entries drawn i.i.d. from a distribution with Ewi = 0 and σ2 := Ew2

i < ∞.
Let µ := E|wi|. Then,

E‖Sw‖1 6 min
{
µn,Cσ

√
rn
}

for an absolute constant C.

Proof For the first term of the min, we can simply use the triangle inequality to obtain

E‖Sw‖1 6
n∑

i=1

‖Sei‖1 E|wi| = µn.

For the second term, we first apply Jensen’s inequality to get

E‖Sw‖1 =

r∑

i=1

E|e>i Sw| 6 C

r∑

i=1




n∑

j=1

(e>i Sej)
2 Ew2

j




1/2

= Cσ

r∑

i=1

‖e>i S‖2

for some absolute constant C. We then finish by an application of Cauchy-Schwarz, switching from
row-wise sums to column-wise sums, and bounding the `2 norm by the `1 norm:

r∑

i=1

‖e>i S‖2 6
√
r

(
r∑

i=1

‖e>i S‖22

)1/2

=
√
r




n∑

j=1

‖Sej‖22




1/2

6
√
r




n∑

j=1

‖Sej‖21




1/2

6
√
rn.

Now for intuition, in Lemma E.31, we roughly think of the distribution of wi as being vi if vi
belongs to a level set, and 0 otherwise. Then if p is the probability of being in a given level set, the
first term is roughly pn while the second term is roughly

√
rpn, so the first bound is tighter when

p 6 r/n and the second bound is tighter when p > r/n.
This yields the following:

Corollary E.32 let
T := F−1

x,∧

(
1− r

n

)

and write v = v6T + v>T , where v6T takes the value of v on coordinates i ∈ [n] where |vi| 6 T
and 0 otherwise, and v>T similarly takes the coordinates i ∈ [n] of v such that |vi| > T and 0
otherwise. Then, v6T is drawn i.i.d. from a distribution with second moment

σ2
6T :=

∫ T

0
x2fx,∧(x) dx
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while v>T is drawn i.i.d. from a distribution with expected absolute value

µ>T :=

∫ Mx

T
xfx,∧(x) dx.

Applying Lemma E.31, we obtain the bound

E‖SLv‖1 6 E‖SLv6T ‖1 + E‖SLv>T ‖1 6 Cκ
1 + F−1

Dmax
(1− 1/n)

F−1
Dmax

(1− 1/n)
(σ6T

√
rn+ µ>Tn).

E.6.5. LOWER BOUNDS FOR SKETCHING I.I.D. p-STABLE MATRICES

We apply Corollary E.32 to prove Theorem E.24:
Proof [Proof of Theorem E.25] Note that when A is drawn as fully i.i.d. Cauchy variables, then

F−1
Dmax

(1− 1/n) = O

(
nd

n log n

)
= O(d/ log n).

We now apply Corollary E.32 with v = Ae1, a Cauchy vector. Then, T = Θ(n/r), σ2
6T = Θ(n/r),

and µ>T = Θ(log r) which yields

E‖SLv‖1 6 O

(
κ

1 + d/ log n

d/ log n

[√
n

r

√
rn+ n log r

])
= O(κn log r).

Then with constant probability, we have

Ω(n log n) 6 ‖v‖1 6 ‖SLv‖1 6 O(κn log r)

and thus

κ = Ω

(
log n

log r

)
,

as desired.

When we have a column drawn i.i.d. from a p-stable distribution, we have an alternative bound:

Lemma E.33 Let v be drawn i.i.d. from a p-stable distribution for p ∈ (1, 2). If v is in the column
space of S, then

2κ
1 + F−1

Dmax
(1− 1/n)

F−1
Dmax

(1− 1/n)
r1−1/pn1/p = Ω(n).

Proof Then, we have that

Ω(n) 6 ‖v‖1 6 ‖SLv‖1 =

r∑

i=1

|e>i SLv| =
r∑

i=1

‖e>i SL‖p|Si|

By linearity of expectation, the above sum has expectation
∑r

i=1O
(
‖e>i SL‖p

)
, and thus is at most

a constant times this with probability at least 99/100 by a Markov bound. Then, we proceed by
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bounding

r∑

i=1

‖e>i SL‖p 6 r1−1/p

(
r∑

i=1

‖e>i SL‖pp

)1/p

= r1−1/p




n∑

j=1

‖SLej‖pp




1/p

6 r1−1/p




n∑

j=1

‖SLej‖p1




1/p

6 r1−1/p

(
n

(
2κ

1 + F−1
Dmax

(1− 1/n)

F−1
Dmax

(1− 1/n)

)p)1/p

= 2κ
1 + F−1

Dmax
(1− 1/n)

F−1
Dmax

(1− 1/n)
r1−1/pn1/p.

This gives a proof of Theorem E.25.
Proof [Proof of Theorem E.25] When A is drawn as fully i.i.d. p-stable variables, then

F−1
Dmax

(1− 1/n) = Θ

(
(nd)1/p

n

)

so by Lemma E.33, the distortion bound from these columns is

Ω(n) 6 κ
n

(nd)1/p
r1−1/pn1/p ⇐⇒ κ > Ω

(
d1/p

r1−1/p

)
.

Appendix F. Missing proofs from Section A

Proof [Proof of Lemma A.4] For each i ∈ S, sample i with probability p and place the result in a
uniformly random hash bucket in [r] if it was sampled. Let Ei denote the event where i is sampled
and is hashed to a bucket with no other members of T . Let C1, C2, . . . , C|S| denote the sequence of
these independent random choices and let f(C1, C2, . . . , Cs) denote the number of hash buckets in
[r] that contains members i ∈ S satisfying Ei at the end of the sampling and hashing process. Note
that f is 1-Lipschitz, and that

E f(C1, C2, . . . , C|S|) =
∑

i∈S
Pr(Ei) = |S|p

(
1− p

r

)|T |
> p|S|

(
1− p|T |

r

)
> (1− ε)p|S|.

Now consider the Doob martingale

Zk := E
[
fq(C1, C2, . . . , C|S|) | C1, C2, . . . , Ck

]
.

Note that the increments Zk − Zk−1 conditioned on C1, C2, . . . , Ck−1 is simply the indicator vari-
able of whether on choice Ck we sampled an entry and placed it in a new bucket or not. Then
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Zk − Zk−1 = 1 with probability at most p and thus Ek−1(Zk − Zk−1)2 6 p. Then by Freedman’s
inequality Freedman (1975),

Pr
(
|Z|S| − Z0| > εZ0

)
6 2 exp

(
−1

2

(ε(1− ε)p|S|)2

p|S|+ ε(1− ε)p|S|/3

)
6 2 exp

(
− ε

2

12
p|S|

)
.

Proof [Proof of Theorem A.5] We make minor modifications of Lemmas 2.10 and 2.12 in Wang
and Woodruff (2019). Let {Xi}ni=1 be independent standard Cauchys.

Upper bound. Let Ei :=
{
|Xi| 6 r log n(log log r)−1

}
. Then,

Pr(Ei) = 1− 2

π
arctan

(
r log r

log log r

)
> 1− 2

π

log log r

r log r
� 1

1 + ε
.

Let E =
⋂r
i=1 Ei. Then,

E(|Xi| | E) = E(|Xi| | Ei) =
1

Pr(Ei)
1

π
log

(
1 +

(
r log r

log log r

)2
)

and thus by linearity of expectation,

µ := E

(
r∑

i=1

|Xi| | E
)

=
1

Pr(Ei)
r

π
log

(
1 +

(
r log r

log log r

)2
)

6 (1 + ε)
2

π
r log r.

Now by a Chernoff bound applied to the |Xi|(log log r/r log r) ∈ [0, 1] conditioned on E ,

Pr

(
r∑

i=1

|Xi| > (1 + ε)µ | E
)

6 exp

(
−ε

2µ

3

log log r

log r

)
= exp

(
−Θ(ε2 log log r)

)

so

Pr

(
r∑

i=1

|Xi| 6 (1 + ε)µ

)
> Pr

(
n∑

i=1

|Xi| 6 (1 + ε)µ | E
)
Pr(E)

>
(
1− exp

(
−Θ(ε2 log log r)

))(
1− 2

π

log log r

r log r

)r
> 1− (3/ε)d

δ
.

Lower bound. Let T = (3/ε)d

δ . Note that by Taylor expansion, there is a T ′ > 0 such that for
t > T ′,

Pr(|Xi| > t) >
2

π
t−1 +O(t−3).

Now for i > 0 and j ∈ [r], define the indicator

N i
j :=

{
1 if |Xi| > (1 + ε)iT ′

0 otherwise
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and N i :=
∑

j∈[r]N
i
j . Note that by the Taylor expansion bound,

EN i >
2r

π

1

(1 + ε)iT ′
.

Then by Chernoff bounds,

Pr
(
N i > (1 + ε)EN i

)
6 exp

(
−ε

2

3

2r

π

1

(1 + ε)iT ′

)

Now let imax be the largest i such that

exp

(
−ε

2

3

2r

π

1

(1 + ε)iT ′

)
6

1

T
.

Then by a union bound over the first imax level sets, N i > (2/π)r(1 + ε)iT ′ and thus with proba-
bility at least 1− 1/T ,

r∑

i=1

|Xi| >
imax∑

i=0

2

π
r(1 + ε)iT ′ =

2

π
r log

(
1

T ′
ε2

3

2r

π

1

log T

)
> (1− ε) 2

π
r log r.

Net argument. Given the above concentration results, the rest of the argument proceeds as done
in Wang and Woodruff (2019), using 1-stability of Cauchys and then a standard net argument.

Appendix G. No contraction bound

In this section, we prove a no contraction result for a genericM -sketch embedding with subsampling
rates ph as specified in Lemma G.2 and a hash bucket size of N0 for the 0th level and N for the
hth level for h ∈ [hmax] as specified in Definition G.4. This allows us to apply the results to both
M -sketch with random and fixed boundaries, with varied branching factors and failure rates. Recall
the definition of the M -sketch from Definition B.7.

Theorem G.1 (No contraction) Let y ∈ Rn with ‖y‖1 = 1. Let ε ∈ (0, 1) and δ ∈ (0, 1). Let S
be drawn as an M -sketch matrix. Then with probability at least 1− 6δ,

‖SAy‖1 > (1− 16ε)‖Ay‖1.

G.1. Essential weight classes

We first classify a small subset of weight classes of y that we need to preserve for at least a (1− ε)
approximation.

Lemma G.2 (Essential weight classes) Let y ∈ Rn with ‖y‖1 = 1. Letmmin be a minimum class
size parameter, let B be a branching factor parameter, and let ε be an accuracy parameter. Finally,
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let ph = p0/B
h−1 for h ∈ [logB n] be sampling rates. Define

hmax := logB n

qmax := log2

n

ε

mmin :=
12

ε2
log

4qmax

δ

M> := log2

B

ε

M< := log2

mmin

p0ε

and weight classes

Q̂h := {q ∈ [qmax] : mmin 6 ph|Wq(y)| < Bmmin} h ∈ [hmax]

Qh :=

{
q ∈ Q̂h : q 6M> + min

q∈Q̂h
q, ‖Wq(y)‖1 >

ε

qmax

}
h ∈ [hmax]

Q< :=

{
q : |Wq(y)| < mmin/p0, q 6M<, ‖Wq‖1 >

ε

M<

}

Q∗ := Q< ∪
⋃

h∈[hmax]

Qh

Then, ∑

q∈Q∗
‖Wq(y)‖1 > 1− 6ε

Remark G.3 The Q̂h are the weight classes for which the hth level is the smallest level at which
we sample at least mmin elements of Wq in expectation, so that the mass is extremely concentrated.
The Qh are the weight classes that restrict Q̂h to only as many levels as we need to preserve the
mass of Q̂h up to a 1 − ε factor. The set Q< specifies the subset of levels that are too small for
concentration, but are needed to preserve the mass of y up to a 1 − ε factor. The set Q∗ specifies
the union of these essential weight classes needed for a 1− ε approximation.

Proof Note that ∑

q>qmax

‖Wq‖1 6
ε

n

∑

q>qmax

|Wq|1 6 ε

so we restrict our attention to q ∈ [qmax]. Note that every q ∈ [qmax] belongs in either exactly
one class Q̂h, or |W |q < mmin/p0. The total weight of weight classes with |Wq| < mmin/p0 and
q > M< is at most

∑

q>M<

|Wq|21−q = 2
mmin

p0
2−M<

∑

q>0

2−q 6 2
mmin

p0

p0ε

mmin
= 2ε.
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Furthermore, let h ∈ [hmax] and let q∗h := minq∈Q̂h q. Then the ratio of the total weight of classes
in Wq with q > M> + q∗h to ‖Wq∗h

‖1 is at most

1

‖Wq∗h
‖1

∑

q>M>+q∗h

21−qBmmin

ph
6

1

2−q
∗
hmmin/ph

∑

q>M>+q∗h

21−qBmmin

ph

= 2B
∑

q>M>

2−q 6 2B2−M> 6 2B
ε

B
= 2ε.

We thus have that ∑

h∈[hmax]

∑

q>M>+q∗h

‖Wq‖1 6
∑

h∈[hmax]

2ε‖Wq∗h
‖1 6 2ε.

Furthermore, the total weight of classes in Wq with ‖Wq‖1 < ε/qmax is at most
∑

q:‖Wq‖1<ε/qmax

‖Wq‖1 6 qmax
ε

qmax
= ε.

We conclude by combining the above bounds.

G.2. Approximate perfect hashing

Definition G.4 (Useful constants)

N ′0 >
1

δ

M<

p0ε
mmin

(
1 +

7

6

2 log(2M</δ)

ε2

)

N0 := 2N ′0 logN ′0 Number of hash buckets at the 0th level

N ′ >
B

ε
mmin

(
M> +

7

6

2qmax log(2qmax/δ)

ε2

)

N := 2N ′ logN ′ Number of hash buckets

We allow the flexibility to choose the number of buckets N0 and N to be larger if needed. The N0

and N are chosen so that

M<

p0
mmin

(
1 +

7

6

2 log(2N0M</δ)

ε2

)
6 δεN0

and

Bmmin

(
M> +

7

6

2qmax log(2Nqmax/δ)

ε2

)
6 εN.

Lemma G.5 (Concentration of sampled mass) Suppose ph|Wq| > mmin. Then with probability
at least 1− δ/qmax,

∑

yi∈Wq

bi,h = (1± ε)ph|Wq|

∑

yi∈Wq

|yi|bi,h = (1± ε)ph‖Wq‖1
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Proof Let
X :=

∑

yi∈Wq

bi,h.

By the Chernoff bound,

Pr(|X −EX| > εEX) 6 2 exp

(
−ε

2 EX

3

)
6

δ

2qmax
.

Similarly, let
Y :=

∑

yi∈Wq

|yi|bi,h.

Note that

EY = ph‖Wq‖1 > 2−qph|Wq|
|yi|bi,h 6 21−q

Var(|yi|bi,h) 6 ph22−2q

so by Bernstein’s inequality,

Pr(|Y −EY | > εEY ) 6 2 exp

(
−1

2

(εEY )2

ph22−2q|Wq|+ (εEY )21−q/3

)

6 2 exp

(
−1

2

(ε2−qph|Wq|)2

ph22−2q|Wq|+ (ε21−qph|Wq|)21−q/3

)

= 2 exp

(
−1

8

ph|Wq|ε2

1 + ε/3

)
6 2 exp

(
− ε

2

12
ph|Wq|

)
6

δ

2qmax
.

We conclude by a union bound over the two events.

The following lemma uses a standard balls and bins martingale argument (e.g., Lee (2016)) to
show that most items are hashed uniquely.

Lemma G.6 (Approximately perfect hashing) Let h ∈ [hmax] and letQ ⊆ {q : ph|Wq| > mmin}.
Let Ŵ ⊂ y containWQ :=

⋃
q∈QWq. Let ph|Ŵ | 6 εN for some ε ∈ (0, 1/2). Then with probabil-

ity at least 1− (3/2)|Q|δ/qmax, every Wq has a W ∗q ⊂Wq that gets sampled and placed in a hash
bucket with no other members of Ŵ , and |W ∗q | > (1−3ε)ph|Wq| and ‖W ∗q ‖1 > (1−9ε)ph‖Wq‖1.

Proof We apply Lemma A.4 to see that with probability at least

1− 2 exp

(
− ε

2

12
ph|Wq|

)
6 1− δ

2qmax
,

there is a set W ∗q ⊆ Wq of elements that are hashed to a bucket with no other element of Ŵ in it
and of size |W ∗q | > (1 − ε)2ph|Wq| > (1 − 3ε)ph|Wq| with probability at least 1 − δ/2qmax. We
condition on this event.
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By Lemma G.5, with probability at least 1 − δ/qmax, we sample (1 ± ε)ph|Wq| elements with
mass (1 ± ε)ph‖Wq‖1. Note then that there are at most 4εph|Wq| sampled elements that do not
belong W ∗q . The mass of these elements is at most

4εph|Wq|21−q 6 8εph‖Wq‖1.

Thus,
‖W ∗q ‖1 > (1− ε)ph‖Wq‖1 − 8εph‖Wq‖1 = (1− 9ε)ph‖Wq‖1.

We conclude by a union bound over the weight classes Q.

G.3. Preserving weight classes

Definition G.7

τ0 :=
p0ε

2M<mmin
Size of a relatively large element at 0th level

T0 :=
6

7

ετ0

log(2N0M</δ)
Size of a relatively small element at 0th level

τh :=
phε

2qmaxBmmin
Size of a relatively large element

Th :=
6

7

ετh
log(2Nqmax/δ)

Size of a relatively small element

Definition G.8 (Large elements)

Q<,0 :=

{
q : q 6 log2

1

T0

}

Q<,h :=

{
q : q 6 log2

1

Th

}

The weight class Q<,h is the set of relatively large elements at the hth level of sampling.
We directly recall the following Lemma 3.3 from Clarkson and Woodruff (2015).

Lemma G.9 Let h ∈ [hmax], W̄ ⊂ y, T > ‖W̄‖∞, and δ′ ∈ (0, 1). If

N >
6‖W̄‖1

T log(N/δ)
,

then

Pr

(
max
k∈[N ]

‖Lh,k ∩ W̄‖1 6
7

6
T log(N/δ)

)
> 1− δ′.

G.3.1. PRESERVING WEIGHT CLASSES IN Qh

Lemma G.10 Let h ∈ [hmax], q ∈ Qh. Then

|yi| > τh =
phε

2qmaxBmmin
.
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Proof By the definition of Qh, we have that mmin 6 ph|Wq| 6 Bmmin and ‖Wq‖1 > ε
qmax

. We
then have that

|Wq|21−q > ‖Wq‖1 >
ε

qmax
.

Then for any yi ∈Wq,

|yi| > 2−q >
ε

2|Wq|qmax
>

phε

2qmaxBmmin
.

Lemma G.11 Let h ∈ [hmax] and let Lh(yi) denote the multiset of elements in the hash bucket
in the hth level containing yi. Then with probability at least 1 − 2|Qh|δ/qmax, for all q ∈ Qh, we
sample a set W ∗q ⊆Wq such that

‖W ∗q ‖1 > (1− 9ε)ph‖Wq‖1

and for every yi ∈W ∗q , ∣∣∣∣∣∣
∑

yj∈Lh(yi)

Λjyj

∣∣∣∣∣∣
> (1− ε)|yi|.

Proof Let Ŵ = WQh ∪WQ<,h . Then by our choice of N ,

|Ŵ | 6 |WQh |+|WQ<,h | 6M>
Bmmin

ph
+

1

Th
=
B

ph
mmin

(
M> +

7

6

2qmax log(2Nqmax/δ)

ε2

)
6
εN

ph
.

Then by Lemma G.6, with probability at least 1 − (3/2)|Qh|/qmax, for each q ∈ Qh, there is a
set of sampled elements W ∗q ⊆ Wq that get hashed to a bucket with no other members of Ŵ , and
‖W ∗q ‖1 > (1− 9ε)ph‖Wq‖1.

Note that for each q ∈ Qh and yi ∈W ∗q , the absolute value of the largest element in Lh(yi) not
equal to yi is at most Th, since we have hashed the elements of WQ<,h to other buckets. Then by
Lemma G.9, the `1 mass of elements that are at most Th in all hash buckets are at most

‖Lh(yi) \ {yi}‖1 6
7

6
Th log(2Nqmax/δ) = ετh

with probability at least 1 − δ/2qmax. By a union bound over q ∈ Qh, this is true for all yi ∈ W ∗q
for q ∈ Qh with probability at least 1− 2|Qh|δ/qmax.

Recall from Lemma G.10 that |yi| > τh for all yi ∈ Wq with q ∈ Qh. Note then that the mass
of this hash bucket is at least

∣∣∣∣∣∣
∑

yj∈Lh(yi)

Λjyj

∣∣∣∣∣∣
> |yi| − ‖Lh(yi) \ {yi}‖1 > |yi| − ετh > (1− ε)|yi|

which is the desired bound. Thus overall, the total success probability is at least 1− 2|Qh|δ/qmax.
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Lemma G.12 Let h ∈ [hmax]. Then with probability at least 1− 2|Qh|δ/qmax, we have that

‖C(h)S(h)y‖1 > (1− 10ε)
∑

q∈Qh

‖Wq‖1.

Proof Taking a sum over q ∈ Qh and yi ∈W ∗q , we find that

‖C(h)S(h)y‖1 >
1

ph

∑

q∈Qh

∑

yi∈Wq

bi,h

∣∣∣∣∣∣
∑

yj∈Lh(yi)

Λjyj

∣∣∣∣∣∣
Looking only at rows in Qh

>
1

ph

∑

q∈Qh

∑

yi∈W ∗q

∣∣∣∣∣∣
∑

yj∈Lh(yi)

Λjyj

∣∣∣∣∣∣
Looking only at good sampled elements W ∗q

>
1

ph

∑

q∈Qh

∑

yi∈W ∗q

(1− ε)|yi| Lemma G.11

> (1− ε) 1

ph

∑

q∈Qh

‖W ∗q ‖1

> (1− ε)(1− 9ε)
1

ph

∑

q∈Qh

ph‖Wq‖1 Lemma G.11

> (1− 10ε)
∑

q∈Qh

‖Wq‖1

which is the desired bound. The failure probability is the same as from Lemma G.11.

G.3.2. PRESERVING WEIGHT CLASSES IN Q<

With essentially the exact same proofs as in the above section, we have the following analogues of
Lemmas G.10, G.11, and G.12.

Lemma G.13 Let q ∈ Q<. Then

|yi| > τ0 =
εp0

M<mmin
.

Lemma G.14 Let Q = {q ∈ Q< : |Wq| > mmin}. Let L0(yi) denote the multiset of elements in
the hash bucket in the 0th level containing yi. Then with probability at least 1− 2|Q|δ/M<, for all
q ∈ Q, there is a set W ∗q ⊆Wq such that W ∗q is hashed to a different bucket than WQ<,0 ⊃WQ< ,

‖W ∗q ‖1 > (1− 9ε)ph‖Wq‖1,

and for every yi ∈W ∗q , ∣∣∣∣∣∣
∑

yj∈L0(yi)

Λjyj

∣∣∣∣∣∣
> (1− ε)|yi|.
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Lemma G.15 Let Q = {q ∈ Q< : |Wq| > mmin}. Then with probability at least 1− 2|Q|δ/M<,

‖C(0)y‖1 > (1− 10ε)
∑

q∈Q
‖Wq‖1.

It thus remains to handle the case of {q ∈ Q< : |Wq| < mmin}. For these small level sets, we
can perfectly hash these into separate buckets from all the entries in Q<,0.

Lemma G.16 Let Q = {q ∈ Q< : |Wq| < mmin}. Let L0(yi) denote the multiset of elements in
the hash bucket in the 0th level containing yi. With probability at least 1−2δ, every member ofWQ

is hashed to a different bucket than WQ<,0 ⊃WQ< , and we have for every yi ∈WQ that

∣∣∣∣∣∣
∑

yj∈L0(yi)

Λjyj

∣∣∣∣∣∣
> (1− ε)|yi|.

Proof Note that
N0 >

1

δ
|WQ||WQ<,0 |.

Then for every (yi,yj) ∈ WQ ×WQ<,0 , there is a δ/|WQ||WQ<,0 | probability that yi and yj get
hashed to the same location. By a union bound, none of these pairs are hashed to to the same
location with probability at least 1 − δ. Then by Lemma G.9, the `1 mass of elements that are at
most T0 in all hash buckets are at most

‖L0(yi) \ {yi}‖1 6
7

6
T0 log(2N0M</δ) = ετ0

with probability at least 1 − δ/2M<. By a union bound over q ∈ Q, this is true for all yi ∈ WQ

with probability at least 1− |Q|δ/2M< > 1− δ. Then,
∣∣∣∣∣∣
∑

yj∈L0(yi)

Λjyj

∣∣∣∣∣∣
> |yi| − ‖L0(yi) \ {yi}‖1 > |yi| − ετ0 > (1− ε)|yi|

which is the desired bound. Thus overall, the failure probability is 1− 2δ.

G.4. Proof of Theorem G.1

We finally gather the pieces from above.
Proof Proof of Theorem G.1 We union bound over the events and sum over the results of Lemmas
G.15, G.16, and G.12, so that with probability at least 1− 6δ,

‖SAy‖1 > (1− 10ε)
∑

q∈Q<∪
⋃
h∈[hmax] Qh

‖Wq‖1.

We conclude by chaining this inequality together with the result of Lemma G.2.
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Appendix H. Missing proofs from Section C

Proof [Proof of Lemma C.4] By Hoeffding bounds, we have for each j ∈ [d] that

Pr

(∣∣∣∣∣
s∑

i=1

εie
>
j xi

∣∣∣∣∣ >
√
s

2
log

2d

δ

)
6 2 exp

(
−2(

√
(s/2) log(2d/δ))2

s

)
6
δ

d

Then by a union bound over the d choices of j, with probability at least 1−δ, the complement event
of the above holds for every j ∈ [d]. Conditioned on this event, we have that

∥∥∥∥∥
s∑

i=1

εixi

∥∥∥∥∥
1

6
d∑

j=1

∣∣∣∣∣
s∑

i=1

εie
>
j xi

∣∣∣∣∣ 6 d

√
1

2
log

2d

δ

√
s

as desired.

Proof [Proof of Lemma C.7] For each i ∈ [r] and j ∈ [d], by the 1-stability of Cauchy variables,

e>i SAej
d
= ‖e>i S‖1Ci,j

where Ci,j are drawn as standard Cauchy variables, and are independent for distinct j. Now
note that |Ci,j | 6 O(rd) with probability at least 1 − (100rd)−1 and thus by a union bound,
maxi∈[r],j∈[d]|Ci,j | 6 O(rd) with probability at least 1 − 1/400. We condition on this event. Note
then that the conditional expectation is at most

E|Ci,j | 6 O(log(rd))

as shown in Indyk (2006a). Then,

E‖SA‖1 =
d∑

j=1

r∑

i=1

E|e>i SAej | =
d∑

j=1

r∑

i=1

‖e>i S‖1 E|Ci,j | = O(d log(rd))‖S‖1

so a Markov bound and a union bound with the earlier event shows that

Pr(‖SA‖1 6 O(d log(rd))‖S‖1) > 1− 1

200
.

For the lower bound, let Ĉi,j be the truncation of Ĉi,j at d, i.e.,

Ĉi,j =

{
Ci,j if |Ci,j | 6 d

0 otherwise
.

Note then that by (Indyk, 2006a, Lemma 6), Var(|Ĉi,j |) = Θ(d) so

σ2 := Var




d∑

j=1

‖e>i S‖1|Ĉi,j |


 =

d∑

j=1

Θ(d)‖e>i S‖21 = Θ(d2)
d∑

j=1

‖e>i S‖21
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and

µ := E




d∑

j=1

‖e>i S‖1|Ĉi,j |


 = Θ(d log d)

d∑

j=1

‖e>i S‖1.

Then by Chebyshev’s inequality,

Pr




d∑

j=1

‖e>i S‖1|Ĉi,j | − µ 6 Θ(log d)σ


 6

1

400
.

Thus, with probability at least 1− 1/400,
d∑

j=1

‖e>i S‖1|Ci,j | >
d∑

j=1

‖e>i S‖1|Ĉi,j | > γ‖e>i S‖1

for γ = Ω(d log d). Let Ei denote the above event, so that Pr(Ei) > 1− 1/400. Then,

E




r∑

i=1

1(¬Ei)




d∑

j=1

‖e>i S‖1|Ci,j |




 6

r∑

i=1

1

400
γ‖e>i S‖1

so by Markov’s inequality, with probability at least 1− 1/200,

r∑

i=1

1(¬Ei)




d∑

j=1

‖e>i S‖1|Ci,j |


 6

γ

2

r∑

i=1

‖e>i S‖1 =
γ

2
‖S‖1.

Then, conditioning on this event,

‖SA‖1 >
r∑

i=1




d∑

j=1

‖e>i S‖1|Ci,j |


(1− 1(¬Ei)) > γ

r∑

i=1

‖e>i S‖1 −
γ

2
‖S‖1 =

γ

2
‖S‖1

as desired.

Appendix I. Missing proofs from Section E

Proof [Proof of Lemma E.6] Because Pr(|X| 6 T ) = Θ(1) for T large enough,

E
X∼truncT (D)

|X| = Θ(1) E
X∼D

(|X| | |X| 6 T ), E
X∼truncT (D)

X2 = Θ(1) E
X∼D

(X2 | |X| 6 T )

By the layer cake theorem,

E
X∼D

(|X| | |X| 6 T ) =

∫ ∞

0
Pr(|X| > x | |X| 6 T ) dx

=

∫ T

0

Pr(x < |X| 6 T )

Pr(|X| 6 T )

=
1

Pr(|X| 6 T )

∫ T

0
Pr(|X| > x)−Pr(|X| > T ) dx

= Θ(1)

∫ T

0
Θ(x−p) dx
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and similarly,

E
X∼D

(X2 | |X| 6 T ) = Θ(1)

∫ T

0
xPr(|X| > x) dx = Θ(1)

∫ T

0
Θ(x1−p) dx.

Solving the simple integrals yields the desired results.

Proof [Proof of Theorem E.8] The distortion upper bound is just Lemma E.2.

Mass of small entries. Let A = AH + AL as in Definition E.7, with T = O
(
(nd2 log d/r)1/p

)
.

Then, AL ∼ truncT (D)n×d where by Lemma E.6, the first two moments of each entry are

µ = Θ(T 1−p), σ = Θ(T 2−p).

Then by Bernstein’s inequality,

− logPr
(
‖ALej‖1 > 2µn

)
>

1

2

(µn)2

σ2n+ µnT/3

=
Ω((T 1−pn)2)

O(T 2−p)n+O(T 1−p)nT
= Ω(nT−p) = Ω

(
r

d2 log d

)
= Ω(log d)

Thus, Pr(‖ALej‖1 6 2µn) > 1− 1/ poly(d) so by a union bound over the d columns, this event
simultaneously holds for all d columns with probability at least 1−1/ poly(d). Conditioned on this
event, by the triangle inequality,

‖ALx‖1 6 O

(
n1/p

(log d)1/p−1

)
‖x‖1

for all x ∈ Rd.

Mass of large entries. Furthermore, let B′ be the subset of rows of AH given by Lemma E.11
that are hashed to locations without any other rows of AH . Recall also τ1 and τ2 from the lemma.

We first have that ‖SB′x‖1 = Ω(‖AHx‖1) since the rows containing entries larger than τ1

are perfectly hashed, while rows containing entries between τ2 and τ1 are preserved up to constant
factors.

Let B′ = B′>T + B′6T where B′>T contains the entries of B′ that have absolute value greater
than T and B′6T contains the rest of the entries. Note then that B′>T has at most one nonzero entry
per row, and B′6T has at most O(d · r/d log d) = O(r/ log d) nonzero entries and thus by Lemma
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E.4, ‖B′6T ‖∞ 6 O(r1/p) with probability at least 0.99. We condition on this event. Then for all x,

‖SAHx‖1 > ‖SB′x‖1
> ‖SB′>Tx‖1 − ‖SB′6Tx‖1

=

d∑

j=1

|xj |‖B′>Tej‖1 − ‖SB′6Tx‖1 B′>Tej have disjoint support

>
d∑

j=1

|xj |
log2 τ1∑

k=log2 τ2

2kΘ(n/2kp)− ‖B′6Tx‖1 Lemmas E.11 and E.2

= Ω((n/ log d)1/p log d)‖x‖1 −O(r)‖B′6T ‖∞‖x‖1 Hölder’s inequality

= Ω(n1/p/(log d)1/p−1)‖x‖1 −O(r1+1/p)‖x‖1
= Ω(n1/p/(log d)1/p−1)‖x‖1.

Conclusion. On the other hand, by Lemma E.14, the mass of the O(r/d log d) rows that are
hashed together with the rows of AH have mass at most

O

(
1√

log d

n1/p

(r/d2 log d)1/p−1

)
‖x‖1 = o

(
n1/p/(log d)1/p−1

)
‖x‖1.

Then,

1

κ
>
‖SAx‖1
‖Ax‖1

>
‖SAHx‖1 − ‖SC1x‖1
‖AHx‖1 + ‖ALx‖1

>
Ω(‖AHx‖1 + n1/p/(log d)1/p−1)‖x‖1
O(‖AHx‖1 + n1/p/(log d)1/p−1))‖x‖1

> Ω(1).

Proof [Proof of Lemma E.13] For a hash bucket i ∈ [r] and k ∈ [d], let

Yi,k :=

∣∣∣∣∣∣
∑

j:h(j)=i

e>j Cek

∣∣∣∣∣∣

where h is the hash function for the CountSketch matrix S. By Chernoff bounds and a union
bound, there are Θ(n/r) rows j ∈ [n] such that h(j) = i for all buckets i ∈ [r], with probability
at least 1 − r exp(−Θ(n/r)) = 1 − o(1). Conditioned on this event, which is independent of the
randomness of C,

EY 2
i,k =

∑

j1,j2∈h−1(i)×h−1(i)

E
[
(e>j1Cek)(e

>
j2Cek)

]

=
∑

j:h(j)=i

E
(
e>j Cek

)2
= O

(n
r
T 2−p

)
= O

(
(d2 log d)(2−p)/p

(n
r

)2/p
)

by the second moment bound in Lemma E.6.
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Now let S be the subset of rows of S′. Then for each k ∈ [d],

E

[∑

i∈S
Yi,k

]
=
∑

i∈S
EYi,k 6

∑

i∈S

√
EY 2

i,k = O
(
r′(d2 log d)1/p−1/2(n/r)1/p

)

Var

(∑

i∈S
Yi,k

)
=
∑

i∈S
Var(Yi,k) = O

(
r′(d2 log d)(2−p)/p(n/r)2/p

)
.

By Chebyshev’s inequality,

Pr


∑

i∈S
Yi,k 6 E

[∑

i∈S
Yi,k

]
+ λ

√√√√Var

(∑

i∈S
Yi,k

)
 > 1− 1

λ

which gives the desired result.

Proof [Proof of Lemma E.16] We compare D to a p-stable distribution Dp. By (Nolan, 2018,
Theorem 1.12), a p-stable distribution is a power law with index p. Then, there exist constants T
and c such that for all t > T ,

Pr
X∼Dp

(cX > t) 6 Pr
Y∼D

(Y > t).

We then define the distribution D′p which draws Z ∼ D′p as cX for X ∼ D if |cX| > T , and 0
otherwise. Note then that for Z ∼ D′p and Y ∼ D, |Y | stochastically dominates |Z|.

We are then in the position to apply the following theorem from probability theory.

Theorem I.1 (Theorem 2, Pruss (1997)) Let X1, X2, . . . , Xd be independent symmetric random
variables, and suppose Y1, Y2, . . . , Yd are also independent symmetric random variables. Assume
that for every j we have |Yj | stochastically dominated by |Xj |. Then

Pr





∣∣∣∣∣∣

d∑

j=1

Yj

∣∣∣∣∣∣
> λ



 6 2Pr





∣∣∣∣∣∣

d∑

j=1

Xj

∣∣∣∣∣∣
> λ





for every positive λ.

Thus, it suffices to show Equation 4 for D′p in place of D. For j ∈ [d], let Xj ∼ Dp and define

X̂j :=

{
0 if |cXj | > T

Xj otherwise
.

Note then that Xj − X̂j ∼ D′p, so

Pr





∣∣∣∣∣∣

d∑

j=1

xjYj

∣∣∣∣∣∣
> λ



 = Pr





∣∣∣∣∣∣

d∑

j=1

xj(Xj −X ′j)

∣∣∣∣∣∣
> λ



.
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We first have by p-stability that ∣∣∣∣∣∣

d∑

j=1

xjXj

∣∣∣∣∣∣
d
= ‖x‖p|X̂|

for a p-stable variable X̂ , so there are constants R, p such that

Pr



∣∣∣∣∣∣

d∑

j=1

xjXj

∣∣∣∣∣∣
> R‖x‖p


 = Pr

(
‖x‖p|X̂| > R‖x‖p

)
= Pr

(
|X̂| > R

)
> p.

Next note that X ′j 6 T/c = O(1) so

E

∣∣∣∣∣∣

d∑

j=1

xjX
′
j

∣∣∣∣∣∣
6

√√√√√E

∣∣∣∣∣∣

d∑

j=1

xjX ′j

∣∣∣∣∣∣

2

= E

√√√√
d∑

i=1

d∑

j=1

xixj E[X ′iX
′
j ] =

√√√√
d∑

j=1

x2
j EX

′2
j = O(‖x‖2)

by Jensen’s inequality. Then by Markov’s inequality, with probability at least 1−p/2,
∣∣∣
∑d

j=1 xjX
′
j

∣∣∣ 6
C‖x‖2 for some constant C that depends on p. Then for x such that R‖x‖p > 2C‖x‖2, we have
by a union bound that

Pr





∣∣∣∣∣∣

d∑

j=1

xj(Xj −X ′j)

∣∣∣∣∣∣
>
R

2
‖x‖p



 > Pr





∣∣∣∣∣∣

d∑

j=1

xjXj

∣∣∣∣∣∣
−

∣∣∣∣∣∣

d∑

j=1

xjX
′
j

∣∣∣∣∣∣
>
R

2
‖x‖p



 >

p

2
.

On the other hand, if R‖x‖p < 2C‖x‖2, the argument in Lemma E.20 shows that

Pr



∣∣∣∣∣∣

d∑

j=1

xjYj

∣∣∣∣∣∣
> Ω(‖x‖2)


 = Ω(1)

so the result holds under this case as well.

Proof [Proof of Theorem E.19] The distortion upper bound is just Lemma E.2.

Mass of small entries. Let A = AH + AL as in Definition E.7, with T = O
(
(nd2 log d/r)1/p

)
.

By Lemma E.3, the sizes and mass of all level sets v(k) with entries at most 2k 6 T are con-
centrated around their means up to constant factors with probability at least 1− exp(−Θ(n2−kp)).
Thus by a union bound over d columns j and level sets 0 6 k 6 log2 T , with probability at least

1− d
log2 T∑

k=0

exp
(
−Θ(n2−kp)

)
> 1− d exp(−Θ(log d)) = 1− 1

poly(r/d2 log d)

we have for all j ∈ [d] and 0 6 k 6 log2 T that

‖(Aej)(k)‖0 = Θ(n2−kp) ‖(Aej)(k)‖1 = Θ(n2k(1−p))

Then

‖ALej‖1 6
log2 T∑

k=0

‖(Aej)(k)‖1 = O(n).
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Mass of large entries. Furthermore, let B′ be the subset of rows of AH given by Lemma E.11
that are hashed to locations without any other rows of AH . Recall also τ1 and τ2 from the lemma.

We first have that ‖SB′x‖1 = Ω(‖AHx‖1) since the rows containing entries larger than τ1

are perfectly hashed, while rows containing entries between τ2 and τ1 are preserved up to constant
factors.

Let B′ = B′>T + B′6T where B′>T contains the entries of B′ that have absolute value greater
than T and B′6T contains the rest of the entries. Note then that B′>T has at most one nonzero entry
per row, and B′6T has at most O(d · r/d log d) = O(r/ log d) nonzero entries and thus by Lemma
E.4, ‖B′6T ‖∞ 6 O(r1/p) with probability at least 0.99. We condition on this event. Then for all x,

‖SAHx‖1 > ‖SB′x‖1
> ‖SB′>Tx‖1 − ‖SB′6Tx‖1

=
d∑

j=1

|xj |‖B′>Tej‖1 − ‖SB′6Tx‖1 B′>Tej have disjoint support

>
d∑

j=1

|xj |
log2 τ1∑

k=log2 τ2

2kΘ(n/2kp)− ‖B′6Tx‖1 Lemmas E.11 and E.2

= Ω

(
r

d2 log d
(nd2 log d/r)1/p

)
‖x‖1 −O(r)‖B′6T ‖∞‖x‖1 Hölder’s inequality

= Ω
(

(r/d2 log d)1−1/pn1/p
)
‖x‖1 −O(r1+1/p)‖x‖1

= Ω((r/d2 log d)1−1/pn1/p)‖x‖1.

Conclusion. On the other hand, by Lemma E.14, the mass of the O(r/d log d) rows that are
hashed together with the rows of AH have mass at most

O

(
1√

log d

n1/p

(r/d2 log d)1/p−1

)
‖x‖1 = o

(
(r/d2 log d)1−1/pn1/p

)
‖x‖1.

Then,

1

κ
>
‖SAx‖1
‖Ax‖1

>
‖SAHx‖1 − ‖SC1x‖1
‖AHx‖1 + ‖ALx‖1

>
Ω(‖AHx‖1 + (r/d2 log d)1−1/pn1/p)‖x‖1

O(‖AHx‖1 + n)‖x‖1
> Ω

((
(r/d2 log d)

n

)1−1/p
)
.

I.1. Proofs for Section E.5

Proof [Proof of Lemma E.20] For the upper bound, we have by Jensen’s inequality that

E
v∼Dd

|〈v,x〉| 6
√

E
v∼Dd

|〈v,x〉|2 =

√√√√
d∑

j=1

x2
j Ev2

j = O(‖x‖2).
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We now focus on the lower bound.
Let M = O(1) be the median of D. We define w to be the truncation of v at M , that is, wi = 0

if |vi| > M and wi = vi otherwise. Then by (Vershynin, 2018, Lemma 6.1.2),

E|〈v,x〉| > E|〈w,x〉|

so it suffices to bound E|〈w,x〉| instead.
Note that

E|〈w,x〉|2 =

d∑

i=1

d∑

j=1

E(wixiwjxj) =

d∑

j=1

x2
j Ew2

j = Ω(‖x‖22)

and

E|〈w,x〉|4 =

d∑

j=1

x4
j Ew4

j + 3

d∑

j 6=k
x2
jx

2
k E(w2

jw
2
k) 6 O(‖x‖44 + ‖x‖42) = O(‖x‖42)

so by the Paley-Zygmund inequality,

Pr
(
|〈w,x〉| >

√
λ
√
E|〈w,x〉|2

)
= Pr

(
|〈w,x〉|2 > λE|〈w,x〉|2

)
> (1−λ)2 (E|〈w,x〉|2)2

E|〈w,x〉|4 = Ω(1).

Thus |〈w,x〉| = Ω(‖x‖2) with constant probability and thus E|〈w,x〉| = Ω(‖x‖2), as desired.

Proof [Proof of Lemma E.21] Let X := 〈v,x〉. We have

Pr(¬Ei) = B−p 6
ε

d

so by the union bound,

Pr(E) > 1−
d∑

i=1

Pr(¬Ei) = 1− dPr(¬E1) = 1− ε.

For B large enough, we have by the layer cake theorem that

E
Y∼D

(|Y | | |Y | > B) 6
1

Pr(|Y | > B)

∫ ∞

B
O(xp) dx =

1

Ω(B−p)
O(B1−p) = O(B)

since p > 2 > 1. Then,

E(|X| | ¬E) 6
d∑

i=1

E(|vixi| | ¬E)

=
d∑

i=1

E(|vixi| | ¬Ei,¬E)Pr(¬Ei | ¬E) + E(|vixi| | Ei,¬E)Pr(Ei | ¬E)

6
d∑

i=1

O(B)|xi|
1

d
+O(|xi|)

6 O(B + d)‖x‖1.
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We then have

E|X| = E(|X| | E)Pr(E) + E(|X| | ¬E)Pr(¬E) 6 E(|X| | E) +O(B + d)‖x‖1 Pr(¬E).

Since E|X| = Ω(‖x‖2) = Ω(‖x‖1/
√
d) by Lemma E.20,

O(B + d)‖x‖1 Pr(¬E) = O(B + d)‖x‖1
1

Bp
6 O(ε)E|X|

by our choice of B. We thus have

E|X| 6 E(|X| | E) +O(ε)E|X|

so
E(|X| | E) > (1−O(ε))E|X|.
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