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Abstract

A number of machine learning tasks entail a high degree of invariance: the data distribution does not
change if we act on the data with a certain group of transformations. For instance, labels of images
are invariant under translations of the images. Certain neural network architectures —for instance,
convolutional networks—are believed to owe their success to the fact that they exploit such invari-
ance properties. With the objective of quantifying the gain achieved by invariant architectures, we
introduce two classes of models: invariant random features and invariant kernel methods. The latter
includes, as a special case, the neural tangent kernel for convolutional networks with global average
pooling. We consider uniform covariates distributions on the sphere and hypercube and a general
invariant target function. We characterize the test error of invariant methods in a high-dimensional
regime in which the sample size and number of hidden units scale as polynomials in the dimension,
for a class of groups that we call ‘degeneracy «’, with o < 1. We show that exploiting invariance in
the architecture saves a d* factor (d stands for the dimension) in sample size and number of hidden
units to achieve the same test error as for unstructured architectures. Finally, we show that output
symmetrization of an unstructured kernel estimator does not give a significant statistical improve-
ment; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to
an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
Keywords: Invariant function estimation, Random features, Kernel methods, convolutional neural
tangent kernel, high dimensional limit

1. Introduction

Consider the following image classification problem. We are given data {(x;, v;) }i<n Where x; €
R is an image, and y; € R is its label. We would like to learn a function f : R¢ — R to predict
labels of new unseen images. Throughout this paper we will measure prediction error in terms of

A~

the square 10ss R(f) := E{ (Yoo — f (ne) )2}

We can think of & € R? as a pixel representation of an image. For instance if this is a grayscale
(one channel) two-dimensional image, « can represent the pixel values on a dy X dy grid with d =
dy1ds. For mathematical convenience, we here work with the cartoon example of one-dimensional
‘images’ (or ‘signals’) with d pixels arranged on a line. Most of our results cover two-dimensional
images as well.

We assume a model whereby the labels are y; = f.(x;) + ;, with noise ¢; independent of x;
with E(¢;) = 0 and E(¢?) = o2. In many applications, the target function f is invariant under
translations of the image: if o’ is obtained by translating image x, then f.(2') = f.(x). We
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will consider here periodic shifts (in the case of one-dimensional images): for x € R, go - T =
(Tog1y.-.,24,21,...,2¢) denotes its (-shift. Invariance implies f,(x) = f.(ge - ) for all £ and x.

Convolutional neural networks are the state-of-the-art architecture for image classification and
related computer vision tasks, and they are believed to exploit the translation invariance in a cru-
cial way (Krizhevsky et al., 2012). Consider the simple example of two-layer convolutional net-
works with global average pooling. The network computes a nonlinear convolution of N filters

wi, ..., wy with the image x. The results are then combined linearly with coefficients a1, ..., an:
1 d
fenn(z) = - a; Yy o((wi, g0 - @)). (D
i=1 (=1

This simple convolutional network can be compared with a standard fully-connected two-layer net-
work with the same number of parameters: fyn(x) = Zf\; 1 6o ((w;, x)). Tt is clear that —when
the target function f, is translation invariant— the convolutional model fcyn () is at least as pow-
erful as fyn(a) in terms of approximation, since it is invariant by construction (see Appendix A.1
for a simple formal argument).

The main objective of this paper is to quantify the advantage of architectures —such as con-
volutional ones— that enforce invariance. We are interested in characterizing the gain both in
approximation error and in generalization error. We consider a general type of invariance, defined
by a group G, that is represented as a subgroup of O(d), the orthogonal group in d dimensions.
This means that each element g € G, is identified with an orthogonal matrix (which we will also
denote by g), and group composition corresponds to matrix multiplication. The group element
g € Gy acts on R? via x — ¢ - . We will consider two simple distributions for the the signals :
x ~ Unif(S¥!(1/d)) (the uniform distribution over the sphere in d dimensions with radius \/d)
and & ~ Unif(27) (with 2¢ = {+1, —1} the discrete hypercube in d dimensions). We will write
(Ag, 7q) € {(S91(\/d), Unif), (2%, Unif)} for either of these two probability spaces. In the case
of Ag = 2%, we will further require the action of Gy to preserve 2.

In order to gain some insights on the behavior of actual neural networks, we consider two
classes of linear ‘overparametrized’ models: invariant random features models and invariant kernel
machines. We next describe these two approaches.

Invariant random feature models. Given an activation function ¢ : R — R and a group G, endowed
with invariant (Haar) measure w4, we define the invariant random features (RF) function class

fRF IHV(W gd { Zal/ wlag €T )Wd(dg) La; € R7Z S [N]} (2)

Here W := (wq, ..., wy) is the set of first layer weights which are fixed and not optimized over.
We draw them randomly with (vV/d - w;)i<n ~iq Unif(S9=1(v/d)) or Unif(2?) depending on
whether the feature vectors are x; ~ Unif(S%~!(v/d)) or Unif(2%). If we let Gy be the cyclic
group Cyc, := {90, 91, ---,94—1} (here gy is the shift by ¢ positions), we obtain a random features
version of the convolutional network of Eq. (1). Other examples will be presented in Section 2.

Given data {(x;, ;) }i<n, we consider to fit the second-layer coefficients (a;);<n in Eq. (2)
using the random features ridge regression (RFRR). Notice that the estimated function f is invariant
by construction, f(z) = f(g- ). We will denote the space of square integrable Gq-invariant
functions on Ay € {S*1(/d), 27} by L?( Ay, Ga).
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Invariant kernel machines. We then consider kernel ridge regression (KRR) in the reproducing
kernel Hilbert space (RKHS) defined by a Gg4-invariant kernel. By this we mean a kernel H €
L?(Ag x Ay) such that, for all g, ¢’ € Gy, the following folds for every 1, x»:

H(wy, @) = Hlg- @1, @2). (3)

Note that, as a consequence of this property, any function that is not in L?(A4, G4) (i.e. any function
that is not invariant) has infinitt RKHS norm: indeed this provides an alternate characterization of
invariant kernel methods. Among G;-invariant kernels, we focus on the subclass that is obtained by
averaging an inner product kernel over the group G,

Hin(@1,2) = [ hi(@r.g-@2)/d)maldg) @
Ga

Invariant kernel machines can be regarded as large-width (N — oo) limits of invariant random

features methods. Vice versa, the latter can be regarded as randomized approximations of invariant

kernel methods. Moreover, invariant kernel methods also capture the large-width limits of other

models, for instance, neural tangent models associated to convolutional networks (c.f. Section A.3).

We focus on a type of groups G, that we call groups of degeneracy o.

Definition 1 (Groups of degeneracy «) Let V. be the subspace of degree-k polynomials that are
orthogonal to polynomials of degree at most (k—1) in L?(Ay), and denote by Vy ,(Gq) the subspace
of Va i, formed by polynomials that are Gg-invariant. We say that G4 has degeneracy « if for any
integer k > o we have dim(Vy )/ dim(Vy ,(Gq)) < d° (i.e., there exists 0 < ¢, < Cy < 00 such
that ¢, < dim(Vg )/ dim(Vyr(Gqa))/d* < Cy for any d > 2).

This definition includes as special cases the cyclic group for one and two-dimensional signals (see
Section 2), which have both degeneracy 1. Note that we can define an equivalence relation between
degree-k polynomials: for py,p) € Vg, we have p, ~ pj if and only if there exists g € G4 such
that p(g - ) = p).(x). The dimension of the quotient space dim (Vg /Vyx(Ga)) is then exactly
equal to the ratio dim(Vy )/ dim(Vy 1(Gq)). For a group G, with degeneracy «, we can think about
d® as the ‘effective dimension’ of the group seen through its action on polynomials. The effective
dimension of the group is not necessary equal to the size of the group (e.g., see Example 3 which is
an infinite group with degeneracy 1). We will see below that this effective dimension is exactly equal
to the factor that we save in sample size and number of hidden units by using invariant architectures.

We compare invariant methods to standard (non-invariant) random features models with inner
product activation, defined as

FeW) = {f@) = > ao((wi,@)) s ai € Ryi € [N]], )

=1

and standard inner product kernels H (x1,x2) = hq({x1,x2)/d). For groups with degeneracy
a < 1, we obtain a fairly complete characterization of the gain achieved by using invariant models,
when the target function is an arbitrary invariant function f, € L?(Aqg; Gq).

Invariance gain: underparametrized case. Consider the invariant RF class (2) in the underparametrized
regime N < n. We prove that the test error is dominated by the approximation error. Namely,
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if d~* < N < d“"172 then the test error (c.f. Eq. (7)) gives R(fi; A) & |[Psgfel|2, where
P~ is the projection orthogonal to the subspace of degree ¢ polynomials. In order to achieve
the same risk, standard (non-invariant) RF models would require d* < N < d‘*!: invariance
saves a d* factor in the network width to achieve the same risk.

Invariance gain: overparametrized case. Consider next the overparametrized regime n < N. In
this case the test error is dominated by the statistical error. Namely, if Al < n < dHti-e,
then the test error gives R(f«; A) &~ [[P>¢f.||25. In order to achieve the same risk, standard
(non-invariant) RF models would require d' < n < d*': invariance saves a d* factor in the
sample size to achieve the same risk.

These results are precisely presented in Theorem 2 and summarized in Table 1. We establish
the same gain for invariant kernel methods in Theorem 5. While we focused in this paper on groups
with degeneracy v < 1 (which include our primary motivating examples, cyclic group in one or
two dimensions), we expect similar results to hold for groups with « > 1 (indeed our current proof
techniques can handle the case o > 1 at the price of adding the condition N,n > d°() in our
theorems). We defer this to future work.

Output symmetrization and data augmentation. Output symmetrization and data augmentation
are two alternative approaches to incorporate invariances in machine learning models. We
show that the performance of output symmetrization of standard KRR does not improve over
standard KRR, and hence is sub-optimal compared to invariant KRR. On the other hand,
it was shown that (c.f. Li et al. (2019)) data augmentation is mathematically equivalent to
invariant KRR for discrete groups. As a consequence, our theoretical results characterize the
statistical gain by performing data augmentation.

It is important to mention that our treatment omits an important characteristic of convolutional
architectures: the fact that the filters w; of Eq. (1) have a short window size ¢ < d. Namely, they
have only ¢ non-zero entries, for instance the first ¢ entries. Using short-window filters has some
interesting consequences, which can be investigated using the same approach developed here. We
will report on these in a forthcoming article, and instead focus here on the impact of invariance.

Our analysis is enabled by a simple yet important observation, which might generalize to other
settings. The subspaces Vg ;, of degree-k polynomials (see Definition 1) are eigenspaces for inner
product kernels. At the same time, they are preserved under the symmetry group G,4. Namely, define
f9(x) = f(g-x), we have f19) ¢ Var forany f € Vg, g € G4. This observation is crucial in
determining the eigendecomposition of the relevant kernels.

Let us finally emphasize, that the factor-d gain in sample size for degeneracy-one groups is not
correctly predicted by a naive ‘data augmentation heuristics’. The latter would suggest a gain of the
order of |G| or of the size of orbits of G;. As shown by the example of band limited functions (see
below) |G4| can be oo but the degeneracy can still be one (and hence the gain is d).

1.1. Related literature

Invariant function estimation
A number of mathematical works emphasized the role of invariance in neural network architec-
tures. Among others, Mallat (2012); Bruna and Mallat (2013); Mallat (2016) propose architectures
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To fit a degree ¢ polynomial Inner product random features | Invariant random features
Underparameterized regime (/N < n) N > d° N> d—
Overparameterized regime (n << V) n > d’ n>>d—®

Table 1: Sample size n and number of features IV required to fit a G4-invariant polynomial of degree
£ using ridge regression with the standard random features model (Eq. (5)) and the invariant
random features model (Eq. (2)), for group G, of degeneracy o < 1.

(‘deep scattering networks’) that explicitly achieve invariance to a rich group of transformations.
However, these papers do not characterize the statistical error of these approaches.

The recent paper Li et al. (2020) constructs a simple data distribution on which a gap is proven
between the sample complexity for convolutional architectures, and the one for standard (fully con-
nected) architectures. This result differs from ours in several aspects. Most importantly, we study
the risk for estimating general invariant functions using invariant kernels and random features, while
Li et al. (2020) obtain results for a specific distribution using CNNs. Also, the weight sharing struc-
ture in Li et al. (2020) is different from the one in Eq. (1).

Another work Chen et al. (2020) studied the statistical benefits of data augmentation in the
parametric setting via a group theory framework. Our result is different in the sense that we consider
the non-parametric setting to estimate an invariant function using kernel methods.

To the best of the our knowledge, our paper is the first that characterizes the precise statistical
benefit of using invariant random features and kernel models.

Convolutional neural networks and convolutional kernels

A recent line of work (Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019b,a; Allen-Zhu
et al., 2019b,a; Arora et al., 2019a; Zou et al., 2020; Oymak and Soltanolkotabi, 2020) studied
the training dynamics of overparametrized neural networks under certain random initialization, and
showed that it converges to a kernel estimator, which corresponds to the “neural tangent kernel”.
The convolutional neural tangent kernel, which corresponds to the tangent kernel of convolutional
neural networks, was studied in Arora et al. (2019b); Li et al. (2019); Bietti and Mairal (2019). The
connection between convolutional kernel ridge regression and data augmentation was pointed out
in Li et al. (2019).

The network in Eq. (1) corresponds to a two-layer convolutional neural network with global
average pooling, which is a special case of the convolutional network that was defined as in Arora
et al. (2019b).

Random features and kernel methods

A number of authors have studied the generalization error of kernel machines (Caponnetto and
De Vito, 2007; Jacot et al., 2020; Liang et al., 2020b,a) (Wainwright, 2019, Theorem 13.17) and
random features models (Rahimi and Recht, 2009; Rudi and Rosasco, 2017; Ma et al., 2020; Bach,
2017). However, these results are not fine-grained enough to characterize the separation between
invariant kernels (or random feature models) and standard inner product kernels, for several reasons.
First, some of these results concern restricted target functions with bounded RKHS norm. Second,
we establish a gap that holds pointwise, i.e. for any given target function f,, while most of earlier
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work only obtain minimax lower bounds. Finally, we need the upper and lower bounds match up to
a1+ o4(1) factor, while earlier results only match up to unspecified constants.

The recent paper Jacot et al. (2020) provides sharp predictions for kernel machines, but it as-
sumes that a certain random kernel matrix behaves like a random matrix with Gaussian components:
proving an equivalence of this type is the central mathematical challenge we face here.

Our analysis builds on the general results of Ghorbani et al. (2021); Mei et al. (2021). In
particular, Mei et al. (2021) provides general conditions under which the risk of random features
and kernel methods can be characterized precisely. Checking these conditions for invariant methods
requires to prove certain concentration properties for the entries of the relevant kernels. We achieve
this goal for the cyclic group with general activations, and for degeneracy-«a groups (for o < 1) with
polynomial activations. Generalizing these results to other groups, data distributions, and activations
is a promising direction.

2. Examples

In this section, we provide three examples of our general setting. We show in Appendix D that all
these groups have degeneracy 1 and therefore satisfy the assumptions of our general theorems.

Example 1 (One-dimensional images) The cyclic group has elements Cyc; = {90, 91, - -, 9d—1}
where g; is a shift by i pixels. For any x = (x1, . .. ,a:d)T € Ay, the action of group element g; on
x is defined by g; - * = (Tiy1,Tit2,...TdyT1,T2,...,2;)" € Ag. (In particular, g; is identified
with an orthogonal transfromation in R%.) The measure w4 is the uniform probability measure on
Cycy, i.e.,

IS

-1

f(@)ma(dg) = =3 F(g0).

Cycy d i

Il
o

We will refer to the invariant functions L*(Aqg, Cyc,) as the ‘cyclic functions’.

Example 2 (Two-dimensional images) Let d = dy x dy. We identify Xy, xq, = {X € Ré1xd
| X ||% = d} with S%=1(/d) (simply by ‘vectorizing’ the matrix). The two-direction cyclic group
has elements Cyc2D, 4, = {gij : 0 < i < d1,0 < j < dg, }. Forany X = (Xij)ic(d,] jelds] €
Xy xdy» the action of group element g;; € Cyc2D, 4, on X is defined by

Xit1+1 oo Xigtds Xiv11 - Xig1y
i X — Xd1,j+1 _thd2 Xd1,1 Xd1,j
; —
J X1’j+1 R X17d2 X1’1 R Xl,j
Xi,j+1 S Xi,dg Xz',l R Xi,j

Again, this is an orthogonal transformation in Xy, x4, = S*1(v/d), and Cyc2Dy, 4, is isomorphic
to a subgroup of O(d). The measure T4 is the uniform probability measure on Cyc2Dy, 4,- We will
refer to the invariant functions L*(S%~1(v/d), Cyc2D,) as the ‘two-direction cyclic functions’.

Example 3 (The translation invariant function class on band-limited signals) Suppose we have
one-dimensional signals with very high resolution, but the signals are band-limited: their Fourier
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transforms have only d non-zero coefficients. We assume that the labels of the band-limited signals
are invariant under translations. The following model captures this setting.

Let {pj}jclaq) € F([0,1]) be the real Fourier basis functions in L?([0,1], Unif). That is, we
define ¢1(t) = 1, and for p = 1,2,...,(d/2] (we assume d is odd), ©a,(t) = /2 cos(2mpt),
ap+1(t) = V2sin(27pt). We define the band-limited covariate subspace Wy C L?([0, 1], Unif)
to be (W stands for waves)

Wd:{xeLz([O 1)) me @:(fl,...,fd)egd—l(ﬁ)}.

Then the space W can be identified with the space S%~1(\/d).
Let Sfty = {gu,u € [0,1]} ~ SO(2) be the translation group that can act on W,. For any
x € Wy, the action of group element g,, € Sftg on x is defined by

[gu - 2] (t) = (t —w).
Equivalently, the action of group element g,, € Sfty on & € S*1(/d) is defined by
Gu - & = (21, cos(2mu)Zg + sin(27u) &3, — sin(27wu) o + cos(2wu)is, . . .).

That means, Sfty can be interpreted as a subgroup of O(d). The measure 74 is the uniform distri-
bution on Sfty, i.e.,

f(g)ma(dg) = /[0 s

Sttg

The function class L*(Wgq, Sftq), or equivalently L?(S*1(\/d),SO(2)), can be regarded as the
translation invariant function class on band-limited signals.

3. Invariant random feature models

Let G4 be a group of degeneracy o with o < 1 as defined in Definition 1 and f; be a function that
is invariant under the action of Gy, i.e., fg € L*(Aq4,Gq). We consider fitting the data with the
invariant random features model defined in Eq. (2) using ridge regression which we call invariant
RFRR. Namely, we learn a function fm" (@;a(N) =D <j<n Gy fgd (wj, g - x))mq(dg) with

~ : - inv 2 NA
a(\) = argmin Z (y N}\(zcz, )) + dTHG‘H% ) 6)

a i=1

where the regularization parameter A can depend on the dimension d. (The factor d* in the ridge
penalty is introduced to compensate for the effect of averaging the random features over G;.) We
further denote the test error of invariant RFRR by

R e (F, X, W, 3) = B (Fala) — fi(e:a(0) ] ™

We will make the following assumption on o.
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Assumption 1 (Conditions on o, n, N, and (A4, G,) atlevel (s,S) € N?) Foro : R — R, we
assume the following conditions hold.

(a) For (Ag,Gq) = (S 1(\/d),Cyc,), we assume o to be (min(s,S) + 1) V 3 differentiable
and there exists constants co > 0 and ¢1 < 1 such that |o® (u)] < coe™*/2 for any 2 <
kE < (min(s,S) + 1) V 3. Moreover, there exists an integer p > 1/6 such that n. < N'=% or
N < n'=and |o(x)|, |0’ ()| < coexp(cr122/(8p)).

For general (Ag,Gq), we assume that o is a (finite degree) polynomial function.

(b) The Hermite coefficients uy(0) = Eqguno,1)[0(G)He(G)] verify (o) # 0 for any 0 <
k < min(s,S) (see Appendix H for definitions).

(c) We assume that o is not a polynomial with degree less or equal to max(s, S).

For k € N, we denote by P, : L?(Ag) — L27(Ad) the orthogonal projection operator onto the
subspace of polynomials of degree at most k, and P~ = I — P<;, (see Appendix H for details). We
denote f(d) = oqp(g9(d)) if f(d)/g(d) converges to 0 in probability as d — oco.

Theorem 2 (Test error of invariant RFRR) Let G, be a group of degeneracy a < 1 and let { fy €
L%(A4,Ga)Yas1 be a sequence of Gy-invariant functions. Assume Aot < < gstled gpg
d>—t0 < N < d5t1=279 for fixed integers s, S and some § > 0. Let o be an activation function
that satisfies Assumption 1 at level (s,S). Then the following hold for the test error of invariant
RFRR (see Eq. (7)):

(a) (Overparametrized regime) Assume N > nd® for some § > 0. Then for any regularization
parameter X\ = O4(1) (including A = 0) and 1 > 0, we have

RRF,inV(fdaXv W,E,)\) = ”ﬁ>sfd‘|%2 + Od,P(l) : (Hfd”%%% + 03) (8)

(b) (Underparametrized regime) Assume n > Nd° for some § > 0. Then for any regularization
parameter X\ = Oq(n/N) (including A = 0) and any n > 0, we have,

RRF,inV(fda Xa Wa g, )‘) = ||§>Sfd||%2 + Od,P(l) : (||fd||%2+n + U?) (9)

In particular, this theorem applies to the one-dimensional and two-dimensional cyclic groups,
and band-limited functions listed in Section 2. We refer readers to Appendix A.2 for an informal
intuition and Appendix B.2 for the proof of this result.

We can compare these bounds with ridge regression on the standard random features model of
Eq. (5). Theorem 2 in Mei et al. (2021) (with Assumption 1) shows that the same test error holds as
in Theorem 2 but with 7% < n < d5t1=9 and d°t% < N < d5t1-9. We thus gain a factor d* in
the sample and feature complexity by using invariant features compared to non invariant ones.

Remark 3 Assumption 1 requires the activation function to be polynomial, except for the cyclic
group, for which only differentiability conditions are assumed. These conditions are sufficient for
the general assumptions in Mei et al. (2021) to hold: for the sake of length, we only verify them
for non-polynomial activation functions in the case of the cyclic group in one dimension. However
we believe that the differentiability condition (and indeed weaker conditions) should be sufficient
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for general groups. For example, the current proofs can be modified to apply to more general
subgroups of the permutation group on d elements (e.g., cyclic group in higher dimension). We
defer these improvements to future work.
For the cyclic group, the current assumptions already include the interesting examples of the
sigmoid o(x) = 1/(1 + exp(z — ¢)) and smoothed ReLU o(z) = Eq.n(o,c2)[(z — ¢+ G) 4]
Note that Assumption 1.b) is necessary for the RKHS associated to the feature map o to include
all polynomials of degree less or equal to min(s, S).

Remark 4 Consider two-dimensional images with d = D x D (Example 2) and functions fq that
are invariant with respect to the group of cyclic translations along the horizontal direction only. It
can be shown that this group has degeneracy o = 1/2, and in fact dim(Vyy,)/ dim(Vy,(Gq)) =
D = dY2. Our theory also applies to this group.

4. Invariant kernel machines

Note that any invariant kernel of the form (4) can be written as a kernel of the form:

Hdvinv(ml, 332) = é Ew,\JUnif(Sdfl) [O‘((%l, 'w>)a(<ar:2, qg- w))]ﬂ-d(dg) . (10)

To see this, note that any inner product kernel h can be decomposed as

h((z1, ®2) /d) = Eypoimit(sa-1) [0 (1, w))o (22, )]

for some activation function o, which amounts to taking the square root of the positive semidefinite
operator associated to h. Substituting in Eq. (4), we get the desired representation.

Consider Kernel ridge regression with regularization parameter A associated to Hg ;py, that we
call invariant KRR. Namely, we learn a function fi*(z;a()\)) = > icn] @it a,inv(xi; T) where

N . & Finv A fFinv
a(A) = argmin ¢ 37 (v — A (@i w)* + TIA )l p - an
“ i=1

with || - || the RKHS norm associated to Hy ;. We further denote the test error of invariant KRR
by

Ricins (i, X, 3) 1= Eo | (ful) — (@) ] (12

Theorem 5 (Test error of invariant KRR) Let G; be a group of degeneracy o < 1 and {f; €
L%(A4,Ga)ta>1 be a sequence of Gy-invariant functions. Assume Aot < < @St for
some fixed integer s > 1 and some § > 0. Let o be an activation function that satisfies Assumption
1 atlevel (s,s) (and N = o0) and let H sy be the associated invariant kernel as defined in Eq. (10).
Then, the following holds for the test error of invariant KRR (c.f. Eq. (12)): for any A = O4(1)
(including A = 0 identically) any n > 0, we have

Rk inv(fa, X, €, A) = [[Pssfall 72 + 0ap(1) - (| fallF2en + 02). (13)
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We can compare the performance of this kernel against a standard (inner product) kernel Hy(x,y) =

hq({x,y)/d). Then Theorem 4 in Ghorbani et al. (2021) shows that the above theorem holds but
with d*79 < n < d5t17%. We gain a factor d in sample complexity by using an invariant kernel.

Remark 6 Recall that the neural tangent kernel (NTK) associated to a function f(x; ®) with ran-
dom initialization ©y is defined as

Hyr(x,y) = Ee, [(Vef(w; ©9), Ve f(y;©o))| -

The neural tangent kernel associated to a multi-layers fully connected network is an inner-product
kernel (as long as the weights are initialized to be isotropic Gaussian.) In contrast, the NTK asso-
ciated to the CNN of Eq. (1) is an example of invariant kernel, and is covered by Theorem 5 (see
Appendix A.3 for more details).

5. Comparison with alternative approaches

To provide further context, it is useful to compare invariant random features and kernel models
with other approaches. Here we consider two alternatives: (i) output symmetrization, which uses a
non-invariant method for training and then symmetrizes the estimated function over the group G, to
obtain an invariant function; (i¢) data augmentation, which trains the model on a dataset augmented
by samples obtained by applying group transformations to the original data. As shown in Li et al.
(2019), data augmentation is mathematically equivalent to invariant kernel methods, so that it is
superior to standard kernel methods (with inner-product kernels). On the other hand, we show
that output symmetrization of standard kernel estimators does not significantly improve over the
standard kernel estimator, and is fundamentally sub-optimal comparing to invariant kernel methods.

5.1. Output symmetrization

Given an estimater f , the symmetrization operator S f computes the average of f over the group:

(Sf)(x) = : flg - )ma(dg). (14)

When the target function f; is Gg-invariant, one might naively think that the symmetrization opera-
tion will significantly improve the performance of standard kernel estimators (standard RFRR and
KRR). Indeed, when f; € L?(Ag4, G4), Jensen’s inequality gives || fo — Sf]|2, = [|S(fa— f)||32 <
| fa— f H%Q However, the proposition below (which is proved in Section A.4) shows that S f is not
significantly better when f is a standard kernel estimator.

Proposition 7 Let f; € L?*(Aqg,Gq) be a sequence of target functions. For any sequence of esti-
mators fq satisfying || fa — P<¢ fd||2L2 < &, we have

IPsefalliz — 2¢Psefall e < I fa— Sfallz:

£ 2 D 2 D 2 (15)
<|fa— fallz2 < IPsefallze + 2el|Psefall 2 +&”.

10
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Now consider —to be definite— a setting in which N > nd® and d*+% < n < d**'=%, and G,
is a group with degeneracy 1. For any f; € L*(Ag, G4) with || f4/[354, = Oq(1), the results of Mei
et al. (2021) imply that standard RFRR (c.f. Eq. (5)) with sufficiently small regularization returns a
function fRF with || P<g fa— fRF Ik 72 = 0gp(1). Consequently, Proposition 7 implies that we have

1o — Sfrel2 = |1fa — frrll32 + 0ap(1) = [Psefall2z + oap(1),

while Theorem 2 implies that invariant RFRR f v with sufficiently small regularization achieves a
substantially smaller risk:

I fa— fi¥]122 = |[Pses1fall 2z + oap(l).

5.2. Data augmentation

We consider full data augmentation whereby we replace each sample (y;, ;) in the dataset by |G|
samples {(yi,g - ®;) : g € Gq} (for simplicity we consider here the case of a finite group Gy),
and perform standard KRR on the augmented dataset. One might naively think that this is not as
effective as enforcing invariance in the kernel structure. After all, we are only requiring invariance
to hold at the sampled points. However, Li et al. (2019) showed that these two approaches are in
fact equivalent.

We compare KRR using the kernel H(x,y) = h({(x,y)/d) on the augmented dataset with
invariant KRR on the original dataset using the symmetrized kernel Hiny (x,vy) fgd

y)/d)m4(dg). Denote by fdata and f;“v the KRR estimates with the standard kernel H and full data
augmentation, and with the invariant kernel Hi,, respectively.

Proposition 8 (Li et al. (2019)) Let G be a finite group, and H, Hi,, as defined above. Then we
have fdata _ f}i\nv'

A couple of remarks are in order. First, this equivalence is general (holds for any dataset {(y;, ;) }i<n),
and is in fact a consequence of the algebraic structure of ridge regressions. Second, while this result
establishes that the two approaches are mathematically equivalent, there are computational advan-
tages for invariant KRR. Indeed, full data augmentation increases the size of the kernel matrix from

n to n|Gy| which is computationally more expensive. Finally, this equivalence shows that data
augmentation with standard KRR is superior to output symmetrization of standard KRR.

6. Numerical illustration

To check our predictions, we first consider the setting of & ~ Unif(S?!(v/d)) with d = 30, and
three cyclic invariant polynomials fy 1in, fd,quad> fd,cube € L*(S%1(\/d), Cyc,) defined as

d d d
1 1 1
fdlin = —= § Ti,  fdquad = —= E TiTit1, Jfdeube = —= § TiTit1Tiq2, (16)
s \/aiZI 7 ,qua \/ai:1 1L+ ,cube \/aiZI 1t 1La+

where the sub-index 7 in z; should be understood in the modulo d sense (d + 1 = 1 (mod d)).
We compare the performance between two kernels: a standard (inner product) kernel Hy(x,y) :=
ha({x,y)/d) that we take to be the neural tangent kernel associated to a depth-5 neural network

11



MEI MISIAKIEWICZ MONTANARI

Cyclic linear target, d = 30 12 Cyclic quadratic target, d = 30 12 Cyclic cubic target, d = 30

—}— standard kernel
LOTI-—7 cyclic kernel

Sl

[

N

® 0.8

£

o

£ 0.6 0.6

s

@ 0.4 0.4

il

()

= 0.2+ 0.2

0.0 T T T 0.0 T T T 0.0 T T T
1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
log(n)/log(d) log(n)/log(d) log(n)/log(d)

Figure 1: Learning cyclic polynomials (cf. Eq. (16)) over the d-dimensional sphere, d = 30, using
KKR with a standard (inner-product) kernel and a cyclic invariant kernel, and regulariza-
tion parameter A = 0*. We report the average and the standard deviation of the test error
over 10 realizations, against the sample size n.

with fully connected layers and ReLu activations o(z) = max(z,0). We compare this with its
cyclically invariant counterpart Hy cyc(®,y) = d™' 3oy ha({z, gi - y)/d), where g; € Cycy
is the shift by 7 positions as defined in Example 1. Note that the precise number of layers L is not
important. As long as L is fixed in the large IV, n limit, our predictions remain unchanged, and the
simulations appear to confirm this.

In Figure 1, we report the test errors of fitting each cyclic polynomials with KRR with the two
kernels, and regularization parameter A = 0™ (min-norm interpolation). We consider . = 0 and
we report the risk averaged over 10 instances against the number of samples n. We observe that
the risk in fitting fg1in, fd,quad and fq cube. using KRR with the cylcic kernel Hg ¢y, drops when
n = 04(1),n = O4(d) and n = O 4(d?) respectively. In contrast, the risk of KRR with the standard
kernel drops when n = ©4(d), n = ©4(d?) and n = ©4(d?) respectively. This matches well the
predictions of Theorem 5.

We next investigate the relevance of our results for real data. We consider the MNIST dataset
(d = 28 x 28 = T84, Nyrain = 60000, niest = 10000 and 10 classes). We encoded class labels
by y; € {—4.5,-3.5,...,3.5,4.5}. We make these data invariant under cyclic translations in
two dimensions (Example 2): for each samples in the training and test sets, we replace the image
by a uniformly generated 2 dimensional (cyclic) translation of the image (see Fig. 5 in Appendix
A.5.2). In this cyclic invariant MNIST data set, the labels are therefore invariant under the action of
Cyc2Dgg o5

Images are highly anisotropic in pixel space R”34. In particular, directions corresponding to low-
frequency components of the Fourier transform of a have significantly larger variance than direc-
tions corresponding to high-frequency components. Nevertheless, Ghorbani et al. (2020), showed
that the analysis of random features and kernel models of Ghorbani et al. (2021); Mei et al. (2021)
extends to certain anisotropic models provided the ambient dimension d is replaced by a suitably
defined effective dimension d..

In order to explore the role of data anisotropy, we pre-process images as follows. We compute
the discrete Fourier transform components of the images in the training set and select the T' €
{20, 70,120, 200,400, 784} components with the highest average absolute value. For each T', we

12
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Figure 2: Classification error for the cyclic invariant MNIST dataset. For each frequencies content
T, we plot the classification error averaged over 5 instances against the number of samples
log(n)/log(d), for KRR using a standard (inner-product) kernel and a cyclic invariant
kernel and regularization parameter A = 0.

then construct training and test sets in which we project each image onto the top I' frequencies
(see Fig. 3 in Appendix A.5.2). When T is small, we expect all the non-zero frequencies to have
comparable variance and therefore d.; ~ T'. For larger 7', we include frequencies of progressively
small variance, and therefore d. should saturate.

For each frequency content 7', we compare the performance of two kernels: a standard inner-
product kernel Hy(x,y) := hq((x,y)/d) and its cyclic counterpart given by Hycyc(x,y) =
1/(282) > o<i j<2s ta((x, gij - y)/d), where g;; € Cyc2Dyg95. We choose Hy to be the neural
tangent kernel associated to a two-layers neural network, and hence H, cy. is the one associated
to a CNN analogous to (1) (but in two dimensions). We compute the KRR estimates with regular-
ization parameter A = 0%. In Fig. 2, we report the classification error averaged over 5 instances
against the number of samples log(n)/ log(d).

We observe that the cyclic invariant kernel vastly outperform the inner product kernel: the
same test error is achieved at a significantly smaller sample size, in qualitative agreement with our
general theory. In order to quantify this gap, for each T" we fit two curves to the test error of the two
kernels, which differ uniquely in an horizontal shift (see Appendix A.5.2). We estimate the sample
complexity gain by the difference between these shifts, and denote this estimate by d..

It is visually clear that d.; increases with 7', as expected. We plot d.; as a function of T in Fig. 6
in Appendix A.5.2. We observe that the behavior of d ; roughly matches our expectations: it grows
linearly at small 7" and eventually saturates.

13
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Appendix A. Some details in the main text
A.1. Approximation power of invariant networks

In the proposition below, we show that the approximation power of two-layers G4-invariant neural
networks are always no worse than two-layers fully-connected neural networks when the target
function is G4-invariant.

Proposition 9 Let 0 € C(R) be an activation function. Let Ay € {S*"'(v/d), 2%}. Let G4 be
a subgroup of O(d) that preserves Ay. Let T4 be the Haar measure of Gg. Let f. € L*(Ag;Gy)
be a Gg-invariant function. Define the function classes of two-layers invariant neural networks and
two-layers fully-connected neural networks by

FNNG, N = { Zaz/ 0,90 )/Vd)ma(dg) : 0; € Ag,a; € R}, (17)

TNy = { Za’ ((0i,2)/Vd) : 0; € Ag,a; € R}- (18)
Then we have
inf « — 2, < inf . — 2
N L T R

Proof [Proof of Proposition 9]
We define the symmetrization operator S : L2(Ag) — L?(Ag; Gq) by

(ShH(x) = : f(g-x)ma(dg).

Since f. € L?(Ag4; G4), by Jensen’s inequality, for any f € L?(A4), we have
Ife = SFlI72 = IS(fe = HllF2 < Ife = fliZ2-

Moreover, for any f € Fnn,n, we have Sf € Fnn g, ~. This gives

inf . — fl?2, < inf —SflI?, < inf — fl1%,.
A IIf fHLZ—fefNN,N”f* f”“—fefNN,N”f* fllz2

NN,G g, N

This concludes the proof. |

A.2. Intuition for the proofs of Theorems 2 and 5

Theorem 2 and 5 are consequences of general theorems proved in Mei et al. (2021). The d* im-
provement between invariant and non-invariant models can be understood as follows: consider an
inner-product activation o((x, @) /v/d) with x,8 ~ Unif(Ay) (Where we denoted 8 = /d - w),
then we have the following eigendecomposition

B(Ag;k)

o((x,0)/Vd) = szk Y v @)y,

=1
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where {Yk(ld )}le[ B(Ay;k)) form an orthonormal basis of Vg 1, the subspace of degree-% polynomials
on Ay (see Section H for background on functional spaces on the sphere and hypercube). The
eigenvalues of o are given by {{4 1 } x>0 With each having degeneracy B(Ag; k).

As mentioned in the introduction, the symmetry group Gy preserves Vy ;. (see Section C.2) and
the invariant activation function has the following eigendecomposition

(Ad7 )

o(@:0) = jg o({@, g - 0)/v/d)ma(dg) = Zfdk S F@vide),

=1

where the {7,(5) }ie[B(Aysk)) form an orthonormal basis of Vy ;. (Ga), the subspace of degree-k invari-
ant polynomials on .A,. The eigenvalues of & are given by {{4 1 }x>0 with each having degeneracy
D(Ag k).

Hence o has the same eigenvalues {4, as o, but with degeneracy smaller by a factor

B(Ag; k)
D(Aqg; k)

In other words, in order to fit degree ¢ polynomials using invariant methods, one needs to fit a factor
d® less eigendirections, which translates to a factor d* improvement in the sample and features
complexity.

This intuition is verified rigorously in the proof of these theorems in Appendix B.

= Oq(d").

A.3. Convolutional neural tangent kernel

Proposition 10 Let 0 € C'(R) be an activation function. Let G4 be a discrete subgroup of O(d)
with Haar measure 7q. Let fn be an invariant neural network

5003 [ ol
0

Leta ~iid N(0,1) andw ~iid. Unif(S¥1) independently, and ®° = (al,... ,a?v, w?, ... Wy ).
Then there exists hy : [—1 1] — R, such that for any =,y € S*"1(\/d), we have almost surely

Jim <V®fN(fB;@O)aV@fN(y;@0)>/NZ/ ha({x, g - y)/d)ma(dg).
— 00 gd

Proof [Proof of Proposition 10] For .,y € S~ (v/d), define
b (@, y) /d) =By vmirean o ((w, 2))o (w0, 9)]

W (@, ) /) =Eoptmitisin [0 ((w, @)’ (w, y)) (@, y)].

By the technical backgrounds in Section H, we can see that h((jl) and hg) can be well-defined.
Calculating the derivative of the neural network with respect to a = (aq, ..., ay), we have

%Waf(w;@O) Vaf(y; ©%)) = /gdxngZ[ (wi,g-x))o((wi, g - y)) |ma(dg)ma(dg’).

=1
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Since G, is a discrete group, by law of large numbers, we have

Jim (Vo f(@:©°), Vo (y:0)

— [ Eulotw.g-@)ol(w.g' y)rade)ma(dy)
GaxGq

:/g G h (g -2, g - y)/d)ra(dg)ma(dg))

:/g hgl)«m,g-y)/d)ﬂd(dg)-

Moreover, calculating the derivative of the neural network with respectto W = (wq, ..., wy), we

have

(Vw f(: ), T 1y 0)

N
1
= [ [@re wig @) (i w)) o 2.9 v)] maldg)ma(dg)
N
GaxGa i=1
Since G, is a discrete group, by law of large numbers, we have
1
lim —
Ngnoo N<
= /g ; Ewlo’((w, g ®))o'((w,q" - y))(g- 2, 9" y)]ma(dg)ma(dg’)
dXYd

Vw f(z;0°), Vi f(y; 7))

N / WY (g .9 - y)/d)ma(dg)ma(dg’)
GaxGq
- /g hy (@, - y)/d)ma(dg).

Taking hq = h((il) + h((f) concludes the proof.

A.4. Proof of Proposition 7

Let fd be an estimator satisfying
e i= IP<efa— fall7> = P<efa — P<efalliz + IP>efall 72
By Jensen’s inequality and by the equation above, we have
ISP>efall72 < Pefall7e < €.
As a consequence, we have
B 2 B W = 5 12 D5 B ;2
IP>efallzz — 2ePsefallze < [IPsefa — SPsefallie = [IP>efa — PseSfallze
3) I sz O 22
< fa—Sfallz2 = IS(fa = follz2 < fa— fallz

6)  — . _ . = _
© IP<efi— P<efall32 + |Psefi — Psefall3e © IPsefall32 +€® + 2¢||Psofall L2

21
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Here, (1) is lﬁ/ Eq. (20); (2) is by the fact that S is exchangable with P, (c.f. Section C); (3) is by
the fact that P~y is a projection operator; (4) is by the fact that f; is G4-invariant; (5) is by Jensen’s
inequality; (6) is by orthogonal decomposition; (7) is by Eq. (19). This concludes the proof.

A.5. Details of numerical simulations
A.5.1. SYNTHETIC DATA

We consider the standard (inner-product) kernel Hy(x,y) = hnti ((x, y)/d) to be the neural tan-
gent kernel associated to a depth-5 neural network with fully connected layers and ReLu activation
o(x) = max(x,0). This can be obtained iteratively as follow (see Jacot et al. (2018) and Bietti and
Bach (2020)): define for u € [—1, 1],

1 1
ho(u) = —=(m — arccos(u)), hi(u) =u-ho(u) + =1 —u?,
7r ™
and hnti (u) = hipg (1) with Ay (u) = h(u) = uand fork = 2,...,5,
W (u) = ha (W (),
I (W) = A (Who (W (u)) + h* (u).
We compute the cyclic invariant kernel by summing over all cyclic translations g € Cycy:
1
Hd,inv(ma y) = g Z hNTK(<mag : y>/d) .
9€Cycq
A.5.2. CYCLIC INVARIANT MNIST DATA SET

We consider the MNIST data set of 28 x 28 grayscale images (d = 784) of handwritten digits, which
contains 60000 training images and 10000 testing images. We pre-process the images in three steps:

(a) We compute the discrete Fourier transform of the images in the training set and compute
the average absolute value of the frequency components (see left frame of Fig. 3). For each
T € {20,70,120,200,400,784}, we select Q7 C [28] x [28] to be the set of the top T'
frequencies (i.e., the T" frequencies with highest absolute value averaged on the training set).

(b) For each T', we construct a train and test sets in which we project each image onto Q7 (i.e.,
we set all the frequency components not in {27 to 0). We displayed in Fig. 4 two digits and
their projection on the top 1" frequencies ) for different 7.

(c) For each image in the training and test sets, we replace the image by a uniformly generated 2
dimensional (cyclic) translation of the image. We display some examples in Fig. 5.

We further normalize the images so that ||x|2 = 1 and center the labels y; € ) where ) =
{-4.5,-3.5,...,3.5,4.5}. In order to compute the classification error, we round the prediction
value to the nearest label in ).

We use the inner-product kernel Hy(x,y) = hntk ({(z, y)/d) where hxTk is the neural tangent
kernel associated to a 2-layers neural network with fully connected layers and ReLu activation
o(x) = max(z,0), which given by

hti(u) = u - (W—M) Fivice.

s s

22



INVARIANCES IN KERNELS AND RANDOM FEATURES

Average absolute value of the frequencies Average absolute value (nonincreasing order)

T=20
T=170
T =120
T =200
T =400

1.0 T
25 104 |
!
20 0.8 i
15 0.6
100 _
10 0.4
5
0.2
10—1 -
0 T
0 5 10 15 20 25

Figure 3: Left frame: the absolute value of the frequency components of MNIST images averaged
over the training set (threshold at 1 in the figure). Coordinates on the bottom left-hand
side correspond to lower frequency components while coordinates closer to the top right-
hand side represent the high frequency directions. Right frame: average absolute value
of the frequencies in nonincreasing order. The vertical lines correspond to the different T’

chosen (1" = 784 corresponds to keeping all the frequencies).

T T T T T T T T
0 100 200 300 400 500 600 700 800

Figure 4. Examples of two images projected on the top 7' frequencies.
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Figure 5: Examples of random 2-dimensional cyclic translations of the images (for ' = 784).

Effective dimension
800

700 A
600 -
500 A
400
300 A
200 A

100 +

/ -mm- oy =X

T T T
0 200 400 600 800
T

Figure 6: Estimated sample size gap between standard and invariant kernel methods, for the trans-
lationally invariant MNIST dataset, as a function of the frequency content 7'.

The cyclic invariant kernel is computed by summing over all two-dimensional cyclic translations
g’Lj S CyC2D28,28:

27
1
Hajoe(®,Y) = 505 > bk (@, 935 - y) /d) -
i,j=0

For each T', we estimate the effective dimension d.; by fitting two parallel lines through the
classification error points of the standard and cyclic kernels at the same time (keeping only the
points where the curves decrease). The estimated (log) effective dimension is then given by the
difference of the offsets. We report these estimates for different 7" in Fig. 6.
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Appendix B. Proof of the main theorems

In this section, we present the proofs of Theorem 2 and 5 stated in the main text. The rest of the
appendices are organized as follow:

e Appendix C presents key properties of the decomposition of invariant functions, while Ap-
pendix H reviews some technical background on the functional spaces on the sphere and the
hypercube.

e Appendix D proves that the examples of symmetry group listed in Section 2 (one and two-
dimensional cyclic groups and band-limited functions) have degeneracy 1.

e Appendix E presents a key concentration result on the diagonal elements of polynomial in-
variant kernels. In particular, the results of Appendix E are the only ones required in the
proofs of Theorems 2 and 5 in the case of polynomial activations for general symmetry group
Gq of degeneracy o < 1.

e Appendices F and G provides necessary results to extend the proofs to non-polynomial acti-
vations in the case of (Aqg, Gq) = (S*"1(V/d), Cycy).

B.1. Notations

For a positive integer, we denote by [n] the set {1,2,...,n}. For vectors u,v € R?, we denote
(w,v) = uv1 + ... + uqvg their scalar product, and ||ul|zs = (u,u)'/? the £5 norm. Given a
matrix A € R"™™, we denote [|Afop = max|y|,—1 [[Aul2 its operator norm and by [|Al|r =
(Z” A?j)l/ ? its Frobenius norm. If A € R™*" is a square matrix, the trace of A is denoted by

We use Og( - ) (resp. o4( - )) for the standard big-O (resp. little-o) relations, where the subscript
d emphasizes the asymptotic variable. Furthermore, we write f = Q4(g) if g(d) = O4(f(d)), and
f=wq(g) if g(d) = 04q(f(d)). Finally, f = ©4(g) if we have both f = O4(g) and f = Qq(9).

We use Ogp(-) (resp. ogp(-)) the big-O (resp. little-0) in probability relations. Namely, for
h1(d) and ho(d) two sequences of random variables, hi(d) = Ogp(ha(d)) if for any € > 0, there
exists C; > 0 and d. € Z~, such that

P(|hy(d)/ha(d)| > C.) < e, Vd > d.,

and respectively: hi(d) = ogp(h2(d)), if hi(d)/ha(d) converges to 0 in probability. Similarly, we
will denote hl(d) = Qd’]P(hQ(d)) if hg(d) = Odjp(hl(d)), and hl(d) = wdlp(hg(d)) if hg(d) =
oqp(hi(d)). Finally, hi(d) = Ogp(ha(d)) if we have both hi(d) = Ogp(h2(d)) and hyi(d) =
Qap(ha(d)).

B.2. Proof of Theorem 2

Let G4 be a group of degeneracy a < 1. Consider &, ~ Unif(Ay), ds~F% < pn < gs—oF1-%,
d>—oF% < N < @>~2+1=% and an activation function o that satisfies Assumption 1 at level (s, S).
Denote

o(x:0) = /g o((6,g - x)/Vd)ma(dg).
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Theorem 2 is a consequence of Theorem 1 in Mei et al. (2021) where we take X; = Q4 = Ay,
vy = 74 = Unif(Ag) and Dy = Vg = L?(A4,Gq) C L*(Ay). The proof amounts to checking
that o indeed verifies the feature map concentration and spectral gap assumptions (see Section 2.2
in Mei et al. (2021)). We borrow some of the notations introduced in Mei et al. (2021) and refer the
reader to their Section 2.1.
Proof [Proof of Theorem 2] For the sake of simplicity, we consider the overparametrized case
N(d) > n(d)d® for some § > 0, and therefore S > s. The underparametrized case d° N (d) < n(d)
is treated analogously.
Step 1. Diagonalization of the activation function 7 and choosing m = m(d), M = M(d).

We can decompose the inner product activation o in the basis of Gegenbauer polynomials (see
Section H for definitions):

o((x,0)/Vd) = ZfdkB Ag k)QY ((x,0)) .

k=0

where (with e € A, arbitrary)

£0(0) = Egoumir(ay o (e, 8)/VDQL (e, 0))].

From Assumption 1.(a) that |o(z)| < ¢ exp(c122/2) for some constants co > 0 and ¢; < 1 (which
is trivially verified for a polynomial activation function), there exists a constant C' > 0 such that
(see for example Lemma 5 in Ghorbani et al. (2021))

lo((e, ) /)l 2, = > &xB(As k) < C. (22)
k=1

We have for fixed k, B(Ay; k) = O(d*). Furthermore, for non-polynomial activation functions in
the case of (Ag,Gq) = (S¥1(Vd), Cycy), we use supy~s B(S?™;k)~! = O4(d™>"') (Lemma 1
in Ghorbani et al. (2021)). We deduce that

sup §ip = 0a(d™=1), 23)
>s
sup &3, = Oa(d™>71). (24)
k>S

From the correspondence between Gegenbauer and Hermite polynomials when d — oo (see Eq. (111)
in Section H.1.3), Assumption 1.(b) implies that 53716 =0y(d*) fork=0,...,s

Let us diagonalize & in the basis of G4-invariant polynomials {Y ; } k>0,6€[D(Ag;k)) (see Section
C for definitions). From Lemma 11 stated in Section C.3, we have

o (x;0)

ICECEE / Q) (. g - 8))ma(dg)

Ad:

ZZEdk Z Vi (0.

Denote (Ag ;j);>1 the eigenvalues of & in non increasing order of their absolute value (namely,
the £ 1’s which have degeneracies D(Ag; k)). Set m and M to be the number of eigenvalues )\37 j

(25)
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that are bigger than d—5~1% and d—5~1*9 respectively, for a constant § > 0 that will be set suf-
ficiently small (see Step 4). From the above discussion, (A4 ;) j<m corresponds exactly to all the
eigenvalues associated to invariant polynomials of degree less of equal to s, while (Ag ;) j<m does
not contain any eigenvalues associated to invariant polynomials of degree bigger or equal to S + 1.
Hence,

s S
m = ZD(Ad; k) =04(d %),  M<) D(Agk) = Oq(d>®), (26)

k=0
where we used that G; has degeneracy « so that D(Ag; k) = O4(d™%) - B(Ag; k).
Step 2. Diagonal elements of the truncated kernel.
We introduce the kernel associated to activation &

Hy(x1, 22) = Eg[o(x1; 0)0(22; 0 Zfd kD(Ag; k)0 (1, 2)
k=0

where we denote
-Ad 3

Tl(ed)(ml,mQ) -Ad Z Y 331 Yk:l)(yl)

Similarly, we introduce a kernel in the feature space

Ua(01,02) = Eg[o(x; 61)7(;02)] = ZfikzD(-Ad; k)TIE;d) (01,02) .
k=0

We denote Hy, Uy : L?(Aqg, Gq) — L?(Aqg, Gq) the kernel operators with kernel representation Hy
and Uy, and denote Hy ~m and Uy ~m the kernel operators where the biggest m and M eigenvalues
respectively are set to 0. Recalling the discussion on the choice of m and M, denote £ = {k :
€2, < d=571%9}: E contain all integers bigger or equal to S + 1 and none smaller or equal to s.

" The diagonal elements of the truncated kernels are then given by

Hy>m(z, @) Z 51D (Aa k WY (@, ),

k=s+1 (27)
Usom(0,0) = > €3, D(As: b)YV (0,0),
keE

and

Tr(Hg>m) = Ee[Hy>m(z, )] Z &5 1D (Ag k).,
k=s+1

Tr(Ug,>m) = Eg[Ug,>m(0,0)] Zfde Ag k).
keE

From Assumption 1.(c), o is not a polynomial of degree less or equal to S. Hence, there exists
¢ > S such that p(0) # 0 and therefore §§’€D(Ad; ¢) = O(d~?). Furthermore, from Eq. (22) and
the assumption that G, is of degeneracy « (for polynomial activation functions, see Proposition 22
in Section G for general o in the case of (Ag, Gq) = (S¥~1(V/d), Cyc,)), we have

Tr(Hyom) = O(d™®),  Tr(Ugam) = O(d®). 28)
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Step 3. Checking the feature map concentration property atlevel { N (d), M(d), n(d), m(d)}4>1.

Let us first consider the case of a polynomial activation function o. Denote D its degree and
u = u(d) the total (finite) number of nonzero eigenvalues of @ (which are associated to invariant
polynomials of degree less or equal to D). Let us verify the feature map concentration property
(Assumption 1 in Mei et al. (2021)) with sequence u(d) > max(m, M). Note that u > max(m, M),
part (b) and (c) of the property are trivially verified in that case.

(a) (Hypercontractivity of finite eigenspaces on D,4.) The subspace of polynomials of degree less
or equal to D on the hypercube and the sphere verifies the hypercontractivity property (see
Lemmas 35 and 36 in Section H.3).

(d) (Concentration of diagonal elements.) From Eq. (27) and Proposition 18 stated in Section E,
we have

sup Hd,>m(mi» xz) - E:c [Hd,>m(ma CL’)]
i€[n]

D
< Z fikD(Ad; k) Sl}p} T,E;d)(a:i,a:i) — Ex[T,(Cd)(a:,a:)] =04p(1) - Ex[Hg>m(x, x)].
k=s+1 veln

A similar computation shows the concentration of the diagonal elements of Uy ~m.

Let us now consider a non polynomial activation function ¢ in the case of Ay = S%~1(/d) and
Gq = Cyc, (of degeneracy 1). Let us choose ¢ > 2S + 10 such that u(o) # 0 (it must exists
otherwise o would be a polynomial) and therefore 53 , = 04(d*). Consider u = u(d) to be the
number of eigenvalues such that )\2 is strictly bigger than &2 a.¢- Then, (Ad,j)j<u do not contain any
eigenvalues &, for k > ¢ and contaln all £, for k& < s. In particular, v > max(m, M). Denote
E={k:&, <&} E contain all integers bigger or equal to /.

Let us Vyerify the feature map concentration property with the sequence u(d) (part (a) is the
same with D replaced by £ — 1).

(b) (Properly decaying eigenvalues.) We have
Tr(Hg>a) > £5,D(S"50) = Qa(d™),
Tr(Hs0) =) €ax DS k) <64, Tr(Hasu).-

keE
Hence,
Tr(H 2
r(#;“) > 5;? . TT(Hd,>u) - Qd(l) 'd25+9 > max(n, N)2+5.
Tr(]HId >u) ;

(c) (Hypercontractivity of the high degree part.) Denote G, = P& the activation & obtained
by setting the first u eigenvalues to 0 (i.e., setting coefficients k& ¢ E to zero in Eq. (25)).
From Eq. (28), we need to show that for p as defined in Assumption 1.(a), we have

Eq 0[asu(@; 0)]"/ ) = 0y(d~1/>%7).
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Denote E<y4p = EN{0,...,4p} (recall that E contains all k > /) and decompose 7, =
Pe_,,0 + P>4po. Then by triangle inequality we have,

Ea,0[0>u(®;0)7]Y/ %) < B, o[Pp_, 7 (x;0)%]"/ %) + By g[Pospo(w; 8)%]'/ 20,

Using hypercontractivity of polynomials of degree less or equal to 4p, the first term is bounded
by Og(d—'/2), while the second term is bounded in Proposition 29 in Section G.

(d) (Concentration of diagonal elements.) This is proved in Proposition 22 in Section F.

Step 4. Checking the spectral gap property at level { N(d), M(d),n(d), m(d)}g>1.
Let us now check the spectral gap property (Assumption 2 in Mei et al. (2021)).

(a) (Number of samples.) First by Eq. (26) and the assumption d5~®+% < p < gstl—a—do,
we have m < n'~9 for § > 0 chosen sufficiently small. By the choice of m and recalling
Eq. (28), we have

A Tr(Hg 5m) = kiupl{ﬁii} Tr(Hgsm) = Qa(d®17%) > n!t0,
>st

A2 Tr(Ha sm) = € 2Tr(Hgsm) = Og(1) - & * < n' 77,
with § > 0 chosen sufficiently small.

(b) (Number of features.) By construction M > m. Furthermore, recalling Eq. (26) and the
assumption d>~ % < N < @5Ft1=a=% e have M < N'79 for § > 0 chosen sufficiently
small. By choice of M, A3\, ; < d—S57119 Hence,

Mo Tr(Ugsm) = Qq(1) - d>F17270 > N1,
for § > 0 chosen sufficiently small.

Finally notice that we used a different parametrization of X in Eq. (6) and the condition in Mei
etal. (2021) becomes A/d* = Og4(1) - Tr(Hg,>m), i.e., A = Oq4(1). This concludes the proof. M

B.3. Proof of Theorem 5

We consider the same setting as in the previous section and consider
Hd(ml, $2) =Ey [E(ml; 9)5($2; 9)] .

Theorem 5 is a consequence of Theorem 4 in Mei et al. (2021) and the proof amounts to checking
that H; verifies the kernel concentration properties and eigenvalue condition (see Section 3.2 in
Mei et al. (2021)). Note that some of the conditions were already covered in the proof of Theorem
2 and we will only mention the ones that still need to be verified. Furthermore, by the spectral gap
property proven in Section B.2, the bound in Theorem 4 in Mei et al. (2021) (which is in term of a
shrinkage operator) can indeed be rewritten as

RiRiinv(fa, X, A) = |Pssfalli2 + 0ap(1) - (I fallF2en + 02).
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Proof [Proof of Theorem 5] We choose m as in the proof of Theorem 2.
Step 1. Checking the kernel concentration property at level {n(d), m(d)}4>1.
First notice that

Eo[Haom(@i,x)) = > €4.D(As k)T (@, 1),
k=s+1

and the concentration of the diagonal elements in the case of a polynomial activation function fol-
lows from the same argument as in Section B.2.

Hence, we only need to check this property in the case non polynomial activation function o
(Ag = ST (\/&) and G4 = Cyc, of degeneracy 1). Let us choose u as in the proof of the feature
map concentration property in Theorem 2.

o (Properly decaying eigenvalues.) We have

Tr(H3~,) > €1,D(ST0) = Qq(1) - d 7,

Te(H]..,) < sup{AG;}Tr(Hlus) = Oa(1) - 4.
J1>

Hence, ) ,
Tr(Hd >u)
e = (1) - d T = Qg (d%) > 0T
Tr(H ..,,)
o (Concentration of the diagonal elements of the kernel.) This is proven in Proposition 23 in
Section F.

Step 2. Checking the eigenvalue condition at level {n(d), m(d)}4>;.
By the choice of m, we have

_ Zk>s+1 fﬁ kD(AcB k)
)‘d,i+1Tr(H3,>m) = - :

- > D(.Ad;s—i— 1) _ Qd(ds+1fo¢> > n1+6_
SUPg>s+1 gd,k;

Again notice that we used a different parametrization of A in Eq. (11) and the condition in Mei
etal. (2021) becomes A/d* = Og4(1) - Tr(Hg >m), i.e., A = Og4(1). This concludes the proof. M
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Appendix C. Decomposition of invariant functions

In this section, we take Ay € {S?1(v/d), 2%}, and G, to be any group that is isomorphic to a
subgroup of O(d) and that preserves .A;4. This section is mostly built on the technical background
presented in Appendix H.

C.1. The invariant function class and the symmetrization operator

Let L?(Ay) be the class of L2 functions on A4 equipped with uniform probability measure Unif(Ay).
We define the invariant function class to be

L(A4,Ga) = {f € L*(Ag) : f(@) = flg- @), Vo € Ay, Vg € Gay.

We define the symmetrization operator S : L2(Ag4) — L?(Ag,Gq) to be

(ShHx)= [ flg-=x)ma(dg).

Ga

C.2. Orthogonal polynomials on invariant function class

For either Ay € {S¥1(V/d), 29}, we define V; <, C L?(A4) to be the subspace spanned by all
the degree £ polynomials, Vg -1 = VdLg e C L?(Ay) to be the orthogonal complement of Va,<k, and

Var = Vi< N VdL<k71. In words, V; ;. contains all degree k£ polynomials that orthogonal to all
polynomials of degfée at most £ — 1. We further define Vg <, = Vj <p—1 and Vg > = Vg s p—1.

Let P< to be the projection operator on L?(Ag4, Unif) that project a function onto Va,<e, the
space spanned by all the degree ¢ polynomials. Then it is easy to see that ﬁgg and S operator
commute. This means, for any f € L?(A), we have

Similarly, we can define Py, P/, Py, 525, which commute with S. We denote Vy(Gq) =
Pi(Ag,Gq) to be the space of polynomials in the images of P,S (which is consistent with the
definition of Vj ¢(Gg) in Definition 1). Then we have

Pe(Ad, Ga) = Pe(L?(Ag, Ga)) = S[Pe(L*(Aa))]-

We denote D(Ag; k) = D(Ag; Gg; k) = dim(Px(Ag, Gq)) to be the dimension of Pk (Ag, Gg).
We denote {7,(;;) }ie[D(Ay:k)) to be a set of orthonormal polynomial basis in Py, (Ag, Ga). That means

—(d —(d
Etmit(an [V vy (@) Vi, (@)] = 1{k1 = ko, Iy = I},

and
V(@) =Y\ (g-x), V& € As Vg€ Ga.
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C.3. A representation lemma

We have the following representation lemma. This lemma is important in the proofs of counting the
degeneracy of groups (See Section D).

Lemma 11 (Convolution representation of projection operator) Let Qéd) be the k-th Gegen-
bauer polynomial, or the k-th hypercubic Gegenbauer polynomial. For any fixed integer k, we

have
D(Ag:k)

D(vid;k) lz; YIE:?)(‘”)Y%)(?J):m Ga Q" (@, g y)ma(dy). 29)

Proof [Proof of Lemma 11] Define

D(Ag;

Flk'my Z ()7

and
Lan(a.y) = B(Ask) | QY (g - z,y))ma(dg).

Then I'y;, and 'y, define two operators Ty, Toy : L?(Ag) — L?(Ay), ie., for j = 1,2,
Tixf(2) = Eyunitcay) [Lin(x, v) f ()]

Recall that Q;d) is a representation of the projector onto the subspace of degree-k spherical
harmonics (see Eq. (104) in Section H.1.2). We deduce that

Torf(x) = SEy[B(As k)QW ((,9)) f(y)] = SPf (),

and therefore Ty;, = SP}.
Furthermore, we have Ty;, = P;S. Indeed, the images of both Ty and P.S are Py(Ag, Ga),

the space Py, (A4, G4)™" is the null space of both Ty, and P;S, and le?g}( ) = PkSY(d)( ) =

)
Vip @), B -

By the commutativity of P and S operator, we have Ty, = PrS = SPi = Tag, and hence
T =T |

C.4. Gegenbauer decomposition of invariant features and kernels

By Section H, for either Ay € {S?~!(v/d), 24}, for any activation function o € L?([—V/d, Vd],T})
(where Té is the distribution of (x1, x2) when @1, 2 ~;;q Unif(Ay)), we can define its coefficients
&4.1(0) defined by

= g\r (d) €T )T, ! i
o) = [ @l (Vi) (30)
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so that we have the following equation holds in L?([—v/d, V/d], 7} ) sense

Z an(0)B(Ag k)Q\P (Vdz).
For any group G, that is a subgroup of O(d), we define
7@:0)= | ollm.g-0)/Vdm(da).
d
Then, by the representation lemma (Lemma 11), we have

mngmwww/Q%mgwmw
k=0
0 D(Aqsk)
= k(o Z Vil ).
k=0
As a consequence, suppose we define

Hy(z,y) = Egunit(a, [0(x; 0)7(y; 0)].

Then we have
Ad )

y) = &arlo) Z Yk:l i ()-
k=0
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Appendix D. Counting the degeneracy
D.1. Counting the degeneracy of Cyc, and Cyc2D,, ;, (Example 1 and 2)

Proposition 12 Let Gg € {Cycy, Cyc2Dy, 4,} with d = dy x da. Let Ay € {ST1(Vd), 2.
Then for any fixed k > 1, we have

dim(Py(Ag, Ga)) = D(Ag; k) = ©4(d" ).

D.1.1. PROOF OF PROPOSITION 12

Here we state a key lemma that is used to prove Proposition 12.
Lemma 13 Let Gg € {Cycy, Cyc2Dy, 4,} with d = dy X da. Denote

Fi(z) = /g (.9 - 2)/d)*a(dg).

Then for any fixed k > 1, we have

E.n(0,1,) [ Fr(2)] = Qa(d ™), 31)
Egtnit(24)[Fi(0)] = O4(d™"), (32)
Egsi-1(va) Fr(0)] = ©a(d ™). (33)

Proof [Proof of Lemma 13] We prove Eq. (31) and (33). The proof for Eq. (32) is similar to the
proof of Eq. (31).

Let {L;}o<¢<a—1 be the matrix representation of group elements of Cyc, or Cyc2Dy, 4, When
Ga = Cycy, g¢ € Cyc, gives matrix representation Ly for 0 < ¢ < d — 1; when G = CyCQDdl’dQ,
gst € Cyc2Dd1d2 gives matrix representation Lgyg,4+¢ for0 < s <d; —1,0<t <dp — 1. Asa
consequence, for either G5 € {Cycy, Cyc2Dy, 4,1}, Lo = L4 is the identity matrix. This gives

d—1
Fi(z) = |23 /d* + ) (=2, Liz)* /"
=1

Step 1. The case k£ = 1. For either G4 € {Cycy, Cyc2Dy, 4,}, we have E[(z, L;z)] = 0 for
1 <[ <d—1. As a consequence, we have

d—1

EenonolFi(2)] = Ell2I3/] + Y El(z, Lis)/d?) = . (34)
=1
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Step 2. The case £ = 2. Note we have

d—1

E.no1y[F2(2)] = Elll2]3/d’] + ) El(e, Liz)*/d’]
=1

s[(3 ) S]]

d - d—1 d
= Y Elfaf)/d® + ) Y Elwi(Liw)iz;(Liz);)/d°
ij=1 =1 i,j=1
12y &
= (+3)+ Elei(Lia)iz; (L)) /d*
I=114,5=1

Note that for either G4 € {Cyc,, Cyc2Dy, 4,}, forany i € [d] and 1 < I < d — 1, the random
variable (L;x); is independent from x;. This gives

G 2(d —1)d
0<> Y Elas(Liw)iz;(Lix);] /d? < e Oq(d™).
1=1i,j=1
As a consequence, we have
E.no1,) [ F2(2)] = ©a(d™"). (35)

Step 3. The case k£ > 3. By the moment formula of the y? distribution, we have

Eono1pl(1213/d)"] = 1+ 04(1).
Moreover, for either G4 € {Cyc,y, Cyc2D,, 4,}, for any I # 0, we have
E[(z, L;z)]/d = 0.

As a consequence, by the Hanson-Wright inequality as in Lemma 14, for any fixed k > 3and e > 0,
we have

EZNN(O7Id)|:1<Sl'1<15) 1((z,le)/d)’l‘f} = Od(d*k/ﬂs),

Therefore, for k£ > 3, we have
a0t P g Eanions [(1213/01] < Baoxona [ sup (2 Lizh/@)] = oul(1/d),

so that
E. a1, [Fk(2)] = 1/d + 04(1/d). (36)

Combining Eq. (34), (35), and (36) proves Eq. (31).
Step 4. From Gaussian to spherical. Note that when 2z ~ N(0,1;), we have ||z]|3 ~ x%(d)
which is independent of v/d - z/||z||2 ~ Unif(S?!(v/d)). Hence, we have

B 010 [FR(2)] = Bosir v oo (o1 [ER(O) (12]3*/)]
= ngsdfl(\/&) [Fk(o)] EZNN(O 1) [HZH k/dk]
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Note that for fixed & > 1, the moment formula for y? distribution gives
E.~no1 123" /d"] = 1 4 04(1).
Combining with Eq. (31), we have
Egsi-1(va [Fr(0)] = Ezono1) [Fi(2)]/Ezano1p (12137 /d"] = ©4(d™).
This proves Eq. (33). |

Proof [Proof of Proposition 12] Denote

Ad7k)

AO)= g L THO7 = [ o0 o))

By Lemma 11, for any fixed £ > 1, we have
D(Ag; k)

EgUnit(4y) [Pk (0)] = BAg k) (37)
By Lemma 15, we have
k
Pe(0) = aqpmFin(0),
m=0

where |ag j.m| < Cn/d*~™)/2. As a result, we have

k
EgUnit(4y) [Pk (0)] = Z ad kmEo~vnit(a,) [Fr(0)] = e(d™).

m=0

Combining with Eq. (37) shows that D(Ag; k) = O(d~'B(Aqg; k)) = ©(d*~1). This concludes
the proof. |

D.1.2. AUXILIARY LEMMAS

Lemma 14 (Hanson-Wright inequality) There exists a universal constant ¢ > 0, such that for
any t > 0 and d € N, and any permutation matrix L € R be any permutation matrix, when
x ~ N(0,1,) or © ~ Unif(2%), we have

P(‘(w,L cx) —E(x, L- @]‘/d > t) < 2-exp{—cd - min(:2,1)}.
Proof [Proof of Lemma 14] Note that for any permutation matrix L, we have || L||r < v/d, and

|L|lop < 1. By the Hanson-Wright inequality of vectors with independent sub-Gaussian entries
(for example, see Theorem 1.1 of Rudelson et al. (2013)), we have

P(’(w,L@ — E[(:B,L:c)]’/d > t) < 2exp{—cd - min(t,1)}.

This concludes the proof |
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Lemma 15 Let ngd) be either the k’th Gegenbauer polynomial or the k’th hypercubic Gegen-

bauer polynomial (as defined in Section H). Let coefficients of monomials in ngd) (d - x) to be
{ad,k,m}ogmgk- That is, we have

k
Q@) =" aggom(z/d)™
m=0

Then, for any fixed k, there exists constant C(k), such that
\ag om| < C(k)/d*=m)/2,

Moreover, we have

lim agp i = 1.
d—oo
Finally, for k and m in different parity, we have
aq jem = 0.

Proof [Proof of Lemma 15] The proof holds by the following equation

1

. . 131/2 () , _
dl;n;oCoeff{B(Ad,k) Q\(Vd x)} Coeff{\/m

Hek(x)}.

when Q,(Cd) is either Gegenbauer polynomial or Hypercubic Gegenbauer polynomial (See Eq. (110)
and Eq. (112)). |

D.2. Counting the degeneracy of band-limited function class (Example 3)

Proposition 16 Follow the notations of Example 3. Then for any fixed k > 1, we have
D(SY ™V k) = ©4(dF ).

Here we state Lemma 17 that is used to prove Proposition 16. Given Lemma 17, the proof of
Proposition 16 is the same as the proof of Proposition 12.

Lemma 17 Follow the notations of Example 3. Denote
Fe®) = [ (zg-2)/d) raldg).
Sfty
Then for any fixed k > 1, we have

E. N (0.1, Fr(2)] = ©4(d71).
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Proof [Proof of Lemma 17]
We prove the lemma for the case when d is odd. We denote u; = 2%, and u; = 23, + 23, 4 for
i=2,...,(d —1)/2. Then we have

(d—1)/2

]( ]z:% ujcos(Qth))kdt}
(d-1)/2

:d_k'Ez{/[o,uj 3 (H uj, cos(27rjst)>dt} (38)

Lok =0 s€k]

B o lFk(2)) = B

(d-1)/2
=d*. E. uj, / cos(2mjst)dt ).
R {L{} o [071131% )

Step 1. Bound Z function. First, we denote

Z(1,- . jk) = EZ{ 11 “js}
s€k]

We have
sup Z(j1,...,Jk) < sup H Elu3¥]"/ M)
J1se5Jk J1s-5Jk SE[]C]

< sup IE[ugk]l/2 < 2k. EGNN(OJ)[G%]VQ = Mj.
je{0,1,...,(d—1)/2}

(39)

Moreover, we have
inf Z(j1,....5k) > Eqonn[G? = 1. (40)

JiseeJk

Step 2. Bound |Z|. Further, we denote

k

1= {(jl’ k) €40, (d=1) /287 F(e)iepy € {£1YF,D i = 0},

i=1
Then it is easy to see that
[(d+1)/2Ft <|Z] <2 (d+ 1)F L (41)
Step 3. Bound £ function. Next, we denote
E(j1, ... i) = / I cos(2rjst)dt.
[0»1] Se[k]

It is easy to see that

sup |B(i, ... )| < 1. 42)
.]17"'7.719

Moreover, for any (j1,...,Jjr) € Z, we have E(j1,...,jx) = 0. For any (j1,...,jx) € Z, we have

E(1,...,j8) = 1/ H [exp(i2mjst) + exp(—i2mjst)|dt > 1/2". (43)
25 o1 se

38



INVARIANCES IN KERNELS AND RANDOM FEATURES

The last inequality used the fact that (51, ..., jx) € Z.
Step 4. Concludes the proof. Therefore, combining Eq. (38) (39) (41) (42), we have

(d—1)/2
Eoonorn Fi(2)] <d™* - M- > B,
Jise-sJk=0

<d™F - My, - |T] = Og(d™).

Combining Eq. (38) (40) (41) (43), we have

(d-1)/2
EeonvornFe(z)] >d™ - > |E(,..., k)
J1se-Jk=0

>d % |Z|/28 = Qq(d7Y).

This concludes the proof.
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Appendix E. Concentration for invariant groups with degeneracy o < 1
Let Q,(fd) be the k’th Gegenbauer polynomial on Ay € {S%~!(v/d), 27} (see Section H for defini-
tions). Let G4 be an invariant group with degeneracy a. That means, for any fixed & > a, we have
B(Ag; k)/[D(Ag; k)d*] = ©4(1). For k € N>¢, we denote
1 Didab) "
Tk(6 YO 0) = =222 [ QD0 - 0))my(dg). (44
Then we have

E[Y4(0)] = 1.

In this section, we show that Y, concentration around its mean, for any fixed £ > 2 and o < 1.

E.1. Main proposition

Proposition 18 Let Gy be an invariant group with degeneracy o < 1. Let (0;);c;n) ~ Unif(Ag)
where N = O4(dP) for some fixed integer p. Let Yy, be as defined in Eq. (44). Then for any fixed
k > 2, we have

'Sup ’Tk(al) — 1’ = Od’P(l).

Proof [Proof of Proposition 18] Let us first focus on the sphere case Ay = S%'(v/d). Let
(®i)ie[N] ~iid N(0,1;). Without loss of generality, we assume x; and 6; are coupled such that

0; = Vd - x;/||z;||2. Denote

Fu(z) = é (.9 - 2)/d)*a(dg).

Let {aq,k,m fo<m<k be the coefficients of monomials in Q,id) (d - x). That is, we have

k
V) = > agpm(x/d)"
m=0

Then

Q\7((6,9 - 6))ma(dg) = Zadkm
d

Moreover, by Lemma 15, we have |aq | < C’km/d(k*m)/Q, limg oo @g ke =1, and agjm = 0
for k and m of different parity.
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Then we have

sup |Yx(6;) — E[Tx(0;)]]

1€[N]
B(S* 1 k)
= m zsel[llg] ‘ , Qr((0i,g - 6:))ma(dg) — E{ G, Qi ({05, 9 01>)7rd(d9)] )
k
SOXd* %Y g X up |Fn(6:) — E[F(6)]
m—1 1€[N]
k
<O dx Y aaum X s |Fn(s) ~ ElFn(e))]| - (0|11
1 i€[N

By the concentration of y2-distribution, for any ¢ > 0, the following event happens with high
probability

&= { sup [||@;l[3/d — 1] < 1/d1/2_5}_
i€[N]
Moreover, combining Lemma 19 with Lemma 20, for any fixed m > 2, we have
E[(Fm(m) — E[Fm(x)])Q] < Cmd_1—3a/2.

By the hypercontractivity property of Gaussian distribution as per Lemma 37, for any € > 0, taking
q sufficiently large, we have

)211 1/(2q)

M=

E[isel[% Fyn (1) —E[Fm(wi)]H < E[“

(Fn(i) — E[Fy )]
< Clg) - d/C0 - E[(Fn(x) — E[Fn(@)))*]V/? < Cd71750/24
By Markov’s inequality, we deduce that the following event happens with high probability

& = {VQ <m <k, SL[lp] Fo(x;) — E[Fm(ml)]‘ < Cd7173a/2+5}.
i€[N

Finally, by Lemma 19, we have
E[Fi(x)’] < Cd™>,

and by the hypercontractivity property of low degree polynomials with Gaussian measure (Lemma
37), for any € > 0, taking q sufficiently large, we have

} 1/(2q)

E[ sup | Fi(ai) — E[Fl(mi)}H < cE[iFl(wi)% + E[F (x)?]/2
=1

1€[N]
< C(q) - dP/D - E[Fy (x)?)"/? + E[F (z)*)"/? < Cd—ote.

As a result, the following event happens with high probability

Es = { sup |Fi(xz;) — E[Fl(xz)]‘ < Cd_o‘+5}.
1€[N]
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When all the events &1, £, and £ happen, for any & > 2, we have

sup [Yx(0;) — E[Tx(0:)]]
1E€[N]

COxd xS agiom x 51 | Fue) — E[Fn(@)]| - [@"/ll2il13"]

m—1 1€[N]

k
<O xdx [d—(k—l)/2d—a+a 4 Z d—(k—m)/2 o d—1—3a/2+a} — og(1).
m=2

The case of the hypercube Ay ~ 2¢ follows similarly without introducing the gaussian measure
and using Lemma 21 instead of Lemma 20. |

E.2. Auxiliary Lemmas

Lemma 19 Let G, be an invariant group with degeneracy o < 1. Denote
F(o) = [ (g 2/ mulds).
d

Then for any fixed s € [1,00) and integer k > 1, we have

Egmn (0.1, [Fi ()] = 0a(d™), 45)
Egntnit(A,)[Fi(0)]/* = Oq(d™). (46)

Proof [Proof of Lemma 19]
For 8 € A,, denote

D(Ag;k
1 (Aask)

RO)= g 2 THE’ = [ A0 )mes)

By Lemma 11 and by the assumption that G; is an invariant group with degeneracy o < 1, i.e.,
B(Ag; k)/[D(Ag; k)d¥] = ©4(1), for any fixed k > 1, we have

E[P:(0)] = m = Oq(d™).

Throughout the proof, we will denote L° = L*(.Ay) to be the L* space with respect to distribution
0 ~ Unif (Ay).
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By the hypercontractivity of low degree polynomials on the sphere and the hypercube, as per
Lemmas 35 and 36, for any s > 1, we have

D(Ag; k)| B(Aqg; k) Ck.s || B(Ag; k)
1Pellze = B Hl),A&ka%‘LSSCP‘ l)@4@kﬂ}%‘L2
D(Ag;k)
Crsp 1 (d) (d) 172
- de .D(.Ad‘k)2 Z E[Y (0) Yle(O)Q]]
’ I1,lo=1
D(Agik) 47
Chrys T 1 1/2 1/211/2
S o | D(Ag; k)2 Z E[Ykl )] /ET 0)"] /}
’ I1,lo=1
D(Agsk)
CrsT 1 —(d d 172 Cgs
< b 2 EFROEFLe?)] = 5
’ l1,la=1

Let {aq km fo<m<k be the coefficients of monomials in Q,gd) (d - x). That is, we have

k
D) = > agpm(x/d)™.
m=0

Then
Kk

Pe =" agpmPm. (48)
m=0
Moreover, by Lemma 15, we have |aq | < C’kvm/d(k_m)/Q, limg o0 @g ki = 1, and ag . m = 0
for k and m have different parity.
We conclude the proof by induction over k. Note we have Fy(0) = 1. Moreover, for any s > 1,
by Eq. (47) and (48) (and note that ag1,0 = 0 and limg_,o a4,1,1 — 1), we have

1
1F e = ——|Allzs < Cs/d”
Fix a k > 2. Assume that, forany 1 < u < k — 1, we have || Fy,||s < C, /d* for s > 1, by Eq.
(48) and (47), and the fact that |ag . m| < C’;wn/d(’“*m)/2 and limg_,o0 aq k1 = 1, we have

) k—1
(| FrllLe = H Pe— > agpmFm— ad,k,OH
ad, ok = L
) k—1
< H Py|| + Z \ad,k,m\HFmH + lad,kol
ad. k.k Ls 1 Ls

E

—1
<C/d+ | 3 Cfd* ] Cfde + CJd T < O fd,
1

3
I

where we recall that we assume «
Finally, for the case of A; =

Q“I/\

1.
~1(+/d), recalling that we can write
Fi(z) = (|[z[3/d)* Fi(6),
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where 8 = x/||x;||2 ~ Unif(S?~!(1/d) is independent of |a;||2 in the case of & ~ N(0,1I,).
Hence, we get by Cauchy-Schwarz inequality

1/(2s)
Eeni01 [F1(@)1* = [ Filze - Bpenioag [(lel3/@?*] " < Ciufa

by hypercontractivity of low degree polynomials for Gaussian measure (Lemma 37). |

Lemma 20 Let @ ~ N(0,1;). Let Gy be a general invariant group. Let Fy(z) be defined as in
Lemma 19. Then for any fixed k > 1, there exists a constant C}, such that

e Ifk is odd, then

C
Vargn(o,1,) [Fk(x)] < FkE [Fro—1 ()]

o Ik is even, then

Cy,
Vargno,1,) [Fk ()] < i

 (EalFia(@)?] A Eg[F ()] 20/,

Proof [Proof of Lemma 20]
By the Gaussian Poincaré inequality, we have

Eqrn(o1) [ (Fi(@) — E[Fi(2)])%] < E[||VFy()|[3].

We have
VFi(x) = k / (@g- @)/ (g @ + g x)/dma(dg),

Ga

which gives

E[|V Ei()]3]
2
= w [ o) (e @) 0 e @) ] maldg ).
GaxGq
Case 1: Odd k. When k is odd, we have
E[||V Fi()]|3]
2
= % E[(<w,91 cx) /)" ((z, go - :1:>/d)k’1Ha:H§/d} ma(dg1)ma(dgo)
GaxGq
2 2
%E[Fk 1(@)*(]13/d)] < %E[Fk_l(m)‘*]l%[(u 12/d)2] " < (Zlk E[F, ()],

where we used in the second line Cauchy-Schwarz inequality and that the matrix representations of g
are orthogonal matrices, and in the last inequality the hypercontractivity of low degree polynomials
for Gaussian measures (Lemma 37).
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Case 2: Even k. Bound 1. When £ is even, we have the following first bound

E[|VEy ()13

4k‘2 k—2 k—2 6/ 33

<— E[ (@, g1 - @)/d) (@, g2 - ) /d)" 2 @]3/d* | ma(dgn)ma(dge)
GaxGq

4k 4k? C

= —E[Fia(@)(lel$/d")] < —E[Fia(@)'] “E[(lll$/d*)"]* < = E[Fi2(2)’] .

Case 3: Even k. Bound 2. When £k is even, we have the following second bound, which follows
by Hélder’s inequality E[X Y] < E[| X |F/(k=D](k=1)/k . gy |F]1/k,
E[[|V Fy.()]13]

B B[ )/ (g )/ 10 ) ] g malde)
GaxGq

4k2

<TE[L e wt(w @) o man)

<E[ [ (.g-a)/d)natag)]

Ga

- 4k? _
= TE[Fk(m)z] (k=1)/k E[Fk(m)]l/k < TE[Fk(ﬁc)Q] (2k—1)/(2k)

Combining these two bounds yields the result for £ even. |

Lemma 21 Let 6 ~ Unif(2%). Let G, be a general invariant group that preserves 2°. Let Fy(z)
be defined as in Lemma 19. Then for any fixed k > 1, there exists a constant Cy, such that

o If'k is odd, then
C
Vargunis(24) Fr(8)] <~ Eo[Fia(0)%] + 5

o If'k is even, then

Proof [Proof of Lemma 21]
The proof is similar to the proof of Lemma 20. By the discrete Poincaré inequality, we have

d

Eounit(2,)[(Fr(6) ~ E[FL(0)])’] <Eo| ) DiFi(6)?] .

where D; denote the discrete derivative defined as
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with 8_; = ((91, ces0i1,—0;,0,01, . .. ,Qd). Let (pg(g) = ((9,9 . 9>/d)k, then

Digy(0) = U89 01V = (0190 | (8-109-0)/)" - (O-1n9 - 0-)/0)"

= Di’lgog(e) + Di,290g(0)'

We have (0_;,g9-0) = (0,g-6) — 20,(g - 0);. By Taylor expansion, the first term verifies (recall
thatg-0 € 2%and 0%(g- 0)? = 1)

Dipg(0) = k({09 - 0)/d) " (0i(g - 0):/d) — k(k — 1)X;1(6,9)*2/d?,

where X; 1(0, g) is on the line segment between (0, ¢ - 8)/d and (60_;, g - 8)/d. Similarly, Taylor
expansion on the second term yields

Diopy(0) = k((0_i,9-0_;)/d) 1 (0:(g7" - 0_;)i/d) + k(k — 1)X;2(0, 9)"2/d?

where X; 2(8, g) is on the line segment between (6_;, g - 0_;)/d and (0,g - 0_;)/d.
Using Jensen’s inequality to separate each of the 4 terms in D;p4(8), using that 6_; and 8 have
the same distribution, we get

Eo [EdeiFk(O)Q]
=1

3242 . .
<= gdxng[(<0,91-9>/d) (6.2 0)/d) (6, 3192 - ) /d] a(dgn ) a(dg2)

16k: —-1)? Z /

(0.9 72 Xi4(6, 92)" | ma(dgn)maldgo).
se{1,2} i=1 7 94x0a

Noticing that sup; ; g , | Xis(0,g)| < 1, the second term in the above equation can be bounded by
C}./d3. The first term in the above equation can be bounded using the same way as bounding the
right hand side of Eq. (49) as in the proof of Lemma 20. This concludes the proof. |
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Appendix F. Kernel concentration for the cyclic group and general o

Throughout this section, we will always take G; = Cyc, to be the cyclic group, and A; =
S?1(+/d) to be the sphere. We will write in short B(d, k) = B(S* *(v/d); k) and D(d, k) =
D(S?1(v/d); Cycy; k). We recall that the cyclic group has degeneracy 1, i.e., for each integers
k>1,B(d,k)/D(d, k) = ©4(d).

F.1. Main propositions

Let the Gegenbauer decomposition of ¢ be

ngk )Q\ (Vdz).
For S C N, we define
oas(r) =Y &ap(0) B(d,k)QY (V). (50)
kes

For any ||0;]|2 = ||62]]2 = v/d and any S C Zx, denote
ha,s((61,62)/d) = By _ynigsit (vay 0a.s (01, ) /Vd)a s ({02, 2) /Vd)).

Proposition 22 Let { > 2 be a fixed integer. Assume that o € C*3(R) be a £ \/ 3’th continuously
differentiable function with derivatives satisfy supg<g<p3 0™ (1) < co exp(cyu?/2) for some
constants co > 0 and ¢ < 1. -

Define Hy 5 : ST1(v/d) x S¥1(v/d) — R via

Hys(01,02) = /c ha,s((01,9 - 02)/d)mq(dg). (5D
YCd

Then, for N = dP for any fixed p, letting (6;)ic[n) ~ Unif (S (v/d)), we have

sup Hy>0(6:,0;) — EHy (6, a)) = 04p(1) - EHy (6, 0). (52)
€[N

Moreover, we have EHy >¢(0,0) = Oq(d1).

Proof [Proof of Proposition 22] We let C, Cy, Cj ¢ be constants that depend on o, k, and ¢ but
independent of dimension d. The exact values of these constant can change from line to line.
Step 1. Finite subset S C {2,3,...}. Note we have

Hy5(61,05) = > &uk(0)*B(d, k) Q" (01,9 - 02))ma(dg).
kes Cyea

By Lemma 11 and Proposition 12, for any S C N with finite cardinality |S| < oo, we have

E[Hus(0,0)] =) &ar(0)’D(d, k) = Oa(d™").
kes
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Moreover, by Proposition 18, we have

sup [Has(0: 6,)ElHas(8,0)]| < > &ax(efD(dB) sup T4(0)—1| = 04(1)-E[Hqs (6, 6)].
i€ ]
Step 2. For general set S = {u : u > (}.

By Lemma 27, we have supgsq SUp,e|_1.1] |h£z€)>z(7>| < Cy. Therefore, for any v € [—1,1],
we have -

—
1
haze(7) - Z L (O0F] < Gy, (53)
k=0
By Lemma 28, for any k& < ¢ — 1, we have
1E,(0)] < Cug P2, (54)

Moreover, by the Hanson-Wright inequality as in Lemma 14, since /N is at most polynomial in d,
then for any 6 > 0, we have

sup sup  sup ’(91-,9 : 9i>k‘ AR = oqp(1), (55)
1<k<{+1 geCyc,y\1i€[N]
and
sup  sup EH<9i79'9i>kH AP0 = 04(1). (56)
1<k<{+1 geCycy\I

Therefore, by Eq. (53), (54), (55) and (56), we have

sup sup ’hd,2€(<9i,g . 91>/d)‘ — Od,P(d_z/Q—i_(s),
g€Cycy\Ii€[N]

and

sup Eth,y(w,g.e)/d)H — Oy(d~1?+9),
g€Cycy\I

As a result, for any £ > 3, we have

sup |Ha>0(0;, 6;) —EHd,zz(e,a)‘
1€[N]

= sup | [ has(8g 00 /dmalde) ~E [ hasi((0.9-6)/dmald)]
i€[N] ' JCycy\I Cycg\I

<sup | [ hasil(ig-6)/Amadg)| +[E [ hasil(6.g-6)/dmalag)
1€[N] ' JCycy\I Cycg\I

< Ogp(d=240) = o4 p(d™).

By the arguments in Step 1, for any ¢ > 2, we have

sup |Ha>¢(0;,0;) — EHd,ze(O,B)‘ < ogp(d").
1E€[N]
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Finally, for any ¢ > 2, for any o such that o4 >, that is non-trivial (if 04>, = 0, this proposition
holds trivially), we have
EH;>¢(0,0) = 04(d™ ).

This proves the proposition. |

Proposition 23 Let ¢ > 2 be a fixed integer. Assume that o € C'(R) be a continuous function with
lo(u)| < co exp(c1 u?/2) for some constants co > 0 and ¢; < 1.
Define Hy s : ST1(V/d) x S%=1(V/d) — R via

Hy5(01,07) = /c ha,s((01,9 - 02)/d)mq(dg). (57)
YCa

Then, for N = O(dP) for any fixed p, letting (6;);c[n) ~ Unif (S%1(V/d)), we have

sup Eo[Hy>¢(0:,0)% E979/[Hd25(0’,9)2]‘ = 04p(1) - Eg g [Hye(6',0)2.  (58)
i€[N

Proof [Proof of Proposition 23]

Denoting jix(0) = Egopro,1)[0(G)Her(G)]. Let ¢ = min{k > £ : pg(o) # 0} and let
u = q + 2. We consider the case when g < oo, since for ¢ = oo, the claim holds trivially. We have
the expression

Eg[Hye(6;,6)7) ngk )'BR) | Q" (61,9 6;))ma(dyg)
YCd

= Ee [Hd,[g,u)(ai, 6)°] + Eg[Hy,>.(0;,6)7].

Step 1. Upper bounding Eg ¢/ [H; >, (0, 0)?) and Eg[H >, (0;, 0)?]. We have

sup Eg[Hg >, (0;, 9)2]

i

= Sup Z fd ko Z chl < SUP Z fd k\Oo Z Yk(ld) (01‘)2

i f—u le[D(dk)] O h=u lG[B(d,k)}
zzgdk 4Bdk: Zédk k) (59)
_[iggBdk } {Zfdk )}

= B(d, U) gc,eNUmf(gdfl(\/g))[U(@v 9)/\/@2} = Oq(d™).

This also gives
Eg.o/[Ha>u(0',0)%] = O4(d™™). (60)
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Step 2. Upper bounding sup;c|n) [Eg[Hqe,u)(0:,0)?] — Eg .o/ [Hq,[¢,4)(6',6)]|. By Proposition
18, we have

sup ’Ee Heyj0.u)(65,0)%] — Eg o [Hd{&u)(e,?g)z]‘
i€ N]

‘B(d, k)
[N] D(d¢ k) Cycy

< Zﬁdk )*D(d, k) su Q;(gd)(wi,g -0;))ma(dg) — 1 (61)

=og4p(1 [Zfdk )*D(d, k)} = 04p(1) - Eg,o[Hy 0,00, 0)?).
Step 3. Lower bounding Eg ¢/ [H, >,(0', 0)?]. We have
Eg.0/[Hye(6',0)> Zm )AD(d, k) > £4.4(0)* D(d, q) = Og(d™T1). (62)

The last equality is by Proposition 12, and the fact that
lim £q4(0)°B(d, q) = p1q(0)? /! > 0.
d—o0

Step 4. Complete the proof. By Eq. (59), (60), (61) and (62), we have

sup ‘Eo Hy>0(0;,0)%) — Ee,e'[Hd,ze(9/79)2})

1€[N]
< sujf\;] ‘Eo Hyu)(0:,0)%] — Eg o [Hd,[é,u)(ala9)2]‘
ZE
+smp ‘Eg Hy>0(6;,0)> ‘ ‘]Eg o[Hi0(6',6) ]‘
€[N

< o0qp(1) Eo[Hyjru)(0',0)*] + Oa(d™™) = 0ap(1) - Eg.o [Hy (6, 0)%].

This completes the proof. n

F.2. Auxiliary lemmas

The following lemma is a reformulation of (Ghorbani et al., 2021, Lemma 5).

Lemma 24 Assume o € C(R) with o(u)? < cy exp(ci u?/2) for some constants co > 0 and
c1 < 1. Then

(a) EG~N(0,1)[U(G)2] < 0.
(b) Let ||x||2 = V/d. Then there exists dy = do(c1) such that, for w ~ Unif (S1),

sup By [o((w, x))?] < oo. (63)
d>dgy
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(¢) Let||z||2 = Vd, w ~ Unif(S*1) and 7 ~ x(d)/V/d. Then we have

lim Eq | (o(r(w,z)) - a(<w,x>))2} 0. (64)

d—00

Lemma 25 Assume that 1, ¢ € C(R) with 1(u)?, ¢(u)? < co exp(c1 u?/2) for some constants
co > 0and c1 < 1. Denote

Ea[th, ¢](7) = Euptmit(sa—1) [V (2, w) o ({2, w))],
E[. 6](7) =Eguno1./a0) ¥ (. 9))0((z', )],

where |||z = ||&'||2 = V/d such that (x,x') /d = ~ (by an invariance argument, Eq and E do not
depend on the choice of x and x'). Then we have

Jim sup |l ¢l(7) — B, 6])] =0, (65)
0 ye[-1,1]
and
sup[E[,6)(7)] < . (66)
76[7171]

Proof [Proof of Lemma 25] Let g ~ N (0,1;/d), w = g/||g||2 and 7 = ||g||2. Then we have
w ~ Unif (S¥1), 7 ~ x(d)/Vd independently. We further denote

Ealth, ¢](7) = Ew,- [y (7{z, w))d((z/, w))]
where || |2 = ||2'||2 = V/d such that (z, z') /d = ~. Note we have

i sup [ Ealy o)) ~ Bl o] )

d—>00 —1 1]

< Jim sup (B {[4(r(@ w) - vi(@w))|o( wh
< Jim B { [0r(e,w)) — (@)} Buloa, )22 =0,

where the last equality is by (b) and (c) in Lemma 24. Moreover, we have

lim sup ‘Edd)qb v) — E[¢:¢](’Y)’

d—)OO —1 1]

< Jim s |Bu { [6(r(@,w)) - ¢((@ ) |[v(r(a,w)) |

d—00 ye[-1,1)

Jim By { [o(r(w) — o((@.w)] } Boanon0(@7V2 =0,

where the last equality is by (a) and (c) in Lemma 24. Combining the two equations above proves
Eq. (65).
Finally, note that we have

swp | B[, 6)()] < Bgly((z, )21 g l((2, g

76[_111}

IN

= Egn(o,) (G *Egno)[0(G)?*]? < oo
This proves Eq. (66). .
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Lemma 26 Assume that o € C*(R) with derivatives satisfy Supg< < o) (u)]? < ¢p exp(cy u?/2)
for some constants cy > 0 and c¢; < 1. Denote

hd<7) = IE:wNUnif(Sd—l) [U(<$’ w>)0(<x/7 ’UJ>)],
h(7) =Egunor,/alo((x, g))o((z',g))],

where ||x||2 = ||2'||2 = V/d such that (z,x')/d = ~ (by an invariance argument, hq and h do not
depend on the choice of x and x'). Then we have

lim sup sup ‘hff“) (7) — h®) (7)’ =0,
d—=00 0<k <l ye[—1,1]

and

sup  sup )h(k)(’y)‘<oo.
0<k<t~e[-1,1]

Proof [Proof of Lemma 26]
For k = 0, the result is implied by Lemma 25 by observing that h/, = E4[c, o] and b’ = FE|o, o].
For k = 1, the result is implied by Lemma 25 by the fact that b/, = Eguo(u), o’ (u)] and ' =

Eluo(u), 0’ (u)], and there exist constants ¢ > 0 and ¢; < 1 such that o’ (u), uo(u) < coe¥*/2,

Indeed, for |||z = ||&’||2 = v/d such that (zx, x')/d = ~, we have (similarly for h/)
Hy(y) = lim 6By o (@, w))o((1 = 6%’ + 62, w))| — Eu |0 (@, w))o((@,w))] }
= Eq [o((@,w))o’ (2, w)) (@, w)| = Eafuo(u), o' (w)](7).

By an induction argument, for any fixed k, hglk) can be identified by a fixed number of combi-

nations of Ey[t, ¢] with ¢, ¢ € Ay, = {u*c") (u)}o<s <. Further, for any fixed k, there exists
cor > 0and ¢ 1 < 1 such that, for any ¢ € Ay, we have ¥(u) < covkecl’“ﬂ/z. Applying Lemma
25 proves the lemma. n

Lemma 27 Assume that o € C*(R) with derivatives satisfy supy< <}, |00 (u)|? < ¢o exp(cr u?/2)
for some constants co > 0 and ¢y < 1. For any ||01 |2 = ||02]|2 = V/d and any £ > 1, denote

ha,s (01, 02)/d) = Ey oot vy oas (01, /Vd)ous((62,2) V).
where 04 s is given in Eq. (50). Then we have

sup sup ’hé@g(w)’ < Chy.
d>1 ye[-1,1] -

Proof [Proof of Lemma 27] Note we have

ha>e(v) = ha(y) — ha,<e(7)-

By Lemma 26, we have

sup sup ’hfik)(’y)’ < (.
d>1~ve[—1,1]
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Moreover, since hg <¢(7) is a degree £ — 1 polynomial on [—1, 1] and its coefficients converge to
the coefficients of hy with h¢((01, 02)/d) = Epar(0,1,)[0d,<e ({01, x)/Vd)og <o((82,2)/Vd)).
Then, it is easy to see that

sup sup ’hgjle(v)’ < Chy.
d>1 ve[—1,1]

This proves the lemma. n

Lemma 28 Assume that o € C*(R) with derivatives satisfy supy< ;< 100 (1) 2 < o exp(cy u?/2)
for some constants co > 0 and c1 < 1. Then there exists constant C}, ¢, such that

‘hé’ge(o)‘ < Chp-d P2,

Proof [Proof of Lemma 28]

We let C, Cy, C}, ¢ be constants that depend on o, k, and £ but independent of dimension d. The
exact values of these constant can change from line to line.

We let 7; be the measure of (eq, > when  ~ Unif (S%~1(v/d)) (hence converging weakly

to a standard Gaussian), and Q(d) Vv B(d, k) Qk x/+/d) to be the rescaled Gegenbauer
polynomials, forming an orthonormal system with respect to 74. In particular Qk converges to

the k-th Hermite polynomial. We let (-, - ) denote the scalar product with respect to 7.
By the definition of hg >/, we have

(hase( - /Vd), 0y =0, Vk<i-1. (67)
Let iLdzg(.l’) be obtained from h, >¢(x) by removing its Taylor expansion up to term z¢~1, i.e., we
have
. 2 a2 (0)
haze(x) = haso(z) = Txk.
k=0

Then Eq. (67) gives

e A (1
< (d) x>3( d,ze( )) _ _Ak(d) Vk < 0 — 1, (68)

j\dir? e
An(d) = d*(hgse(- /Vd), Qr).

We claim that sup;sq |Ax(d)| < Crye. Indeed, by Rodrigues formula, there exist non-negative
constants Ag g, Agx with supgsq Agr V Agr < Cy, such that

Ap(d) = (—1)kdg/2Ad,k/ hd >g($/\[ 12) 43 g

dk d dx

_ 2
= gy dEP2 / R, (2/ V) (1_%) (69)

= Ay, dR/2 'EXd~%d{ a0l (Xa/Vd) (1 ) }
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By the definition of iLd725, using the Taylor expansion in the integral form, we have

v {—1
. _ (e mw)Th
hd,>e(7)—/0 ha (1) (¢—1)! de,

and hence for any £ < ¢ — 1, we have

(% Y (’Y _ u>£flfk
hé,éf(’}/) :/O hé’ég(u)mdu,

so that for any y € [—1, 1], we have

7 (k VA _ _
sup A4, (1)| < Crg-sup sup |G (w)] - |y[7% < Crg - I“F.
d>1 d>1 ue[-1,1]

The last inequality is by Lemma 27 (here we used the assumption that o € C*(R)). Therefore, by
Eq. (69), we have (note X, converges in distribution to a standard Gaussian random variable)

|Ak(d)] € Cry - Ex ez, {1 Xal"F} < C. (70)

To conclude, we reconsider Eq. (68). Let M (d) = (My.4(d))o<kq<e—1 € R™* be the ma-
trix with entries My ,(d) = <Q,(€d),xq>, &(d) = (&,(d))o<q<e—1 € R’ the vector with entries

&(d) = h((jq)>£(0)/(q!dq/2), and A(d) = (Ao(d),...,Ap_1(d))T € R’. We can therefore rewrite
this equation as

M(d)&(d) = A(d)/d". (71)
As d — oo, M (d) converges entrywise to M (00) = (M}, 4(00))o<k g<¢—1, Whereby
M, 4(00) = EG~N(0,1)[Hek(G)Gq]/\/H-

Since M (o0) is non-singular (because the Hermite polynomials are a basis), it follows that oy,in (M (d))
is bounded away from zero for d large enough, and therefore sup;>; Omax(M (d) ™) < oc. There-
fore combining with Eq. (70), we get

1€(d)ll2 < Co- |A(d) ]2 -d~* < Cp-d 2. (72)
Therefore, for any 0 < £ < £ — 1, we have
BB (0)] < Bld2|g0(d)] < Cpp - d- 072, (73)
d,>0 ;

This proves the lemma. n
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Appendix G. Hypercontractivity of general activation o for (S*'(/d), Cyc,)
Let us consider an activation function o : R — R and denote for € S%~!(1/d) and w € S¥~1(1),

d—

rlosw) = [ ol(e.g-w)mld) - LS o(fo, Zu)

=0

where L € R4 is the cyclic permutation matrix that shifts the coordinates by one (hence L’ shifts
the coordinates by 7).

Denote &~ = P~ the projection of & orthogonal to cyclic polynomials of degree less or equal
to £. From the discussion in Section C.2, we have

Poa(-;w) = PoSlo((-, w)/Vd)] = SP-ilo((-,w)/Vd)],

where S : L2(S%1(V/d)) — L*(S*'(v/d), Cyc,) is the symmetrization operator defined in Sec-
tion C.1 and P~ : L2(S*1(v/d)) — L*(S*"1(\/d)) is the projection orthogonal to (general) ) poly-
nomials of degree less or equal to £ in L?(S%~!(+/d)) (see Section H). Hence, denoting 0~ = P~ 0,
we have

0'>ﬁ$w

d—
Z (x, L'w)). (74)

=0

Q.M—‘

Proposition 29 Consider fixed integers m > 1 and £ > 4m. Let 0 : R — R be a differentiable

activation function such that |o(x)|, |0’ (x)| < coexp(c12?/(8m)) for some constants co > 0 and
c1 < 1. Let © ~ Unif (S¥1(v/d)) and w ~ Unif (S¥1(1)), then for any ¢ > 0,

1/(2m)
B |05 (; w)*™ = d=12. 04(1). (75)

G.1. Proof of Proposition 29

The goal of this proof is to replace 2 ~ Unif(S?*(+/d)) by g ~ N(0, 1) and using Proposition 30
(stated in Section G.2), which is the Gaussian equivalent of Proposition 29.

Recall that o ¢ is defined as the projection of o orthogonal to degree £ polynomials with respect
to the distribution (x, e) with  ~ Unif(S*'(v/d)) and ||e||; = 1 arbitrary. We can write it
explicitly in terms of Gegenbauer polynomials:

¢
oop(r) = o(z) = > LarBET k)Qu(Vda).

Let us introduce ¢~.¢ defined as the projection of o orthogonal to degree ¢ polynomials with respect
to the Gaussian measure. It is given explicitely by

14
P>o(x Z

k=0

where Hey, denote the k-th Hermite polynomial (see Section H.1.3 for definitions).
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Consider the symmetrized activation functions

V4
Too(@w) = (@ w) = ) LB E)Qy (@ w),
k=0
k() —
Poilgiw) =algsw) - Y P He (g5 w).
k=0 ’

where we denoted the symmetrized polynomials

d—1
Ol w) = 2 >~ QuV(w, T'w),
o
Hey(gsw) = - ) Hey((g, L'w)).
1=0

Consider & ~ Unif(S¥1(v/d)), g ~ N(0,14) and w ~ Unif(S?'(1)). Because (z,e)
converges in distribution to a normal distribution, we expect the moments of 7~ 4(x; w) to converge
to the moments of - ,(g; w). Let us show that this convergence occurs with rate Oq(d~'/2). By
triangle inequality, we have

m11/(2m)
Eg,w {(5%(\/&9/”9”2; w) — P(9; w))2 } <R+ Ry+ R3+ Ry,

with

)

r m 1/(2m)
Ry = Egu| (A<2(Vdg/llglziw) — Bea(giw)™ | 7,

Ri = Eguu | (0(vdg/ Iglai ) — 7(gs )] "

: 1/(2m)
R3 =Eg w A[3zé]($§ w)Qm} )

} 1/(2m)

Ry = IEg,w _B[3:Z] (g; w)Qm

9

where we denoted [3 : ¢] = {3,..., ¢} and for any subset S C {0,...,/},

Ag(@;w) = > EapB(ST 5 k)Qy (s w)
kes

Bs(giw) = 3" "V, (gra)

k!
kesS

Step 1. Bound on R;.

Denote 7 = ||g|l2/V/d and & = +/dg/||g||2, such that 7 and x are independent, and  ~
Unif (S~ 1(+/d)). By the mean value theorem, there exists 7 on the line segment between 1 and 7
such that

o(t-zyw) —o(xz;w) = (71— 1) (Ve (T -z w), x).
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By Cauchy-Schwarz inequality, we get
1/(2m)
Ri =E; 4w [(E(T sz w) — o(x; w))2m}

1/(2m
= Er | (7 = 1) (Vo (7 - @5 w), @) e

< ET [(T B 1)4m] /) ’ ET,m,w [<vm5(7~' + & UJ), 33>4m:| Hm)

Let us bound the first term:

E, [(T _ 1)4m] 1/(4m) <E, [(7_2 _ 1)4m] 1/(4m) < Oy, [(7_2 . 1)2] 1/2 _ C4m\/g, (76)

where we used in the first inequality that |7 — 1| < |72 — 1| for 7 > 0; in the second inequality
that 72 — 1 is a degree 2 polynomial in g ~ N(0, I;) and verifies the hypercontractivity property of
Lemma 32; last equality, that d - 72 = ||g||3 follows a chisquared distribution of degree d.

For the second term, we have

SH
Ju

(Voo (7 - z;w), ) = (z, L'w)oM (7 - , L'w)).

IS
.
I
()

Recall that 7 - @ is between 7 -  and x which have marginal distributions g ~ N(0,I;) and
x ~ Unif (S¥~1(v/d)) respectively. Denote x; the first coordinate of @ (therefore 7 - 21 ~ N(0, 1)).
By Jensen’s inequality and using that by rotation {x, L‘w) has the same distribution as 1, we get

Er| (Vo (7 i), @) 7| < Ery [af"0/ (7 22)"" ]
< C-Egnoy) [maX(G‘lm, 1) exp {cl max(G2, 1)/2}} (77)
= 04(1),

where we used that ¢; < 1.
Combining Egs. (76) and (77) yields

Ry =d™'%.0,4(1). (78)
Step 2. Bound on Rs.
We have
1/(2m) m71/(2m)
R3 = Em,w A[g:[] ($; UJ)Qm < ComlEg |:Ew |:A[3:€] (33; 'w)2:| :|

9

,11/2
S Cmc2mEm,w [A[?):E] (w; ’UJ) }
where in the first inequality we used hypercontractivity of low-degree polynomials on the sphere

with respect to w (Lemma 36), and in the second we used hypercontractivity of low-degree sym-
metric functions with respect to & (Lemma 6 in Mei et al. (2021)). By Lemma 11, we have

14
B D(S%1; k) _
. 20 _ 2 d—1, ) _ 1
Em,w {A[S:@(ma w) :| - ;£d7k3(8 7]€> ’ B(Sd_l; k) - Od(d )
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We deduce that
Ry =d~ 2. 0,4(1). (79)
Step 3. Bound on Rj.
Similarly to Rz, we have
1/ (2m) m71/(2m)
Ry = IEg,w B[3:€] (g; w)2 < ComlEay |:Eg [B[i’):é} (g; ’w)Q] }

1/2
< CmCQmEg,w |:B[3:£] (QQ w)ﬂ

)

where in the first inequality we used hypercontractivity of low-degree polynomials with respect to g
(Lemma 32), and in the second we used hypercontractivity of low-degree symmetric functions with
respect to w.
Following the proof of Proposition 30, by setting m = 1 and P.5(g; w) = Bz.(g; w), we
have for any € > 0,
Ry = d" 2. 04(1). (80)

Step 4. Conclude.
The bound on Rs is more technical and we defer it to Section G.3. By Lemma 33, we have

Ry =d~'%.0,4(1). (81)

Hence combining the bounds (78), (79), (80) and (81), we obtain for any € > 0,

1/(2m)

Baw [E>Z(m; w)Qm] < Egw [¢>e(g; w)2m] v

+ Og(d=1/%).
Using Proposition 30 concludes the proof.

G.2. Proof in the Gaussian case

Recall that we defined

d—
1
Poi(gsw d; «({g, L'w)), (82)
where
(o)
poile) = ofa) = Y F T Hen (). (83)
k=0 ’

Let us now state and prove the Gaussian version of Proposition 29.

Proposition 30 Consider fixed integers m > 1 and ¢ > 4m. Let 0 : R — R be an activation
function such that |o(z)] < coexp(c1x?/(8m)) for some constants co > 0 and ¢, < 1. Let
g ~ N(0,1;) and w ~ Unif(S?1(1)), then

1/(2m)
Eg.w|Pe(g; w)*" =d712.04(1). (84)

58



INVARIANCES IN KERNELS AND RANDOM FEATURES

Proof [Proof of Proposition 30] Let us expand -, as in Eq. (82)

Eg,w [de '¢>£(9§’w)2m] = Z Eg,w[ H 90>£(<97Likw>)]-
0<i1,..yizm<d—1 ke[2m]

Let us consider the event

A= {w e s (1) sup |(w, LFw)| < Cd5‘1/2} :
keld—1]

and for each set of indices Z = {i1, ..., i2,m }, consider separately the expectation over A, and A¢:

Egw {H v>e((g, Liw>)} = A+ B,
1€T

where

A =By [1aEq [ [] ooellg. L'w))] .
i€
B =B [1acEy | [] ooellg, L'w))] |
€L
By Cauchy-Schwarz and Jensen’s inequality, we have

B < B(A) Y2 By [ [[ ool g L)) .
T
with 2 1/ am)
Eg,w[H@>£(<gasz>) } < HEg,w [‘P>€(<97Llw>) m}
€T €L
=Eq [‘P>Z(G)4m} v Oq(1),

where we used Holder’s inequality and that ¢~ is the sum of a degree £ polynomial and o with
lo(x)| < coexp(ciz?/(8m)), with constants ¢y > 0 and ¢; < 1. Combining these bounds and
Lemma 34, we deduce there exists a constant C' independent of d and Z such that

B < Cexp(—cd®). (85)
Similarly, by Holder’s inequality, we have the following first bound on A:
1/(2m)

A < HEg,w |:§0>f(<g> sz>>2m
€T

—Ea|¢-(G)™] < C. (86)

Fix w € A.. Denote Zj the set of distinct indices in Z and p = |Zy| < 2m. Denote for
each i € Iy, r; the multiciplity of 4 in Z, and g; = (g, L'w). We have sup,;|E[gig;]| <
SUPje[d—1] [(w, L*w)| < Cd*~'/? and E[g?] = 1. Hence, if there exists i € Z that appears
only once, we have by taking (z) = ¢~¢(x) and ¢ = 2m < ¢/2 in Lemma 31 stated below

‘Eg [H v-e((g, L"w>)} ( < O/gemADE-1/2) |
€L
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where C’ is independent of w. We deduce that
A< CgPmDE-1/2) (87)
There are at most m?>™d™ sets of indices Z with no isolated index. Hence, combining the bounds
(85), (86) and (87), we get
Eg.w[d™™ - Bsg(g; w)*™] <Cd*™ exp(—cd™) + Cm?Md™ 4 C'd*™ - dCmHIE).
Taking ¢ < 1/(4m + 2), we get
Eqg.w[@se(g; w)*™ V™ = d™172- 04(1),

which concludes the proof. |

The proof of Proposition 30 relies on the following key lemma:

Lemma 31 Let q,p,m > 1 be three integers such that p < 2m. Let ¢ : R — R be a function
such that ()| < co exp(c12?/(4m)) for some constants co > 0 and ¢1 < 1. Furthermore, for all
k=0,...,2q,
pe(¥) = Eq[(G)Her(G)] = 0,

where G ~ N(0, 1), i.e., ¥ is orthogonal to all polynomials of degree less or equal to q with respect
to the standard normal distribution. Let g = (g1,...,9p) ~ N(0,X) with¥1; = ... =3,, =1
and sup, ; |%ij] < Cd==/2. Let (r1,...,mp) be p integers such that 1 + ...+ 1, = 2m and there
exists k such that v, = 1. Then there exists C' > 0 depending only on cg, ¢1, C, q, m such that

‘EQ[ H 7/’(%)7%]

kelp]

Proof [Proof of Lemma 31] Without loss of generality, let us assume that r; = 1. Let us rewrite the
expectation with respect to g ~ N(0, I ):

g[kg]w g0 = \/: [kg]w g -exp {g"Mg/2} ], (89)

where we denoted M =1, — »-1L
By Taylor expansion around 0 at order ¢ + 1, there exists ((g) between 0 and §' M §/2 such
that

< O'qlatDe=1/2), (88)

exp{C(g)} - (§7Mg)*H.

q
1 1
i T
exp {§TMg/2} = ;258, 9"M3)" + g T

Notice that the terms s = 0, ..., ¢ are polynomials of degree smaller or equal to 2q in g. By the
assumption of orthonormality of 1) to polynomials of degree less or equal to 2¢q, we deduce

Mhta
ke(p]
1 N
N 201 (g + 1)!y/det(X) ‘Eg {kle_[[p]w(gk)
1M 55" [
= 20+ (g + 1) /det(X) 7

" exp{C(9)} - (97 MG)" |

IT (@)™ - explIM oplig I3} - 1915 ]
ke[p]
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Furthermore, from the bound [¢(x)| < ¢g exp(c12?/(4m)) and that 7, < 2m, we have

‘ [H?bgkr’“}

ke(p)

Co p2qHMHq+1
20t (g 4+ 1)1y /det(X)

V4
Eq [0* el G224+ | M[063]" . 90)

From the assumptions on 3, we have |2 — I |lop < [|Z — I|lF < psup;4; [Zi;] = Og4(dz=1/?),
and therefore || M ||op = Og(d®~/?) and det(X)~1/2 = Oy(1).

From the assumption that ¢; < 1 and taking d sufficiently large such that | M ||op < (1—c¢1)/4,
the expectation on the right hand side of Eq. (90) is bounded by a constant. We deduce that

By | TT w90 ] = M55 0a(1) = dr 12 04(1),
kelp]

which concludes the proof. |

G.3. Technical lemmas

The first lemma is a straightforward consequence of the proof of Lemma 37 (we include a proof for
completeness).

Lemma 32 Forany ¢ € Nand f € L*(R% ~y) to be a degree ¢ polynomial on R?, where v =
N(0,Iy) is the isotropic Gaussian distribution. Then for any q > 2, we have

1By < (0= D 1 122ma)

Proof [Proof of Lemma 32] Let € = (&; j)ic(a),je[D] ~ Unif(29°) and define fori = 1,...,d,

€1+...+¢€D

VD

Consider f a degree ¢ polynomial on R? and define

f(e) = f(Gy,...,Gq).

From hypercontractivity of low degree polynomials on the hypercube (Lemma 35), we have

11 0 g2y < (@ =D FI7o o ©On

G; =

Furthermore, by the multivariate central limit theorem, as D — oo for d fixed, (Gq,...,Gg4) con-

verges in distribution to g ~ N(0, I;). By dominated convergence theorem, we have || f H%q( gDy =

||fHLq Re ) and HfHL2 (2i0) = HfH%Q(Rdﬁd), and taking the limit in inequality (91) yields the re-
sult. |

Lemma 33 Follow the notations in Section G.1. We have

1 1/(2m) B
|7 = 0ata?).

w| (A<2(Vdg/llgllsi w) — Bea(gs w))?
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Proof [Proof of Lemma 33] Denote 7 = ||g||2/V/d and = v/dg/||g||2. Recall that we defined

Acs(z,w) = &g + Ea1 BSTH1)Q (23 w) + €42B(ST12)Qy (2 w)

Baa(r -, w) = pofo) + (o) ey (- sw) + "2 B (r - 50)

Let us bound the difference of each term separately.
Step 1. Bound Oth order term.
Following the same argument as in the bound of R; in Section G.1, we have

co = |po(o) — &apl =

E; [O’(T 1) — U(xl)] ‘
e ©2)

SE [ 17 B, [0/ )’ = 0ald )

Step 2. Bound 1st order term.
We have He; (z) = z and B(S?1;1)/2 . Q,(Vdzx) = . Hence,

c1 = Egw [(Ml(a)ml(T STyw) — gd,lB(Sd_1§ 1)@1(5’3% 'w)>2m}

=E, [(T (o) = € B(STY 1)1/2)%} B [B(Sdfl; 1)"Q; (x; w)Qm} :

Using the convergence of Gegenbauer coefficients to Hermite coefficients (see Eq. (110) in Section
H.1.3), there exists a constant C' > 0 such that

1/(2m)
<

E- [(T (o) — Laa B(STY 1)1/2>2m] < C’[ET [72m] /) 1} = 04(1),  (93)

where we used for example that low-degree polynomials of 72 are hypercontractive (see the bound
on R; in Section G.1). From the same argument as in the bound of R3 in Section G.1, we have

1/(2m) D(S41;1)1/2
<

_ —1/2
> 2mm - Od(d / ) (94)

Epw | BE"™11)"Q) (250)™"

Combining Eqgs. (93) and (94) yields
e = Og(d/?). (95)

Step 3. Bound 2nd order term.
We have Hey () = 22 — 1 and B(S¥1;2)'/2 . Qo(Vdz) = agq - (% — 1) with ag g = O4(1).
We can rewrite

Heo(T - 21) = TQB(Sd_l; 2)1/2 . QQ(\/g:L‘)/ag,d +72 1.
Hence, by triangle inequality,

1 = g | (nal0)Fes(r - ;)2 — £45 B8 2@ e w))zm} Ve

<B.[(7 - 2(0)/Gara) ~ €apB(*152)2) " By o[B8 2)" Ry s

n \méa)lET[(Tz _ppemvem

1/(2m)
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The first term is bounded as the 1-st order term while the second term is bounded as the 0-th order
term. Combining the two yields
ca = Og(d™/?). (96)

Step 4. Conclude.
Combining the bounds (92), (95) and (96), we get by triangle inequality

1/(2m)

Brw [(AQ(CC; w) — Boy(7 - ; w))Qm} <coter+ep=0g(d ),

which concludes the proof. |

Lemma 34 Letc > 0 and w ~ Unif(S¥~1(1)). Then there exists C,c > 0 such that
P(AS) < C exp(—cd®).

Proof [Proof of Lemma 34] Let us use the correspondence between uniform distribution and Gaus-
sian distribution: w ~ z/||z||2, where z ~ N(0,1;). We have fork =1,...,d — 1,

P(|(w, L*w)| > t) = P(|(z, L*2)/||z ]3] > t) < P(|(z,L*2)/d| > t/2) + P(||z]3 < d/2).

Note that for any k € [d — 1], we have | L¥|z < v/d and ||L¥||o, < 1. By the Hanson-Wright
inequality, for any k # 0, we have

]P(\(z,L’fzyd\ > t) < 2exp{—cd - min(£2, t)}.
Furthermore, by standard concentration of the norm of Gaussian vectors, we have
P(|lz]3 < d/2) < C exp(—cd).
Taking ¢t = C'd®~'/2 and combining the above two bounds, we get
P(|(w, LFw)| > t) < 2exp(—cd®) + C exp(—cd).

Taking the union bounds over k € [d — 1] concludes the proof. |
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Appendix H. Technical background of function spaces

H.1. Functions on the sphere
H.1.1. FUNCTIONAL SPACES OVER THE SPHERE

For d > 3, we let S™1(r) = {x € R? : ||x|l = 7} denote the sphere with radius r in R<.
We will mostly work with the sphere of radius v/d, Sd_l(\/a) and will denote by 7, the uniform
probability measure on S¢~'(1/d). All functions in this section are assumed to be elements of
L2(S?1(\/d), 74), with scalar product and norm denoted as (-, - )2 and || - ||z2:

o= [ 1@ @) (i) o)

For ¢ € Z>, let Vdvg be the space of homogeneous harmonic polynomials of degree ¢ on R?
(i.e. homogeneous polynomials g(z) satisfying Ag(z) = 0), and denote by V;; ¢ the linear space of

functions obtained by restricting the polynomials in V¢ to Sd_l(\/a). With these definitions, we
have the following orthogonal decomposition

LX(S™ N (Vd), ) = D Vae - (98)
=0

The dimension of each subspace is given by

dim(Vdj) = B(Sd_l;f) =

2€+d—2<€+d—3>‘ 99)

d—2 l
For each ¢ € Z>, the spherical harmonics {Yg(;l) hi<j< B(sd-1;¢) form an orthonormal basis of Vi 4

d d
<Yk(i ),Ys(j )Y 2 = 6150k
Note that our convention is different from the more standard one, that defines the spherical harmon-

ics as functions on S¢~1(1). It is immediate to pass from one convention to the other by a simple

scaling. We will drop the superscript d and write Yy ; = Yg(;l)

We denote by Py, the orthogonal projections to Vi, in L?(S*~!(v/d), 74). This can be written
in terms of spherical harmonics as

whenever clear from the context.

B(S*L:k)

Prf)= Y (f,Yi)Yu(®). (100)

=1

We also define 534 = Zﬁ:o Pr,Poy=1— ﬁg = ZZ’;HI P, and P, = ﬁgg_l, ﬁzg =Poy 1.

H.1.2. GEGENBAUER POLYNOMIALS

The ¢-th Gegenbauer polynomial Qéd) is a polynomial of degree ¢. Consistently with our convention

for spherical harmonics, we view Q@d) as a function Qéd) : [=d,d] — R. The set {Qéd)}gzg forms
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an orthogonal basis on L?([—d, d], 7}), where 7} is the distribution of v/d(x,e;) when & ~ 74,
satisfying the normalization condition:

1

(@ (Vdler, 1), Q7 (Valer, Nz vy = iy - (101

In particular, these polynomials are normalized so that di) (d) = 1. As above, we will omit the
superscript (d) in di) when clear from the context.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v € S¢~1 (\/&)
and consider the subspace of V, formed by all functions that are invariant under rotations in R? that
keep v unchanged. It is not hard to see that this subspace has dimension one, and coincides with the

span of the function Q§d) ((v, ).
We will use the following properties of Gegenbauer polynomials

1. Forz,y € S¥1(/d)

1
(@ (0, Q. M = g, @ () (102)
2. Forx,y € ST 1(\/d)
; (Sd 1. k) d
U@ = gy X W@V W) (103)
=1

These properties imply that —up to a constant— Q,(cd) ((x,y)) is a representation of the projector
onto the subspace of degree -k spherical harmonics

Fe@) =B [ Q) @)y (104)

For a function o € L?([—V/d, V/d], 7}) (where 7} is the distribution of (e1, ) when & ~ Unif(S%~(v/d))),
denoting its spherical harmonics coefficients &g 1 (o) to be

Go)= [ o0l (Vin)r(do), (105)
[—\/&7\/8}
then we have the following equation holds in L?([—v/d,V/d], }) sense

Zﬁdk B(S™ Y k)Q\W (Vdz).

For any rotationally invariant kernel Hy(z1, €2) = hq((x1, x2)/d), with ha(V/d ) € L*([-Vd, Vd], 7}),
we can associate a self adjoint operator .7 : L*(S*1(v/d)) — L*(S%"1(\/d)) via

Aaf@)= [ @ @) S ). (106
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By rotational invariance, the space V}, of homogeneous polynomials of degree k is an eigenspace
of /g, and we will denote the corresponding eigenvalue by & x(hqa). In other words 77 f(z) =
Y reo&dk(ha)Prf. The eigenvalues can be computed via

Ea(ha) = /{_ﬁ . ha(z/Vd)Q\Y (Vdz)r)(dx). (107)

H.1.3. HERMITE POLYNOMIALS

The Hermite polynomials {Hey, }>o form an orthogonal basis of L2(R, ~), where y(dz) = e~**/2dz//27
is the standard Gaussian measure, and Hey, has degree k. We will follow the classical normalization
(here and below, expectation is with respect to G ~ N(0, 1)):

E{He;(G) He,(G)} = k! . (108)

As a consequence, for any function g € L?(R, ~), we have the decomposition

o) =3 D e (w), milo) = B{e(C) Her(@)) (109
k=0

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polyno-
mials introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a v/d scaling
in domain) are constructed by Gram-Schmidt orthogonalization of the monomials {xk} k>0 With
respect to the measure i}, while Hermite polynomial are obtained by Gram-Schmidt orthogonaliza-
tion with respect to . Since %C} = v (here = denotes weak convergence), it is immediate to show
that, for any fixed integer k,

1
Jim Coeft{Q\" (Vdz) B(S™; k)'/2} = Coeft {W Hek(x)} : (110)

Here and below, for P a polynomial, Coeff{ P(z)} is the vector of the coefficients of P. As a
consequence, for any fixed integer k£, we have

pi(0) = Tim &5(0)(BS™; k)R1)'/2, (111)
where (o) and &4 (o) are given in Eq. (109) and (105).

H.2. Functions on the hypercube
Fourier analysis on the hypercube is a well studied subject O’Donnell (2014). The purpose of

this section is to introduce some notations that make the correspondence with proofs on the sphere
straightforward. For convenience, we will adopt the same notations as for their spherical case.

H.2.1. FOURIER BASIS

Denote 2¢ = {—1, 41} the hypercube in d dimension. Let us denote 74 to be the uniform prob-
ability measure on 2¢. All the functions will be assumed to be elements of L%(2%, 7,) (which
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contains all the bounded functions f : 27 — R), with scalar product and norm denoted as (-, )2

and |-
oo = [ F@a@m(e) = 5 3 s

xcod

Notice that L?(2% 7,) is a 2" dimensional linear space. By analogy with the spherical case we
decompose L?(2%,7;) as a direct sum of d + 1 linear spaces obtained from polynomials of degree
£=0,...,d

d
4) = @ Ve
=0

For each ¢ € {0,...,d}, consider the Fourier basis {Yz(isl*)} scd),|s|—¢ of degree £, where for a
set S C [d], the basis is given by

d
}/25)(:1:) =29 = le
€S
It is easy to verify that (notice that xf = z; if k is odd and xf = 1if k is even)

<Y€(?’ Yk( s)/> =E[2° x 2%] = §y 4059

Hence {Yz(g)} Scld],|s|—¢ form an orthonormal basis of V¢ and
. . d
dim(Vy,) = B(2%¢) = )

As above, we will omit the superscript (d) in Yg(? when clear from the context.

H.2.2. HYPERCUBIC GEGENBAUER

We consider the following family of polynomials {di) }e=0,... 4 that we will call hypercubic Gegen-
bauer, defined as

1
Q) = prgiy 2 VE@YEw).
7 sCld] | s|=¢

Notice that the right hand side only depends on (x, y) and therefore these polynomials are uniquely
defined. In particular,

QLN QL)1 = Frgagson

Hence {di)}g:(),_”’d form an orthogonal basis of L({—d, —d + 2,...,d — 2,d},7}) where 7} is
the distribution of (1, ) when & ~ 74, i.e., 7} ~ 2Bin(d, 1/2) — d/2.

We have .
(@7 (G0 QU (s M = gy el @)t
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For a function o(-/v/d) € L*({—d,—d +2,...,d — 2,d},7}), denote its hypercubic Gegenbauer
coefficients &4 1 (o) to be

Cun(o) = / o (2/VHQ® (2)7} (dx).
{~d,—d+2,....d—2,d}

Notice that by weak convergence of (1, ) //d to the normal distribution, we have also conver-
gence of the (rescaled) hypercubic Gegenbauer polynomials to the Hermite polynomials, i.e., for
any fixed k, we have

1
Jim Coeff{Q\” (Vdx) B(2% k)'/?} = Coeft {(k')l/? Hek(w)} - (112)

H.3. Hypercontractivity of Gaussian measure and uniform distributions on the sphere and
the hypercube

By Holder’s inequality, we have || f||z» < ||f||zs for any f and any p < g. The reverse inequality
does not hold in general, even up to a constant. However, for some measures, the reverse inequality
will hold for some sufficiently nice functions. These measures satisfy the celebrated hypercontrac-
tivity properties Gross (1975); Bonami (1970); Beckner (1975, 1992).

Lemma 35 (Hypercube hypercontractivity Beckner (1975)) For any ¢ = {0,...,d} and f; €
L?(2%) to be a degree { polynomial, then for any integer q > 2, we have

1 fallZa(oa) < (g =1 - 1 fall32(00)-

Lemma 36 (Spherical hypercontractivity Beckner (1992)) For any £ € N and f; € L?(S?1)
to be a degree { polynomial, for any q > 2, we have

Hde%q(Sdfl) < (q - 1)é ' Hde%Q(Sd*l)'

Lemma 37 (Gaussian hypercontractivity) For any ¢ € N and f € L*(R,~) to be a degree /
polynomial on R, where vy is the standard Gaussian distribution. Then for any q > 2, we have

1120y < (@ =1 112,

The Gaussian hypercontractivity is a direct consequence of hypercube hypercontractivity.
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