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Abstract

This paper concerns the a priori generalization analysis of the Deep Ritz Method (DRM) [W. E and
B. Yu, 2017], a popular neural-network-based method for solving high dimensional partial differen-
tial equations. We derive the generalization error bounds of two-layer neural networks in the frame-
work of the DRM for solving two prototype elliptic PDEs: Poisson equation and static Schrédinger
equation on the d-dimensional unit hypercube. Specifically, we prove that the convergence rates
of generalization errors are independent of the dimension d, under the a priori assumption that the
exact solutions of the PDEs lie in a suitable low-complexity space called spectral Barron space.
Moreover, we give sufficient conditions on the forcing term and the potential function which guar-
antee that the solutions are spectral Barron functions. We achieve this by developing a new solution
theory for the PDEs on the spectral Barron space, which can be viewed as an analog of the classical
Sobolev regularity theory for PDEs.

Keywords: Neural Networks, Partial Differential Equations, Generalization, Regularity, Barron
Space.

1. Introduction

Numerical solutions to high dimensional partial differential equations (PDEs) have been a long-
standing challenge in scientific computing. The impressive advance of deep learning has offered
exciting possibilities for algorithmic innovations. In particular, it is a natural idea to represent so-
lutions of PDEs by (deep) neural networks to exploit the rich expressiveness of neural networks
representation. The parameters of neural networks are then trained by optimizing some loss func-
tions associated with the PDE. Natural loss functions can be designed using the variational struc-
ture, similar to the Ritz-Galerkin method in classical numerical analysis of PDEs. Such method is
known as the Deep Ritz Method (DRM) (E and Yu, 2018; Khoo et al., 2019). Methods in a similar
spirit has been also developed in the computational physics literature (Carleo and Troyer, 2017) for
solving eigenvalue problems arising from many-body quantum mechanics, under the framework of
variational Monte Carlo method (McMillan, 1965). Despite wide popularity and many successful
applications of the DRM and other approaches of using neural networks to solve high-dimensional
PDEs, the analysis of such methods is scarce and still not well understood. This paper aims to
provide an a priori generalization error analysis of the DRM with dimension-explicit estimates.

Generally speaking, the error of using neural networks to solve high dimensional PDEs can be
decomposed into the following parts:
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* Approximation error: the error of approximating the solution of a PDE using neural networks;

* Generalization error: this refers to the error of the neural network-based approximate solution
on predicting unseen data. The variational problem involves integrals in high dimension,
which can be expensive to compute. In practice Monte Carlo methods are usually used to
approximate those high dimensional integrals and thus the miminizer of the surrogate model
(known as empirical risk minimization) would be different from the minimizer of the original
variational problem;

* Training (or optimization) error: this is the error incurred by the optimization algorithm used
in the training of neural networks for PDEs. Since the parameters of the neural networks are
obtained through an optimization process, it might not be able to find the best approximation
to the unknown solution within the function class.

Note that from a numerical analysis point of view, these errors already appear for conventional
Galerkin methods. Indeed, taking finite element methods for example, the approximation error is
the error of approximating the true solution in the finite element space; the generalization error can
be seen as the discretization error caused by numerical quadrature of the variational formulation;
the optimization error corresponds to the computational error in the conventional numerical PDEs
due to the inaccurate resolution of linear or nonlinear finite dimensional discrete system. Although
classical numerical analysis for PDEs in low dimensions has formed a relatively complete theory
in the last several decades, the error analysis of neural network methods is much more challenging
for high dimensional PDEs and requires new ideas and tools. In fact, the three components of error
analysis highlighted above all face new difficulties.

For approximation, as is well known, high dimensional problems suffer from the curse of di-
mensionality, if we proceed with standard regularity-based function spaces such as Sobolev spaces
or Holder spaces as in conventional numerical analysis. In fact, even using deep neural networks,
the approximation rate for functions in such spaces deteriorate as the dimension becomes higher; see
(Yarotsky, 2017, 2018). Therefore, to obtain better approximation rates that scale mildly in the large
dimensionality, it is natural to assume that the function of interest lies in a suitable smaller function
space which has low complexity compared to Sobolev or Holder spaces so that the function can
be efficiently approximated by neural networks in high dimensions. The first function class of this
kind is the so-called Barron space defined in the seminal work Barron (1993); see also (Bach, 2017;
Klusowski and Barron, 2018; E et al., 2019; Siegel and Xu, 2020a,b) for more variants of Barron
spaces and their neural-network approximation properties. In the present paper we will introduce a
discrete version of Barron’s definition of such space using the idea of spectral decomposition and
because of this we adopt the terminology of spectral Barron space following (Siegel and Xu, 2020b;
E et al., 2020) to distinguish it from the other versions. As the Barron spaces are very different from
the usual Sobolev spaces, for PDE problems, one has to develop novel a priori estimates and corre-
spondingly approximation error analysis. In particular, a new solution theory for high dimensional
PDEs in those low-complexity function spaces needs to be developed. This paper makes an initial
attempt in establishing a solution theory in the spectral Barron space for a class of elliptic PDEs.

The analysis of the generalization error is also intimately related to the function class (e.g.
neural networks) we use, in particular its complexity. This makes the generalization analysis quite
different from the analysis of numerical quadrature error in an usual finite element method. We
face a trade-off between the approximation and generalization: To reduce the approximation error,
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one would like to use an approximation ansatz which involves large number of degrees of freedom,
however, such choice will incur large generalization error.

The training of the neural networks also remains to be a very challenging problem since the
associated optimization problem is highly non-convex. In fact, even under a standard supervised
learning setting, we still largely lack understanding of the optimization error, except in simplified
setting where the optimization dynamics is essentially linear, see e.g., (Jacot et al., 2018; Chizat
et al., 2019; Ghorbani et al., 2019). The analysis for PDE problems would face similar, if not
severer, difficulties, and it is beyond the scope of our current work.

In this work, we provide a rigorous analysis to the approximation and generalization errors of
the DRM for high dimensional elliptic PDEs. We will focus on relative simple PDEs (Poisson
equation and static Schrddinger equation) to better convey the idea and illustrate the framework,
without bogging the readers down with technical details. Our analysis, as already suggested by the
discussions above, which is based on identifying a correct functional analysis setup and developing
the corresponding a priori analysis and complexity estimates, will provide dimension-independent
generalization error estimates.

1.1. Related Works

Several previous works on analysis of neural-network based methods for high-dimensional
PDEs focus on the aspect of representation, i.e., whether a solution to the PDE can be approxi-
mated by a neural network with quantitative error control; see e.g., (Grohs et al., 2018; Hutzenthaler
etal., 2020). Fixing an approximation space, the generalization error can be controlled by analyzing
complexity such as covering numbers, see e.g., (Berner et al., 2020) for a specific PDE problem.

More recently, several papers (Shin et al., 2020a; Mishra and Molinaro, 2020; Shin et al., 2020b;
Luo and Yang, 2020) considered the generalization error analysis of the physics informed neural
network (PINNs) approach based on residual minimization for solving PDEs (Lagaris et al., 1998;
Raissi et al., 2019). In particular, the work (Shin et al., 2020a) established the consistency of the
loss function such that the approximation converges to the true solution as the training sample
increases under the assumption of vanishing training error. For the generalization error, Mishra and
Molinaro (Mishra and Molinaro, 2020) carried out an a-posteriori-type generalization error analysis
for PINNSs, and proved that the generalization error is bounded by the training error and quadrature
error under some stability assumptions of the PDEs. To avoid the issue of curse of dimensionality
in quadrature error, the authors also considered the cumulative generalization error which involves
a validation set. The paper (Shin et al., 2020b) proved both a priori and a posterior estimates for
residual minimization methods in Sobolev spaces. The paper (Luo and Yang, 2020) obtained a
priori generalization estimates for a class of second order linear PDEs by assuming (but without
verifying) that the exact solutions of PDEs belong to a Barron-type space.

Different from the previous generalization error analysis, we derive a priori and dimension-
explicit generalization error estimates under the assumption that the solutions of the PDEs lie in
the spectral Barron space that is more aligned with (Barron, 1993). More importantly, we justify
such assumption by developing a novel solution theory in the spectral Barron space for the PDEs of
consideration. This regularity theory is one of the main contributions of our work, which separates
our results with the above mentioned ones. A similar regularity theory has been established in Lu
and Lu (2021) for the ground state of the Schrodinger operator.
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It is worth mentioning that in the very recent preprints E and Wojtowytsch (2020) and Chen et al.
(2021), the authors considered the regularity theory of high dimensional PDEs defined on the whole
space in the Barron space introduced by (E et al., 2019). Their results shared a similar spirit as our
analysis of PDE regularity theory in the spectral Barron space (see Theorem 5), while we focus on
PDEs on finite domain, and as a result, we have to develop different Barron function spaces from
those used for the whole space. The authors of (E and Wojtowytsch, 2020) also provided some
counterexamples to regularity theory for PDE problems defined on non-convex domains, while we
would only focus on simple domain (in fact hypercubes) in this work.

While we focus on the variational principle based approach for solving high dimensional PDEs
using neural networks, we note that many other approaches have been developed, such as the deep
BSDE method based on the control formulation of parabolic PDEs (Han et al., 2018), the deep
Galerkin method based on the weak formulation (Sirignano and Spiliopoulos, 2018), methods based
on the strong formulation (residual minimization) such as the PINNs (Lagaris et al., 1998; Raissi
et al., 2019), the diffusion Monte Carlo type approach for high-dimensional eigenvalue problems
(Han et al., 2020), just to name a few. It would be interesting future directions to extend our analysis
to these methods.

1.2. Our Contributions

We analyze the generalization error of two-layer neural networks for solving two prototype
elliptic PDEs in the framework of DRM. Specifically we make the following contributions:

* We define a spectral Barron space 3°(£2) on a d-dimensional unit hypercube 2 = [0, 1]¢ that
extend the Barron’s original function space (Barron, 1993) from the whole space to bounded
domain; see the definition in (10). In the generalization theory we develop, we assume that
the solutions lie in the spectral Barron space.

» We show that the spectral Barron functions in B2(£2) can be well approximated in H!-norm
by two-layer neural networks with either ReLLU or Softplus activation functions without curse
of dimensionality. Moreover, the parameters (weights and biases) of the two-layer neural
networks are controlled explicitly in terms of the spectral Barron norm. The bounds on the
neural-network parameters play an essential role in controlling the generalization error of the
neural nets. See Theorem 2 (and also Theorem 17 in Appendix B.3) for the approximation
results.

* We derive generalization error bounds of the neural-network solutions for solving Poisson
equation and the static Schrodinger equation under the assumption that the solutions belong
to the Barron space B%(£2). We emphasize that the convergence rates in our generalization
error bounds are dimension-independent and that the prefactors in the error estimates depend
at most polynomially on the dimension and the Barron norms of the solutions, indicating that
the DRM overcomes the curse of dimensionality when the solutions of the PDEs are spectral
Barron functions. See Theorem 3 for the generalization results.

* Last but not the least, we develop new well-posedness theory for the solutions of Poisson and
static Schrodinger equations in the spectral Barron space, providing sufficient conditions to
verify the earlier assumption on the solutions made in the generalization analysis. The new
solution theory can be viewed as an analog of the classical PDE theory in Sobolev or Holder
spaces. See Theorem 5 for the new solution theory in spectral Barron space.
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1.3. Notation

We use |z, to denote the p-norm of a vector z € R%. When p = 2 we write |z| = |z]».

2. Set-Up and Main Results

2.1. Set-Up of PDEs

Let Q = [0,1]¢ be the unit hypercube on R?. Let 92 be the boundary of 2. We consider
the following two prototype elliptic PDEs on €2 equipped with the Neumann boundary condition:
Poisson equation

Au=fon0, 2 _gonon (1)
v
and the static Schrédinger equation
ou
—Au+Vu= fon(, 6—:00n69. (2)
v

Throughout the paper, we make the minimal assumption that f € L?(Q2) and V € L>(12) with
V(z) > Viin > 0, although later we will impose stronger regularity assumptions on f and V.
In particular, in our high dimensional setting, we would certainly need to restrict the class of f
and V, otherwise just prescribing such general functions numerically would already incur curse of
dimensionality. The well-posedness of the solutions to the Poisson equation and static Schrodinger
equation in the Sobolev space H'({2) as well as the variational characterizations of the solutions are
standard and are summarized in the proposition below, whose proof is provided in Appendix E.

Proposition 1 (i) Assume that f € L*(Q) with fQ fdx = 0. Then there exists a unique weak
solution uy, € HL(Q) := {u € H'(Q) | Joudx = 0} to the Poisson equation (1). Moreover, we
have that

up = argmin Ep(u) := arg min / \Vul|?dz + = / ud:v / fudac 3)
ueH1(2) u€HL(Q)

and that for any u € H(Q),
2(£(w) = E(up)) < |lu — upllip () < 2max{2Cp +1,2}(E(u) — E(up)), 4)

where C'p is the Poincaré constant on the domain §, i.e., foranyv € H 1(Q),
2 2
o~ /dexHLQ(Q) < CplIVol2a0,

(ii) Assume that f,V € L*°(Q) and that 0 < Viyin < V() < Vipax < oo for all x € ) and
some constants Viyin and Viyax. Then there exists a unique weak solution ug € H 1(Q) to the static
Schrodinger equation (2). Moreover, we have that

ug = argmin Eg(u) = argmln / |Vu|? + Vi]ul? dz — / fud:n (5)
u€HL(Q) ueH(Q

and that for any u € H'(Q)

2 2

(E) = £03) <~ 'l < g 7 @)~ E63). ©

max(1, Vijax)
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The variational formulations (3) and (5) are the basis of the DRM (E and Yu, 2018) for solving
those PDEs. The main idea is to train neural networks to minimize the (population) loss defined
by the Ritz energy functional £. More specifically, let 7 C H'(Q) be a hypothesis function class
parameterized by neural networks. The DRM seeks the optimal solution to the population loss £
within the hypothesis space F. However, the population loss requires evaluations of d-dimensional
integrals, which can be prohibitively expensive when d > 1 if traditional quadrature methods were
used. To circumvent the curse of dimensionality, it is natural to employ the Monte Carlo method
for computing the high dimensional integrals, which leads to the so-called empirical loss (or risk)
minimization.

2.2. Empirical Loss Minimization

Let us denote by Pq the uniform probability distributions on the domain {2. Then the loss
functional £p and £g can be rewritten in terms of expectations under Pq, as

Ep(u) = 10 By [ 5[ Vu(X)P ~ F(X)u(X)] + 3 (19]- Bxoppu(X))
£5(u) = 9] Bxpy [5IVu(X) + SV OO — F(X)u(X)].

To define the empirical loss, let {X; }’]?:1 be an i.i.d. sequence of random variables distributed
according to Pq. Define the empirical losses &, p and &, g by setting

f:n,pw):fz[\m (Awut? - 0] + (25 )

Ens(u) = fz[\m (5IVuX) + SV () ~ F(Xu(X))) ]

(N

Given an empirical loss &, the empirical loss minimization algorithm seeks w,, which minimizes
En,ie.

Uy, = argmin &, (u). (8)
ueF

Here we have suppressed the dependence of u,, on F. We denote by u, p and u, g the minimal
solutions to the empirical loss &, p and &, g, respectively.

2.3. Main Results

The goal of the present paper is to obtain quantitative estimates for the generalization error be-
tween the minimal solution u,, s and u, p computed from the finite data points {X } ', and the
exact solutions when the spacial dimension d is large. Our primary interest is to derlve such esti-
mates which scales mildly with respect to the increasing dimension d. To this end, it is necessary
to assume that the true solutions lie in a smaller space which has a lower complexity than Sobolev
spaces. Specifically we will consider the spectral Barron space defined below via the cosine trans-
formation.

Let € be a set of cosine functions defined by

C:= {q)k}keNd = {ﬁ cos(mkix;) | ki € Ng}. )
0 i=1
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Givenu € L*(Q), let {a(k)} reng be the expansion coefficients of v under the basis {Pr} keng- Let
us define for s > 0 the spectral Barron space B°(£2) on §2 by

B5(Q) = {ueLl(Q): 3 (14 wkf) k) <oo}. (10)
keNgd

The spectral Barron norm of a function v on B*(€2) is given by

lullge@) = Y (1+7°[k[)lack).
keNg

Observe that a function f € B*(?) if and only if {@(k)},cna belongs to the weighted '-space
Gy, (NZ) on the lattice N& with the weights W(k) = (1 + 7°|k|{). When s = 2, we adopt the
short-hand notation B(€2) for B2(2). Our definition of spectral Barron space is strongly motivated
by the seminar work Barron (1993) and other recent works (Bach, 2017; Klusowski and Barron,
2018; E et al., 2019; Siegel and Xu, 2020a). The original Barron function f in (Barron, 1993) is
defined on the whole space R? whose Fourier transform f(w) satisfies that [ |f(w)||w|dw < co.
Our spectral Barron space B*({2) with s = 1 can be viewed as a discrete analog of the original
Barron space from (Barron, 1993).

The most important property of the Barron functions is that those functions can be well approxi-
mated by two-layer neural networks without the curse of dimensionality. To make this more precise,
let us define the class of two-layer neural networks to be used as our hypothesis space for solving
PDEs. Given an activation function ¢, a constant B > 0 and the number of hidden neurons m, we
define

m m
Fom(B)i= {43 vl o —t), |l < 2B, Jwih = L1t < 1Y |l <4B}. (D)
i=1 i=1

In the present paper, we mainly consider solving the PDEs within the hypothesis space Fy ,,,(B)
with a special Softplus (Dugas et al., 2001; Glorot et al., 2011) activation function. Recall the
Softplus function SP(z) = In(1 + e?) and its rescaled version SP(z) defined also for 7 > 0,

1 1
SP-(z) = =SP(7z) = —In(1 + €7%).
T T

In is important to observe that the rescaled Softplus SP(z) can be viewed as a smooth approxi-
mation of the ReLU function since SP,(z)—ReLU(z) as 7—0 for any z € R (see Lemma 20 for
a quantitative statement). The Softplus activation function is smooth and hence more suitable for
PDE applications which involve derivatives, compared with ReLU.

Our first result concerns the approximation of spectral Barron functions in B(€2) by two-layer
neural networks with the activation function SP .

Theorem 2 Define the function class Fsp, m(B) by setting ¢ = SP, in (11). Then for any u €
B(Q), there exists a two-layer neural network u, € Fsp, m(|[ul pq)) with activation function SP,
with T = \/m, such that

< llull 5 (6 log m + 30)
lu = umllg (o) < Jm .
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The proofs of Theorem 2 can be found in Section B. A similar approximation result was first proved
in the seminar paper Barron (1993) where the same approximation rate O(mfé) was also obtained
when approximating the Barron function defined on the whole space with two-layer neural nets with
the sigmoid activation function in the L°°-norm.

Now we are ready to state the main generalization results of two-layer neural networks for
solving Poisson and the static Schrodinger equations.

Theorem 3 (i) Let u}, solve the Poisson equation (1) with ||up|lp) < oo. Let uy'g be the
minimizer of the empirical loss £, p in the set F = Fsp, m(||upllp)) with 7 = /m. Then it
holds that

Civ/m(y/logm + 1) N Ca(logm + 1)?
vn m '

Here Cy > 0 depends polynomially on ||up| gy, d, || f|| Lo (), and Co > 0 depends quadratically
on |[upl|p)-

(ii) Let ug solve the static Schrodinger equation (2) with [|ug|p) < co. Let uy'g be the
minimizer of the empirical loss £, s in the set F = Fsp, m(||ugllg)) with T = \/m. Then it holds

that
m . C Viogm +1)  Cy(logm + 1)?

Here C3 > 0 depends polynomially on ||ug| 5, d, ||fllze (@), |V ze() and Cy > depends
quadratically on ||u§|| g(q)-

E[Ep(u)p) — Ep(up)] < (12)

(13)

1
Remark 4 By setting m = n3 in Theorem 3 and thanks to the equivalent estimates on H'-error
and the energy excess as shown in Proposition 1, one obtains for some constant Cs > 0 that

2
< C5(loslg n) .

ns3

max {EHunm - u*H%n(Q), E[E(uy) — E(u")] }

n

where uy;' denotes the neural network solution u,' p (or u;"'g), u* denotes the exact solution up (or
ug) and & denotes the Ritz loss Ep (or Eg).

Theorem 3 shows that the convergence rates of the generalization errors of the neural-network
solution for Poisson and the static Schrodinger equations do not suffer from the curse of dimension-
ality under the key assumption that their exact solutions belong to the spectral Barron space 5(2)
(which will be justified below). A proof sketch of Theorem 3 can be found in Section 3.1 and the
detailed proof is deferred to Appendix C.

We also comment that one can obtain high-probability versions of the generalization bounds
in Theorem 3 by utilizing a PAC-type generalization analysis via the Rademacher complexity (see
e.g. (Shalev-Shwartz and Ben-David, 2014, Theorem 26.5)). We refer the interested reader to our
companion paper Lu and Lu (2021) for a high-probability generalization bound of a neural network
method for solving the Schrodinger eigenvalue problem.

Finally we verify the key low-complexity assumption by establishing a new well-posedness
theory for Poisson and the static Schrddinger equations in spectral Barron spaces.
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Theorem 5 (i) Assume that f € B5() with s > 0 and fo = Jo f(z)dx = 0. Then the solution
u’ of Poisson equation satisfies that u} € B¥72(Q) and that

luplls+2() < 2[fllBs (-

In particular, when s = 0 we have ||up || gy < 2[|fllpoq)-
(ii) Assume that f € B*(Q2) with s > 0 and V' € B*(Q2) with V(x) > Viin > 0 for every
x € R Then the solution ug of the static Schrodinger problem (2) satisfies that u € B*+2(Q) and
that
[usllBst2() < Csll fllBs()- (14)

In particular, when s = 0 we have ||ug ) < Csl| fllo(q)-

The a priori estimates above can be viewed as analogs of the standard Sobolev regularity estimate
[l grs+2() < Clfllms()- In contrast to the standard proof of Sobolev regularity of PDEs, based
on bootstrapping the weak derivative estimates of the solution, Theorem 5 is proved by showing that
cosine coefficients 4 of the solutions lie in the weighted ¢! space associated to the Barron space.
The proof ideas are sketched in Section 3.2 and the full proof can be found in Appendix D.2.

3. Proof Sketch of Main Results
3.1. Proof Sketch of Theorem 3

We start with useful abstract generalization error bounds for the empirical loss minimization.
Abstract Generalization Error Bound. To simply the notation, we suppress the problem-dependent
subscript P or S and denote by wu,, the minimizer of the empirical loss &, over the hypothesis
space JF. Recall that u* is the exact solution of the PDE. We aim to bound the energy excess
A&, = E(uy) — E(u*). By definition we have that AE,, > 0. To bound AE,, from above, we first
decompose AE,, as

AE, = E(up) — Enun) + En(un) — En(ur) + En(ur) — E(ur) + E(ur) — E(u™). (15)

Here ur = argmin, ¢z £(u). Since w,, is the minimizer of &,, &, (uy,) — Ey(ur) < 0. Therefore
taking expectation on both sides of (15) gives

EAE, < E[E(upn) — En(un)] +E[&(ur)] — E(ur) +E(ur) — E(u¥). (16)
A&gen Apias A&approx

Observe that A, and A&y, are the statistical errors: the first term A&, describing the gener-
alization error of the empirical loss minimization over the hypothesis space F and the second term
A&pias being the bias coming from the Monte Carlo integration. Whereas the third term A&, pprox 1S
the approximation error incurred by restricting minimizing £ from over the set H'(§2) to F. Thanks
to Proposition 1, the third term A&pprox is equivalent (up to a constant) to inf,c 7 [Ju — u* ||12L11 Q-
To control the statistical errors, it is essential to bound the Rademacher complexities of certain PDE-
dependent function classes. Recall for a set of random variables {Z; };‘:1 independently distributed
according to Pg and a function class S the Rademacher complexity
1 n
Ru(S) := EZE, [sup - Zajg(zj)‘ ‘ Zn,- - ,Zn},

n
geSs j=1
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where the expectation E, is taken with respect to the independent uniform Bernoulli sequence
{o;}7_1 with o; € {+1}. Define the following two function classes that are closely associated to
the variational forms of the Poisson and static Schrodinger equations.

1
gp:= {g QR | g= i\VuIQ — fu where u € .7-"},
an
1 1
Gg := {g QR | g = §|Vu|2 + 5V|u]2 — fu where u € }'}.

Let u, p (or u, g) be the minimizer of the empirical risk &, p (or &, g) within the hypothesis class
F, and for E = PorS, let us denote AE, g = Ep(un,r) — Ep(u};). The following lemma
summarizes abstract generalization error bound for the energy excess A&, for the two equations,
whose proof can be found in Appendix A.

Lemma 6 Assume that sup,,c r ||ul| Lo (@) < 00. Then we have that
1. .
EAE,p < 2R (Gp) + 45up [|ull (@) - Rn(F) + 5 inf [lu—u ey (18)
ueF ueF
1, .
EAEs < 2Rn(Gs) + 5 inf [lu — "7 ). (19)

Bounding the Rademacher Complexity Recall the set of two-layer nets Fgp_ ,,,(B) defined by
setting ¢ = SP,. We also define the corresponding function classes Gsp, m, p(B) and Gsp, m.s(B)
by replacing F by Fsp, m(B) in (17). According to Lemma 6, to bound the generalization error
bound (in terms of the energy excess), it is essential to bound the Rademacher complexities of
Fsp, m(B),Gsp, m,p(B) and Gsp, m p(B). The next lemma states a bound for R,,(Fsp, m(B)).
16(1+vd+22)p
TV

The proof of Lemma 7 follows from the contraction principle of the Rademacher complexity. In

fact, thanks to the fact that SP, is 1-Lipschitz, bounding the complexity of Fgp, ,,,(B) can be
reduced to bounding that of suitable affine functions. See a detailed proof in Appendix C.1.

Lemma 7 Forany T > 0,B > 0, it holds that R, (Fsp, m(B)) <

Theorem 8 Assume that || f|| ) < F and ||V|| L) < Vinax. Consider the sets Gsp, m,p(B)
and Gsp, m.s(B) with T = \/m. Then there exist positive constants Cp(B, d, F') and Cs(B, d, F, Vinax)
depending polynomially on B, d, F, Vi,ax such that

< Cp(B,d, F)y/m(y/logm + 1)

R, (Gsp, m,p(B)) < NG , (20)
Cq(B,d, F, Viax V1 1
Rn<gSPT7m7S(B))§ S( y Wy L7y \)/%/m( Ogm+ ) (21)

Proof [Proof Sketch of Theorem 8] We will only sketch the key steps for proving the bound on
R, (Gsp, m,p(B)) and refer a detailed proof to Appendix C.2; The same proof strategy carries over
to bounding R, (Gsp, m,s(B)).
Step 1. Decomposing the set Gsp, ,,, p(B). Let us define two sets of functions
1
gépﬁm(B) ={g: Q—=R|g= §|Vu\2 where v € Fsp, m(B)},

ggpﬁm(B) ={g: Q=R |g= fuwhere u € Fsp, ,,(B)}.

10
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Then it is clear that R,,(Gsp, m,p(B)) < Ru(Gsp. (B)) + Ru(Gép. ,n(B)).

Step 2. Bounding R,,(Gp._,,(B)) and R,,(Ggp._,,(B)). The idea is to bound the Rademacher
complexity in terms of the metric entropy by using the following celebrated Dudley’s theorem Dud-
ley (1967). We present below a restatement of the theorem from (Wolf, 2020, Theorem 1.19).
Theorem 9 (Dudley’s theorem (Wolf, 2020, Theorem 1.19)) Let F be a function class such that
supser || fllco < M. Then the Rademacher complexity Ry, (F) satisfies that

R < nt {14 22 [0 Viog NG F T o)
" ~ 0<6<M Vvn Js o = ’

where N (e, F, || - ||so) denotes the e-covering number of F w.r.t the Loo-norm.

Now we apply Dudley’s theorem to bound the §-covering number of the set gépT’m(B) and due
to page limit we omit the same process applied to the other set ggpﬁm(B). To construct a cover
of gépﬁm(B), we build covers of the parameter space. Specifically, we consider the larger set
© = [-2B,2B] x B*(4B) x (B¢(1))™ x [~1,1]™ containing the parameter space associated to
(11). The set © is endowed with the metric p defined for = (¢, v,w,t),0’ = (¢, 7, w',t') € ©
by pe(0,0') = max{|c — |, |y — v'|1, max; |w; — wi|1, |t — t’|oc}. It can be shown (see the proof
of Lemma 28 in Appendix C.2) that for any ug, upr € Fsp, m(B).
5 s [[[Vugl? = [Vug () < A1 (6,0
0,0'c©

where A1 < 32B%/m + 4B. This particularly implies that A'(5, G} | || - [|o0) < ./\/(A%, 0, po). In
addition, thanks to Proposition 27 in Appendix C.2,

N 0 4BA1 IQBAl m 3A N dm 3A\m
e () (5 (F)
Combining the last two estimates with the Dudley’s theorem yields that Ry, (Gp_ m(B)) < Ci(B,d)

v/ mk’%. It follows from similar arguments that Rn(ggpﬁm(B)) < Cy(B,d, F),/". Here the

constants C1(B,d) and Co(B,d, F) depend at mostly polynomially on the parameters B, d, F'.
Combining the last two estimates proves the estimate (20). |

Proof [Proof of Theorem 3] We only present the proof of Part (i), Theorem 3 since Part (ii)
can be done in the same manner. First from the definition of Fgp, ,,(B), one can obtain that
SUPue Fp. . (B) l[tllLo(0) < 14B. Then it follows from Lemma 6, Theorem 8, Theorem 2 and
Lemma 7 that

E[Ep(up'p) — Ep(up)] < 2Rn(Gsp,mp) +4  sup  |ullpso(q) - Ru(Fsp,m)
UE-FSPT,m(B)

1
- inf %2
+ 2 uefslli,m(m e = HHl(Q)

- 2Cp(B,d,F)ym(y/logm +1) 4 14-16- BA(Vd+1+ 32) | B%(6logm + 30)?
- Vvn vn 2m

- Crv/m(y/logm + 1) N Ca(logm + 1)?

< T -

where C7 depends polynomially on B, d and F' and C5 depends only quadratically on B. |

)

11
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3.2. Proof Sketch of Theorem 5

The proof of Part (i) is straightforward and can be found in Appendix D.1. The proof of Part (ii)
is more tricky. We only sketch the main idea here and provide the complete proof in Appendix D.2.
In fact, by multiplying @ on both sides of the static Schrodinger equation and then integrating, one
obtains the following equivalent linear system on the cosine coefficients & = {1y} keNd:

|2 [k[ iy, + (V) = fr, k€N (23)
This system of equations can be further rewritten as an operator equation
M+ V) = f or equivalently I+M'V)a = MLf, (24)

where M is an invertible diagonal multiplication operator with (M);, = 72|k|?@y, for k # 0 and
V is a "convolution"-type operator defined by the potential V. In order to show that u € B572(Q),
it suffices to show that the equation (M + V)4 = f has a unique solution & € E%,VS (Ng). In fact,
thanks to the boundedness of V on é%,vs (Ng), it is not hard to show that

[ullgstz) S Mg, vy S lldlley, ovg) + ||f||z5V5(Ng)- (25)
Finally we claim that equation (24) has a unique solution @ € E‘I,VS (Ng) and that for some Cy > 0
Ialley, avay < Coll Flley, ey (26)

To see this, it is important to observe that M~'V is compact on 611% (Ng) (using Lemma 35 in
Appendix D.2), the operator equation T + M~'V is a Fredholm operator on K%,VS (Nd). By the
celebrated Fredholm alternative theorem (see e.g., (Fredholm, 1903) and (Conway, 1990, VII 10.7)),
the operator I + M~!V has a bounded inverse (I +M~'V)~! if and only if (I + M~1V)a = 0 has
a trivial solution. Therefore to prove the bound (26), it suffices to show that (I + M~'V)d = 0
implies 4 = 0. Such uniqueness follows directly from the uniqueness of the Schrodinger problem
(2). The regularity estimate (14) follows by combining (25) and (26).

4. Numerical Experiments

Poisson Equation. Consider the Poisson equation

d
— Au= f(z) = n° Z cos(mxy) (27)
k=1

in the hupercube () subject to a homogeneous Neumann boundary condition. The exact solution
is uh(x) = 9 cos(mxy). We further notice that [ f(x) = 0. Thus, the unique weak solution
up is also the solution to the argmin problem arg min, ¢ g1 () € p(u) according to Proposition 1.
In practice, the empirical loss &, p(u) will be minimized to approximate the PDE solution. u will
be parametrized as a neural network. More specifically, a two-layer neural network is used and
the activation function is taken to be the rescaled softplus function. While the stochastic gradient
descent(SGD) does not guarantee universal optimizer w,,’p, the neural network prediction (denote

12
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Dimension d 2 3 5 10 20 50 100
H'-relative error(%) | 1.04 1.08 1.89 2.09 4.19 5.82 17.59

Table 1: Poisson equation (27): H'-relative error of Ritz prediction ﬁ:ﬁ p (m = 2,000 and n =
100, 000).

by uy'p) can closely approximate the exact solution up for various dimensions through sufficient
training(Table 1). Moreover, we observe that, with fixed n, as m grows, the H'-generalization
error curve of Ritz prediction exhibits the U-shape, which is consistent to our theoretical upper
bound for the error of u,;’, denoted by B p(m) = Cy m(‘/\l;)?ﬂ) + Cy (log TnH)Q (see Theorem
3 and Proposition 1). When comparing with the generalization error, the constants in Bp(m) are
computed to best fit the error data set (Figure 1).

o
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o
o
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H! relative error (%)
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°
8
g

0.002
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5 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Width (m) Width (m)

(a) Solid line: Mean H !-relative error. (b) Mean empirical loss &, p(ﬂﬁf p)-
Dashed line: Bp(m).

Figure 1: Poisson equation (27): H!-generalization error/empirical loss of Ritz prediction v.s width
(m) with n = 100, 000. Activation function: rescaled Softplus.

Schrodinger Equation. Now let us consider the following Schrodinger equation

— Au + <i sin(:ck)> U= (Z sin(mxy) ) (Z cos(mxy > (28)

k=1
in ) subject to the zero Neumann boundary condition. The exact solution is again ug(x) =
Zizl cos(mxy). Similar to last example, we utilize a neural network to solve the minimization
problem arg min, ¢ ;1) € s(u) as defined in Proposition 1 to approximate the solution to the PDE.
In this example, different activation functions are tested. We observe that the neural network solu-
tion provides a good approximation to the solution of the Schrédinger equation for various dimen-
sions (Table 2). We also observe that the curve of H'-generalization error and empirical loss for

Dimension d 2 3 5 10 20 50 100
H'-relative error(%) | 0.95 1.24 3.54 246 5.51 11.70 18.32

Table 2: Schrodinger equation (28): H'-relative error of Ritz prediction Uy's (m = 2,000 and
n = 300, 000). Activation function : rescaled Softplus.

the approximate solution resulted from a cosine neural network also has a U-shape. Its comparison

Cs3+/m(y/logm+1) + Cy(logm+1)2
vn m

with the theoretical upper bound Bg(m) := with fitted constants is

presented in Figure 2.

13
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Figure 2: Schrodinger Equation (28): H'-relative error/empirical loss u'g v.s width (m) with
n = 300, 000. Activation function: cosine.

5. Conclusion and Discussion

We established dimension-independent rates of convergence for the generalization error of the
DRM for solving two simple linear elliptic PDEs under the a priori assumption that the exact solu-
tions lie in the spectral Barron space. Such a priori assumption can be verified using a new solution
theory of the PDEs in the Barron space. We would like to discuss some restrictions of the main
results and point out some interesting future directions.

First, some preliminary numerical experiments show that the convergence rates in our gener-
alization error estimates may not be sharp. In fact, we expect that the approximation error can be
sharpened using two-layer networks with possibly different activation functions and that the sta-
tistical error may also be improved with more delicate Rademacher complexity estimates; those
questions are to be investigated in future work.

We restricted our attention on two simple elliptic problems to better convey the main ideas. It
is natural to consider carrying out similar programs of solving more general PDE problems defined
on general bounded domains. The first major difficulty arises when one comes to the definition of
Barron functions on a general bounded domain and our spectral Barron functions built on cosine
expansions can not be adapted to general domains. Other Barron functions such as the one defined
in (E et al., 2019) via integral representation are on bounded domains and may be considered as
alternatives, but building a solution theory for PDEs in those spaces seems highly nontrivial; see (E
and Wojtowytsch, 2020) for some results and discussions along this direction.

It is also interesting to establish a priori generalization error estimates for other neural network-
based methods for PDEs based on alternative loss functions, such as PINNs (Raissi et al., 2019) and
the weak adversarial networks (Zang et al., 2020).
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Appendix A. Abstract Generalization Error (Proof of Lemma 6)

Let us start with the proof of the abstract generalization error bound (6) for Poisson equation.
To this end, recall the Ritz loss and the empirical loss associated to the Poisson equation

Ep(u) = 10| Bxopy [ Vu(X)P — F(X)u(X)] + £ (19] Bxpgu(X))’
= €' (u) + E2(u),

sn,p<u>=1i[m| (v = £xux)] + 5 (30 uxy))’
j=1

n
=: E'n(u) + Ei(u)
By definition, the bias term A&y, in (16) satisfies that

Apias = B[, (ur)] — €' (ur) + E[E: (ur)] — E2(ur)

B S 00) - Y1 Bt
=& iluf@c]) Bxpur(X)) (iimx )+ Expur(X))]
< Jurllzo) - Bsup \f u(X;) - Bx-pou(X)|

< 2sup [Jul| oo (q) - Rn(}"),
ueEF

where we have used |{2| = 1 the last inequality follows from Lemma 10.

Lemma 10 (Wainwright, 2019, Proposition 4.11) Let F be a set of functions. Then

n

1
E sup - E u(X;) — Exopou(X)| < 2R, (F).
ueF :
J=1

Next we bound the first term A&, in (16). In fact, it follows by Lemma 10 that

A(c/‘gen < Esup SP(U) - gn,P(U)
veF
< Esup [EY(v) — Sé(v)‘ + Esup ’52(11) - S,Ql(v)‘
veF veF
1 2 1 — 2
<Esup|. Zg =Byl + Bsup 5| (Brpu(x)) > u(X;)) |

1 n
< 2R, (Gp) + sup ||ul| L= (q) - Esup ‘* > u(X;) - EXNPQU(X)‘
ueF wer 1M i

<2R,(Gp) +2 sup [[w]] oo (@) B (F).
ue
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Finally owing to the estimate (4) in Proposition 1, the approximation error A&;pprox satisfies that
AE <Lins |u — u*|| 2
approx = o H H(Q):

Therefore inserting the last three estimates into (16) finishes the proof of (6) on the energy excess
A&, p in the case of Poisson equation.

Now we proceed to prove an abstract generalization bound for the static Schrodinger equation.
First recall the corresponding Ritz loss and the empirical loss as follows

£5(u) = 9] Bxp [ IVu(X)P + SV O ~ F(X)u(X)],

£ns() = }jzj 190 (519u()P + SV (G () - F(X)u(x)]

In the Schrodinger case, since the Ritz energy £ is linear with respect to the probability measure
Pq, the statistical errors A€gen and A&y are simpler than those in the Poisson case. In particular,
a similar calculation shows that A&y = 0 and A&gen < 2R, (Gs). Therefore (19) follows from
(16).

Appendix B. Spectral Barron functions on the hypercube and their
H'-approximation (Proof of Theorem 2)

In this section, we discuss the approximation properties two-layer neural networks of spectral
Barron functions on the d-dimensional hypercube defined by (10) as well as their neural network ap-
proximations. Since our spectral Barron functions are defined via the expansion under the following
set of cosine functions:

C= {<I>k}k€Ng = {lel cos(mkx;) | k; € NO},

we start by stating some preliminaries on € and the product of cosines to be used in the subsequent
proofs.

B.1. Preliminary Lemmas

Lemma 11 The set C forms an orthogonal basis of L* () and H'(Q).
Proof First that € forms an orthogonal basis of L?(2) follows directly from the Parseval’s theorem
applied to the Fourier expansion of the even extension of a function u from L?(2). To see C is

an orthogonal basis of H!((2), since C is an orthogonal set of H!(), it suffices to show that if
u € HY(Q) satisfying

(u’ CI)k)Hl(Q) =0
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for all k € N¢, then u = 0. In fact, the last display above yields that
0:/u-<1>kdx+/Vu'V<I>kdx
Q Q
= / u- (P — AdDy)dx
Q
=(1+ 772k|2)/ u - pdr,
Q

where for the second identity we have used the Green’s formula and the fact that the normal deriva-
tive of @y, vanishes on the boundary of 2. Therefore we have obtained that (u, ®x);2 = 0 for any
k € N4, which implies that u = 0 since € is an orthogonal basis of L2(2). |

Givenu € L*(Q), let {a(k)} reng be the expansion coefficients of v under the basis {®p. } ;.-
Then for any u € L%(Q),

u(w) =Y (k) Pp(x).

keNg

Moreover, it follows from a straightforward calculation that for v € H! (),

lalZ gy = 32 an(t + w2 k)lak)P,
keNg

d
where oy, = (@, Pp) 20y = 27 2i=11k#0 < 1. This implies the following characterization of a
function from H*(§2) function in terms of its expansion coefficients under C.

Corollary 12 The space H'(2) can be characterized as

HY(Q) = {u e L2(Q) | 3 Ja(k)P(L+ 72 lk[?) < oo}.
kend

The following elementary product formula of cosine functions will also be useful.
Lemma 13 Forany {6;}¢_, C R,
d 1
Hcos(@i) = %4 Z cos(§ - 0),
i=1 ¢e=
where 0 = (01, ,04)T and = = {1, —1}<.

Proof The lemma follows directly by iterating the following simple identity

cos(01) cos(f2) = = (cos(f1 + 62) + cos(b1 — 62))

I NG

(cos(61 + 02) + cos(61 — 62) + cos(—b1 — 62) + cos(—b + 62)).
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B.2. Spectral Barron Space and Neural-Network Approximation

Recall for any s € N the spectral Barron space B%(2) given by

B5(Q) = {u e L) Y (1 +k)lak)| < oo}

keNgd

with associated norm ||u||zs(q) := ZkeNg(l + 7°|k|3)|a(k)|. Recall also the short notation B(£2)
for B%(Q).

Lemma 14 The following embedding results hold:
(i) B(Y) — HY(Q);
(ii) B°(Q) < L>=(Q).

Proof (i). If u € B(Q2), then [Jul|zq) = ZkeNg(l + 72|k|3)|0(k)| < co. This particularly implies
|a(k)| < ||lullp(o) for each k € N9, Since ay < 1, we have that

lulZ iy = 3 an(1+ 72 kp)lack)
kend

< lulls@) Y A+ kR)lack)
kend

= ||U||%(Q)-

(ii). For u € B%(Q), using the fact that ||| 00 () < 1 we have that

fullzeey = | 32 ak@e, < 3 lalk)] = fullse.
keNd

keNg
|
Thanks to Lemma 11 and Lemma 13, any function « € H'(Q) admits the expansion
. 1
u(z) = Z u(k) - 5 ZCOS(T[’k5 - T), (29)
keNg €e=
where (k) is the expansion coefficient of u under the basis C and k¢ = (k1&1, - -+ , kq&q) € Z2.
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Given u € B(Q) ¢ H'(Q), letting (—1)?*) = sign(a(k)) with (k) € {0, 1}, we have from
(29) that

u(z) = a(0) + Z u(k) - %Zcos(ﬁk‘g - x)

keNd\{0} §e=
A o 1
=a(0)+ Y |a(k)|sign(i(k)) - CF > cos(rke - @)
keNg\{0} Ee=
A . 1
=a(0)+ > a(k)- > > " cos(m(ke - o + 0r))
keNd\{0} §e=2
~ 1 N 2 2 Zu 1
=a(0)+ Y k)| (L + 7Pk -~ - 5g D cos(m (ke - @ + 61))
keNd\{0} §e=2

— a(0) + / o(, K)u(dk),

where p(dk) is the probability measure on N¢ \ {0} defined by

pldk) = Y0 [a)| 1+ 7 k) 6ar)

keNG\{0}
with normalizing constant Z,, = ZkeNg\{o} [a(k)|(1 + 72|k|3) < [Jullpq) and

Zy, 1

B)= — % .
g(ﬂ?, ) 1+772|k7|% 2d

Z cos(m(ke - x4 6)).

£e=

Observe that the function g(z, k) € C2() for every k € N& \ {0}. Moreover, it is straightforward
to show that the following bounds hold:

[ o
Hg('vk)HHl(Q) = Zy W < ||“||B(Q)a

1D%g(+, k)l oo ) < Zu < |Jullpq) for s = 0,1, 2.
Let us define for a constant B > 0 the function class

Feos(B) = {HZW cos(m(k -z + b)), k € Z4\ {0}, |y| < B,b € {0, 1}}.

It follows from the calculations above that if u € B(), then @ := u — @(0) lies in the H!-closure
of the convex hull of Feos(B) with B = ||ul|5(q). Indeed, if {k"}7  is an i.i.d. sequence of random
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samples from the probability measure p, then it follows from Fubini’s theorem that

2

i, 1 ¢ i
E () - = gl b
=1 H* ()
:E/ﬁm— g(z, k' dm+E/ Vi(z) — — Vy(z, kY| da
[0 = o gt RECE SN

1 1
:méw@@mm+méﬁmﬂwwmwx
_ Elg(, k)71 g

m
2
u
_ oy
m

Therefore the expected H'-norm of an average of m elements in F,.s(B) converges to zero as
m—o0o. This in particular implies that there exists a sequence of convex combinations of points in
Feos(B) converging to @ in H'-norm. Since the H'-norm of any function in F.s(B) is bounded
by B, an application of Maurey’s empirical method (see Lemma 16) yields the following theorem.

Theorem 15 Let u € B(Y). Then there exists u,, which is a convex combination of m functions in
Feos(B) with B = ||ul| g(qy such that

HUH%’(Q)
-

lu = @(0) = wm |1 () <
Lemma 16 (Pisier (1981); Barron (1993)) Let u belongs to the closure of the convex hull of a set

G in a Hilbert space. Let the Hilbert norm of of each element of G be upper bounded by B > 0.
Then for every m € N, there exists {g;}" 1 C G and {¢;}["y C [0,1] with ", ¢; = 1 such that

B.3. Reduction from Cosine to ReLU Activation

2 B2
< —.
- m

In this section we aim to show that a similar version of Theorem 15 holds when the cosine
activation function is replaced by ReLU activation. This is stated precisely in the following theorem.

Theorem 17 Consider the class of two-layer ReLU neural networks
m m
Frevum(B) i= { e+ 3 wReLU(ws-a—t), el < 2B, Jwily = 1,6 < 1,3 byl < 4B}. (30)
i=1 i=1
Then for any u € B(S2), there exists uy, € FreLU,m(||ullp)), such that

_ V116]ulls)
|u — UmHHl(Q) > T
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To prove Theorem 17, first notice that every function in Fos(B) is the composition of the one
dimensional function g defined on [—1, 1] by

9(2) cos(m(|k|1z + b)) 31)

__ b
1+ 72|k[3

with k& € Z%\ {0}, |y| < B and b € {0,1}, and a linear function z = w - = with w = k/|k|;. It is
clear that g € C%([—1,1]) and g satisfies that

19| oo (1) < 17 < Bfor s =0, 1,2. (32)
Since b € {0, 1}, it also holds that ¢’(0) = 0.

Lemma 18 Let g € C%([—1,1]) with ||g(8)||Loo([,171D < B fors =0,1,2. Assume that g'(0) = 0.

Let {zj}jzzlo be a partition of [—1,1] with 29 = =1, 2, = 0,22m = land zj11 — z; = h = 1/m
foreach j =0,--- 2m — 1. Then there exists a two-layer ReLU network g, of the form
2m
gm(2) = c+ Y _aReLU(iz — by), 2 € [~1,1] (33)
i=1
withc = g(0),b; € [-1,1] and ¢; € {£1},i =1,--- ,2m such that
2B
19 = gmllwreo(-1,1) < —- (34)
m
Moreover, we have that |a;| < % and that |c| < B.
Proof Let g, be the piecewise linear interpolation of g with respect to the grid {z; }?’:”0, ie.

z — Zj
h
According to (Ascher and Greif, 2011, Chapter 11),

)Zj+1 —Z

Im(2) = 9(zj41) + 9(z; if 2 € [25, zj41]-

h2
19 = gmll oo (=1,1) < §H9"HL<>°([_1,1])-

Moreover, [|g" — gy, [l oo ((=1,1)) < Rllg"|lLee((=1,17)- In fact, consider z € [2;, zj+1] for some j €
{0,---,2m — 1}. By the mean value theorem, there exist £, € (z;, zj+1) such that (g(zj41 —
9(zj)))/h = ¢'(€) and hence

’ 9(zj+1) — 9(2i)
O

g'(z) —4'(¢)
=lg"(n)|lz — ¢
< hllg"ll oo (j=1,1))-

This proves the error bound (34).
Next, we show that g,, can be represented by a two-layer ReLLU neural network. Indeed, it is
easy to verify that g,,, can be rewritten as

m 2m
gm(z) = c+ Z a;ReLU(z; — z) + Z a;ReLU(z — z;_1),z € [-1,1], (35)
=1 i=m+1
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where ¢ = g(z,,) = ¢g(0) and the parameters a; defined by

9(zm=1)=9(zm) if i =
a; = (z.)_Qh(Z. )+7 (re2) le m,
9(1 PEUTTE2 - if i >m+ 1,

g Zi—l)—Qgngi)"l‘g(Zi-!—l)’ ifi < m.

Furthermore, by again the mean value theorem, there exists &1, {2 € (2, Zm+1) such that |a,, 41| =
ld'(&1)] =19/ (&) — ¢’ (0)] = |¢" (&2)&1| < Bh. In a similar manner one can obtain that |a,,| < Bh
and |a;| < 2Bhifi ¢ {m,m + 1}.

Finally, by setting ¢, = —1,0; = —z; fori = 1,--- mand ¢ = 1,b; = z_; fori =
m-+1,---,2m, one obtains the desired form (33) of g,,,. This completes the proof of the lemma. H

The following proposition is a direct consequence of Lemma 18.

Proposition 19 Define the function class
FreLu(B) := {c+ YReLU(w - — ), [e] < 2B, |wh = 1, t| < 1,|y| < 4B}

Then for any constant ¢ such that |¢| < B, the set ¢ + Feos(B) is in the H'-closure of the convex
hull of Freru (B).

Proof First Lemma 18 states that each C2-function g with ¢’(0) = 0 and with up to second order
derivatives bounded by B can be well approximated in H'-norm by a linear combination of a
constant function and the ReLU functions ReLU(ez — ¢) with the sum of the absolute values of
the combination coefficients bounded by 4B. As a result, the function g defined in (31) lies in the
closure of the convex hull of functions ¢ + yReLU(ez — t) with |c| < B,|y| < 4B, |t| < 1. Then
the proposition follows from absorbing the additive constant ¢ into the constant c in the definition
of ]:ReLU (B ) . |

With Proposition 19, we are ready to give the proof of Theorem 17.
Proof [Proof of Theorem 17] Observe that if u € Frer,u(B), then

i) < (c+29)* +47 < (10% + 4%) B = 116 B2,

Therefore Theorem 17 follows directly from Lemma 16, Proposition 19 with ¢ = (0) and the fact
that [i(0)] < [ull5(0). .

B.4. Reduction from ReL.U to Softplus Activation

In this section we aim to prove Theorem 2 by utilizing the approximation Theorem 17. To this
end, let us first state a lemma which shows that ReL'U can be well approximated by SP, for 7 > 1.

Lemma 20 The following inequalities hold:

1
(i) IReLU(2) — SP,(2)| < =e "I, vz € [-2,2];
T
(ii) IReLU’(2) — SP.(2)| < e ™#l, vz € [-2,0) U (0,2];
1
(iii) HSPT||W1,OO([_272]) <3+ e
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Proof Notice that ReLU(z) — SP-(z) = —% In(1+ e~7I21). Hence inequality (i) follows from that

1 —Tlz|
IReLU(z) — SP,(2)] < —~In(1+e ") < &
T T

where the second inequality follows from the simple inequality In(1 + z) < z for z > —1. In
addition, inequality (ii) holds since

|ReLU’(z) — SP. <e itz £o0.

1
Gl =l
Finally, inequality (iii) follows from that
1
ISP ()l zoe (2,21 = SP7(2) <2+ —

and that
1

1_|_67'z

SPL(2)] = |

Lemma 21 Let g € C?([—1,1]) with ||g'|| poo((_1,1)) < B fors =0,1,2. Assume that g'(0) = 0.

Let {z; }T=fm be a partition of [—1, 1] withm > 2and z_, = —1,20 =0, 2y, = Land zj41 — 25 =
h = 1/m foreach j = —m,--- ,m — 1. Then there exists a two-layer neural network g, of the
form
2m
grm(2) =c+ Z a;SP-(eiz — b;), z € [—1,1] (36)
i=1

withc = g(0) < B,b; € [-1,1],|a;| <2B/mand ¢; € {£1},i =1,--- ,2m such that

19 = grmllwiee((1,1) < 6B, (37)
where 1 ) .
5, = ;(1+;)(log (3) +1). (38)
Proof Thanks to Lemma 18, there exists g, of the form
m 2m
gm(z) =c+ Z a;ReLU(z; — z) + Z a;ReLU(z — 2z;_1),z € [-1,1] (39)
i=1 i=m+1

such that [|g — gim [ly1.00((—1,17) < 2B/m. More importantly, the coefficients a; satisfies that [a;| <

2B/m so that fol a; < 4B. Now let g;,, be the function obtained by replacing the activation
ReLU in g,, by SP;, i.e.

m 2m
Grm(z) =c+ ZaZ-SPT(zi —z)+ Z a;SP-(z — zi—1),z € [-1,1]. (40)
i=1 i=m-+1
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Suppose that z € (zj, zj41) for some fixed j < m — 1. Then thanks to Lemma 20 - (i), the bound
la;| < 2B/m and the fact that |z; — z| > 1/m if i # j while z € (2, zj11), we have

|9m(2) = grm(2)] < |aj|’ReLU(Zj —z) = SPT(Zj - 2)|

m
+ > ail|ReLU(z — 2) — SP+ (2 — 2)|
i=1,i#]
2m
+ Z |a;||ReLU(z — z;—1) — SP(z — 2;—1)|
i=m+1
2B 2B
< —+ 76_T|x‘1\x|>l/m'
mT T =
Similar bounds hold for the case where z € (zj, zj41) for j > m. Lastly, if 2 € (2, Zm+1), then
both the m-th and m + 1-th term in (39) and (40) depend on z,,, from which we get

4B 2B

19m(2) = grm(2)] < o + 7€_T|I‘1\x|21/m'
Therefore we have obtained that
4B 2B S
Hgm - gT,mHLOO([*l,l]) < E + ?6 1|z|21/m'

Thanks to Lemma 20 - (ii), the same argument carries over to the estimate for the difference of the
derivatives and leads to

4B .
90 = 97l Lo ((=1,1]) < T 2Be |x‘1\x|21/m'
Combining the estimates above with that [|g — g |[y1.00(=1,1) < 2B/m yields that

19 = grmllwroe =11 < N9 = gmllwreo=1,1)) + 19m — Grmllwree (=11

2B 4B 2B .,
S oot e gym

m mT T
§23<1+1)(§++f%>
T m

— 6B5,.

We have used the fact that maxg,<1/23z +e77* = (log (%) + 1)% in the last inequality. The
proof of the lemma is finished by combining the estimates above and by rewriting (40) in the form
of (36). |

Now we are ready to present the proof of Theorem 2. To do this, let us define the function class
fSPT(B) = {C+ VSPT(w L= t)7 |C‘ <2B, ‘wh =1, ’t’ <1, h" < 4B}
Note by (iii) of Lemma 20 that

4B
sup || fllaiq) < 2B 4+ 4B|[SPr[lwicc (22 < 14B+ —. (41)
u€Fsp, (B) T
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Proof [Proof of Theorem 2] First according to Theorem 15, u — @(0) lies in the H!-closure of the
convex hull of Feos(B) with B = [|ul| g(q). Note that each function in Feos(B) is a composition of
the multivariate linear function z = w -  with |w| = 1 and the univariate function g(z) defined in
(31) such that ¢’(0) = 0 and Hg(S)HLoo([,Ll]) < Bfor s = 0,1,2. By Lemma 21, such g can be
approximated by g, ,,, which lies in the convex hull of the set of functions

{c+ vSP,(ez — b),|e| < B,e € {£1},[b| < 1,7 < 43}.
Moreover, ||g — grmllwiec(j1,1)) < 6B3-. As aresult, we have that

lg(w - x) — grm(w- m)HHl(Q) <llg— QT,mHleOO([—Ll}) < 6Bd;.

This combining with the fact that |4(0)| < B yields that there exists a function u, in the closure of
the convex hull of Fgp_ (B) such that

Hu — u7||H1(Q) < 635.,-.

Thanks to Lemma 16 and the bound (41), there exists u,, € Fsp, mn(B), which is a convex combi-
nation of m functions in Fgp_ (B) such that

B(4+14)
Jur = im0 €
Combining the last two inequalities leads to
4
B(4+14)

||U — umHH1(Q) < 6B, +

vm
Setting 7 = y/m > 1 and using (38), we obtain that

=t 111 ) < < 85 (1+ 1)<log (g) +1) +\/%(i+14)

18B
<—2< log(m )—i—l)-l-i
vm vm
_ B(6log(m) + 30)
= N _
This proves the desired estimate. |

Appendix C. Rademacher complexities of two-layer neural networks (Proof of
Theorem 3)

The goal of this section is to derive the Rademacher complexity bounds for some two-layer
neural-network function classes that are relevant to the Ritz losses of the Poisson and the static
Schrodinger equations, which eventually lead to the proof of Theorem 3.
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C.1. Proof of Lemma 7

First let us consider for fixed positive constants C,I', W and T the set of two-layer neural
networks

Fm = {ue(x) :c+2%qﬁ(wi-x+ti), reNfeO ’ |c] SC’,ZW\ <T,
i=1 i=1 42)

jwil W, |t < T},

Here ¢ is the activation function, 6 = (c, {7}/, {wi}i", {t:}}",) denotes collectively the pa-
rameters of the two-layer neural network, © = O, x 0, x 0, x ©; = [-C,C] x B*(I') x
(B{I(W))m x [T, T|™ represents the parameter space. We shall consider the set © endowed with
the metric p defined for § = (¢, v, w,t),0' = (.7, w',t') € © by

pe(0,0") = max{le — /|, |y — /|1, max|w; — wily, [t = t'loc}. (43)

Throughout the section we assume that ¢ satisfies the following assumption, which particularly
holds for the Softplus activation function.

Assumption1 ¢ € C2%(R) and that ¢ (resp. ¢/, the derivative of ¢) is L-Lipschitz (resp. is
L'-Lipschitz) for some L, L' > 0. Moreover, there exist positive constants ¢max and ¢!, ... such that

sup |p(w -z 4+ 1) < dmax and sup 9" (w -z + 1) < Prpax-
WE B, ,tEOL,TEN WE B, ,tEOL,TEN)

Recall that the Rademacher complexity of a function class G is defined by

Ry (G) = EzE, [ztelrg) *fogg HZL ,Zn}-

In the subsequent proof, it will be useful to use the following modified Rademacher complexity
R,,(G) without the absolute value sign:

R.(G) = EZE, [ng Zo']g .)’Zl,...,Zn]

The lemma below bounds the Rademacher complexity of F,.

Lemma 22 Assume that the activation function ¢ is L-Lipschitz. Then

ATL(WVd + T) + 21'2|¢(0)]
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Proof Let ¢(x) = ¢(z) — ¢(0). First observe that

U[Sup —Zaj j))Zl,---,Zn}

feFm i

1 n
:Eg[sup E a] c—l—g Yio(w; - Z; + t;) ‘Zl, ,Zn]
(C)
7j=1

n

ZEU[SE)D:ZZUjZ’Yi¢(wi‘Zj+tz‘) -,Zn}
j=1 =1
<= [supZ%ZU]¢ w; - Zj +t;) ,Z}—i— ~-E, [supZ%Zthb }
=1 7=1 i=1 j=1
=:J1 + Jo.

Using the fact that ¢(-) = &(-) — ¢(0) is L-Lipschitz, one has that

1 m
J1§52:\%-]'E { sup ‘Zajqbw Z; —|—tHZ1,--~,Zn}

[w| <W,|t|<T

<E< U[ sup ‘Z%w ZHZI’ ’ ”]JFE“{Sup’jéath)

|w|<W

APL(Wd+T)
< .
< Jn
Note that in the second inequality we have used the Talagrand’s contraction principle (Lemma 23
below). Moreover, since )., |7;| < T, it is easy to see that

0[5

j=1
L|¢(0)]
B n
_ T]g(0)
Vi
Combining the estimates above and then taking the expectation w.r.t. Z; yields that Rn(]-"m) <
QFL(W\/E\J/}F‘LFHFWO)' . This combined with Lemma 24 below leads to the desired estimate. |
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Lemma 23 (Ledoux-Talagrand contraction (Ledoux and Talagrand, 1991, Theorem 4.12)) As-
sume that ¢ : R—R is L-Lipschitz with $(0) = 0. Let {o;}}"_, be independent Rademacher random
variables. Then for any T' C R"

E, sup ’ Z oip(t;)| <

(t1,,tn)€T ' ;5 (t1, - tn)eT ' 2

Lemma 24 (Ma, 2018, Lemma 1) Assume that the set of functions G contains the zero function.
Then

Rn(G) < 2R, (G).

Now we are ready to give the proof of Lemma 7.
Proof [Proof of Lemma 7] Recall the sets of two-layer neural networks

m m
FreLUm(B) = {c + ) 4iReLU(w; - — ti), |c] < 2B, [wily = 1, [t < 1,) |yl < 43},
i=1 =1

m m
Fsp, m(B) = {c—i— Z%‘SPT(M‘ cx—t;), el < 2B, w1 = 1, |t;] < 1,2 |vi| < 4B}.

i=1 =1

Since both ReLU and SP; are 1-Lipschitz and ReLU(0) = 0, SP-(0) = 1“72, it follows from
Lemma 22 that

Rn(FReLU,m(B)) < M—+1)B

In2
7n and R, (Fsp,m(B)) < 16(vd J:/l?; = )B.

This proves Lemma 7. n

C.2. Proof of Theorem 8

Given the source function f € L°(2) and the potential V' € L>(2), we recall the function
classes associated to the Ritz losses of Poisson equation and the static Schrodinger equation

1
Gm.p = {g : Q—R } g= §\Vu|2 — fu where u € ]:m},
(44)
1 1
Gm,s == {g QR | g = §\Vu]2 + §V|u]2 — fu where u € .Fm}.

In the sequel we aim to bound the Rademacher complexities of G,,, p and G,,, s defined above. This
will be achieved by bounding the Rademacher complexities of the following function classes

1
gl .= {g : Q—R ‘ g= §|Vu]2 where u € ]:m},
g; = {g Q=R ‘ g = fu where u € ]-'m},

1
G .= {g QR | g= §V’u‘2 where u € ]:m}.
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The celebrated Dudley’s theorem will be used to bound the Rademacher complexity in terms of the
metric entropy. For this, let us first recall the metric entropy and the Dudley’s theorem below.

Let (E, p) be a metric space with metric p. A d-cover of a set A C E with respect to p is a
collection of points {z1,- - ,z,} C A such that for every = € A, there exists i € {1,--- ,n} such
that p(x, x;) < §. The §-covering number N'(d, A, p) is the cardinality of the smallest -cover of the
set A with respect to the metric p. Equivalently, the §-covering number N (4, A, p) is the minimal
number of balls B,(x, J) of radius ¢ needed to cover the set A.

Theorem 25 (Dudley’s theorem) Let F be a function class such that sup e r || f|lc < M. Then
the Rademacher complexity R, (F) satisfies that

R.(F) < inf 45+/ Vieg N (e, F,|| - ||oo)de}

0<6<M

Note that our statement of Dudley’s theorem is slightly different from the standard Dudley’s theo-
rem Dudley (1967) where the covering number is based on the empirical /2-metric instead of the
L -metric above. However, since L>-metric is stronger than the empirical £2-metric and since
the covering number is monotonically increasing with respect to the metric, Theorem 25 follows
directly from the classical Dudley’s theorem (see e.g. (Wolf, 2020, Theorem 1.19)).

Let us now state an elementary lemma on the covering number of product spaces.

Lemma 26 Let (E;, p;) be metric spaces with metrics p; and let A; C E;,i = 1,--- ,n. Consider
the product space E = xI'_, E; equipped with the metric p = max; p; and the set A = x]'_| A;.
Then for any 6 > 0,

3

N8, A, p) < | [N, Ay pi). (45)

Proof It suffices to prove the lemma in the case that n = 2, i.e.,
N (6, A1 x Az, p) <N (6, A1, p1) - N (6, Az, p2). (46)

Indeed, suppose that C; and C5 are §-covers of A1 and Ao respectively. Then it is straightforward
that the product set C; x Cs is also a d-cover of A; x As in the space (E; x Ea,p) with p =
max(p1, p2). Hence N(d, Ay X As,p) < card(Cq) - card(Cs). Applying this inequality for C;
with card(C;) = N (6, A, p;),i = 1,2, we obtain (46). The general inequality (45) follows by
iterating (46). |

As a consequence of Lemma 26, the following proposition gives an upper bound for the covering
number N (4, ©, pe).

Proposition 27 Consider the metric space (O, pe) with pg defined in (43). Then for any § > 0,
the covering number N (8, ©, pg) satisfies that
(5)"
o

Neoe <5 (5) " ()
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Proof Thanks to Lemma 26,

N(5,0,p) < N6, 0, |+1)- N8, 05, - 1) - (M, BEOV) I 1)) N (6,01, - o)

< 2C (3F>m <3W)dm (3T)m

) 0 0 0 ’
where in the last inequality we have used the fact that the covering number of a d-dimensional
£P-ball of radius r satisfies that

N, B ) < (5)
|

Bounding R, (G},). We would like to bound R,,(G},) from above using metric entropy. To this end,
let us first bound the covering number NV'(§,G} .|| - |0 ). Recall the parameters C,T', W and T in
(42). With those parameters fixed, to simplify expressions, we introduce the following functions to
be used in the sequel

2CA /3TA\m 3WA\dmn (3TA\m
5(5)(5)<T>
Z(M,A,d) == M(y/(log(2CA))+ + +/(log(3TA) + dlog(3WA) + log(3TA))+)  (48)

+VAT3 /0 Y GoR T e,

Lemma 28 Let the activation function ¢ satisfy Assumption 1. Then we have

NGGL - o) € M(8,A1,m, d), (49)

M(6, A, m,d) = A7)

where the constant A1 is defined by
Ay = ((W )¢ + 2FWL’) TW (50)

Proof Thanks to Assumption 1, supgcg |¢'(w -« + t)| < ¢l .. This implies that

max*

m
max |Vug(z)] < > Jillwilil¢! (w; - @ + )]
=1

<TW, s

Furthermore, for 0,6’ € ©, by adding and subtracting terms, we have that

Vug(2) — Vug ()] <D v = villwil |6 (wi - 2 + ;)]
=1

m m
) ilws — wil|@ (wi - @+ )| + > [l w6 (wi - x4+ 15) — ¢ (w] - 2+ )]
=1 1=1
< Wnax¥ = V|1 + Ty max fw; — wily + TW L (max [w; — wi|1 4 [t — t'|o0)
1 A

< (W 4+ D) + 20W L ) 90 (0, ).
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Note that we have also used the fact that |z| < |z|; for any vector x € R?. Combining the last two
estimates yields that
§HVU9($)| — [Vug (2)]?| < §|VU0($) + Vug (2)||Vug(x) — Vug ()|
< Aipe (97 0,)

This particularly implies that (6, G, || - [|oo) < N( A%, ©, po). Then the estimate (49) follows
from Proposition 27 with § replaced by A%. |

Proposition 29 Assume that the activation function ¢ satisfies Assumption 1. Then

Rn(grln) SZ(M17A17d).\/T7

where My = 3T2W?2(¢,.)? and Ay is defined in (50).

max

Proof Thanks to Assumption 1,

1
sup [|gllze() < sup §||VUH%O<>(Q)
geG2, UEFm

- 2
Then the proposition follows from Lemma 28, Theorem 25 with§ = Oand M = M; = w,

and the simple fact that va + b < \/a + Vb fora,b>0. [ |

Bounding R, (G2,). The next lemma provides an upper bound for (6, G2, || - ||o0)-

Lemma 30 Assume that ||f|| ) < F for some F' > 0. Assume that the activation function ¢
satisfies Assumption 1. Then the covering number N (6, G2, || - ||oo) satisfies that

N, G|l - lloo) < M(8, Az, m, d).
Here the constant A5 is defined by
Az = F(1+ ¢max + 2LT). (51)
Proof Note that a function g9 € G2, has the form gy = fuy. Given 0 = (c,v,w,t),0 =

(d,y,w',t") € ©, we have

uo @) — ugr(@)] < e — |+ D b - — 1) = S Al(ut @ — £)
i=1 =1
" " (52
<le— |+ D b= flotw -z — 1)+ 3 Rl - — ) — ofw] -z — 1)

i=1 i=1
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Since ¢ satisfies Assumption 1, we have that |¢(w; - © — t;)| < Pmax and that
|(w; -z — t;) — $(w] -z — t])| < L(Vd|w; — wi|y + [t; — £]]).
Therefore, it follows from (52) that

lug(z) — ugr ()] < e = €I+ bmaxly = 'la
+ LT (max |w; — w1 + [t — ']oc)
(2

(53)
< (1 + Pmax + 2Lr)pe(9, o).
This implies that
196 — gor [l < F(l + Gmax + 2LF)p = A2pe(0,0').
As a consequence, N (5,G2, || - [loo) < N (A%, ©, pe). Then the lemma follows from Proposition
27 with ¢ replaced by A%. n

Proposition 31 Assume that || f|| Lo o) < F for some F' > 0. Assume that the activation function

¢ is L-Lipschitz. Then
R(G3) < Z(Ma,Aoyd) - [,

where My = F(C 4 T'¢pmax) and As is defined in (51).

Proof It follows from the definition of G2, and the assumption that || f|| () < F', one has that
SUpgegz, 19l () < M2 = F(C + T'épmax). Then the proposition is proved by an application of
Theorem 25 with 6 = 0, M = M5 and Lemma 30. |

Bounding R, (G3,). The lemma below gives an upper bound for N (8, G2, || - [|oo).-

Lemma 32 Assume that ||V|| o) < Vinax for some Viyax < o0o. Assume that the activation
function ¢ satisfies Assumption 1. Then the covering number N'(6, G2, || - ||o0) satisfies that

N(,Gs |l - lloe) < M(8, Ag,m, d), (54)
where the constant A3 is defined by
A3 = Vinax(C' + I'dmax) (1 + Pmax + 2LF>. (55)
Proof By the definition of F;,, and Assumption 1 on ¢,

sSup HUHL"O(Q) < C + I'dmax-

’Mefm

Moreover, recall from (53) that for 0,6’ € ©,
g () — g (2)] < (1 + Gmax + 2LT) 9 (0, ).

35



Lu LU WANG

Consequently,

LV (@ud(e) — SV @ )] < 2V (o) + () () — ()
< Agp@(g,al).

The estimate (54) follows from the same line of arguments used in the proof of Lemma 30. |

Proposition 33 Under the same assumption of Lemma 32, g;; satisfies that

Ru(G2) < Z(Ms, A3, d) - \/f7

where M3 = %(C + T'omax)? and A3 is defined in (55).

Proof Note that sup,cgs [[ullpo@) < Mz = VH;X (C + T'¢max)?. Then the proposition follows
from Theorem 25 with 6 = 0, M = M3 and Lemma 32. |

The following corollary is a direct consequence of the Propositions 29, 31 and 33.

Corollary 34 The two sets of functions G, p and G, s defined in (44) satisfy that

(ng) ( (M13A17d)+Z(M2)A27d))'\/T
and that

3
ng SZ szAwd \/ZZI

Considering the set of two-layer neural networks Fsp, n,,(B) with 7 = \/m, we define the
following associated sets of functions

Gsp,mp(B) = 19 R | g = [Vul’ — fuwhere w € Fep, mp(B)},
Gop. ms(B) i={g: QR | g = %\vuﬁ + %vw _ fuwhere u € Fsp.ms(B)},
gépﬁm(B) ={g:Q—R|g= %\Vu|2 where u € Fsp, m(B)},
ggpﬁm(B) ={g: Q=R |g= fuwhere u € Fsp_ n(B)}
Gep. m(B) = {g: QR | g = %V|u|2 where u € Fp, n(B) 1
Now we are ready to prove Theorem 8 by utilizing Corollary 34.

Proof [Proof of Theorem 8] Indeed, from the definition of the activation function SP,, we know
that ||SP’ || oo (m) < 1 and [|SPY|| feo(r) < T = y/m, so SP satisfies Assumption (1) with

L:¢;1ax:1>L/:7-:\/%7¢max§3+ < 4.

5
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Note also that Fsp, ,,, p(B) coincides with the set F,, defined in (42) with the following parameters
C=2B,I'=4B, W =1,T =1. (56)

With the parameters above, one has that

M, =8B, Ay < 32B%/m + 4B,
M, < 18F B, Ay < F(5+8B),

Vmax
M; < T(18113)2, A3 < 18Vimax B(5 + 8B).

Inserting M; and A;, ¢ = 1,2, 3 into (48), one can obtain by a straightforward calculation that there
exist positive constants C(B,d),Co(B,d, F') and C3(B, d, Vihax), depending on the parameters
B, d, F, Vihax polynomially, such that

Z(My, A d) < €1 (B.d)Iogm,
Z(M27A27d) S CQ(‘B?da F)7
Z(Ms, A3, d) < C3(B,d, Vipax)-

Combining the estimates above with Corollary 5.2 gives directly the Rademacher complexity bounds
for Gsp, m,p(B) and Gsp, m s(B). [ |

C.3. Proof of Theorem 3

We start with the proof of Part (i). Recall that u? p is the minimizer of the empirical loss &,, p in
the set F = Fsp, m(B) with 7 = /m, where B = |lup||5(q). From the definition of Fsp, m(B),
one can obtain that
sup ||ullpeo() < 14B.
ue}—SPT,m(B)

Then it follows from Lemma 6, Theorem &8, Theorem 2 and Lemma 7 that

E[Ep(up'p) — Ep(up)] < 2Rn(Gsp,mp) +4  sup  |ullpsoq) - Ru(Fsp,m)
UE}-SPT,m(B)

1
- inf %2
+ 2 uefslli,m(B) e = HHl(Q)

_ 2Cp(B.d, F)ym(yiogm +1) 4-14-16 BA(Vd+1+ 32) | B%(6logm + 30)?

< NG + NG o
< Civm(y/logm + 1) N Ca(logm + 1)?
— \/ﬁ m )

where the constant C; depends polynomially on B, d and F' and C5 depends only quadratically on
B.

The proof of Part (ii) is almost identical to the proof of Part (i) as shown above and it follows
directly from Lemma 6, Theorem 8 and Theorem 2. We omit the details.
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Appendix D. Solution Theory of Poisson and Static Schrodinger Equations in
Spectral Barron Spaces (Proof of Theorem 5)

This appendix devotes to the proof of Theorem 5, namely to developing a new solution theory
for Poisson and the static Schrodinger equations in spectral Barron Spaces. This new theory can be
viewed as regularity analysis of high dimensional PDEs in the spectral Barron space.

D.1. Proof of Part(i), Theorem 5

Proof Suppose that f = keNd fk @, and that f has vanishing mean value on 2 so that fo = 0. Let
1y, be the cosine coefficients of the solution u}, of the Neumann problem for Poisson equation. By
testing @ on both sides of the Poisson equation and by taking account of the Neumann boundary
condition, one obtains that

g =0
. 1 2
Ug Q‘k‘Q fk
As aresult,
* s s (1+7T8+2|k|8+2) r
lupllgeray = D, A+ = Y oD | x|
keNg\{0} keNg\{o}
<d Y A+ = dlf s
keNg\{o}
This finishes the proof. |

D.2. Proof of Part(ii), Theorem 5
First under the assumption of Part(ii) in Theorem 5, there exists a unique solution ug € H 1 (Q)
to (2). Moreover,

HVUSH%%Q) + VminHUS”2L2(Q) < I llz2 o llusl 2 (0)- (57

Our goal is to show that ug € B5+2(2). To simplify the notation, in what follows we suppress the
subscript S when we referring to the solution ug. Let us first derive an operator equation that is
equivalent to the original Schrodinger problem (2). To do this, multiplying ®; on both sides of the
static Schrodinger equation and then integrating yields the following equivalent linear system on the
cosine coefficients & = {1y} keNd:

72|k + (Vu), = fr, ke Ng. (58)

Let us first consider (58) with k& = 0. Thanks to Corollary 41,

— 1

(Vo= 5-( 2 Bntmi¥hr) =%+ (3 BtV )

mez? meZa\{0}
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where we have also used the fact that 5y = 1. Consequently, equation (58) with k& = 0 becomes
aoVot+ Y, BripmVim = fo.
meZ\{0}
For k # 0, using again Corollary 41, equation (58) can be written as
. 1 . - ;
| kP du, + @( Z 5mu|m|ﬁm—kV|m—k|) = fr, keN?\{o}.
mezZd

Recall that a function u € B%((2) is equivalent to that i, belongs to the weighted ¢!-space 6‘1,[,5 (Nd)
with the weight W (k) = 1 + 7°|k|;. We would like to rewrite the above equations as an operator
equation on the space %Vs (Nd). For doing this, let us define some useful operators. Define the
operator M : @& — M by

(M) = Votio ifk=o0,
|7|2|k|?4,  otherwise.

Define the operator V : 4 — V@ by
245 1 N A
iy, = J2mezor Fntim Vim ifk=0,
i Y mezd ﬁma‘m‘ﬂm_kv‘m_ko otherwise.
With those operators, the system (58) can be reformulated as the operator equation

(M + V)a = f. (59)

Since V' (z) > Viin > 0 for every x, we have Vo > 0. As a direct consequence, the diagonal
operator M is invertible. Therefore the operator equation (59) is equivalent to

I+M'V)a=M"'f. (60)

In order to show that u € B5+2 (€2), it suffices to show that the equation (59) or (60) has a unique
solution @ € £y, (N4). Indeed, if @ € Gy, (N4), then it follows from (59) and the boundedness of V
on %Vs (NZ) (see (64) in the proof of Lemma 35 below) that

IMallg, gy < IValle, wg) + ||JE||@§VS(N3) 61
< CWd, Vllallg, wg + 1 lle, ovg)-

Moreover, this combined with the positivity of V; implies that

lullgsray = D (1+ 7 2k|72) ||
kend

1 o 1+7I'8+2|k’8+2 R
= g Voldol + D —— g w Ikl
Z ST (62

1 1 A
< max {VO, (P + d) }”MUHE%,VS (N
< C1(d V) (il ooy + 11l i)
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for some C1(d, V') > 0.
Next, we claim that equation (60) has a unique solution 4 € EII/VS (Ng) and that there exists a
constant C'y > 0 such that

Il gy < CQHJEHQVS(Ng)- (63)

To see this, observe that owing to the compactness of M~V as shown in Lemma 35, the operator
equation I + M~V is a Fredholm operator on E‘l,VS (Ng). By the celebrated Fredholm alternative
theorem (see e.g., (Fredholm, 1903) and (Conway, 1990, VII 10.7)), the operator I + M~V has a
bounded inverse (I+M~1V)~! if and only if (I +M~!V)@ = 0 has a trivial solution. Therefore to
obtain the bound (63), it suffices to show that (I +M~'V)a = 0 implies & = 0. By the equivalence
between the Schrodinger problem (2) and (60), we only need to show that the only solution of (2) is
zero. Notice that the latter is a direct consequence of (57) and thus this finishes the proof of that the
Schrédinger problem (2) has a unique solution in B(€2). Finally, the regularity estimate (14) follows
by combining (62) and (63).

Lemma 35 Assume that V € B*(Q) with V(z) > Viin > 0 for every x € ). Then the operator
M~V is compact on £y, (Nd).

Proof Since M~! is a multiplication operator on Z%,Vs (Ng) with the diagonal entries converging to
zero, it follows from Lemma 36 that M~! is compact on K%,VS (Nd). Therefore to show the com-
pactness of M1V, it is sufficient to show that the operator V is bounded on E%VS (N4). To see this,
note that by definition 8, = oli=Tioi Tio ¢ [2174,2]. In addition, since V € B%(Q), using
Corollary 41, one has that

N ~ > 1 ~ ¥ S|1.18
”VUHK‘I/VS(NS) = ’ Z 531U|m|V|m|’ + Z @’ Z 6mu\m\6mfk‘/\m—k’|’(1 +m ’k‘l)
meZ\{0} keNd €74
<4 > gl D> WVl F 2Ty [[Vi—ig | (1 + [7°Callm — KIS + [ml}))
meZ4\{0} meZa\{0} meZd keNd

< 22d+2||ﬂ||51(N61)||V‘|51(N8) + 224+ max(1, Cy) - (HaH@l(Ng)HVHz‘I’VS(Ng) " HﬂH%VS(Ng)HVHZI(Ng))
< 92d-+3 max(1, Cy) - ||V”£}/VS(N5)||12H€‘1/VS(N3)

2d+3 -
= 22" max(1, Cs) - |Vl lliller, ),

(64)
where in the first inequality above we used the elementary inequality |a + b|* < Cs(|al® + |b|®)
for some constant Cs > 0 and in the second inequality we used the fact that ) _;q [ty <
2 all gy < 2°Nallgy, g)- u

Lemma 36 Suppose that T is a multiplication operator on le/Vs (N&) defined by for u = (uy) keNd
that (Tu)j, = Apuy, with \y—0 as ||k||2—o0c. Then T : £y, (N§)—Ly;, (N3) is compact.

Proof It suffices to show that the image of the unit ball in E‘I/V (Ng) under the map T is totally

S

bounded. To this end, given any fixed ¢ > 0, let K5 € N be such that [\;| < e if ||kl >
Ko. Denote by T : {k € Nd : ||k|l2 < Ko} and let dy be the cardinality of the index set Zy.
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Note that the ball in R% of radius max;{|\z| : k¥ € Zy} with respect to the weighted 1-norm
||v]] . = > ez, [k|Ws(k) is precompact, so it can be covered by the union of n e-balls with

centers {vi,- -+ ,v,} where v; € R%. We now claim that the image of the unit ball in £}, (Nd)
under T is covered by n 2e-balls with centers {(v1,0), - - - , (vn,0)}. In fact, for u € £}, (NO) with
Zk;eNg |uk|Ws(k) < 1, one has

Tu = (()\kuk)keIoa()) + (0, (/\kuk:)kgézo)-

Suppose that v;= is the closest center of {vy,--- , v, } to the vector (()\kuk)kezo). Then

[Tu = (v, 0) g1, gy = D )k = ) [Walk) + H( )\kUk)kgzZO)
k€Zy

< 5—1—5”( Uk)k¢10>

Gy, (NG)

< 2e.

Cy, (N§)

This finishes the proof. |

Appendix E. Proof of Proposition 1
E.1. Proof of Part (i), Proposition 1

First, it is well known that the problem (1) has a unique weak solution u} € HL(Q)) = {u €
HY(Q) : [ udz =0}, ie.

a(u,v) =: / Vu-Vov=F():= / fudz for every v € HX(Q). (65)
Q Q

Moreover, the solution u}, satisfies that

up = argmln / |Vu]2d:1:—/ fud:z

u€HE(Q

Due to the mean-zero constraint of the space HZ (), the variational formulation above is in-
convenient to be adopted as the loss function for training a neural network solution. To tackle this
issue, we consider instead the following modified Poisson problem:

—Au—i—)\/ udx = f on 2,
@ (66)

0
Eu—00n89

Here A > 0 is a fixed constant. By the Lax-Milgram theorem the problem (66) has a unique weak
solution u} p, which solves

A(u} p,v / Vu - Vovdx + )\/ ud:c/ vdx = F(v) forevery v € H'(Q).  (67)
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It is clear that u} p is the solution of the variational problem

argmm /\Vu]Qdac—i— /udx /fudm (63)

ueH(Q

Furthermore, the lemma below shows that the weak solutions of (66) are independent of A\ and they
all coincides with u’p.

Lemma 37 Assume that A > 0. Let u}, and uy p be the weak solution of (1) and (66) respectively
with f € L?(Q) satisfying Jo fdx = 0. Then we have that u}, p = up.

Proof We only need to show that u} , satisfies the weak formulation (65). In fact, since u} p
satisfies (67), by setting v = 1 we obtain that

)\/udaﬁ—/fdw—o.
Q Q

This immediately implies that a)(u3 p,v) = a(u} p,v) and hence u} p satisfies (65). |

Since the solution to (66) is invariant for all A > 0, for simplicity we set A = 1 in (68) and this
proves (3), i.e.

up = argmin Ep(u )—argmm /|Vu] dm—/fud:v—i— /ud:c) } (69)

ueH(Q) ueHL(Q

Finally we prove that u satisfies the estimate (4). To see this, we first state a useful lemma which
computes the energy excess € (u) — &(u}) with any u € H' ().

Lemma 38 Let up, be the minimizer of Ep or equivalently the weak solution of the Poisson problem
(66). Then for any u € H*(Q), it holds that

1 2
Ep(u) — Ep(up) = / |Vu—Vup\2dx+2(/u*P—udx> .
Q
Proof It follows from Green’s formula and the fact that u} € H2(2) that

X 1 . . 1 . 2
E(UP):/Q2|VuP|2fupdx+2(/gupdm>
—_———

=0

1
:/Q2|Vu}|2—|—Au}3u}dx

1
z—/ \Vup|?da.
2 Jo

Then for any u € H'(2), applying Green’s formula again yields

1 1 2 1
S(u)—(‘:(u}):2/Q|Vu|2dx—/9fudx+2(/9ud$) —1—2/QVU}S|2dx
—1/ |Vu]2d$+/Au* udx+1(/udx)2+1/ \Vaup |2
2 Ja o " 2\ Jo 2 Jo' T
1 * |12 1 * 2
—Q/Q\Vu—VuP dx+2(/ﬂ(up u)dx) .
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Now recall that Cp > 0 is the Poincaré constant such that for any v € H(12),

2
2
v— /dexHB(Q) < Cp[|Vul|72(q)-
As aresult,
HUH%H(Q) = HVUH%Q(Q) + HUH%Q(Q)

< 190y + 2| —/Q

2 2
v‘ + 2‘ / vdx‘
L2(Q) Q
2
Q

Therefore, an application of the last inequality with v = u — u} and Lemma 38 yields that

lu— wp 3 gy < 2max{2Cp + 1,2)(E(w) — E(up)).
On the other hand, it follows from Lemma 38 that

* 1 *
E(u) = E(up) < 5”“ — upllE 0y

Combining the last two estimates leads to (4) and hence finishes the proof of Proposition 1-(i).

E.2. Proof of Part (ii), Proposition 1

First the standard Lax-Milgram theorem implies that the static Schrodinger equation has a
unique weak solution ug. Moreover, it is not hard to verify that u solves the equivalent varia-
tional problem (5), i.e.

1
ug = argmin Eg(u) = arg min {/ |Vul|? + Vl§ul|* dz — / fud:r}.
ueH(Q) weH () ‘2 Ja Q

Finally we prove that u satisfies the estimate (6). For this, we first claim that for any v € H'(Q),
Es(u) —Es(ug) = = [ |Vu—Vugl“de + = | V(ug —u)* dx. (70)
2 Ja 2 Jo
In fact, using Green’s formula, one has that
* 1 * |2 1 * 12 *
Es(ug) = | $|Vug|” + SV]ugl” — fu'dz
02 2
_ 1 * |2 1 * (2 * * *
= 2|Vusl + 2V|u5| + (Aug — Vug)u*dz
Q
1
_ —/ Vs + Viu* 2da.
2 Jo
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Then for any u € H'(Q), applying Green’s formula again yields
Es(u) — Es(ul) = /|VU\Q+V|u]2dx—/fud:c+ /Vus\2+V|uS| do
= / |Vu\2+V|u]2dx+/(Au:§ — Vu§)udx + / \Vug|? + V|ug|*de
2 Ja Q 2 Ja
1 * |2 1 * 2
=— [ |[Vu—VusPde + = [ V(u§—u)da.
2 Jo 2 Jo

The estimate (6) follows directly from the identity (70) and the assumption that 0 < Vipin < V(x) <
Viax. This completes the proof.

Appendix F. Some Useful Facts on Cosine Series and Convolution

Assume that u € L'() admits the cosine series expansion

where {4y} kend are the cosine expansion coefficients, i.e.

w(x)Pp(x)dx x)dz
{gy = fQ ( )2 k( ) fQ ) (71)
fQ (I)k(x)dx 29— ZZ 1 1k 70
Let Q. := [—1, 1]¢ and define the even extension of u, of a function u by
Ue(x) = ue(x1, -+ ,uq) = u(|z1], -, |x4]), & € Qe.
Let u;. be the Fourier coefficients of u.. Since u. is real and even, one has that
= Z uy, cos(mk - x
kezd
where
~ fQ ue(x) cos(mk - x)d:c 1
U = er cos?(mh - 2)dx = S 10 /Qe ue(x) cos(mk - x)dx. (72)
By abuse of notation, we use |k| to stand for the vector (|k1], |k2, |, - ,|kdl|)-

Lemma 39 For every k € 7%, it holds that iy, = By where By, = 9Lkzo—3 i1 Tr;#0
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Proof First thanks to Lemma 13 and the evenness of cosine,

9
—

/ | ue(x) cos(mk - x)dx = / | ue(x) cos <7T< ‘ k:lxl)) cos(mkgxq)dz

@
I
—

IS
—_

ue(x) sin (71'( k:ﬂ:l>) sin(mkgxq)dz

|
S~

e

.
Il

R

U
(V]

ue(x) cos (77 ( k,xz) ) cos(mkg_1x4-1) cos(mkqry)dx

€ =1

I
S~

Ue(x) sin (77 ( k:lxl) ) sin(mkg_1x4—1) cos(mkqxry)dx

€ i=1

[
S~

=0

d
- /Qe ue(x)gcos(wkixi)dx
:2d/Qu(9:)<I>k(x)dx.

In addition, since @, = @ for any k € 7%, the lemma follows from the equation above, (71) and
(72). |

The next lemma shows that the Fourier coefficients of the product of two functions v and v
are the discrete convolution of their Fourier coefficients. Recall that {ay, };c7« denote the Fourier
coefficients of the even functions ..

Lemma 40 Let w, = ueve. Then @y = ) ya Um Uk —m-

Proof By definition, ue(x) = >, 74t cos(mm - x) and ve(x) = ), c7a Up cos(mn - ) Thanks
to the fact that

/ cos(ml - ) cos(mk - x) = 297205, (k),

e
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one obtains that

1
Wy, = 2d_lk;ﬂ)/ﬂ ue(x)ve () cos(mk - x)dx

1
= S0 Tz Z Z umvn/ cos(mm - x) cos(mn - x) cos(mk - x)dx

meZd nezd
1
= 5 1r0 Z Z Umvn/ cos(m(m +n) - x) + cos(m(m —n) - :c)} cos(mk - x)dx

meZ4 nezd

1 . -
= 5 Z um(kam + 'Umfk)
meZd

where we have also used that v, = v_y, for any k. |

Corollary 41 For any k € N¢,
) 1

ka, /8

Z B | Brm—k Ojm—k| -

ezd

Proof Thanks to Lemma 39 and Lemma 40,

— 1
(uv), = @(Uv)k = —(u*0) Z BrnWjim| Br—kOjm—k| -

B meZ4
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