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Abstract
A number of machine learning tasks entail a high degree of invariance: the data distribution does not
change if we act on the data with a certain group of transformations. For instance, labels of images
are invariant under translations of the images. Certain neural network architectures —for instance,
convolutional networks—are believed to owe their success to the fact that they exploit such invari-
ance properties. With the objective of quantifying the gain achieved by invariant architectures, we
introduce two classes of models: invariant random features and invariant kernel methods. The latter
includes, as a special case, the neural tangent kernel for convolutional networks with global average
pooling. We consider uniform covariates distributions on the sphere and hypercube and a general
invariant target function. We characterize the test error of invariant methods in a high-dimensional
regime in which the sample size and number of hidden units scale as polynomials in the dimension,
for a class of groups that we call ‘degeneracy α’, with α ≤ 1. We show that exploiting invariance in
the architecture saves a dα factor (d stands for the dimension) in sample size and number of hidden
units to achieve the same test error as for unstructured architectures. Finally, we show that output
symmetrization of an unstructured kernel estimator does not give a significant statistical improve-
ment; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to
an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
Keywords: Invariant function estimation, Random features, Kernel methods, convolutional neural
tangent kernel, high dimensional limit

1. Introduction

Consider the following image classification problem. We are given data {(xi, yi)}i≤n where xi ∈
Rd is an image, and yi ∈ R is its label. We would like to learn a function f̂ : Rd → R to predict
labels of new unseen images. Throughout this paper we will measure prediction error in terms of
the square loss R(f̂) := E{(ynew − f̂(xnew))2}.

We can think of x ∈ Rd as a pixel representation of an image. For instance if this is a grayscale
(one channel) two-dimensional image, x can represent the pixel values on a d1 × d2 grid with d =
d1d2. For mathematical convenience, we here work with the cartoon example of one-dimensional
‘images’ (or ‘signals’) with d pixels arranged on a line. Most of our results cover two-dimensional
images as well.

We assume a model whereby the labels are yi = f∗(xi) + εi, with noise εi independent of xi
with E(εi) = 0 and E(ε2i ) = σ2ε . In many applications, the target function f∗ is invariant under
translations of the image: if x′ is obtained by translating image x, then f∗(x

′) = f∗(x). We
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will consider here periodic shifts (in the case of one-dimensional images): for x ∈ Rd, g` · x :=
(x`+1, . . . , xd, x1, . . . , x`) denotes its `-shift. Invariance implies f∗(x) = f∗(g` ·x) for all ` and x.

Convolutional neural networks are the state-of-the-art architecture for image classification and
related computer vision tasks, and they are believed to exploit the translation invariance in a cru-
cial way (Krizhevsky et al., 2012). Consider the simple example of two-layer convolutional net-
works with global average pooling. The network computes a nonlinear convolution of N filters
w1, . . . ,wN with the image x. The results are then combined linearly with coefficients a1, . . . , aN :

fCNN(x) =
1

d

N∑
i=1

ai

d∑
`=1

σ(〈wi, g` · x〉) . (1)

This simple convolutional network can be compared with a standard fully-connected two-layer net-
work with the same number of parameters: fNN(x) =

∑N
i=1 aiσ(〈wi,x〉). It is clear that —when

the target function f∗ is translation invariant— the convolutional model fCNN(x) is at least as pow-
erful as fNN(x) in terms of approximation, since it is invariant by construction (see Appendix A.1
for a simple formal argument).

The main objective of this paper is to quantify the advantage of architectures —such as con-
volutional ones— that enforce invariance. We are interested in characterizing the gain both in
approximation error and in generalization error. We consider a general type of invariance, defined
by a group Gd that is represented as a subgroup of O(d), the orthogonal group in d dimensions.
This means that each element g ∈ Gd is identified with an orthogonal matrix (which we will also
denote by g), and group composition corresponds to matrix multiplication. The group element
g ∈ Gd acts on Rd via x 7→ g · x. We will consider two simple distributions for the the signals x:
x ∼ Unif(Sd−1(

√
d)) (the uniform distribution over the sphere in d dimensions with radius

√
d)

and x ∼ Unif(Qd) (with Qd = {+1,−1}d the discrete hypercube in d dimensions). We will write
(Ad, τd) ∈ {(Sd−1(

√
d),Unif), (Qd,Unif)} for either of these two probability spaces. In the case

of Ad = Qd, we will further require the action of Gd to preserve Qd.
In order to gain some insights on the behavior of actual neural networks, we consider two

classes of linear ‘overparametrized’ models: invariant random features models and invariant kernel
machines. We next describe these two approaches.

Invariant random feature models. Given an activation function σ : R→ R and a group Gd endowed
with invariant (Haar) measure πd, we define the invariant random features (RF) function class

FNRF,inv(W ,Gd) =
{
f(x) =

N∑
i=1

ai

∫
Gd
σ(〈wi, g · x〉)πd(dg) : ai ∈ R, i ∈ [N ]

}
. (2)

Here W := (w1, . . . ,wN ) is the set of first layer weights which are fixed and not optimized over.
We draw them randomly with (

√
d · wi)i≤N ∼iid Unif(Sd−1(

√
d)) or Unif(Qd) depending on

whether the feature vectors are xi ∼ Unif(Sd−1(
√
d)) or Unif(Qd). If we let Gd be the cyclic

group Cycd := {g0, g1, . . . , gd−1} (here g` is the shift by ` positions), we obtain a random features
version of the convolutional network of Eq. (1). Other examples will be presented in Section 2.

Given data {(xi, yi)}i≤n, we consider to fit the second-layer coefficients (ai)i≤N in Eq. (2)
using the random features ridge regression (RFRR). Notice that the estimated function f̂ is invariant
by construction, f̂(x) = f̂(g · x). We will denote the space of square integrable Gd-invariant
functions on Ad ∈ {Sd−1(

√
d),Qd} by L2(Ad,Gd).
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Invariant kernel machines. We then consider kernel ridge regression (KRR) in the reproducing
kernel Hilbert space (RKHS) defined by a Gd-invariant kernel. By this we mean a kernel H ∈
L2(Ad ×Ad) such that, for all g, g′ ∈ Gd, the following folds for every x1,x2:

H(x1,x2) = H(g · x1, g
′ · x2) . (3)

Note that, as a consequence of this property, any function that is not in L2(Ad,Gd) (i.e. any function
that is not invariant) has infinite RKHS norm: indeed this provides an alternate characterization of
invariant kernel methods. Among Gd-invariant kernels, we focus on the subclass that is obtained by
averaging an inner product kernel over the group Gd

Hinv(x1,x2) =

∫
Gd
h(〈x1, g · x2〉/d)πd(dg). (4)

Invariant kernel machines can be regarded as large-width (N → ∞) limits of invariant random
features methods. Vice versa, the latter can be regarded as randomized approximations of invariant
kernel methods. Moreover, invariant kernel methods also capture the large-width limits of other
models, for instance, neural tangent models associated to convolutional networks (c.f. Section A.3).

We focus on a type of groups Gd that we call groups of degeneracy α.

Definition 1 (Groups of degeneracy α) Let Vd,k be the subspace of degree-k polynomials that are
orthogonal to polynomials of degree at most (k−1) inL2(Ad), and denote by Vd,k(Gd) the subspace
of Vd,k formed by polynomials that are Gd-invariant. We say that Gd has degeneracy α if for any
integer k ≥ α we have dim(Vd,k)/dim(Vd,k(Gd)) � dα (i.e., there exists 0 < ck ≤ Ck < ∞ such
that ck ≤ dim(Vd,k)/ dim(Vd,k(Gd))/dα ≤ Ck for any d ≥ 2).

This definition includes as special cases the cyclic group for one and two-dimensional signals (see
Section 2), which have both degeneracy 1. Note that we can define an equivalence relation between
degree-k polynomials: for pk, p′k ∈ Vd,k, we have pk ∼ p′k if and only if there exists g ∈ Gd such
that pk(g · x) = p′k(x). The dimension of the quotient space dim(Vd,k/Vd,k(Gd)) is then exactly
equal to the ratio dim(Vd,k)/ dim(Vd,k(Gd)). For a group Gd with degeneracy α, we can think about
dα as the ‘effective dimension’ of the group seen through its action on polynomials. The effective
dimension of the group is not necessary equal to the size of the group (e.g., see Example 3 which is
an infinite group with degeneracy 1). We will see below that this effective dimension is exactly equal
to the factor that we save in sample size and number of hidden units by using invariant architectures.

We compare invariant methods to standard (non-invariant) random features models with inner
product activation, defined as

FNRF(W ) =
{
f(x) =

N∑
i=1

aiσ(〈wi,x〉) : ai ∈ R, i ∈ [N ]
}
, (5)

and standard inner product kernels H(x1,x2) = hd(〈x1,x2〉/d). For groups with degeneracy
α ≤ 1, we obtain a fairly complete characterization of the gain achieved by using invariant models,
when the target function is an arbitrary invariant function f∗ ∈ L2(Ad;Gd).

Invariance gain: underparametrized case. Consider the invariant RF class (2) in the underparametrized
regimeN � n. We prove that the test error is dominated by the approximation error. Namely,
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if d`−α � N � d`+1−α, then the test error (c.f. Eq. (7)) givesR(f∗;λ) ≈ ‖P>`f∗‖2L2 , where
P>` is the projection orthogonal to the subspace of degree ` polynomials. In order to achieve
the same risk, standard (non-invariant) RF models would require d` � N � d`+1: invariance
saves a dα factor in the network width to achieve the same risk.

Invariance gain: overparametrized case. Consider next the overparametrized regime n� N . In
this case the test error is dominated by the statistical error. Namely, if d`−α � n� d`+1−α,
then the test error gives R(f∗;λ) ≈ ‖P>`f∗‖2L2 . In order to achieve the same risk, standard
(non-invariant) RF models would require d` � n� d`+1: invariance saves a dα factor in the
sample size to achieve the same risk.

These results are precisely presented in Theorem 2 and summarized in Table 1. We establish
the same gain for invariant kernel methods in Theorem 5. While we focused in this paper on groups
with degeneracy α ≤ 1 (which include our primary motivating examples, cyclic group in one or
two dimensions), we expect similar results to hold for groups with α > 1 (indeed our current proof
techniques can handle the case α > 1 at the price of adding the condition N,n ≥ dO(α) in our
theorems). We defer this to future work.

Output symmetrization and data augmentation. Output symmetrization and data augmentation
are two alternative approaches to incorporate invariances in machine learning models. We
show that the performance of output symmetrization of standard KRR does not improve over
standard KRR, and hence is sub-optimal compared to invariant KRR. On the other hand,
it was shown that (c.f. Li et al. (2019)) data augmentation is mathematically equivalent to
invariant KRR for discrete groups. As a consequence, our theoretical results characterize the
statistical gain by performing data augmentation.

It is important to mention that our treatment omits an important characteristic of convolutional
architectures: the fact that the filters wi of Eq. (1) have a short window size q � d. Namely, they
have only q non-zero entries, for instance the first q entries. Using short-window filters has some
interesting consequences, which can be investigated using the same approach developed here. We
will report on these in a forthcoming article, and instead focus here on the impact of invariance.

Our analysis is enabled by a simple yet important observation, which might generalize to other
settings. The subspaces Vd,k of degree-k polynomials (see Definition 1) are eigenspaces for inner
product kernels. At the same time, they are preserved under the symmetry group Gd. Namely, define
f (g)(x) = f(g · x), we have f (g) ∈ Vd,k for any f ∈ Vd,k, g ∈ Gd. This observation is crucial in
determining the eigendecomposition of the relevant kernels.

Let us finally emphasize, that the factor-d gain in sample size for degeneracy-one groups is not
correctly predicted by a naive ‘data augmentation heuristics’. The latter would suggest a gain of the
order of |Gd| or of the size of orbits of Gd. As shown by the example of band limited functions (see
below) |Gd| can be∞ but the degeneracy can still be one (and hence the gain is d).

1.1. Related literature

Invariant function estimation
A number of mathematical works emphasized the role of invariance in neural network architec-

tures. Among others, Mallat (2012); Bruna and Mallat (2013); Mallat (2016) propose architectures
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To fit a degree ` polynomial Inner product random features Invariant random features
Underparameterized regime (N � n) N � d` N � d`−α

Overparameterized regime (n� N ) n� d` n� d`−α

Table 1: Sample size n and number of featuresN required to fit a Gd-invariant polynomial of degree
` using ridge regression with the standard random features model (Eq. (5)) and the invariant
random features model (Eq. (2)), for group Gd of degeneracy α ≤ 1.

(‘deep scattering networks’) that explicitly achieve invariance to a rich group of transformations.
However, these papers do not characterize the statistical error of these approaches.

The recent paper Li et al. (2020) constructs a simple data distribution on which a gap is proven
between the sample complexity for convolutional architectures, and the one for standard (fully con-
nected) architectures. This result differs from ours in several aspects. Most importantly, we study
the risk for estimating general invariant functions using invariant kernels and random features, while
Li et al. (2020) obtain results for a specific distribution using CNNs. Also, the weight sharing struc-
ture in Li et al. (2020) is different from the one in Eq. (1).

Another work Chen et al. (2020) studied the statistical benefits of data augmentation in the
parametric setting via a group theory framework. Our result is different in the sense that we consider
the non-parametric setting to estimate an invariant function using kernel methods.

To the best of the our knowledge, our paper is the first that characterizes the precise statistical
benefit of using invariant random features and kernel models.

Convolutional neural networks and convolutional kernels
A recent line of work (Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019b,a; Allen-Zhu

et al., 2019b,a; Arora et al., 2019a; Zou et al., 2020; Oymak and Soltanolkotabi, 2020) studied
the training dynamics of overparametrized neural networks under certain random initialization, and
showed that it converges to a kernel estimator, which corresponds to the “neural tangent kernel”.
The convolutional neural tangent kernel, which corresponds to the tangent kernel of convolutional
neural networks, was studied in Arora et al. (2019b); Li et al. (2019); Bietti and Mairal (2019). The
connection between convolutional kernel ridge regression and data augmentation was pointed out
in Li et al. (2019).

The network in Eq. (1) corresponds to a two-layer convolutional neural network with global
average pooling, which is a special case of the convolutional network that was defined as in Arora
et al. (2019b).

Random features and kernel methods
A number of authors have studied the generalization error of kernel machines (Caponnetto and

De Vito, 2007; Jacot et al., 2020; Liang et al., 2020b,a) (Wainwright, 2019, Theorem 13.17) and
random features models (Rahimi and Recht, 2009; Rudi and Rosasco, 2017; Ma et al., 2020; Bach,
2017). However, these results are not fine-grained enough to characterize the separation between
invariant kernels (or random feature models) and standard inner product kernels, for several reasons.
First, some of these results concern restricted target functions with bounded RKHS norm. Second,
we establish a gap that holds pointwise, i.e. for any given target function f∗, while most of earlier
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work only obtain minimax lower bounds. Finally, we need the upper and lower bounds match up to
a 1 + od(1) factor, while earlier results only match up to unspecified constants.

The recent paper Jacot et al. (2020) provides sharp predictions for kernel machines, but it as-
sumes that a certain random kernel matrix behaves like a random matrix with Gaussian components:
proving an equivalence of this type is the central mathematical challenge we face here.

Our analysis builds on the general results of Ghorbani et al. (2021); Mei et al. (2021). In
particular, Mei et al. (2021) provides general conditions under which the risk of random features
and kernel methods can be characterized precisely. Checking these conditions for invariant methods
requires to prove certain concentration properties for the entries of the relevant kernels. We achieve
this goal for the cyclic group with general activations, and for degeneracy-α groups (for α ≤ 1) with
polynomial activations. Generalizing these results to other groups, data distributions, and activations
is a promising direction.

2. Examples

In this section, we provide three examples of our general setting. We show in Appendix D that all
these groups have degeneracy 1 and therefore satisfy the assumptions of our general theorems.

Example 1 (One-dimensional images) The cyclic group has elements Cycd = {g0, g1, . . . , gd−1}
where gi is a shift by i pixels. For any x = (x1, . . . , xd)

T ∈ Ad, the action of group element gi on
x is defined by gi · x = (xi+1, xi+2, . . . xd, x1, x2, . . . , xi)

T ∈ Ad. (In particular, gi is identified
with an orthogonal transfromation in Rd.) The measure πd is the uniform probability measure on
Cycd, i.e., ∫

Cycd

f(g)πd(dg) =
1

d

d−1∑
i=0

f(gi).

We will refer to the invariant functions L2(Ad,Cycd) as the ‘cyclic functions’.

Example 2 (Two-dimensional images) Let d = d1 × d2. We identify Xd1×d2 = {X ∈ Rd1×d2 :

‖X‖2F = d} with Sd−1(
√
d) (simply by ‘vectorizing’ the matrix). The two-direction cyclic group

has elements Cyc2Dd1,d2 = {gij : 0 ≤ i < d1, 0 ≤ j < d2, }. For any X = (Xij)i∈[d1],j∈[d2] ∈
Xd1×d2 , the action of group element gij ∈ Cyc2Dd1,d2 onX is defined by

gij ·X =



Xi+1,j+1 . . . Xi+1,d2 Xi+1,1 . . . Xi+1,j

. . . . . . . . . . . . . . . . . .
Xd1,j+1 . . . Xd1,d2 Xd1,1 . . . Xd1,j

X1,j+1 . . . X1,d2 X1,1 . . . X1,j

. . . . . . . . . . . . . . . . . .
Xi,j+1 . . . Xi,d2 Xi,1 . . . Xi,j


.

Again, this is an orthogonal transformation in Xd1×d2 ∼= Sd−1(
√
d), and Cyc2Dd1,d2 is isomorphic

to a subgroup of O(d). The measure πd is the uniform probability measure on Cyc2Dd1,d2 . We will
refer to the invariant functions L2(Sd−1(

√
d),Cyc2Dd) as the ‘two-direction cyclic functions’.

Example 3 (The translation invariant function class on band-limited signals) Suppose we have
one-dimensional signals with very high resolution, but the signals are band-limited: their Fourier
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transforms have only d non-zero coefficients. We assume that the labels of the band-limited signals
are invariant under translations. The following model captures this setting.

Let {ϕj}j∈[d] ⊆ F([0, 1]) be the real Fourier basis functions in L2([0, 1],Unif). That is, we
define ϕ1(t) = 1, and for p = 1, 2, . . . , bd/2c (we assume d is odd), ϕ2p(t) =

√
2 cos(2πpt),

ϕ2p+1(t) =
√

2 sin(2πpt). We define the band-limited covariate subspace Wd ⊆ L2([0, 1],Unif)
to be (W stands for waves)

Wd =
{
x ∈ L2([0, 1]) : x(t) =

d∑
j=1

x̂jϕj(t), x̂ = (x̂1, . . . , x̂d) ∈ Sd−1(
√
d)
}
.

Then the space Wd can be identified with the space Sd−1(
√
d).

Let Sftd = {gu, u ∈ [0, 1]} ' SO(2) be the translation group that can act on Wd. For any
x ∈Wd, the action of group element gu ∈ Sftd on x is defined by

[gu · x](t) = x(t− u).

Equivalently, the action of group element gu ∈ Sftd on x̂ ∈ Sd−1(
√
d) is defined by

gu · x̂ = (x̂1, cos(2πu)x̂2 + sin(2πu)x̂3,− sin(2πu)x̂2 + cos(2πu)x̂3, . . .).

That means, Sftd can be interpreted as a subgroup of O(d). The measure πd is the uniform distri-
bution on Sftd, i.e., ∫

Sftd

f(g)πd(dg) =

∫
[0,1]

f(gs)ds.

The function class L2(Wd,Sftd), or equivalently L2(Sd−1(
√
d), SO(2)), can be regarded as the

translation invariant function class on band-limited signals.

3. Invariant random feature models

Let Gd be a group of degeneracy α with α ≤ 1 as defined in Definition 1 and fd be a function that
is invariant under the action of Gd, i.e., fd ∈ L2(Ad,Gd). We consider fitting the data with the
invariant random features model defined in Eq. (2) using ridge regression, which we call invariant
RFRR. Namely, we learn a function f̂ invN,λ(x; â(λ)) =

∑
1≤j≤N âj

∫
Gd σ(〈wj , g · x〉)πd(dg) with

â(λ) = arg min
a


n∑
i=1

(
yi − f̂ invN,λ(xi;a)

)2
+
Nλ

dα
‖a‖22

 , (6)

where the regularization parameter λ can depend on the dimension d. (The factor dα in the ridge
penalty is introduced to compensate for the effect of averaging the random features over Gd.) We
further denote the test error of invariant RFRR by

RRF,inv(fd,X,W , ε, λ) := Ex
[(
fd(x)− f̂ invN,λ(x; â(λ))

)2]
. (7)

We will make the following assumption on σ.
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Assumption 1 (Conditions on σ, n,N , and (Ad,Gd) at level (s,S) ∈ N2) For σ : R → R, we
assume the following conditions hold.

(a) For (Ad,Gd) = (Sd−1(
√
d),Cycd), we assume σ to be (min(s,S) + 1) ∨ 3 differentiable

and there exists constants c0 > 0 and c1 < 1 such that |σ(k)(u)| ≤ c0e
c1u2/2 for any 2 ≤

k ≤ (min(s,S) + 1) ∨ 3. Moreover, there exists an integer p > 1/δ such that n ≤ N1−δ or
N ≤ n1−δ and |σ(x)|, |σ′(x)| ≤ c0 exp(c1x

2/(8p)).

For general (Ad,Gd), we assume that σ is a (finite degree) polynomial function.

(b) The Hermite coefficients µk(σ) ≡ EG∼N(0,1)[σ(G)Hek(G)] verify µk(σ) 6= 0 for any 0 ≤
k ≤ min(s, S) (see Appendix H for definitions).

(c) We assume that σ is not a polynomial with degree less or equal to max(s,S).

For k ∈ N, we denote by P≤k : L2(Ad)→ L2(Ad) the orthogonal projection operator onto the
subspace of polynomials of degree at most k, and P>k = I−P≤k (see Appendix H for details). We
denote f(d) = od,P(g(d)) if f(d)/g(d) converges to 0 in probability as d→∞.

Theorem 2 (Test error of invariant RFRR) Let Gd be a group of degeneracy α ≤ 1 and let {fd ∈
L2(Ad,Gd)}d≥1 be a sequence of Gd-invariant functions. Assume ds−α+δ ≤ n ≤ ds+1−α−δ and
dS−α+δ ≤ N ≤ dS+1−α−δ for fixed integers s, S and some δ > 0. Let σ be an activation function
that satisfies Assumption 1 at level (s,S). Then the following hold for the test error of invariant
RFRR (see Eq. (7)):

(a) (Overparametrized regime) Assume N ≥ ndδ for some δ > 0. Then for any regularization
parameter λ = Od(1) (including λ = 0) and η > 0, we have

RRF,inv(fd,X,W , ε, λ) = ‖P>sfd‖2L2 + od,P(1) · (‖fd‖2L2+η + σ2ε). (8)

(b) (Underparametrized regime) Assume n ≥ Ndδ for some δ > 0. Then for any regularization
parameter λ = Od(n/N) (including λ = 0) and any η > 0, we have,

RRF,inv(fd,X,W , ε, λ) = ‖P>Sfd‖2L2 + od,P(1) · (‖fd‖2L2+η + σ2ε). (9)

In particular, this theorem applies to the one-dimensional and two-dimensional cyclic groups,
and band-limited functions listed in Section 2. We refer readers to Appendix A.2 for an informal
intuition and Appendix B.2 for the proof of this result.

We can compare these bounds with ridge regression on the standard random features model of
Eq. (5). Theorem 2 in Mei et al. (2021) (with Assumption 1) shows that the same test error holds as
in Theorem 2 but with ds+δ ≤ n ≤ ds+1−δ and dS+δ ≤ N ≤ dS+1−δ. We thus gain a factor dα in
the sample and feature complexity by using invariant features compared to non invariant ones.

Remark 3 Assumption 1 requires the activation function to be polynomial, except for the cyclic
group, for which only differentiability conditions are assumed. These conditions are sufficient for
the general assumptions in Mei et al. (2021) to hold: for the sake of length, we only verify them
for non-polynomial activation functions in the case of the cyclic group in one dimension. However
we believe that the differentiability condition (and indeed weaker conditions) should be sufficient
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for general groups. For example, the current proofs can be modified to apply to more general
subgroups of the permutation group on d elements (e.g., cyclic group in higher dimension). We
defer these improvements to future work.

For the cyclic group, the current assumptions already include the interesting examples of the
sigmoid σ(x) = 1/(1 + exp(x− c)) and smoothed ReLU σ(x) = EG∼N(0,ε2)[(x− c+G)+].

Note that Assumption 1.b) is necessary for the RKHS associated to the feature map σ to include
all polynomials of degree less or equal to min(s,S).

Remark 4 Consider two-dimensional images with d = D ×D (Example 2) and functions fd that
are invariant with respect to the group of cyclic translations along the horizontal direction only. It
can be shown that this group has degeneracy α = 1/2, and in fact dim(Vd,k)/ dim(Vd,k(Gd)) �
D = d1/2. Our theory also applies to this group.

4. Invariant kernel machines

Note that any invariant kernel of the form (4) can be written as a kernel of the form:

Hd,inv(x1,x2) =

∫
Gd

Ew∼Unif(Sd−1)

[
σ(〈x1,w〉)σ(〈x2, g ·w〉)

]
πd(dg) . (10)

To see this, note that any inner product kernel h can be decomposed as

h(〈x1,x2〉/d) = Ew∼Unif(Sd−1)

[
σ(〈x1,w〉)σ(〈x2,w〉)

]
for some activation function σ, which amounts to taking the square root of the positive semidefinite
operator associated to h. Substituting in Eq. (4), we get the desired representation.

Consider Kernel ridge regression with regularization parameter λ associated to Hd,inv, that we
call invariant KRR. Namely, we learn a function f̂ invλ (x; û(λ)) =

∑
i∈[n] ûiHd,inv(xi,x) where

û(λ) = arg min
u


n∑
i=1

(
yi − f̂ invλ (xi;u)

)2
+

λ

dα
‖f̂ invλ ( · ;u)‖2H

 . (11)

with ‖ · ‖H the RKHS norm associated to Hd,inv. We further denote the test error of invariant KRR
by

RKR,inv(fd,X, ε, λ) := Ex
[(
fd(x)− f̂ invλ (x; û)

)2]
. (12)

Theorem 5 (Test error of invariant KRR) Let Gd be a group of degeneracy α ≤ 1 and {fd ∈
L2(Ad,Gd)}d≥1 be a sequence of Gd-invariant functions. Assume ds−α+δ ≤ n ≤ ds+1−α−δ for
some fixed integer s ≥ 1 and some δ > 0. Let σ be an activation function that satisfies Assumption
1 at level (s, s) (andN =∞) and letHd,inv be the associated invariant kernel as defined in Eq. (10).
Then, the following holds for the test error of invariant KRR (c.f. Eq. (12)): for any λ = Od(1)
(including λ = 0 identically) any η > 0, we have

RKR,inv(fd,X, ε, λ) = ‖P>sfd‖2L2 + od,P(1) · (‖fd‖2L2+η + σ2ε). (13)

9
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We can compare the performance of this kernel against a standard (inner product) kernelHd(x,y) =
hd(〈x,y〉/d). Then Theorem 4 in Ghorbani et al. (2021) shows that the above theorem holds but
with ds+δ ≤ n ≤ ds+1−δ. We gain a factor dα in sample complexity by using an invariant kernel.

Remark 6 Recall that the neural tangent kernel (NTK) associated to a function f(x; Θ) with ran-
dom initialization Θ0 is defined as

HNT(x,y) := EΘ0

[
〈∇Θf(x; Θ0),∇Θf(y; Θ0)〉

]
.

The neural tangent kernel associated to a multi-layers fully connected network is an inner-product
kernel (as long as the weights are initialized to be isotropic Gaussian.) In contrast, the NTK asso-
ciated to the CNN of Eq. (1) is an example of invariant kernel, and is covered by Theorem 5 (see
Appendix A.3 for more details).

5. Comparison with alternative approaches

To provide further context, it is useful to compare invariant random features and kernel models
with other approaches. Here we consider two alternatives: (i) output symmetrization, which uses a
non-invariant method for training and then symmetrizes the estimated function over the group Gd to
obtain an invariant function; (ii) data augmentation, which trains the model on a dataset augmented
by samples obtained by applying group transformations to the original data. As shown in Li et al.
(2019), data augmentation is mathematically equivalent to invariant kernel methods, so that it is
superior to standard kernel methods (with inner-product kernels). On the other hand, we show
that output symmetrization of standard kernel estimators does not significantly improve over the
standard kernel estimator, and is fundamentally sub-optimal comparing to invariant kernel methods.

5.1. Output symmetrization

Given an estimater f̂ , the symmetrization operator S f̂ computes the average of f̂ over the group:

(S f̂)(x) ≡
∫
Gd
f̂(g · x)πd(dg). (14)

When the target function fd is Gd-invariant, one might naively think that the symmetrization opera-
tion will significantly improve the performance of standard kernel estimators (standard RFRR and
KRR). Indeed, when fd ∈ L2(Ad,Gd), Jensen’s inequality gives ‖fd−S f̂‖2L2 = ‖S(fd− f̂)‖2L2 ≤
‖fd − f̂‖2L2 . However, the proposition below (which is proved in Section A.4) shows that S f̂ is not
significantly better when f̂ is a standard kernel estimator.

Proposition 7 Let fd ∈ L2(Ad,Gd) be a sequence of target functions. For any sequence of esti-
mators f̂d satisfying ‖f̂d − P≤`fd‖2L2 ≤ ε, we have

‖P>`fd‖2L2 − 2ε‖P>`fd‖L2 ≤ ‖fd − S f̂d‖2L2

≤ ‖fd − f̂d‖2L2 ≤ ‖P>`fd‖2L2 + 2ε‖P>`fd‖L2 + ε2.
(15)

10
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Now consider —to be definite— a setting in which N ≥ ndδ and d`+δ ≤ n ≤ d`+1−δ, and Gd
is a group with degeneracy 1. For any fd ∈ L2(Ad,Gd) with ‖fd‖2L2+η = Od(1), the results of Mei
et al. (2021) imply that standard RFRR (c.f. Eq. (5)) with sufficiently small regularization returns a
function f̂RF with ‖P≤`fd − f̂RF‖2L2 = od,P(1). Consequently, Proposition 7 implies that we have

‖fd − S f̂RF‖2L2 = ‖fd − f̂RF‖2L2 + od,P(1) = ‖P>`fd‖2L2 + od,P(1),

while Theorem 2 implies that invariant RFRR f̂ invRF with sufficiently small regularization achieves a
substantially smaller risk:

‖fd − f̂ invRF‖2L2 = ‖P>`+1fd‖2L2 + od,P(1).

5.2. Data augmentation

We consider full data augmentation whereby we replace each sample (yi,xi) in the dataset by |Gd|
samples {(yi, g · xi) : g ∈ Gd} (for simplicity we consider here the case of a finite group Gd),
and perform standard KRR on the augmented dataset. One might naively think that this is not as
effective as enforcing invariance in the kernel structure. After all, we are only requiring invariance
to hold at the sampled points. However, Li et al. (2019) showed that these two approaches are in
fact equivalent.

We compare KRR using the kernel H(x,y) = h(〈x,y〉/d) on the augmented dataset, with
invariant KRR on the original dataset using the symmetrized kernel Hinv(x,y) =

∫
Gd h(〈x, g ·

y〉/d)πd(dg). Denote by f̂dataλ and f̂ invλ the KRR estimates with the standard kernelH and full data
augmentation, and with the invariant kernel Hinv respectively.

Proposition 8 (Li et al. (2019)) Let G be a finite group, and H , Hinv as defined above. Then we
have f̂dataλ = f̂ invλ .

A couple of remarks are in order. First, this equivalence is general (holds for any dataset {(yi,xi)}i≤n),
and is in fact a consequence of the algebraic structure of ridge regressions. Second, while this result
establishes that the two approaches are mathematically equivalent, there are computational advan-
tages for invariant KRR. Indeed, full data augmentation increases the size of the kernel matrix from
n to n|Gd| which is computationally more expensive. Finally, this equivalence shows that data
augmentation with standard KRR is superior to output symmetrization of standard KRR.

6. Numerical illustration

To check our predictions, we first consider the setting of x ∼ Unif(Sd−1(
√
d)) with d = 30, and

three cyclic invariant polynomials fd,lin, fd,quad, fd,cube ∈ L2(Sd−1(
√
d),Cycd) defined as

fd,lin =
1√
d

d∑
i=1

xi, fd,quad =
1√
d

d∑
i=1

xixi+1, fd,cube =
1√
d

d∑
i=1

xixi+1xi+2, (16)

where the sub-index i in xi should be understood in the modulo d sense (d + 1 = 1 (mod d)).
We compare the performance between two kernels: a standard (inner product) kernel Hd(x,y) :=
hd(〈x,y〉/d) that we take to be the neural tangent kernel associated to a depth-5 neural network

11
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Figure 1: Learning cyclic polynomials (cf. Eq. (16)) over the d-dimensional sphere, d = 30, using
KKR with a standard (inner-product) kernel and a cyclic invariant kernel, and regulariza-
tion parameter λ = 0+. We report the average and the standard deviation of the test error
over 10 realizations, against the sample size n.

with fully connected layers and ReLu activations σ(x) = max(x, 0). We compare this with its
cyclically invariant counterpart Hd,Cyc(x,y) = d−1

∑
0≤i<d hd(〈x, gi · y〉/d), where gi ∈ Cycd

is the shift by i positions as defined in Example 1. Note that the precise number of layers L is not
important. As long as L is fixed in the large N,n limit, our predictions remain unchanged, and the
simulations appear to confirm this.

In Figure 1, we report the test errors of fitting each cyclic polynomials with KRR with the two
kernels, and regularization parameter λ = 0+ (min-norm interpolation). We consider σε = 0 and
we report the risk averaged over 10 instances against the number of samples n. We observe that
the risk in fitting fd,lin, fd,quad and fd,cube, using KRR with the cylcic kernel Hd,Cyc drops when
n = Θd(1), n = Θd(d) and n = Θd(d

2) respectively. In contrast, the risk of KRR with the standard
kernel drops when n = Θd(d), n = Θd(d

2) and n = Θd(d
3) respectively. This matches well the

predictions of Theorem 5.
We next investigate the relevance of our results for real data. We consider the MNIST dataset

(d = 28 × 28 = 784, ntrain = 60000, ntest = 10000 and 10 classes). We encoded class labels
by yi ∈ {−4.5,−3.5, . . . , 3.5, 4.5}. We make these data invariant under cyclic translations in
two dimensions (Example 2): for each samples in the training and test sets, we replace the image
by a uniformly generated 2 dimensional (cyclic) translation of the image (see Fig. 5 in Appendix
A.5.2). In this cyclic invariant MNIST data set, the labels are therefore invariant under the action of
Cyc2D28,28.

Images are highly anisotropic in pixel space R784. In particular, directions corresponding to low-
frequency components of the Fourier transform of x have significantly larger variance than direc-
tions corresponding to high-frequency components. Nevertheless, Ghorbani et al. (2020), showed
that the analysis of random features and kernel models of Ghorbani et al. (2021); Mei et al. (2021)
extends to certain anisotropic models provided the ambient dimension d is replaced by a suitably
defined effective dimension deff.

In order to explore the role of data anisotropy, we pre-process images as follows. We compute
the discrete Fourier transform components of the images in the training set and select the T ∈
{20, 70, 120, 200, 400, 784} components with the highest average absolute value. For each T , we

12
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Figure 2: Classification error for the cyclic invariant MNIST dataset. For each frequencies content
T , we plot the classification error averaged over 5 instances against the number of samples
log(n)/ log(d), for KRR using a standard (inner-product) kernel and a cyclic invariant
kernel and regularization parameter λ = 0+.

then construct training and test sets in which we project each image onto the top T frequencies
(see Fig. 3 in Appendix A.5.2). When T is small, we expect all the non-zero frequencies to have
comparable variance and therefore deff ≈ T . For larger T , we include frequencies of progressively
small variance, and therefore deff should saturate.

For each frequency content T , we compare the performance of two kernels: a standard inner-
product kernel Hd(x,y) := hd(〈x,y〉/d) and its cyclic counterpart given by Hd,Cyc(x,y) =
1/(282)

∑
0≤i,j<28 hd(〈x, gij · y〉/d), where gij ∈ Cyc2D28,28. We choose Hd to be the neural

tangent kernel associated to a two-layers neural network, and hence Hd,Cyc is the one associated
to a CNN analogous to (1) (but in two dimensions). We compute the KRR estimates with regular-
ization parameter λ = 0+. In Fig. 2, we report the classification error averaged over 5 instances
against the number of samples log(n)/ log(d).

We observe that the cyclic invariant kernel vastly outperform the inner product kernel: the
same test error is achieved at a significantly smaller sample size, in qualitative agreement with our
general theory. In order to quantify this gap, for each T we fit two curves to the test error of the two
kernels, which differ uniquely in an horizontal shift (see Appendix A.5.2). We estimate the sample
complexity gain by the difference between these shifts, and denote this estimate by deff.

It is visually clear that deff increases with T , as expected. We plot deff as a function of T in Fig. 6
in Appendix A.5.2. We observe that the behavior of deff roughly matches our expectations: it grows
linearly at small T and eventually saturates.
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Appendix A. Some details in the main text

A.1. Approximation power of invariant networks

In the proposition below, we show that the approximation power of two-layers Gd-invariant neural
networks are always no worse than two-layers fully-connected neural networks when the target
function is Gd-invariant.

Proposition 9 Let σ ∈ C(R) be an activation function. Let Ad ∈ {Sd−1(
√
d),Qd}. Let Gd be

a subgroup of O(d) that preserves Ad. Let πd be the Haar measure of Gd. Let f∗ ∈ L2(Ad;Gd)
be a Gd-invariant function. Define the function classes of two-layers invariant neural networks and
two-layers fully-connected neural networks by

FNN,Gd,N =
{
f(x) =

N∑
i=1

ai

∫
Gd
σ(〈θi, g` · x〉/

√
d)πd(dg) : θi ∈ Ad, ai ∈ R

}
, (17)

FNN,N =
{
f(x) =

N∑
i=1

aiσ(〈θi,x〉/
√
d) : θi ∈ Ad, ai ∈ R

}
. (18)

Then we have
inf

f∈FNN,Gd,N
‖f∗ − f‖2L2 ≤ inf

f∈FNN,N

‖f∗ − f‖2L2 .

Proof [Proof of Proposition 9]
We define the symmetrization operator S : L2(Ad)→ L2(Ad;Gd) by

(Sf)(x) =

∫
Gd
f(g · x)πd(dg).

Since f∗ ∈ L2(Ad;Gd), by Jensen’s inequality, for any f ∈ L2(Ad), we have

‖f? − Sf‖2L2 = ‖S(f? − f)‖2L2 ≤ ‖f? − f‖2L2 .

Moreover, for any f ∈ FNN,N , we have Sf ∈ FNN,Gd,N . This gives

inf
f∈FNN,Gd,N

‖f∗ − f‖2L2 ≤ inf
f∈FNN,N

‖f? − Sf‖2L2 ≤ inf
f∈FNN,N

‖f? − f‖2L2 .

This concludes the proof.

A.2. Intuition for the proofs of Theorems 2 and 5

Theorem 2 and 5 are consequences of general theorems proved in Mei et al. (2021). The dα im-
provement between invariant and non-invariant models can be understood as follows: consider an
inner-product activation σ(〈x,θ〉/

√
d) with x,θ ∼ Unif(Ad) (where we denoted θ =

√
d · w),

then we have the following eigendecomposition

σ(〈x,θ〉/
√
d) =

∞∑
k=0

ξ2d,k

B(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (θ) ,
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where {Y (d)
kl }l∈[B(Ad;k)] form an orthonormal basis of Vd,k, the subspace of degree-k polynomials

on Ad (see Section H for background on functional spaces on the sphere and hypercube). The
eigenvalues of σ are given by {ξd,k}k≥0 with each having degeneracy B(Ad; k).

As mentioned in the introduction, the symmetry group Gd preserves Vd,k (see Section C.2) and
the invariant activation function has the following eigendecomposition

σ(x;θ) :=

∫
Gd
σ(〈x, g · θ〉/

√
d)πd(dg) =

∞∑
k=0

ξ2d,k

D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (θ) ,

where the {Y (d)
kl }l∈[B(Ad;k)] form an orthonormal basis of Vd,k(Gd), the subspace of degree-k invari-

ant polynomials on Ad. The eigenvalues of σ are given by {ξd,k}k≥0 with each having degeneracy
D(Ad; k).

Hence σ has the same eigenvalues ξd,k as σ, but with degeneracy smaller by a factor

B(Ad; k)

D(Ad; k)
= Θd(d

α) .

In other words, in order to fit degree ` polynomials using invariant methods, one needs to fit a factor
dα less eigendirections, which translates to a factor dα improvement in the sample and features
complexity.

This intuition is verified rigorously in the proof of these theorems in Appendix B.

A.3. Convolutional neural tangent kernel

Proposition 10 Let σ ∈ C1(R) be an activation function. Let Gd be a discrete subgroup of O(d)
with Haar measure πd. Let fN be an invariant neural network

fN (x; Θ) =
N∑
i=1

ai

∫
Gd
σ(〈wi, g · x〉)πd(dg).

Let a0i ∼i.i.d. N (0, 1) andw0
i ∼i.i.d. Unif(Sd−1) independently, and Θ0 = (a01, . . . , a

0
N ,w

0
1, . . . ,w

0
N ).

Then there exists hd : [−1, 1]→ R, such that for any x,y ∈ Sd−1(
√
d), we have almost surely

lim
N→∞

〈∇ΘfN (x; Θ0),∇ΘfN (y; Θ0)〉/N =

∫
Gd
hd(〈x, g · y〉/d)πd(dg).

Proof [Proof of Proposition 10] For x,y ∈ Sd−1(
√
d), define

h
(1)
d (〈x,y〉/d) =Ew∼Unif(Sd−1)[σ(〈w,x〉)σ(〈w,y〉)],

h
(2)
d (〈x,y〉/d) =Ew∼Unif(Sd−1)[σ

′(〈w,x〉)σ′(〈w,y〉)〈x,y〉].

By the technical backgrounds in Section H, we can see that h(1)d and h(2)d can be well-defined.
Calculating the derivative of the neural network with respect to a = (a1, . . . , aN ), we have

1

N
〈∇af(x; Θ0),∇af(y; Θ0)〉 =

∫
Gd×Gd

1

N

N∑
i=1

[
σ(〈wi, g · x〉)σ(〈wi, g

′ · y〉)
]
πd(dg)πd(dg

′).
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Since Gd is a discrete group, by law of large numbers, we have

lim
N→∞

1

N
〈∇af(x; Θ0),∇af(y; Θ0)〉

=

∫
Gd×Gd

Ew[σ(〈w, g · x〉)σ(〈w, g′ · y〉)]πd(dg)πd(dg
′)

=

∫
Gd×Gd

h
(1)
d (〈g · x, g′ · y〉/d)πd(dg)πd(dg

′)

=

∫
Gd
h
(1)
d (〈x, g · y〉/d)πd(dg).

Moreover, calculating the derivative of the neural network with respect toW = (w1, . . . ,wN ), we
have

1

N
〈∇W f(x; Θ0),∇W f(y; Θ0)〉

=

∫
Gd×Gd

1

N

N∑
i=1

[
(a0i )

2σ′(〈wi, g · x〉)σ′(〈wi, g
′ · y〉)〈g · x, g′ · y〉

]
πd(dg)πd(dg

′)

Since Gd is a discrete group, by law of large numbers, we have

lim
N→∞

1

N
〈∇W f(x; Θ0),∇W f(y; Θ0)〉

=

∫
Gd×Gd

Ew[σ′(〈w, g · x〉)σ′(〈w, g′ · y〉)〈g · x, g′ · y〉]πd(dg)πd(dg
′)

=

∫
Gd×Gd

h
(2)
d (〈g · x, g′ · y〉/d)πd(dg)πd(dg

′)

=

∫
Gd
h
(2)
d (〈x, g · y〉/d)πd(dg).

Taking hd = h
(1)
d + h

(2)
d concludes the proof.

A.4. Proof of Proposition 7

Let f̂d be an estimator satisfying

ε2 := ‖P≤`fd − f̂d‖2L2 = ‖P≤`fd − P≤`f̂d‖2L2 + ‖P>`f̂d‖2L2 . (19)

By Jensen’s inequality and by the equation above, we have

‖SP>`f̂d‖2L2 ≤ ‖P>`f̂d‖2L2 ≤ ε2. (20)

As a consequence, we have

‖P>`fd‖2L2 − 2ε‖P>`fd‖L2

(1)

≤ ‖P>`fd − SP>`f̂d‖2L2

(2)
= ‖P>`fd − P>`S f̂d‖2L2

(3)

≤ ‖fd − S f̂d‖2L2

(4)
= ‖S(fd − f̂d)‖2L2

(5)

≤ ‖fd − f̂d‖2L2

(6)
= ‖P≤`fd − P≤`f̂d‖2L2 + ‖P>`fd − P>`f̂d‖2L2

(7)
= ‖P>`fd‖2L2 + ε2 + 2ε‖P>`fd‖L2 .

(21)
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Here, (1) is by Eq. (20); (2) is by the fact that S is exchangable with P>` (c.f. Section C); (3) is by
the fact that P>` is a projection operator; (4) is by the fact that fd is Gd-invariant; (5) is by Jensen’s
inequality; (6) is by orthogonal decomposition; (7) is by Eq. (19). This concludes the proof.

A.5. Details of numerical simulations

A.5.1. SYNTHETIC DATA

We consider the standard (inner-product) kernel Hd(x,y) = hNTK(〈x,y〉/d) to be the neural tan-
gent kernel associated to a depth-5 neural network with fully connected layers and ReLu activation
σ(x) = max(x, 0). This can be obtained iteratively as follow (see Jacot et al. (2018) and Bietti and
Bach (2020)): define for u ∈ [−1, 1],

h0(u) =
1

π
(π − arccos(u)), h1(u) = u · h0(u) +

1

π

√
1− u2 ,

and hNTK(u) = h5NTK(u) with h1NTK(u) = h1(u) = u and for k = 2, . . . , 5,

hk(u) = h1(h
k−1(u)) ,

hkNTK(u) = hk−1NTK(u)h0(h
k−1(u)) + hk(u) .

We compute the cyclic invariant kernel by summing over all cyclic translations g ∈ Cycd:

Hd,inv(x,y) =
1

d

∑
g∈Cycd

hNTK(〈x, g · y〉/d) .

A.5.2. CYCLIC INVARIANT MNIST DATA SET

We consider the MNIST data set of 28×28 grayscale images (d = 784) of handwritten digits, which
contains 60000 training images and 10000 testing images. We pre-process the images in three steps:

(a) We compute the discrete Fourier transform of the images in the training set and compute
the average absolute value of the frequency components (see left frame of Fig. 3). For each
T ∈ {20, 70, 120, 200, 400, 784}, we select ΩT ⊂ [28] × [28] to be the set of the top T
frequencies (i.e., the T frequencies with highest absolute value averaged on the training set).

(b) For each T , we construct a train and test sets in which we project each image onto ΩT (i.e.,
we set all the frequency components not in ΩT to 0). We displayed in Fig. 4 two digits and
their projection on the top T frequencies ΩT for different T .

(c) For each image in the training and test sets, we replace the image by a uniformly generated 2
dimensional (cyclic) translation of the image. We display some examples in Fig. 5.

We further normalize the images so that ‖x‖2 = 1 and center the labels yi ∈ Y where Y =
{−4.5,−3.5, . . . , 3.5, 4.5}. In order to compute the classification error, we round the prediction
value to the nearest label in Y .

We use the inner-product kernelHd(x,y) = hNTK(〈x,y〉/d) where hNTK is the neural tangent
kernel associated to a 2-layers neural network with fully connected layers and ReLu activation
σ(x) = max(x, 0), which given by

hNTK(u) = u ·
(
π − arccos(u)

π

)
+

1

π

√
1− u2 .
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Figure 3: Left frame: the absolute value of the frequency components of MNIST images averaged
over the training set (threshold at 1 in the figure). Coordinates on the bottom left-hand
side correspond to lower frequency components while coordinates closer to the top right-
hand side represent the high frequency directions. Right frame: average absolute value
of the frequencies in nonincreasing order. The vertical lines correspond to the different T
chosen (T = 784 corresponds to keeping all the frequencies).
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Figure 4: Examples of two images projected on the top T frequencies.
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Figure 5: Examples of random 2-dimensional cyclic translations of the images (for T = 784).
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Figure 6: Estimated sample size gap between standard and invariant kernel methods, for the trans-
lationally invariant MNIST dataset, as a function of the frequency content T .

The cyclic invariant kernel is computed by summing over all two-dimensional cyclic translations
gij ∈ Cyc2D28,28:

Hd,inv(x,y) =
1

282

27∑
i,j=0

hNTK(〈x, gij · y〉/d) .

For each T , we estimate the effective dimension deff by fitting two parallel lines through the
classification error points of the standard and cyclic kernels at the same time (keeping only the
points where the curves decrease). The estimated (log) effective dimension is then given by the
difference of the offsets. We report these estimates for different T in Fig. 6.
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Appendix B. Proof of the main theorems

In this section, we present the proofs of Theorem 2 and 5 stated in the main text. The rest of the
appendices are organized as follow:

• Appendix C presents key properties of the decomposition of invariant functions, while Ap-
pendix H reviews some technical background on the functional spaces on the sphere and the
hypercube.

• Appendix D proves that the examples of symmetry group listed in Section 2 (one and two-
dimensional cyclic groups and band-limited functions) have degeneracy 1.

• Appendix E presents a key concentration result on the diagonal elements of polynomial in-
variant kernels. In particular, the results of Appendix E are the only ones required in the
proofs of Theorems 2 and 5 in the case of polynomial activations for general symmetry group
Gd of degeneracy α ≤ 1.

• Appendices F and G provides necessary results to extend the proofs to non-polynomial acti-
vations in the case of (Ad,Gd) = (Sd−1(

√
d),Cycd).

B.1. Notations

For a positive integer, we denote by [n] the set {1, 2, . . . , n}. For vectors u,v ∈ Rd, we denote
〈u,v〉 = u1v1 + . . . + udvd their scalar product, and ‖u‖2 = 〈u,u〉1/2 the `2 norm. Given a
matrix A ∈ Rn×m, we denote ‖A‖op = max‖u‖2=1 ‖Au‖2 its operator norm and by ‖A‖F =(∑

i,j A
2
ij

)1/2 its Frobenius norm. If A ∈ Rn×n is a square matrix, the trace of A is denoted by
Tr(A) =

∑
i∈[n]Aii.

We use Od( · ) (resp. od( · )) for the standard big-O (resp. little-o) relations, where the subscript
d emphasizes the asymptotic variable. Furthermore, we write f = Ωd(g) if g(d) = Od(f(d)), and
f = ωd(g) if g(d) = od(f(d)). Finally, f = Θd(g) if we have both f = Od(g) and f = Ωd(g).

We use Od,P( · ) (resp. od,P( · )) the big-O (resp. little-o) in probability relations. Namely, for
h1(d) and h2(d) two sequences of random variables, h1(d) = Od,P(h2(d)) if for any ε > 0, there
exists Cε > 0 and dε ∈ Z>0, such that

P(|h1(d)/h2(d)| > Cε) ≤ ε, ∀d ≥ dε,

and respectively: h1(d) = od,P(h2(d)), if h1(d)/h2(d) converges to 0 in probability. Similarly, we
will denote h1(d) = Ωd,P(h2(d)) if h2(d) = Od,P(h1(d)), and h1(d) = ωd,P(h2(d)) if h2(d) =
od,P(h1(d)). Finally, h1(d) = Θd,P(h2(d)) if we have both h1(d) = Od,P(h2(d)) and h1(d) =
Ωd,P(h2(d)).

B.2. Proof of Theorem 2

Let Gd be a group of degeneracy α ≤ 1. Consider x,θ ∼ Unif(Ad), ds−α+δ0 ≤ n ≤ ds−α+1−δ0 ,
dS−α+δ0 ≤ N ≤ dS−α+1−δ0 and an activation function σ that satisfies Assumption 1 at level (s, S).
Denote

σ(x;θ) =

∫
Gd
σ(〈θ, g · x〉/

√
d)πd(dg).
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Theorem 2 is a consequence of Theorem 1 in Mei et al. (2021) where we take Xd = Ωd = Ad,
νd = τd = Unif(Ad) and Dd = Vd = L2(Ad,Gd) ⊂ L2(Ad). The proof amounts to checking
that σ indeed verifies the feature map concentration and spectral gap assumptions (see Section 2.2
in Mei et al. (2021)). We borrow some of the notations introduced in Mei et al. (2021) and refer the
reader to their Section 2.1.
Proof [Proof of Theorem 2] For the sake of simplicity, we consider the overparametrized case
N(d) ≥ n(d)dδ for some δ > 0, and therefore S ≥ s. The underparametrized case dδN(d) ≤ n(d)
is treated analogously.
Step 1. Diagonalization of the activation function σ and choosing m = m(d), M = M(d).

We can decompose the inner product activation σ in the basis of Gegenbauer polynomials (see
Section H for definitions):

σ(〈x,θ〉/
√
d) =

∞∑
k=0

ξd,kB(Ad; k)Q
(d)
k (〈x,θ〉) ,

where (with e ∈ Ad arbitrary)

ξd,k(σ) = Eθ∼Unif(Ad)[σ(〈e,θ〉/
√
d)Q

(d)
k (〈e,θ〉)] .

From Assumption 1.(a) that |σ(x)| ≤ c0 exp(c1x
2/2) for some constants c0 > 0 and c1 < 1 (which

is trivially verified for a polynomial activation function), there exists a constant C > 0 such that
(see for example Lemma 5 in Ghorbani et al. (2021))

‖σ(〈e, · 〉/
√
d)‖L2(Ad) =

∞∑
k=1

ξ2d,kB(Ad; k) ≤ C. (22)

We have for fixed k, B(Ad; k) = Θ(dk). Furthermore, for non-polynomial activation functions in
the case of (Ad,Gd) = (Sd−1(

√
d),Cycd), we use supk>sB(Sd−1; k)−1 = Od(d

−s−1) (Lemma 1
in Ghorbani et al. (2021)). We deduce that

sup
k>s

ξ2d,k = Od(d
−s−1) , (23)

sup
k>S

ξ2d,k = Od(d
−S−1) . (24)

From the correspondence between Gegenbauer and Hermite polynomials when d→∞ (see Eq. (111)
in Section H.1.3), Assumption 1.(b) implies that ξ2d,k = Θd(d

−k) for k = 0, . . . , s.
Let us diagonalize σ in the basis of Gd-invariant polynomials {Y kl}k≥0,`∈[D(Ad;k)] (see Section

C for definitions). From Lemma 11 stated in Section C.3, we have

σ(x;θ) =
∞∑
k=0

ξd,kB(Ad; k)

∫
Gd
Q

(d)
k (〈x, g · θ〉)πd(dg)

=

∞∑
k=0

ξd,k

D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (θ) .

(25)

Denote (λd,j)j≥1 the eigenvalues of σ in non increasing order of their absolute value (namely,
the ξd,k’s which have degeneracies D(Ad; k)). Set m and M to be the number of eigenvalues λ2d,j
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that are bigger than d−s−1+δ and d−S−1+δ respectively, for a constant δ > 0 that will be set suf-
ficiently small (see Step 4). From the above discussion, (λd,j)j≤m corresponds exactly to all the
eigenvalues associated to invariant polynomials of degree less of equal to s, while (λd,j)j≤M does
not contain any eigenvalues associated to invariant polynomials of degree bigger or equal to S + 1.
Hence,

m =

s∑
k=0

D(Ad; k) = Θd(d
s−α), M ≤

S∑
k=0

D(Ad; k) = Od(d
S−α) , (26)

where we used that Gd has degeneracy α so that D(Ad; k) = Θd(d
−α) ·B(Ad; k).

Step 2. Diagonal elements of the truncated kernel.
We introduce the kernel associated to activation σ:

Hd(x1,x2) = Eθ[σ(x1;θ)σ(x2;θ)] =

∞∑
k=0

ξ2d,kD(Ad; k)Υ
(d)
k (x1,x2) ,

where we denote

Υ
(d)
k (x1,x2) =

1

D(Ad; k)

D(Ad;k)∑
l=1

Y
(d)
kl (x1)Y

(d)
kl (y1) .

Similarly, we introduce a kernel in the feature space

Ud(θ1,θ2) = Ex[σ(x;θ1)σ(x;θ2)] =
∞∑
k=0

ξ2d,kD(Ad; k)Υ
(d)
k (θ1,θ2) .

We denote Hd,Ud : L2(Ad,Gd) → L2(Ad,Gd) the kernel operators with kernel representation Hd

and Ud, and denote Hd,>m and Ud,>M the kernel operators where the biggest m and M eigenvalues
respectively are set to 0. Recalling the discussion on the choice of m and M, denote E = {k :

ξ2d,k ≤ d−S−1+δ}: E contain all integers bigger or equal to S + 1 and none smaller or equal to s.
The diagonal elements of the truncated kernels are then given by

Hd,>m(x,x) =
∞∑

k=s+1

ξ2d,kD(Ad; k)Υ
(d)
k (x,x) ,

Ud,>M(θ,θ) =
∑
k∈E

ξ2d,kD(Ad; k)Υ
(d)
k (θ,θ) ,

(27)

and

Tr(Hd,>m) = Ex[Hd,>m(x,x)] =

∞∑
k=s+1

ξ2d,kD(Ad; k) ,

Tr(Ud,>M) = Eθ[Ud,>M(θ,θ)] =
∑
k∈E

ξ2d,kD(Ad; k) .

From Assumption 1.(c), σ is not a polynomial of degree less or equal to S. Hence, there exists
` > S such that µ`(σ) 6= 0 and therefore ξ2d,`D(Ad; `) = Θ(d−α). Furthermore, from Eq. (22) and
the assumption that Gd is of degeneracy α (for polynomial activation functions, see Proposition 22
in Section G for general σ in the case of (Ad,Gd) = (Sd−1(

√
d),Cycd)), we have

Tr(Hd,>m) = Θ(d−α), Tr(Ud,>M) = Θ(d−α). (28)
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Step 3. Checking the feature map concentration property at level {N(d),M(d), n(d),m(d)}d≥1.

Let us first consider the case of a polynomial activation function σ. Denote D its degree and
u = u(d) the total (finite) number of nonzero eigenvalues of σ (which are associated to invariant
polynomials of degree less or equal to D). Let us verify the feature map concentration property
(Assumption 1 in Mei et al. (2021)) with sequence u(d) ≥ max(m,M). Note that u ≥ max(m,M),
part (b) and (c) of the property are trivially verified in that case.

(a) (Hypercontractivity of finite eigenspaces on Dd.) The subspace of polynomials of degree less
or equal to D on the hypercube and the sphere verifies the hypercontractivity property (see
Lemmas 35 and 36 in Section H.3).

(d) (Concentration of diagonal elements.) From Eq. (27) and Proposition 18 stated in Section E,
we have

sup
i∈[n]

∣∣∣Hd,>m(xi,xi)− Ex[Hd,>m(x,x)]
∣∣∣

≤
D∑

k=s+1

ξ2d,kD(Ad; k) sup
i∈[n]

∣∣∣Υ(d)
k (xi,xi)− Ex[Υ

(d)
k (x,x)]

∣∣∣ = od,P(1) · Ex[Hd,>m(x,x)].

A similar computation shows the concentration of the diagonal elements of Ud,>M.

Let us now consider a non polynomial activation function σ in the case of Ad = Sd−1(
√
d) and

Gd = Cycd (of degeneracy 1). Let us choose ` > 2S + 10 such that µ`(σ) 6= 0 (it must exists
otherwise σ would be a polynomial) and therefore ξ2d,` = Θd(d

−`). Consider u = u(d) to be the
number of eigenvalues such that λ2d,j is strictly bigger than ξ2d,`. Then, (λd,j)j≤u do not contain any
eigenvalues ξd,k for k ≥ ` and contain all ξd,k for k ≤ s. In particular, u ≥ max(m,M). Denote
E = {k : ξ2d,k ≤ ξ2d,`}: E contain all integers bigger or equal to `.

Let us verify the feature map concentration property with the sequence u(d) (part (a) is the
same with D replaced by `− 1).

(b) (Properly decaying eigenvalues.) We have

Tr(Hd,>u) ≥ ξ2d,`D(Sd−1; `) = Ωd(d
−α) ,

Tr(H2
d,>u) =

∑
k∈E

ξ4d,kD(Sd−1; k) ≤ ξ2d,`Tr(Hd,>u) .

Hence,
Tr(Hd,>u)2

Tr(H2
d,>u)

≥ ξ−2d,` · Tr(Hd,>u) = Ωd(1) · d2S+9 ≥ max(n,N)2+δ.

(c) (Hypercontractivity of the high degree part.) Denote σ>u = PEσ the activation σ obtained
by setting the first u eigenvalues to 0 (i.e., setting coefficients k 6∈ E to zero in Eq. (25)).
From Eq. (28), we need to show that for p as defined in Assumption 1.(a), we have

Ex,θ[σ>u(x;θ)2p]1/(2p) = Od(d
−1/2+δ).
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Denote E≤4p = E ∩ {0, . . . , 4p} (recall that E contains all k ≥ `) and decompose σ>u =
PE≤4p

σ + P>4pσ. Then by triangle inequality we have,

Ex,θ[σ>u(x;θ)2p]1/(2p) ≤ Ex,θ[PE≤4p
σ(x;θ)2p]1/(2p) + Ex,θ[P>4pσ(x;θ)2p]1/(2p).

Using hypercontractivity of polynomials of degree less or equal to 4p, the first term is bounded
by Od(d−1/2), while the second term is bounded in Proposition 29 in Section G.

(d) (Concentration of diagonal elements.) This is proved in Proposition 22 in Section F.

Step 4. Checking the spectral gap property at level {N(d),M(d), n(d),m(d)}d≥1.
Let us now check the spectral gap property (Assumption 2 in Mei et al. (2021)).

(a) (Number of samples.) First by Eq. (26) and the assumption ds−α+δ0 ≤ n ≤ ds+1−α−δ0 ,
we have m ≤ n1−δ for δ > 0 chosen sufficiently small. By the choice of m and recalling
Eq. (28), we have

λ−2m+1Tr(Hd,>m) = sup
k≥s+1

{ξ−2d,k} · Tr(Hd,>m) = Ωd(d
s+1−α) ≥ n1+δ ,

λ−2m Tr(Hd,>m) = ξ−2d,s Tr(Hd,>m) = Od(1) · ds−α ≤ n1−δ ,

with δ > 0 chosen sufficiently small.

(b) (Number of features.) By construction M ≥ m. Furthermore, recalling Eq. (26) and the
assumption dS−α+δ0 ≤ N ≤ dS+1−α−δ0 , we have M ≤ N1−δ for δ > 0 chosen sufficiently
small. By choice of M, λ2d,M+1 ≤ d−S−1+δ. Hence,

λ−2M+1Tr(Ud,>M) = Ωd(1) · dS+1−α−δ ≥ N1+δ,

for δ > 0 chosen sufficiently small.

Finally notice that we used a different parametrization of λ in Eq. (6) and the condition in Mei
et al. (2021) becomes λ/dα = Od(1) · Tr(Hd,>m), i.e., λ = Od(1). This concludes the proof.

B.3. Proof of Theorem 5

We consider the same setting as in the previous section and consider

Hd(x1,x2) = Eθ[σ(x1;θ)σ(x2;θ)] .

Theorem 5 is a consequence of Theorem 4 in Mei et al. (2021) and the proof amounts to checking
that Hd verifies the kernel concentration properties and eigenvalue condition (see Section 3.2 in
Mei et al. (2021)). Note that some of the conditions were already covered in the proof of Theorem
2 and we will only mention the ones that still need to be verified. Furthermore, by the spectral gap
property proven in Section B.2, the bound in Theorem 4 in Mei et al. (2021) (which is in term of a
shrinkage operator) can indeed be rewritten as

RKR,inv(fd,X, λ) = ‖P>sfd‖2L2 + od,P(1) · (‖fd‖2L2+η + σ2ε).
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Proof [Proof of Theorem 5] We choose m as in the proof of Theorem 2.
Step 1. Checking the kernel concentration property at level {n(d),m(d)}d≥1.

First notice that

Ex[Hd,>m(xi,x)] =
∞∑

k=s+1

ξ4d,kD(Ad; k)Υ
(d)
k (xi,xi),

and the concentration of the diagonal elements in the case of a polynomial activation function fol-
lows from the same argument as in Section B.2.

Hence, we only need to check this property in the case non polynomial activation function σ
(Ad = Sd−1(

√
d) and Gd = Cycd of degeneracy 1). Let us choose u as in the proof of the feature

map concentration property in Theorem 2.

• (Properly decaying eigenvalues.) We have

Tr(H2
d,>u) ≥ ξ4d,`D(Sd−1; `) = Ωd(1) · d−`−1 ,

Tr(H4
d,>u) ≤ sup

j≤u
{λ6d,j}Tr(Hd,>u) = Od(1) · d−3` .

Hence,
Tr(H2

d,>u)2

Tr(H4
d,>u)

= Ωd(1) · d`−2 = Ωd(d
2s) ≥ n2+δ.

• (Concentration of the diagonal elements of the kernel.) This is proven in Proposition 23 in
Section F.

Step 2. Checking the eigenvalue condition at level {n(d),m(d)}d≥1.
By the choice of m, we have

λ−4d,m+1Tr(H2
d,>m) =

∑
k≥s+1 ξ

4
d,kD(Ad; k)

supk≥s+1 ξ
4
d,k

≥ D(Ad; s + 1) = Ωd(d
s+1−α) ≥ n1+δ.

Again notice that we used a different parametrization of λ in Eq. (11) and the condition in Mei
et al. (2021) becomes λ/dα = Od(1) · Tr(Hd,>m), i.e., λ = Od(1). This concludes the proof.
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Appendix C. Decomposition of invariant functions

In this section, we take Ad ∈ {Sd−1(
√
d),Qd}, and Gd to be any group that is isomorphic to a

subgroup of O(d) and that preserves Ad. This section is mostly built on the technical background
presented in Appendix H.

C.1. The invariant function class and the symmetrization operator

LetL2(Ad) be the class ofL2 functions onAd equipped with uniform probability measure Unif(Ad).
We define the invariant function class to be

L2(Ad,Gd) =
{
f ∈ L2(Ad) : f(x) = f(g · x), ∀x ∈ Ad, ∀g ∈ Gd

}
.

We define the symmetrization operator S : L2(Ad)→ L2(Ad,Gd) to be

(Sf)(x) =

∫
Gd
f(g · x)πd(dg).

C.2. Orthogonal polynomials on invariant function class

For either Ad ∈ {Sd−1(
√
d),Qd}, we define Vd,≤k ⊆ L2(Ad) to be the subspace spanned by all

the degree ` polynomials, Vd,>k ≡ V ⊥d,≤k ⊆ L2(Ad) to be the orthogonal complement of Vd,≤k, and
Vd,k = Vd,≤k ∩ V ⊥d,≤k−1. In words, Vd,k contains all degree k polynomials that orthogonal to all
polynomials of degree at most k − 1. We further define Vd,<k = Vd,≤k−1 and Vd,≥k = Vd,>k−1.

Let P≤` to be the projection operator on L2(Ad,Unif) that project a function onto Vd,≤`, the
space spanned by all the degree ` polynomials. Then it is easy to see that P≤` and S operator
commute. This means, for any f ∈ L2(Ad), we have

P≤`[S(f)] = S[P≤`(f)].

Similarly, we can define P`, P<`, P>`, P≥`, which commute with S . We denote Vd,`(Gd) ≡
P`(Ad,Gd) to be the space of polynomials in the images of P`S (which is consistent with the
definition of Vd,`(Gd) in Definition 1). Then we have

P`(Ad,Gd) = P`(L
2(Ad,Gd)) = S[P`(L

2(Ad))].

We denote D(Ad; k) = D(Ad;Gd; k) ≡ dim(Pk(Ad,Gd)) to be the dimension of Pk(Ad,Gd).
We denote {Y (d)

kl }l∈[D(Ad;k)] to be a set of orthonormal polynomial basis inPk(Ad,Gd). That means

Ex∼Unif(Ad)[Y
(d)
k1l1(x)Y

(d)
k2l2(x)] = 1{k1 = k2, l1 = l2},

and

Y
(d)
kl (x) = Y

(d)
kl (g · x), ∀x ∈ Ad, ∀g ∈ Gd.
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C.3. A representation lemma

We have the following representation lemma. This lemma is important in the proofs of counting the
degeneracy of groups (See Section D).

Lemma 11 (Convolution representation of projection operator) Let Q(d)
k be the k-th Gegen-

bauer polynomial, or the k-th hypercubic Gegenbauer polynomial. For any fixed integer k, we
have

1

D(Ad; k)

D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (y) =

B(Ad; k)

D(Ad; k)

∫
Gd
Q

(d)
k (〈x, g · y〉)πd(dg). (29)

Proof [Proof of Lemma 11] Define

Γ1k(x,y) =

D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (y),

and

Γ2k(x,y) = B(Ad; k)

∫
Gd
Q

(d)
k (〈g · x,y〉)πd(dg).

Then Γ1k and Γ2k define two operators T1k,T2k : L2(Ad)→ L2(Ad), i.e., for j = 1, 2,

Tjkf(x) = Ey∼Unif(Ad)[Γjk(x,y)f(y)].

Recall that Q(d)
k is a representation of the projector onto the subspace of degree-k spherical

harmonics (see Eq. (104) in Section H.1.2). We deduce that

T2kf(x) = SEy[B(Ad; k)Q
(d)
k (〈x,y〉)f(y)] = SPkf(x),

and therefore T2k = SPk.
Furthermore, we have T1k = PkS. Indeed, the images of both T1k and PkS are Pk(Ad,Gd),

the space Pk(Ad,Gd)⊥ is the null space of both T1k and PkS, and T1kY
(d)
kp (x) = PkSY

(d)
kp (x) =

Y
(d)
kp (x).

By the commutativity of Pk and S operator, we have T1k = PkS = SPk = T2k, and hence
Γ1k = Γ2k.

C.4. Gegenbauer decomposition of invariant features and kernels

By Section H, for eitherAd ∈ {Sd−1(
√
d),Qd}, for any activation function σ ∈ L2([−

√
d,
√
d], τ1d )

(where τ1d is the distribution of 〈x1,x2〉 when x1,x2 ∼iid Unif(Ad)), we can define its coefficients
ξd,k(σ) defined by

ξd,k(σ) =

∫
[−
√
d,
√
d]
σ(x)Q

(d)
k (
√
dx)τ1d (dx), (30)
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so that we have the following equation holds in L2([−
√
d,
√
d], τ1d ) sense

σ(x) =
∞∑
k=0

ξd,k(σ)B(Ad; k)Q
(d)
k (
√
dx).

For any group Gd that is a subgroup of O(d), we define

σ(x;θ) ≡
∫
Gd
σ(〈x, g · θ〉/

√
d)πd(dg).

Then, by the representation lemma (Lemma 11), we have

σ(x;θ) ≡
∞∑
k=0

ξd,k(σ)B(Ad; k)

∫
Gd
Q

(d)
k (〈x, g · θ〉)πd(dg)

=

∞∑
k=0

ξd,k(σ)

D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (θ).

As a consequence, suppose we define

Hd(x,y) = Eθ∼Unif(Ad)[σ(x;θ)σ(y;θ)].

Then we have

Hd(x,y) =

∞∑
k=0

ξd,k(σ)2
D(Ad;k)∑
l=1

Y
(d)
kl (x)Y

(d)
kl (y).
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Appendix D. Counting the degeneracy

D.1. Counting the degeneracy of Cycd and Cyc2Dd1,d2 (Example 1 and 2)

Proposition 12 Let Gd ∈ {Cycd,Cyc2Dd1,d2} with d = d1 × d2. Let Ad ∈ {Sd−1(
√
d),Qd}.

Then for any fixed k ≥ 1, we have

dim(Pk(Ad,Gd)) ≡ D(Ad; k) = Θd(d
k−1).

D.1.1. PROOF OF PROPOSITION 12

Here we state a key lemma that is used to prove Proposition 12.

Lemma 13 Let Gd ∈ {Cycd,Cyc2Dd1,d2} with d = d1 × d2. Denote

Fk(z) =

∫
Gd

(〈z, g · z〉/d)kπd(dg).

Then for any fixed k ≥ 1, we have

Ez∼N (0,Id)[Fk(z)] = Θd(d
−1), (31)

Eθ∼Unif(Qd)[Fk(θ)] = Θd(d
−1), (32)

Eθ∼Sd−1(
√
d)[Fk(θ)] = Θd(d

−1). (33)

Proof [Proof of Lemma 13] We prove Eq. (31) and (33). The proof for Eq. (32) is similar to the
proof of Eq. (31).

Let {L`}0≤`≤d−1 be the matrix representation of group elements of Cycd or Cyc2Dd1,d2 : when
Gd = Cycd, g` ∈ Cycd gives matrix representation L` for 0 ≤ ` ≤ d− 1; when Gd = Cyc2Dd1,d2 ,
gst ∈ Cyc2Dd1,d2 gives matrix representation Ls×d2+t for 0 ≤ s ≤ d1 − 1, 0 ≤ t ≤ d2 − 1. As a
consequence, for either Gd ∈ {Cycd,Cyc2Dd1,d2}, L0 = Id is the identity matrix. This gives

Fk(z) = ‖z‖2k2 /dk+1 +
d−1∑
l=1

〈z, Llz〉k/dk+1.

Step 1. The case k = 1. For either Gd ∈ {Cycd,Cyc2Dd1,d2}, we have E[〈z, Llz〉] = 0 for
1 ≤ l ≤ d− 1. As a consequence, we have

Ez∼N (0,Id)[F1(z)] = E[‖z‖22/d2] +
d−1∑
l=1

E[〈z, Llz〉/d2] =
1

d
. (34)
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Step 2. The case k = 2. Note we have

Ez∼N (0,Id)[F2(z)] = E[‖x‖42/d3] +
d−1∑
l=1

E[〈x, Llx〉2/d3]

= E
[( d∑

i=1

x2i

)2]
/d3 +

d−1∑
l=1

E
[( d∑

i=1

xi(Llx)i

)2]
/d3

=

d∑
i,j=1

E[x2ix
2
j ]/d

3 +

d−1∑
l=1

d∑
i,j=1

E[xi(Llx)ixj(Llx)j ]/d
3

=
(1

d
+

2

d2

)
+

d−1∑
l=1

d∑
i,j=1

E[xi(Llx)ixj(Llx)j ]/d
3.

Note that for either Gd ∈ {Cycd,Cyc2Dd1,d2}, for any i ∈ [d] and 1 ≤ l ≤ d − 1, the random
variable (Llx)i is independent from xi. This gives

0 ≤
d−1∑
l=1

d∑
i,j=1

E[xi(Llx)ixj(Llx)j ]/d
3 ≤ 2(d− 1)d

d3
= Θd(d

−1).

As a consequence, we have
Ez∼N (0,Id)[F2(z)] = Θd(d

−1). (35)

Step 3. The case k ≥ 3. By the moment formula of the χ2 distribution, we have

Ez∼N (0,Id)[(‖z‖
2
2/d)k] = 1 + od(1).

Moreover, for either Gd ∈ {Cycd,Cyc2Dd1,d2}, for any l 6= 0, we have

E[〈z, Llz〉]/d = 0.

As a consequence, by the Hanson-Wright inequality as in Lemma 14, for any fixed k ≥ 3 and ε > 0,
we have

Ez∼N (0,Id)

[
sup

1≤l≤d−1
(〈z, Llz〉/d)k

]
= Od(d

−k/2+ε).

Therefore, for k ≥ 3, we have∣∣∣Ez∼N (0,Id)[Fk(z)]−1

d
Ez∼N (0,Id)[(‖z‖

2
2/d)k]

∣∣∣ ≤ Ez∼N (0,Id)

[
sup

1≤l≤d−1
(〈z, Llz〉/d)k

]
= od(1/d),

so that
Ez∼N (0,Id)[Fk(z)] = 1/d+ od(1/d). (36)

Combining Eq. (34), (35), and (36) proves Eq. (31).
Step 4. From Gaussian to spherical. Note that when z ∼ N (0, Id), we have ‖z‖22 ∼ χ2(d)
which is independent of

√
d · z/‖z‖2 ∼ Unif(Sd−1(

√
d)). Hence, we have

Ez∼N (0,Id)[Fk(z)] = Eθ∼Sd−1(
√
d),z∼N (0,Id)

[Fk(θ)(‖z‖2k2 /dk)]

= Eθ∼Sd−1(
√
d)[Fk(θ)] · Ez∼N (0,Id)[‖z‖

2k
2 /d

k].
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Note that for fixed k ≥ 1, the moment formula for χ2 distribution gives

Ez∼N (0,Id)[‖z‖
2k
2 /d

k] = 1 + od(1).

Combining with Eq. (31), we have

Eθ∼Sd−1(
√
d)[Fk(θ)] = Ez∼N (0,Id)[Fk(z)]/Ez∼N (0,Id)[‖z‖

2k
2 /d

k] = Θd(d
−1).

This proves Eq. (33).

Proof [Proof of Proposition 12] Denote

Pk(θ) ≡ 1

B(Ad; k)

D(Ad;k)∑
l=1

Y
(d)
kl (θ)2 =

∫
Gd
Q

(d)
k (〈θ, g · θ〉)πd(dg).

By Lemma 11, for any fixed k ≥ 1, we have

Eθ∼Unif(Ad)[Pk(θ)] =
D(Ad; k)

B(Ad; k)
. (37)

By Lemma 15, we have

Pk(θ) =
k∑

m=0

ad,k,mFm(θ),

where |ad,k,m| ≤ Ck,m/d(k−m)/2. As a result, we have

Eθ∼Unif(Ad)[Pk(θ)] =

k∑
m=0

ad,k,mEθ∼Unif(Ad)[Fk(θ)] = Θ(d−1).

Combining with Eq. (37) shows that D(Ad; k) = Θ(d−1B(Ad; k)) = Θ(dk−1). This concludes
the proof.

D.1.2. AUXILIARY LEMMAS

Lemma 14 (Hanson-Wright inequality) There exists a universal constant c > 0, such that for
any t > 0 and d ∈ N, and any permutation matrix L ∈ Rd×d be any permutation matrix, when
x ∼ N (0, Id) or x ∼ Unif(Qd), we have

P
(∣∣∣〈x, L · x〉 − E[〈x, L · x〉]

∣∣∣/d ≥ t) ≤ 2 · exp{−cd ·min(t2, t)}.

Proof [Proof of Lemma 14] Note that for any permutation matrix L, we have ‖L‖F ≤
√
d, and

‖L‖op ≤ 1. By the Hanson-Wright inequality of vectors with independent sub-Gaussian entries
(for example, see Theorem 1.1 of Rudelson et al. (2013)), we have

P
(∣∣∣〈x, Lx〉 − E[〈x, Lx〉]

∣∣∣/d > t
)
≤ 2 exp{−cd ·min(t2, t)}.

This concludes the proof
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Lemma 15 Let Q(d)
k be either the k’th Gegenbauer polynomial or the k’th hypercubic Gegen-

bauer polynomial (as defined in Section H). Let coefficients of monomials in Q
(d)
k (d · x) to be

{ad,k,m}0≤m≤k. That is, we have

Q
(d)
k (x) =

k∑
m=0

ad,k,m(x/d)m.

Then, for any fixed k, there exists constant C(k), such that

|ad,k,m| ≤ C(k)/d(k−m)/2.

Moreover, we have
lim
d→∞

ad,k,k = 1.

Finally, for k and m in different parity, we have

ad,k,m = 0.

Proof [Proof of Lemma 15] The proof holds by the following equation

lim
d→∞

Coeff
{
B(Ad; k)1/2Q

(d)
k (
√
d · x)

}
= Coeff

{ 1√
k!

Hek(x)
}
.

when Q(d)
k is either Gegenbauer polynomial or Hypercubic Gegenbauer polynomial (See Eq. (110)

and Eq. (112)).

D.2. Counting the degeneracy of band-limited function class (Example 3)

Proposition 16 Follow the notations of Example 3. Then for any fixed k ≥ 1, we have

D(S(d−1); k) = Θd(d
k−1).

Here we state Lemma 17 that is used to prove Proposition 16. Given Lemma 17, the proof of
Proposition 16 is the same as the proof of Proposition 12.

Lemma 17 Follow the notations of Example 3. Denote

Fk(z) =

∫
Sftd

(〈z, g · z〉/d)kπd(dg).

Then for any fixed k ≥ 1, we have

Ez∼N (0,Id)[Fk(z)] = Θd(d
−1).
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Proof [Proof of Lemma 17]
We prove the lemma for the case when d is odd. We denote u1 = z21 , and ui = z22i + z22i+1 for

i = 2, . . . , (d− 1)/2. Then we have

Ez∼N (0,Id)[Fk(z)] = d−k · Ez
{∫

[0,1]

( (d−1)/2∑
j=0

uj cos(2πjt)
)k

dt
}

= d−k · Ez
{∫

[0,1]

(d−1)/2∑
j1,...,jk=0

( ∏
s∈[k]

ujs cos(2πjst)
)

dt
}

= d−k ·
(d−1)/2∑
j1,...,jk=0

Ez
{ ∏
s∈[k]

ujs

}(∫
[0,1]

∏
s∈[k]

cos(2πjst)dt
)
.

(38)

Step 1. Bound Z function. First, we denote

Z(j1, . . . , jk) = Ez
{ ∏
s∈[k]

ujs

}
.

We have
sup
j1,...,jk

Z(j1, . . . , jk) ≤ sup
j1,...,jk

∏
s∈[k]

E[u2kjs ]1/(2k)

≤ sup
j∈{0,1,...,(d−1)/2}

E[u2kj ]1/2 ≤ 2k · EG∼N (0,1)[G
2k]1/2 ≡Mk.

(39)

Moreover, we have
inf

j1,...,jk
Z(j1, . . . , jk) ≥ EG∼N (0,1)[G

2] = 1. (40)

Step 2. Bound |I|. Further, we denote

I =
{

(j1, . . . , jk) ∈ {0, . . . , (d− 1)/2}k : ∃(εi)i∈[k] ∈ {±1}k,
k∑
i=1

εiji = 0
}
,

Then it is easy to see that

[(d+ 1)/2]k−1 ≤ |I| ≤ 2 · (d+ 1)k−1. (41)

Step 3. Bound E function. Next, we denote

E(j1, . . . , jk) =

∫
[0,1]

∏
s∈[k]

cos(2πjst)dt.

It is easy to see that
sup
j1,...,jk

|E(j1, . . . , jk)| ≤ 1. (42)

Moreover, for any (j1, . . . , jk) 6∈ I, we have E(j1, . . . , jk) = 0. For any (j1, . . . , jk) ∈ I, we have

E(j1, . . . , jk) =
1

2k

∫
[0,1]

∏
s∈[k]

[exp(i2πjst) + exp(−i2πjst)]dt ≥ 1/2k. (43)
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The last inequality used the fact that (j1, . . . , jk) ∈ I.
Step 4. Concludes the proof. Therefore, combining Eq. (38) (39) (41) (42), we have

Ez∼N (0,Id)[Fk(z)] ≤ d−k ·Mk ·
(d−1)/2∑
j1,...,jk=0

|E(j1, . . . , jk)|

≤ d−k ·Mk · |I| = Od(d
−1).

Combining Eq. (38) (40) (41) (43), we have

Ez∼N (0,Id)[Fk(z)] ≥ d−k ·
(d−1)/2∑
j1,...,jk=0

|E(j1, . . . , jk)|

≥ d−k · |I|/2k = Ωd(d
−1).

This concludes the proof.
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Appendix E. Concentration for invariant groups with degeneracy α ≤ 1

Let Q(d)
k be the k’th Gegenbauer polynomial on Ad ∈ {Sd−1(

√
d),Qd} (see Section H for defini-

tions). Let Gd be an invariant group with degeneracy α. That means, for any fixed k ≥ α, we have
B(Ad; k)/[D(Ad; k)dα] = Θd(1). For k ∈ N≥0, we denote

Υk(θ) =
1

D(Ad; k)

D(Ad;k)∑
l=1

Y
(d)
kl (θ)Y

(d)
kl (θ) =

B(Ad; k)

D(Ad; k)

∫
Gd
Q

(d)
k (〈θ, g · θ〉)πd(dg). (44)

Then we have

E[Υk(θ)] = 1.

In this section, we show that Υk concentration around its mean, for any fixed k ≥ 2 and α ≤ 1.

E.1. Main proposition

Proposition 18 Let Gd be an invariant group with degeneracy α ≤ 1. Let (θi)i∈[N ] ∼ Unif(Ad)
where N = Od(d

p) for some fixed integer p. Let Υk be as defined in Eq. (44). Then for any fixed
k ≥ 2, we have

sup
i∈[N ]

∣∣∣Υk(θi)− 1
∣∣∣ = od,P(1).

Proof [Proof of Proposition 18] Let us first focus on the sphere case Ad = Sd−1(
√
d). Let

(xi)i∈[N ] ∼iid N (0, Id). Without loss of generality, we assume xi and θi are coupled such that
θi =

√
d · xi/‖xi‖2. Denote

Fk(z) =

∫
Gd

(〈z, g · z〉/d)kπd(dg).

Let {ad,k,m}0≤m≤k be the coefficients of monomials in Q(d)
k (d · x). That is, we have

Q
(d)
k (x) =

k∑
m=0

ad,k,m(x/d)m.

Then ∫
Gd
Q

(d)
k (〈θ, g · θ〉)πd(dg) =

k∑
m=0

ad,k,mFm(θ).

Moreover, by Lemma 15, we have |ad,k,m| ≤ Ck,m/d
(k−m)/2, limd→∞ ad,k,k = 1, and ad,k,m = 0

for k and m of different parity.

40



INVARIANCES IN KERNELS AND RANDOM FEATURES

Then we have

sup
i∈[N ]

|Υk(θi)− E[Υk(θi)]|

=
B(Sd−1; k)

D(Sd−1; k)
sup
i∈[N ]

∣∣∣ ∫
Gd
Qk(〈θi, g · θi〉)πd(dg)− E

[ ∫
Gd
Qk(〈θi, g · θi〉)πd(dg)

]∣∣∣
≤ C × dα ×

k∑
m=1

ad,k,m × sup
i∈[N ]

∣∣∣Fm(θi)− E[Fm(θi)]
∣∣∣

≤ C × dα ×
k∑

m=1

ad,k,m × sup
i∈[N ]

∣∣∣Fm(xi)− E[Fm(xi)]
∣∣∣ · [dm/‖xi‖2m2 ].

By the concentration of χ2-distribution, for any ε > 0, the following event happens with high
probability

E1 ≡
{

sup
i∈[N ]

∣∣‖xi‖22/d− 1
∣∣ ≤ 1/d1/2−ε

}
.

Moreover, combining Lemma 19 with Lemma 20, for any fixed m ≥ 2, we have

E[(Fm(x)− E[Fm(x)])2] ≤ Cmd−1−3α/2.

By the hypercontractivity property of Gaussian distribution as per Lemma 37, for any ε > 0, taking
q sufficiently large, we have

E
[

sup
i∈[N ]

∣∣∣Fm(xi)− E[Fm(xi)]
∣∣∣] ≤ E

[ N∑
i=1

(
Fm(xi)− E[Fm(xi)]

)2q]1/(2q)
≤ C(q) · dp/(2q) · E[(Fm(x)− E[Fm(x)])2]1/2 ≤ Cd−1−3α/2+ε

By Markov’s inequality, we deduce that the following event happens with high probability

E2 ≡
{
∀2 ≤ m ≤ k, sup

i∈[N ]

∣∣∣Fm(xi)− E[Fm(xi)]
∣∣∣ ≤ Cd−1−3α/2+ε}.

Finally, by Lemma 19, we have
E[F1(x)2] ≤ Cd−2α,

and by the hypercontractivity property of low degree polynomials with Gaussian measure (Lemma
37), for any ε > 0, taking q sufficiently large, we have

E
[

sup
i∈[N ]

∣∣∣F1(xi)− E[F1(xi)]
∣∣∣] ≤ cE[ N∑

i=1

F1(xi)
2q
]1/(2q)

+ E[F1(x)2]1/2

≤ C(q) · dp/(2q) · E[F1(x)2]1/2 + E[F1(x)2]1/2 ≤ Cd−α+ε.

As a result, the following event happens with high probability

E3 ≡
{

sup
i∈[N ]

∣∣∣F1(xi)− E[F1(xi)]
∣∣∣ ≤ Cd−α+ε}.

41



MEI MISIAKIEWICZ MONTANARI

When all the events E1, E2, and E3 happen, for any k ≥ 2, we have

sup
i∈[N ]

|Υk(θi)− E[Υk(θi)]|

≤ C × dα ×
k∑

m=1

ad,k,m × sup
i∈[N ]

∣∣∣Fm(xi)− E[Fm(xi)]
∣∣∣ · [dm/‖xi‖2m2 ]

≤ C × dα ×
[
d−(k−1)/2d−α+ε +

k∑
m=2

d−(k−m)/2 × d−1−3α/2+ε
]

= od(1).

The case of the hypercube Ad ∼ Qd follows similarly without introducing the gaussian measure
and using Lemma 21 instead of Lemma 20.

E.2. Auxiliary Lemmas

Lemma 19 Let Gd be an invariant group with degeneracy α ≤ 1. Denote

Fk(z) =

∫
Gd

(〈z, g · z〉/d)kπd(dg).

Then for any fixed s ∈ [1,∞) and integer k ≥ 1, we have

Ex∼N (0,Id)[Fk(x)s]1/s = Od(d
−α), (45)

Eθ∼Unif(Ad)[Fk(θ)s]1/s = Od(d
−α). (46)

Proof [Proof of Lemma 19]
For θ ∈ Ad, denote

Pk(θ) ≡ 1

B(Ad; k)

D(Ad;k)∑
l=1

Y
(d)
kl (θ)2 =

∫
Gd
Q

(d)
k (〈θ, g · θ〉)πd(dg).

By Lemma 11 and by the assumption that Gd is an invariant group with degeneracy α ≤ 1, i.e.,
B(Ak; k)/[D(Ak; k)dα] = Θd(1), for any fixed k ≥ 1, we have

E[Pk(θ)] =
D(Ad; k)

B(Ad; k)
= Od(d

−α).

Throughout the proof, we will denote Ls = Ls(Ad) to be the Ls space with respect to distribution
θ ∼ Unif(Ad).

42



INVARIANCES IN KERNELS AND RANDOM FEATURES

By the hypercontractivity of low degree polynomials on the sphere and the hypercube, as per
Lemmas 35 and 36, for any s ≥ 1, we have

‖Pk‖Ls =
D(Ad; k)

B(Ad; k)

∥∥∥B(Ad; k)

D(Ad; k)
Pk

∥∥∥
Ls
≤
Ck,s
dα

∥∥∥B(Ad; k)

D(Ad; k)
Pk

∥∥∥
L2

=
Ck,s
dα

[ 1

D(Ad; k)2

D(Ad;k)∑
l1,l2=1

E
[
Y

(d)
kl1(θ)2Y

(d)
kl2(θ)2

]]1/2

≤
Ck,s
dα

[ 1

D(Ad; k)2

D(Ad;k)∑
l1,l2=1

E
[
Y

(d)
kl1(θ)4

]1/2E[Y (d)
kl2(θ)4

]1/2]1/2

≤
Ck,s
dα

[ 1

D(Ad; k)2

D(Ad;k)∑
l1,l2=1

E
[
Y

(d)
kl1(θ)2

]
E
[
Y

(d)
kl2(θ)2

]]1/2
=
Ck,s
dα

.

(47)

Let {ad,k,m}0≤m≤k be the coefficients of monomials in Q(d)
k (d · x). That is, we have

Q
(d)
k (x) =

k∑
m=0

ad,k,m(x/d)m.

Then

Pk =
k∑

m=0

ad,k,mFm. (48)

Moreover, by Lemma 15, we have |ad,k,m| ≤ Ck,m/d
(k−m)/2, limd→∞ ad,k,k = 1, and ad,k,m = 0

for k and m have different parity.
We conclude the proof by induction over k. Note we have F0(θ) ≡ 1. Moreover, for any s ≥ 1,

by Eq. (47) and (48) (and note that ad,1,0 = 0 and limd→∞ ad,1,1 → 1), we have

‖F1‖Ls =
1

ad,1,1
‖P1‖Ls ≤ Cs/dα.

Fix a k ≥ 2. Assume that, for any 1 ≤ u ≤ k − 1, we have ‖Fu‖Ls ≤ Cu,s/d
α for s ≥ 1, by Eq.

(48) and (47), and the fact that |ad,k,m| ≤ Ck,m/d(k−m)/2 and limd→∞ ad,k,k = 1, we have

‖Fk‖Ls =
∥∥∥ 1

ad,k,k
Pk −

k−1∑
m=1

ad,k,mFm − ad,k,0
∥∥∥
Ls

≤
∥∥∥ 1

ad,k,k
Pk

∥∥∥
Ls

+

k−1∑
m=1

|ad,k,m|
∥∥∥Fm∥∥∥

Ls
+ |ad,k,0|

≤ C/dα +
[ k−1∑
m=1

C/d(k−m)/2
]
· C/dα + C/dk/2 ≤ Ck,s/dα,

where we recall that we assume α ≤ 1.
Finally, for the case of Ad = Sd−1(

√
d), recalling that we can write

Fk(x) = (‖x‖22/d)kFk(θ),
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where θ = x/‖xi‖2 ∼ Unif(Sd−1(
√
d) is independent of ‖xi‖2 in the case of x ∼ N(0, Id).

Hence, we get by Cauchy-Schwarz inequality

Ex∼N(0,Id)[Fk(x)s]1/s = ‖Fk‖L2s · Ex∼N(0,Id)

[
(‖x‖22/d)2sk

]1/(2s)
≤ Ck,s/dα,

by hypercontractivity of low degree polynomials for Gaussian measure (Lemma 37).

Lemma 20 Let x ∼ N(0, Id). Let Gd be a general invariant group. Let Fk(z) be defined as in
Lemma 19. Then for any fixed k ≥ 1, there exists a constant Ck, such that

• If k is odd, then

Varx∼N(0,Id)[Fk(x)] ≤ Ck
d
Ex[Fk−1(x)2].

• If k is even, then

Varx∼N(0,Id)[Fk(x)] ≤ Ck
d

(
Ex[Fk−2(x)2] ∧ Ex[Fk(x)2](2k−1)/(2k)

)
.

Proof [Proof of Lemma 20]
By the Gaussian Poincaré inequality, we have

Ex∼N(0,Id)[(Fk(x)− E[Fk(x)])2] ≤ E[‖∇Fk(x)‖22].

We have

∇Fk(x) = k

∫
Gd

(〈x, g · x〉/d)k−1[(g · x+ g−1 · x)/d]πd(dg),

which gives

E[‖∇Fk(x)‖22]

=
4k2

d

∫
Gd×Gd

E
[
(〈x, g1 · x〉/d)k−1(〈x, g2 · x〉/d)k−1〈x, g1g2 · x〉/d

]
πd(dg1)πd(dg2).

(49)

Case 1: Odd k. When k is odd, we have

E[‖∇Fk(x)‖22]

≤ 4k2

d

∫
Gd×Gd

E
[
(〈x, g1 · x〉/d)k−1(〈x, g2 · x〉/d)k−1‖x‖22/d

]
πd(dg1)πd(dg2)

=
4k2

d
E
[
Fk−1(x)2(‖x‖22/d)

]
≤ 4k2

d
E
[
Fk−1(x)4

]1/2E[(‖x‖22/d)2
]1/2 ≤ Ck

d
E[Fk−1(x)2] ,

where we used in the second line Cauchy-Schwarz inequality and that the matrix representations of g
are orthogonal matrices, and in the last inequality the hypercontractivity of low degree polynomials
for Gaussian measures (Lemma 37).
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Case 2: Even k. Bound 1. When k is even, we have the following first bound

E[‖∇Fk(x)‖22]

≤ 4k2

d

∫
Gd×Gd

E
[
(〈x, g1 · x〉/d)k−2(〈x, g2 · x〉/d)k−2‖x‖62/d3

]
πd(dg1)πd(dg2)

=
4k2

d
E
[
Fk−2(x)2(‖x‖62/d3)

]
≤ 4k2

d
E
[
Fk−2(x)4

]1/2E[(‖x‖62/d3)2]1/2 ≤ Ck
d
E
[
Fk−2(x)2

]
.

Case 3: Even k. Bound 2. When k is even, we have the following second bound, which follows
by Hölder’s inequality E[XY ] ≤ E[|X|k/(k−1)](k−1)/k · E[|Y |k]1/k,

E[‖∇Fk(x)‖22]

=
4k2

d

∫
Gd×Gd

E
[
(〈x, g1 · x〉/d)k−1(〈x, g2 · x〉/d)k−1〈x, g1g2 · x〉/d

]
πd(dg1)πd(dg2)

≤ 4k2

d
E
[ ∫
Gd×Gd

(〈x, g1 · x〉/d)k(〈x, g2 · x〉/d)kπd(dg1)πd(dg2)
](k−1)/k

× E
[ ∫
Gd

(〈x, g · x〉/d)kπd(dg)
]1/k

=
4k2

d
E
[
Fk(x)2

](k−1)/k × E
[
Fk(x)

]1/k ≤ 4k2

d
E
[
Fk(x)2

](2k−1)/(2k)
.

Combining these two bounds yields the result for k even.

Lemma 21 Let θ ∼ Unif(Qd). Let Gd be a general invariant group that preserves Qd. Let Fk(z)
be defined as in Lemma 19. Then for any fixed k ≥ 1, there exists a constant Ck, such that

• If k is odd, then

Varθ∼Unif(Qd)[Fk(θ)] ≤ Ck
d
Eθ[Fk−1(θ)2] +

Ck
d3
.

• If k is even, then

Varθ∼Unif(Qd)[Fk(θ)] ≤ Ck
d

(
Eθ[Fk−2(θ)2] ∧ Eθ[Fk(θ)2](2k−1)/(2k)

)
+
Ck
d3
.

Proof [Proof of Lemma 21]
The proof is similar to the proof of Lemma 20. By the discrete Poincaré inequality, we have

Eθ∼Unif(Qd)

[(
Fk(θ)− E[Fk(θ)]

)2] ≤ Eθ
[ d∑
i=1

DiFk(θ)2
]
,

where Di denote the discrete derivative defined as

Dif(θ) =
f(θ)− f(θ−i)

2
,
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with θ−i = (θ1, . . . , θi−1,−θi, θi+1, . . . , θd). Let ϕg(θ) = (〈θ, g · θ〉/d)k, then

Diϕg(θ) =
(〈θ, g · θ〉/d)k − (〈θ−i, g · θ〉/d)k

2
+

(〈θ−i, g · θ〉/d)k − (〈θ−i, g · θ−i〉/d)k

2
=: Di,1ϕg(θ) +Di,2ϕg(θ).

We have 〈θ−i, g · θ〉 = 〈θ, g · θ〉 − 2θi(g · θ)i. By Taylor expansion, the first term verifies (recall
that g · θ ∈ Qd and θ2i (g · θ)2i = 1)

Di,1ϕg(θ) = k(〈θ, g · θ〉/d)k−1(θi(g · θ)i/d)− k(k − 1)Xi,1(θ, g)k−2/d2,

where Xi,1(θ, g) is on the line segment between 〈θ, g · θ〉/d and 〈θ−i, g · θ〉/d. Similarly, Taylor
expansion on the second term yields

Di,2ϕg(θ) = k(〈θ−i, g · θ−i〉/d)k−1(θi(g
−1 · θ−i)i/d) + k(k − 1)Xi,2(θ, g)k−2/d2,

where Xi,2(θ, g) is on the line segment between 〈θ−i, g · θ−i〉/d and 〈θ, g · θ−i〉/d.
Using Jensen’s inequality to separate each of the 4 terms in Diϕg(θ), using that θ−i and θ have

the same distribution, we get

Eθ
[ d∑
i=1

DiFk(θ)2
]

≤ 32k2

d

∫
Gd×Gd

E
[
(〈θ, g1 · θ〉/d)k−1(〈θ, g2 · θ〉/d)k−1〈θ, g1g2 · θ〉/d

]
πd(dg1)πd(dg2)

+
16k2(k − 1)2

d4

∑
s∈{1,2}

d∑
i=1

∫
Gd×Gd

E
[
Xi,s(θ, g1)

k−2Xi,s(θ, g2)
k−2
]
πd(dg1)πd(dg2) .

Noticing that supi,s,θ,g |Xi,s(θ, g)| ≤ 1, the second term in the above equation can be bounded by
Ck/d

3. The first term in the above equation can be bounded using the same way as bounding the
right hand side of Eq. (49) as in the proof of Lemma 20. This concludes the proof.
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Appendix F. Kernel concentration for the cyclic group and general σ

Throughout this section, we will always take Gd = Cycd to be the cyclic group, and Ad =
Sd−1(

√
d) to be the sphere. We will write in short B(d, k) = B(Sd−1(

√
d); k) and D(d, k) =

D(Sd−1(
√
d); Cycd; k). We recall that the cyclic group has degeneracy 1, i.e., for each integers

k ≥ 1, B(d, k)/D(d, k) = Θd(d).

F.1. Main propositions

Let the Gegenbauer decomposition of σ be

σ(x) =
∞∑
k=0

ξd,k(σ)B(d, k)Q
(d)
k (
√
dx).

For S ⊆ N, we define
σd,S(x) =

∑
k∈S

ξd,k(σ)B(d, k)Q
(d)
k (
√
dx). (50)

For any ‖θ1‖2 = ‖θ2‖2 =
√
d and any S ⊆ Z≥0, denote

hd,S(〈θ1,θ2〉/d) ≡ Ex∼Unif(Sd−1(
√
d))[σd,S(〈θ1,x〉/

√
d)σd,S(〈θ2,x〉/

√
d)].

Proposition 22 Let ` ≥ 2 be a fixed integer. Assume that σ ∈ C`∨3(R) be a ` ∨ 3’th continuously
differentiable function with derivatives satisfy sup0≤k≤`∨3 σ

(k)(u) ≤ c0 exp(c1 u
2/2) for some

constants c0 > 0 and c1 < 1.
Define Hd,S : Sd−1(

√
d)× Sd−1(

√
d)→ R via

Hd,S(θ1,θ2) ≡
∫
Cycd

hd,S(〈θ1, g · θ2〉/d)πd(dg). (51)

Then, for N = dp for any fixed p, letting (θi)i∈[N ] ∼ Unif(Sd−1(
√
d)), we have

sup
i∈[N ]

∣∣∣Hd,≥`(θi,θi)− EHd,≥`(θ,θ)
∣∣∣ = od,P(1) · EHd,≥`(θ,θ). (52)

Moreover, we have EHd,≥`(θ,θ) = Od(d
−1).

Proof [Proof of Proposition 22] We let C, Ck, Ck,` be constants that depend on σ, k, and ` but
independent of dimension d. The exact values of these constant can change from line to line.
Step 1. Finite subset S ⊆ {2, 3, . . .}. Note we have

Hd,S(θ1,θ2) ≡
∑
k∈S

ξd,k(σ)2B(d, k)

∫
Cycd

Q
(d)
k (〈θ1, g · θ2〉)πd(dg).

By Lemma 11 and Proposition 12, for any S ⊆ N with finite cardinality |S| <∞, we have

E[Hd,S(θ,θ)] =
∑
k∈S

ξd,k(σ)2D(d, k) = Θd(d
−1).
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Moreover, by Proposition 18, we have

sup
i∈[N ]

∣∣∣Hd,S(θi,θi)−E[Hd,S(θ,θ)]
∣∣∣ ≤∑

k∈S
ξd,k(σ)2D(d, k) sup

i∈[N ]

∣∣∣Υk(θi)−1
∣∣∣ = od(1)·E[Hd,S(θ,θ)].

Step 2. For general set S = {u : u ≥ `}.
By Lemma 27, we have supd≥1 supγ∈[−1,1] |h

(`)
d,≥`(γ)| ≤ C`. Therefore, for any γ ∈ [−1, 1],

we have ∣∣∣hd,≥`(γ)−
`−1∑
k=0

1

k!
h
(k)
d,≥`(0)γk

∣∣∣ ≤ C` · |γ|`+1. (53)

By Lemma 28, for any k ≤ `− 1, we have∣∣∣h(k)d,≥`(0)
∣∣∣ ≤ Ck,` · d−(`−k)/2. (54)

Moreover, by the Hanson-Wright inequality as in Lemma 14, since N is at most polynomial in d,
then for any δ > 0, we have

sup
1≤k≤`+1

sup
g∈Cycd\I

sup
i∈[N ]

∣∣∣〈θi, g · θi〉k∣∣∣ · d−k/2−δ = od,P(1), (55)

and
sup

1≤k≤`+1
sup

g∈Cycd\I
E
[∣∣∣〈θi, g · θi〉k∣∣∣] · d−k/2−δ = od(1). (56)

Therefore, by Eq. (53), (54), (55) and (56), we have

sup
g∈Cycd\I

sup
i∈[N ]

∣∣∣hd,≥`(〈θi, g · θi〉/d)
∣∣∣ = Od,P(d−`/2+δ),

and
sup

g∈Cycd\I
E
[∣∣∣hd,≥`(〈θ, g · θ〉/d)

∣∣∣] = Od(d
−`/2+δ).

As a result, for any ` ≥ 3, we have

sup
i∈[N ]

∣∣∣Hd,≥`(θi,θi)− EHd,≥`(θ,θ)
∣∣∣

= sup
i∈[N ]

∣∣∣ ∫
Cycd\I

hd,≥`(〈θi, g · θi〉/d)πd(dg)− E
∫
Cycd\I

hd,≥`(〈θ, g · θ〉/d)πd(dg)
∣∣∣

≤ sup
i∈[N ]

∣∣∣ ∫
Cycd\I

hd,≥`(〈θi, g · θi〉/d)πd(dg)
∣∣∣+
∣∣∣E∫

Cycd\I
hd,≥`(〈θ, g · θ〉/d)πd(dg)

∣∣∣
≤ Od,P(d−`/2+δ) = od,P(d−1).

By the arguments in Step 1, for any ` ≥ 2, we have

sup
i∈[N ]

∣∣∣Hd,≥`(θi,θi)− EHd,≥`(θ,θ)
∣∣∣ ≤ od,P(d−1).
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Finally, for any ` ≥ 2, for any σ such that σd,≥` that is non-trivial (if σd,≥` = 0, this proposition
holds trivially), we have

EHd,≥`(θ,θ) = Θd(d
−1).

This proves the proposition.

Proposition 23 Let ` ≥ 2 be a fixed integer. Assume that σ ∈ C(R) be a continuous function with
|σ(u)| ≤ c0 exp(c1 u

2/2) for some constants c0 > 0 and c1 < 1.
Define Hd,S : Sd−1(

√
d)× Sd−1(

√
d)→ R via

Hd,S(θ1,θ2) ≡
∫
Cycd

hd,S(〈θ1, g · θ2〉/d)πd(dg). (57)

Then, for N = O(dp) for any fixed p, letting (θi)i∈[N ] ∼ Unif(Sd−1(
√
d)), we have

sup
i∈[N ]

∣∣∣Eθ[Hd,≥`(θi,θ)2]− Eθ,θ′ [Hd,≥`(θ
′,θ)2]

∣∣∣ = od,P(1) · Eθ,θ′ [Hd,≥`(θ
′,θ)2]. (58)

Proof [Proof of Proposition 23]
Denoting µk(σ) = EG∼N (0,1)[σ(G)Hek(G)]. Let q = min{k ≥ ` : µk(σ) 6= 0} and let

u = q + 2. We consider the case when q <∞, since for q =∞, the claim holds trivially. We have
the expression

Eθ[Hd,≥`(θi,θ)2] =

∞∑
k=`

ξd,k(σ)4B(d, k)

∫
Cycd

Q
(d)
k (〈θi, g · θi〉)πd(dg)

= Eθ[Hd,[`,u)(θi,θ)2] + Eθ[Hd,≥u(θi,θ)2].

Step 1. Upper bounding Eθ,θ′ [Hd,≥u(θ′,θ)2] and Eθ[Hd,≥u(θi,θ)2]. We have

sup
θi

Eθ[Hd,≥u(θi,θ)2]

= sup
θi

∞∑
k=u

ξd,k(σ)4
∑

l∈[D(d,k)]

Y
(d)
kl (θi)

2 ≤ sup
θi

∞∑
k=u

ξd,k(σ)4
∑

l∈[B(d,k)]

Y
(d)
kl (θi)

2

=
∞∑
k=u

ξd,k(σ)4B(d, k)Q
(d)
k (d) =

∞∑
k=u

ξd,k(σ)4B(d, k)

≤
[

sup
k≥u

B(d, k)−1
]
·
[ ∞∑
k=u

ξd,k(σ)2B(d, k)
]2

= B(d, u)−1Ex,θ∼Unif(Sd−1(
√
d))[σ(〈x,θ〉/

√
d)2] = Θd(d

−u).

(59)

This also gives
Eθ,θ′ [Hd,≥u(θ′,θ)2] = Θd(d

−u). (60)
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Step 2. Upper bounding supi∈[N ] |Eθ[Hd,[`,u)(θi,θ)2] − Eθ,θ′ [Hd,[`,u)(θ
′,θ)2]|. By Proposition

18, we have

sup
i∈[N ]

∣∣∣Eθ[Hd,[`,u)(θi,θ)2]− Eθ,θ′ [Hd,[`,u)(θ
′,θ)2]

∣∣∣
≤

u−1∑
k=`

ξd,k(σ)4D(d, k) sup
i∈[N ]

∣∣∣B(d, k)

D(d, k)

∫
Cycd

Q
(d)
k (〈θi, g · θi〉)πd(dg)− 1

∣∣∣
= od,P(1) ·

[ u−1∑
k=`

ξd,k(σ)4D(d, k)
]

= od,P(1) · Eθ,θ′ [Hd,[`,u)(θ
′,θ)2].

(61)

Step 3. Lower bounding Eθ,θ′ [Hd,≥`(θ
′,θ)2]. We have

Eθ,θ′ [Hd,≥`(θ
′,θ)2] =

∞∑
k=`

ξd,k(σ)4D(d, k) ≥ ξd,q(σ)4D(d, q) = Θd(d
−q−1). (62)

The last equality is by Proposition 12, and the fact that

lim
d→∞

ξd,q(σ)2B(d, q) = µq(σ)2/q! > 0.

Step 4. Complete the proof. By Eq. (59), (60), (61) and (62), we have

sup
i∈[N ]

∣∣∣Eθ[Hd,≥`(θi,θ)2]− Eθ,θ′ [Hd,≥`(θ
′,θ)2]

∣∣∣
≤ sup

i∈[N ]

∣∣∣Eθ[Hd,[`,u)(θi,θ)2]− Eθ,θ′ [Hd,[`,u)(θ
′,θ)2]

∣∣∣
+ sup
i∈[N ]

∣∣∣Eθ[Hd,≥`(θi,θ)2]
∣∣∣+
∣∣∣Eθ,θ′ [Hd,≥`(θ

′,θ)2]
∣∣∣

≤ od,P(1) · Eθ,θ′ [Hd,[`,u)(θ
′,θ)2] + Θd(d

−u) = od,P(1) · Eθ,θ′ [Hd,≥`(θ
′,θ)2].

This completes the proof.

F.2. Auxiliary lemmas

The following lemma is a reformulation of (Ghorbani et al., 2021, Lemma 5).

Lemma 24 Assume σ ∈ C(R) with σ(u)2 ≤ c0 exp(c1 u
2/2) for some constants c0 > 0 and

c1 < 1. Then

(a) EG∼N(0,1)[σ(G)2] <∞.

(b) Let ‖x‖2 =
√
d. Then there exists d0 = d0(c1) such that, for w ∼ Unif(Sd−1),

sup
d≥d0

Ew[σ(〈w,x〉)2] <∞ . (63)
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(c) Let ‖x‖2 =
√
d, w ∼ Unif(Sd−1) and τ ∼ χ(d)/

√
d. Then we have

lim
d→∞

Ew,τ
[(
σ(τ〈w,x〉)− σ(〈w,x〉)

)2]
= 0. (64)

Lemma 25 Assume that ψ, φ ∈ C(R) with ψ(u)2, φ(u)2 ≤ c0 exp(c1 u
2/2) for some constants

c0 > 0 and c1 < 1. Denote

Ed[ψ, φ](γ) ≡ Ew∼Unif(Sd−1)[ψ(〈x,w〉)φ(〈x′,w〉)],
E[ψ, φ](γ) ≡ Eg∼N (0,Id/d)[ψ(〈x, g〉)φ(〈x′, g〉)],

where ‖x‖2 = ‖x′‖2 =
√
d such that 〈x,x′〉/d = γ (by an invariance argument, Ed and E do not

depend on the choice of x and x′). Then we have

lim
d→∞

sup
γ∈[−1,1]

∣∣∣Ed[ψ, φ](γ)− E[ψ, φ](γ)
∣∣∣ = 0, (65)

and
sup

γ∈[−1,1]

∣∣∣E[ψ, φ](γ)
∣∣∣ <∞. (66)

Proof [Proof of Lemma 25] Let g ∼ N (0, Id/d), w = g/‖g‖2 and τ = ‖g‖2. Then we have
w ∼ Unif(Sd−1), τ ∼ χ(d)/

√
d independently. We further denote

Ed[ψ, φ](γ) ≡ Ew,τ [ψ(τ〈x,w〉)φ(〈x′,w〉)]

where ‖x‖2 = ‖x′‖2 =
√
d such that 〈x,x′〉/d = γ. Note we have

lim
d→∞

sup
γ∈[−1,1]

∣∣∣Ed[ψ, φ](γ)− Ed[ψ, φ](γ)
∣∣∣

≤ lim
d→∞

sup
γ∈[−1,1]

∣∣∣Ew,τ{[ψ(τ〈x,w〉)− ψ(〈x,w〉)
]
φ(〈x′,w〉)

}∣∣∣
≤ lim

d→∞
Ew,τ

{[
ψ(τ〈x,w〉)− ψ(〈x,w〉)

]2}1/2
Ew[φ(〈x′,w〉)2]1/2 = 0,

where the last equality is by (b) and (c) in Lemma 24. Moreover, we have

lim
d→∞

sup
γ∈[−1,1]

∣∣∣Ed[ψ, φ](γ)− E[ψ, φ](γ)
∣∣∣

≤ lim
d→∞

sup
γ∈[−1,1]

∣∣∣Ew,τ{[φ(τ〈x,w〉)− φ(〈x,w〉)
]
ψ(τ〈x′,w〉)

}∣∣∣
≤ lim

d→∞
Ew,τ

{[
φ(τ〈x,w〉)− φ(〈x,w〉)

]2}1/2
EG∼N (0,1)[ψ(G)2]1/2 = 0,

where the last equality is by (a) and (c) in Lemma 24. Combining the two equations above proves
Eq. (65).

Finally, note that we have

sup
γ∈[−1,1]

∣∣∣E[ψ, φ](γ)
∣∣∣ ≤ Eg[ψ(〈x, g〉)2]1/2Eg[φ(〈x′, g〉)2]1/2

= EG∼N (0,1)[ψ(G)2]1/2EG∼N (0,1)[φ(G)2]1/2 <∞.
This proves Eq. (66).
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Lemma 26 Assume that σ ∈ C`(R) with derivatives satisfy sup0≤k≤` |σ(k)(u)|2 ≤ c0 exp(c1 u
2/2)

for some constants c0 > 0 and c1 < 1. Denote

hd(γ) ≡ Ew∼Unif(Sd−1)[σ(〈x,w〉)σ(〈x′,w〉)],
h(γ) ≡ Eg∼N (0,Id/d)[σ(〈x, g〉)σ(〈x′, g〉)],

where ‖x‖2 = ‖x′‖2 =
√
d such that 〈x,x′〉/d = γ (by an invariance argument, hd and h do not

depend on the choice of x and x′). Then we have

lim
d→∞

sup
0≤k≤`

sup
γ∈[−1,1]

∣∣∣h(k)d (γ)− h(k)(γ)
∣∣∣ = 0,

and
sup

0≤k≤`
sup

γ∈[−1,1]

∣∣∣h(k)(γ)
∣∣∣ <∞.

Proof [Proof of Lemma 26]
For k = 0, the result is implied by Lemma 25 by observing that h′d = Ed[σ, σ] and h′ = E[σ, σ].
For k = 1, the result is implied by Lemma 25 by the fact that h′d = Ed[uσ(u), σ′(u)] and h′ =

E[uσ(u), σ′(u)], and there exist constants c0 > 0 and c1 < 1 such that σ′(u), uσ(u) ≤ c0e
c1u2/2.

Indeed, for ‖x‖2 = ‖x′‖2 =
√
d such that 〈x,x′〉/d = γ, we have (similarly for h′)

h′d(γ) = lim
δ→0

δ−1
{
Ew
[
σ(〈x,w〉)σ(〈(1− δ2)1/2x′ + δx,w〉)

]
− Ew

[
σ(〈x,w〉)σ(〈x′,w〉)

]}
= Ew

[
σ(〈x,w〉)σ′(〈x′,w〉)〈x,w〉

]
= Ed[uσ(u), σ′(u)](γ).

By an induction argument, for any fixed k, h(k)d can be identified by a fixed number of combi-
nations of Ed[ψ, φ] with ψ, φ ∈ Λk ≡ {usσ(t)(u)}0≤s,t≤k. Further, for any fixed k, there exists
c0,k > 0 and c1,k < 1 such that, for any ψ ∈ Λk, we have ψ(u) ≤ c0,ke

c1,ku
2/2. Applying Lemma

25 proves the lemma.

Lemma 27 Assume that σ ∈ Ck(R) with derivatives satisfy sup0≤s≤k |σ(s)(u)|2 ≤ c0 exp(c1 u
2/2)

for some constants c0 > 0 and c1 < 1. For any ‖θ1‖2 = ‖θ2‖2 =
√
d and any ` ≥ 1, denote

hd,S(〈θ1,θ2〉/d) ≡ Ex∼Unif(Sd−1(
√
d))[σd,S(〈θ1,x〉/

√
d)σd,S(〈θ2,x〉/

√
d)].

where σd,S is given in Eq. (50). Then we have

sup
d≥1

sup
γ∈[−1,1]

∣∣∣h(k)d,≥`(γ)
∣∣∣ ≤ Ck,`.

Proof [Proof of Lemma 27] Note we have

hd,≥`(γ) = hd(γ)− hd,<`(γ).

By Lemma 26, we have
sup
d≥1

sup
γ∈[−1,1]

∣∣∣h(k)d (γ)
∣∣∣ ≤ Ck.

52



INVARIANCES IN KERNELS AND RANDOM FEATURES

Moreover, since hd,<`(γ) is a degree ` − 1 polynomial on [−1, 1] and its coefficients converge to
the coefficients of h<` with h<`(〈θ1,θ2〉/d) = Ex∼N (0,Id)[σd,<`(〈θ1,x〉/

√
d)σd,<`(〈θ2,x〉/

√
d)].

Then, it is easy to see that
sup
d≥1

sup
γ∈[−1,1]

∣∣∣h(k)d,<`(γ)
∣∣∣ ≤ Ck,`.

This proves the lemma.

Lemma 28 Assume that σ ∈ C`(R) with derivatives satisfy sup0≤s≤` |σ(s)(u)|2 ≤ c0 exp(c1 u
2/2)

for some constants c0 > 0 and c1 < 1. Then there exists constant Ck,`, such that∣∣∣h(k)d,≥`(0)
∣∣∣ ≤ Ck,` · d−(`−k)/2.

Proof [Proof of Lemma 28]
We let C, Ck, Ck,` be constants that depend on σ, k, and ` but independent of dimension d. The

exact values of these constant can change from line to line.
We let τ̃d be the measure of 〈e1,x〉 when x ∼ Unif(Sd−1(

√
d)) (hence converging weakly

to a standard Gaussian), and Q̃
(d)
k (x) =

√
B(d, k)Q

(d)
k (x/

√
d) to be the rescaled Gegenbauer

polynomials, forming an orthonormal system with respect to τ̃d. In particular Q̃(d)
k converges to

the k-th Hermite polynomial. We let 〈 · , · 〉 denote the scalar product with respect to τ̃d.
By the definition of hd,≥`, we have

〈hd,≥`( · /
√
d), Q̃

(d)
k 〉 = 0, ∀k ≤ `− 1. (67)

Let h̃d,≥`(x) be obtained from hd,≥`(x) by removing its Taylor expansion up to term x`−1, i.e., we
have

h̃d,≥`(x) = hd,≥`(x)−
`−1∑
k=0

h
(k)
d,≥`(0)

k!
xk.

Then Eq. (67) gives

`−1∑
j=0

〈Q̃(d)
k , x〉j

(h(k)d,≥`(0)

j!dj/2

)
= −∆k(d)

d`/2
, ∀k ≤ `− 1, (68)

∆k(d) ≡ d`/2〈h̃d,≥`( · /
√
d), Q̃k〉.

We claim that supd≥1 |∆k(d)| ≤ Ck,`. Indeed, by Rodrigues formula, there exist non-negative
constants Ad,k, Ãd,k with supd≥1Ad,k ∨ Ãd,k ≤ Ck, such that

∆k(d) = (−1)kd`/2Ad,k

∫ 1

−1
h̃d,≥`

(
x/
√
d
) dk

dxk

(
1− x2

d

) d−3
2

+k
dx

= Ad,k d
(`−k)/2

∫ 1

−1
h̃
(k)
d,≥`
(
x/
√
d
)(

1− x2

d

) d−3
2

+k
dx

= Ãd,k d
(`−k)/2 · EXd∼τ̃d

{
h̃
(k)
d,≥`
(
Xd/
√
d
)(

1−
X2
d

d

)k}
.

(69)
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By the definition of h̃d,≥`, using the Taylor expansion in the integral form, we have

h̃d,≥`(γ) =

∫ γ

0
h
(`)
d,≥`(u)

(γ − u)`−1

(`− 1)!
du,

and hence for any k ≤ `− 1, we have

h̃
(k)
d,≥`(γ) =

∫ γ

0
h
(`)
d,≥`(u)

(γ − u)`−1−k

(`− 1− k)!
du,

so that for any γ ∈ [−1, 1], we have

sup
d≥1
|h̃(k)d,≥`(γ)| ≤ Ck,` · sup

d≥1
sup

u∈[−1,1]
|h(`)d,≥`(u)| · |γ|`−k ≤ Ck,` · |γ|`−k.

The last inequality is by Lemma 27 (here we used the assumption that σ ∈ C`(R)). Therefore, by
Eq. (69), we have (note Xd converges in distribution to a standard Gaussian random variable)

|∆k(d)| ≤ Ck,` · EXd∼τ̃d{|Xd|`−k} ≤ Ck,`. (70)

To conclude, we reconsider Eq. (68). Let M(d) = (Mk,q(d))0≤k,q≤`−1 ∈ R`×` be the ma-
trix with entries Mk,q(d) ≡ 〈Q̃(d)

k , xq〉, ξ(d) = (ξq(d))0≤q≤`−1 ∈ R` the vector with entries
ξq(d) ≡ h

(q)
d,≥`(0)/(q!dq/2), and ∆(d) = (∆0(d), . . . ,∆`−1(d))T ∈ R`. We can therefore rewrite

this equation as

M(d)ξ(d) = ∆(d)/d`/2. (71)

As d→∞,M(d) converges entrywise toM(∞) = (Mk,q(∞))0≤k,q≤`−1, whereby

Mk,q(∞) ≡ EG∼N (0,1)[Hek(G)Gq]/
√
k!.

SinceM(∞) is non-singular (because the Hermite polynomials are a basis), it follows that σmin(M(d))
is bounded away from zero for d large enough, and therefore supd≥1 σmax(M(d)−1) <∞. There-
fore combining with Eq. (70), we get

‖ξ(d)‖2 ≤ C` · ‖∆(d)‖2 · d−`/2 ≤ C` · d−`/2. (72)

Therefore, for any 0 ≤ k ≤ `− 1, we have∣∣∣h(k)d,≥`(0)
∣∣∣ ≤ k!dk/2|ξk(d)| ≤ Ck,` · d−(`−k)/2. (73)

This proves the lemma.
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Appendix G. Hypercontractivity of general activation σ for (Sd−1(
√
d),Cycd)

Let us consider an activation function σ : R→ R and denote for x ∈ Sd−1(
√
d) and w ∈ Sd−1(1),

σ(x;w) =

∫
Cycd

σ(〈x, g ·w〉)πd(dg) =
1

d

d−1∑
i=0

σ(〈x,Liw〉),

where L ∈ Rd×d is the cyclic permutation matrix that shifts the coordinates by one (hence Li shifts
the coordinates by i).

Denote σ>` = P>`σ the projection of σ orthogonal to cyclic polynomials of degree less or equal
to `. From the discussion in Section C.2, we have

P>`σ( · ;w) = P>`S[σ(〈 · ,w〉/
√
d)] = SP>`[σ(〈 · ,w〉/

√
d)] ,

where S : L2(Sd−1(
√
d)) → L2(Sd−1(

√
d),Cycd) is the symmetrization operator defined in Sec-

tion C.1 and P>` : L2(Sd−1(
√
d))→ L2(Sd−1(

√
d)) is the projection orthogonal to (general) poly-

nomials of degree less or equal to ` inL2(Sd−1(
√
d)) (see Section H). Hence, denoting σ>` = P>`σ,

we have

σ>`(x;w) =
1

d

d−1∑
i=0

σ>`(〈x,Liw〉) . (74)

Proposition 29 Consider fixed integers m ≥ 1 and ` ≥ 4m. Let σ : R → R be a differentiable
activation function such that |σ(x)|, |σ′(x)| ≤ c0 exp(c1x

2/(8m)) for some constants c0 > 0 and
c1 < 1. Let x ∼ Unif(Sd−1(

√
d)) and w ∼ Unif(Sd−1(1)), then for any ε > 0,

Ex,w
[
σ>`(x;w)2m

]1/(2m)
= dε−1/2 ·Od(1). (75)

G.1. Proof of Proposition 29

The goal of this proof is to replace x ∼ Unif(Sd−1(
√
d)) by g ∼ N(0, Id) and using Proposition 30

(stated in Section G.2), which is the Gaussian equivalent of Proposition 29.
Recall that σ>` is defined as the projection of σ orthogonal to degree ` polynomials with respect

to the distribution 〈x, e〉 with x ∼ Unif(Sd−1(
√
d)) and ‖e‖2 = 1 arbitrary. We can write it

explicitly in terms of Gegenbauer polynomials:

σ>`(x) = σ(x)−
∑̀
k=0

ξd,kB(Sd−1; k)Qk(
√
dx).

Let us introduce ϕ>` defined as the projection of σ orthogonal to degree ` polynomials with respect
to the Gaussian measure. It is given explicitely by

ϕ>`(x) = σ(x)−
∑̀
k=0

µk(σ)

k!
Hek(x),

where Hek denote the k-th Hermite polynomial (see Section H.1.3 for definitions).
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Consider the symmetrized activation functions

σ>`(x;w) = σ(x;w)−
∑̀
k=0

ξd,kB(Sd−1; k)Qk(x;w) ,

ϕ>`(g;w) = σ(g;w)−
∑̀
k=0

µk(σ)

k!
Hek(g;w) ,

where we denoted the symmetrized polynomials

Qk(x;w) =
1

d

d−1∑
i=0

Qk(
√
d〈x,Liw〉) ,

Hek(g;w) =
1

d

d−1∑
i=0

Hek(〈g,Liw〉) .

Consider x ∼ Unif(Sd−1(
√
d)), g ∼ N(0, Id) and w ∼ Unif(Sd−1(1)). Because 〈x, e〉

converges in distribution to a normal distribution, we expect the moments of σ>`(x;w) to converge
to the moments of ϕ>`(g;w). Let us show that this convergence occurs with rate Od(dε−1/2). By
triangle inequality, we have

Eg,w
[(
σ>`(
√
dg/‖g‖2;w)− ϕ>`(g;w)

)2m]1/(2m)
≤ R1 +R2 +R3 +R4 ,

with

R1 = Eg,w
[(
σ(
√
dg/‖g‖2;w)− σ(g;w)

)2m]1/(2m)
,

R2 = Eg,w
[(
A≤2(

√
dg/‖g‖2;w)−B≤2(g;w)

)2m]1/(2m)
,

R3 = Ex,w
[
A[3:`](x;w)2m

]1/(2m)
,

R4 = Eg,w
[
B[3:`](g;w)2m

]1/(2m)
,

where we denoted [3 : `] = {3, . . . , `} and for any subset S ⊂ {0, . . . , `},

AS(x;w) =
∑
k∈S

ξd,kB(Sd−1; k)Qk(x;w) ,

BS(g;w) =
∑
k∈S

µk(σ)

k!
Hek(g;w) .

Step 1. Bound on R1.
Denote τ = ‖g‖2/

√
d and x =

√
dg/‖g‖2, such that τ and x are independent, and x ∼

Unif(Sd−1(
√
d)). By the mean value theorem, there exists τ̃ on the line segment between 1 and τ

such that
σ(τ · x;w)− σ(x;w) = (τ − 1)〈∇xσ(τ̃ · x;w),x〉.
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By Cauchy-Schwarz inequality, we get

R1 = Eτ,x,w
[(
σ(τ · x;w)− σ(x;w)

)2m]1/(2m)

= Eτ,x,w
[
(τ − 1)2m〈∇xσ(τ̃ · x;w),x〉2m

]1/(2m)

≤ Eτ
[
(τ − 1)4m

]1/(4m) · Eτ,x,w
[
〈∇xσ(τ̃ · x;w),x〉4m

]1/(4m)

Let us bound the first term:

Eτ
[
(τ − 1)4m

]1/(4m) ≤ Eτ
[
(τ2 − 1)4m

]1/(4m) ≤ C4mEτ
[
(τ2 − 1)2

]1/2
= C4m

√
2

d
, (76)

where we used in the first inequality that |τ − 1| ≤ |τ2 − 1| for τ ≥ 0; in the second inequality
that τ2 − 1 is a degree 2 polynomial in g ∼ N(0, Id) and verifies the hypercontractivity property of
Lemma 32; last equality, that d · τ2 = ‖g‖22 follows a chisquared distribution of degree d.

For the second term, we have

〈∇xσ(τ̃ · x;w),x〉 =
1

d

d−1∑
i=0

〈x,Liw〉σ(1)(〈τ̃ · x,Liw〉) .

Recall that τ̃ · x is between τ · x and x which have marginal distributions g ∼ N(0, Id) and
x ∼ Unif(Sd−1(

√
d)) respectively. Denote x1 the first coordinate of x (therefore τ ·x1 ∼ N(0, 1)).

By Jensen’s inequality and using that by rotation 〈x,Liw〉 has the same distribution as x1, we get

Eτ,x,w
[
〈∇xσ(τ̃ · x;w),x〉4m

]
≤ Eτ,x1

[
x4m1 σ′(τ̃ · x1)4m

]
≤ C · EG∼N(0,1)

[
max(G4m, 1) exp

{
c1 max(G2, 1)/2

}]
= Od(1) ,

(77)

where we used that c1 < 1.
Combining Eqs. (76) and (77) yields

R1 = d−1/2 ·Od(1). (78)

Step 2. Bound on R3.
We have

R3 = Ex,w
[
A[3:`](x;w)2m

]1/(2m)
≤ C2mEx

[
Ew
[
A[3:`](x;w)2

]m]1/(2m)

≤ CmC2mEx,w
[
A[3:`](x;w)2

]1/2
,

where in the first inequality we used hypercontractivity of low-degree polynomials on the sphere
with respect to w (Lemma 36), and in the second we used hypercontractivity of low-degree sym-
metric functions with respect to x (Lemma 6 in Mei et al. (2021)). By Lemma 11, we have

Ex,w
[
A[3:`](x;w)2

]
=
∑̀
k=3

ξ2d,kB(Sd−1; k) · D(Sd−1; k)

B(Sd−1; k)
= Od(d

−1).
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We deduce that
R3 = d−1/2 ·Od(1). (79)

Step 3. Bound on R4.
Similarly to R3, we have

R4 = Eg,w
[
B[3:`](g;w)2m

]1/(2m)
≤ C2mEw

[
Eg
[
B[3:`](g;w)2

]m]1/(2m)

≤ CmC2mEg,w
[
B[3:`](g;w)2

]1/2
,

where in the first inequality we used hypercontractivity of low-degree polynomials with respect to g
(Lemma 32), and in the second we used hypercontractivity of low-degree symmetric functions with
respect to w.

Following the proof of Proposition 30, by setting m = 1 and ϕ>2(g;w) = B[3:`](g;w), we
have for any ε > 0,

R4 = dε−1/2 ·Od(1). (80)

Step 4. Conclude.
The bound on R2 is more technical and we defer it to Section G.3. By Lemma 33, we have

R2 = d−1/2 ·Od(1). (81)

Hence combining the bounds (78), (79), (80) and (81), we obtain for any ε > 0,

Ex,w
[
σ>`(x;w)2m

]1/(2m)
≤ Eg,w

[
ϕ>`(g;w)2m

]1/(2m)
+Od(d

ε−1/2) .

Using Proposition 30 concludes the proof.

G.2. Proof in the Gaussian case

Recall that we defined

ϕ>`(g;w) =
1

d

d−1∑
i=0

ϕ>`(〈g,Liw〉), (82)

where

ϕ>`(x) = σ(x)−
∑̀
k=0

µk(σ)

k!
Hek(x). (83)

Let us now state and prove the Gaussian version of Proposition 29.

Proposition 30 Consider fixed integers m ≥ 1 and ` ≥ 4m. Let σ : R → R be an activation
function such that |σ(x)| ≤ c0 exp(c1x

2/(8m)) for some constants c0 > 0 and c1 < 1. Let
g ∼ N(0, Id) and w ∼ Unif(Sd−1(1)), then

Eg,w
[
ϕ>`(g;w)2m

]1/(2m)
= d−1/2 ·Od(1). (84)
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Proof [Proof of Proposition 30] Let us expand ϕ>` as in Eq. (82)

Eg,w
[
d2m · ϕ>`(g;w)2m

]
=

∑
0≤i1,...,i2m≤d−1

Eg,w
[ ∏
k∈[2m]

ϕ>`(〈g,Likw〉)
]
.

Let us consider the event

Aε :=
{
w ∈ Sd−1(1); sup

k∈[d−1]
|〈w,Lkw〉| ≤ Cdε−1/2

}
,

and for each set of indices I = {i1, . . . , i2m}, consider separately the expectation over Aε and Acε:

Eg,w
[∏
i∈I

ϕ>`(〈g,Liw〉)
]

= A+B,

where
A := Ew

[
1AεEg

[∏
i∈I

ϕ>`(〈g,Liw〉)
]]
,

B := Ew
[
1AcεEg

[∏
i∈I

ϕ>`(〈g,Liw〉)
]]
.

By Cauchy-Schwarz and Jensen’s inequality, we have

B ≤ P(Acε)1/2 · Eg,w
[∏
i∈I

ϕ>`(〈g,Liw〉)2
]1/2

,

with

Eg,w
[∏
i∈I

ϕ>`(〈g,Liw〉)2
]1/2
≤
∏
i∈I

Eg,w
[
ϕ>`(〈g,Liw〉)4m

]1/(4m)

= EG
[
ϕ>`(G)4m

]1/2
= Od(1) ,

where we used Hölder’s inequality and that ϕ>` is the sum of a degree ` polynomial and σ with
|σ(x)| ≤ c0 exp(c1x

2/(8m)), with constants c0 > 0 and c1 < 1. Combining these bounds and
Lemma 34, we deduce there exists a constant C independent of d and I such that

B ≤ C exp(−cd2ε). (85)

Similarly, by Hölder’s inequality, we have the following first bound on A:

A ≤
∏
i∈I

Eg,w
[
ϕ>`(〈g,Liw〉)2m

]1/(2m)
= EG

[
ϕ>`(G)2m

]
≤ C . (86)

Fix w ∈ Aε. Denote I0 the set of distinct indices in I and p = |I0| ≤ 2m. Denote for
each i ∈ I0, ri the multiciplity of i in I, and gi = 〈g,Liw〉. We have supi 6=j |E[gigj ]| ≤
supk∈[d−1] |〈w,Lkw〉| ≤ Cdε−1/2 and E[g2i ] = 1. Hence, if there exists i ∈ I that appears
only once, we have by taking ψ(x) = ϕ>`(x) and q = 2m ≤ `/2 in Lemma 31 stated below∣∣∣Eg[∏

i∈I
ϕ>`(〈g,Liw〉)

]∣∣∣ ≤ C ′d(2m+1)(ε−1/2) ,
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where C ′ is independent of w. We deduce that

A ≤ C ′d(2m+1)(ε−1/2) . (87)

There are at most m2mdm sets of indices I with no isolated index. Hence, combining the bounds
(85), (86) and (87), we get

Eg,w[d2m · ϕ>`(g;w)2m] ≤Cd2m exp(−cd2ε) + Cm2mdm + C ′d2m · d(2m+1)(ε−1/2) .

Taking ε ≤ 1/(4m+ 2), we get

Eg,w[ϕ>`(g;w)2m]1/(2m) = d−1/2 ·Od(1) ,

which concludes the proof.

The proof of Proposition 30 relies on the following key lemma:

Lemma 31 Let q, p,m ≥ 1 be three integers such that p ≤ 2m. Let ψ : R → R be a function
such that |ψ(x)| ≤ c0 exp(c1x

2/(4m)) for some constants c0 > 0 and c1 < 1. Furthermore, for all
k = 0, . . . , 2q,

µk(ψ) = EG[ψ(G)Hek(G)] = 0,

where G ∼ N(0, 1), i.e., ψ is orthogonal to all polynomials of degree less or equal to q with respect
to the standard normal distribution. Let g = (g1, . . . , gp) ∼ N(0,Σ) with Σ11 = . . . = Σpp = 1
and supi 6=j |Σij | ≤ Cdε−1/2. Let (r1, . . . , rp) be p integers such that r1 + . . .+ rp = 2m and there
exists k such that rk = 1. Then there exists C ′ > 0 depending only on c0, c1, C, q,m such that∣∣∣Eg[ ∏

k∈[p]

ψ(gk)
rk
]∣∣∣ ≤ C ′d(q+1)(ε−1/2). (88)

Proof [Proof of Lemma 31] Without loss of generality, let us assume that r1 = 1. Let us rewrite the
expectation with respect to g̃ ∼ N(0, Ip):

Eg
[ ∏
k∈[p]

ψ(gk)
rk
]

=
1√

det(Σ)
Eg̃
[ ∏
k∈[p]

ψ(g̃k)
rk · exp

{
g̃TMg̃/2

}]
, (89)

where we denotedM = Ip −Σ−1.
By Taylor expansion around 0 at order q + 1, there exists ζ(g̃) between 0 and g̃TMg̃/2 such

that

exp
{
g̃TMg̃/2

}
=

q∑
s=0

1

2ss!
(g̃TMg̃)s +

1

2q+1(q + 1)!
exp{ζ(g̃)} · (g̃TMg̃)q+1.

Notice that the terms s = 0, . . . , q are polynomials of degree smaller or equal to 2q in g̃. By the
assumption of orthonormality of ψ to polynomials of degree less or equal to 2q, we deduce∣∣∣Eg[ ∏

k∈[p]

ψ(gk)
rk
]∣∣∣

=
1

2q+1(q + 1)!
√

det(Σ)

∣∣∣Eg̃[ ∏
k∈[p]

ψ(g̃k)
rk · exp{ζ(g̃)} · (g̃TMg̃)q+1

]∣∣∣
≤ ‖M‖q+1

op

2q+1(q + 1)!
√

det(Σ)
Eg̃
[ ∏
k∈[p]

|ψ(g̃k)|rk · exp{‖M‖op‖g̃‖22} · ‖g̃‖
2(q+1)
2

]
.
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Furthermore, from the bound |ψ(x)| ≤ c0 exp(c1x
2/(4m)) and that rk ≤ 2m, we have∣∣∣Eg[ ∏

k∈[p]

ψ(gk)
rk
]∣∣∣ ≤ c2m0 p2q‖M‖q+1

op

2q+1(q + 1)!
√

det(Σ)
EG
[
G2q+2 exp{c1G2/2 + ‖M‖opG2}

]p
. (90)

From the assumptions on Σ, we have ‖Σ − Ip‖op ≤ ‖Σ − Ip‖F ≤ p supi 6=j |Σij | = Od(d
ε−1/2),

and therefore ‖M‖op = Od(d
ε−1/2) and det(Σ)−1/2 = Od(1).

From the assumption that c1 < 1 and taking d sufficiently large such that ‖M‖op < (1− c1)/4,
the expectation on the right hand side of Eq. (90) is bounded by a constant. We deduce that

Eg
[ ∏
k∈[p]

ψ(gk)
rk
]

= ‖M‖q+1
op ·Od(1) = d(q+1)(ε−1/2) ·Od(1) ,

which concludes the proof.

G.3. Technical lemmas

The first lemma is a straightforward consequence of the proof of Lemma 37 (we include a proof for
completeness).

Lemma 32 For any ` ∈ N and f ∈ L2(Rd, γd) to be a degree ` polynomial on Rd, where γd =
N(0, Id) is the isotropic Gaussian distribution. Then for any q ≥ 2, we have

‖f‖2Lq(Rd,γd) ≤ (q − 1)` · ‖f‖2L2(Rd,γd).

Proof [Proof of Lemma 32] Let ε = (εi,j)i∈[d],j∈[D] ∼ Unif(QdD) and define for i = 1, . . . , d,

Gi =
εi,1 + . . .+ εi,D√

D
.

Consider f a degree ` polynomial on Rd and define

f̃(ε) = f(G1, . . . , Gd).

From hypercontractivity of low degree polynomials on the hypercube (Lemma 35), we have

‖f̃‖2
Lq(Qd2 )

≤ (q − 1)` · ‖f̃‖2
L2(Qd2 )

. (91)

Furthermore, by the multivariate central limit theorem, as D → ∞ for d fixed, (G1, . . . , Gd) con-
verges in distribution to g ∼ N(0, Id). By dominated convergence theorem, we have ‖f̃‖2

Lq(QdD)
→

‖f‖2
Lq(Rd,γd)

and ‖f̃‖2
L2(QdD)

→ ‖f‖2
L2(Rd,γd)

, and taking the limit in inequality (91) yields the re-
sult.

Lemma 33 Follow the notations in Section G.1. We have

Eg,w
[(
A≤2(

√
dg/‖g‖2;w)−B≤2(g;w)

)2m]1/(2m)
= Od(d

−1/2).
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Proof [Proof of Lemma 33] Denote τ = ‖g‖2/
√
d and x =

√
dg/‖g‖2. Recall that we defined

A≤2(x,w) = ξd,0 + ξd,1B(Sd−1; 1)Q1(x;w) + ξd,2B(Sd−1; 2)Q2(x;w) ,

B≤2(τ · x,w) = µ0(σ) + µ1(σ)He1(τ · x;w) +
µ2(σ)

2
He2(τ · x;w) ,

Let us bound the difference of each term separately.
Step 1. Bound 0th order term.

Following the same argument as in the bound of R1 in Section G.1, we have

c0 := |µ0(σ)− ξd,0| =
∣∣∣Eτ,x1[σ(τ · x1)− σ(x1)

]∣∣∣
≤ Eτ

[
(τ − 1)2

]1/2Eτ,x1[x21σ′(τ̃ · x1)2]1/2 = Od(d
−1/2).

(92)

Step 2. Bound 1st order term.
We have He1(x) = x and B(Sd−1; 1)1/2 ·Q1(

√
dx) = x. Hence,

c1 := Eg,w
[(
µ1(σ)He1(τ · x;w)− ξd,1B(Sd−1; 1)Q1(x;w)

)2m]
= Eτ

[(
τ · µ1(σ)− ξd,1B(Sd−1; 1)1/2

)2m]
· Ex,w

[
B(Sd−1; 1)mQ1(x;w)2m

]
.

Using the convergence of Gegenbauer coefficients to Hermite coefficients (see Eq. (110) in Section
H.1.3), there exists a constant C > 0 such that

Eτ
[(
τ · µ1(σ)− ξd,1B(Sd−1; 1)1/2

)2m]1/(2m)
≤ C

[
Eτ
[
τ2m

]1/(2m)
+ 1
]

= Od(1) , (93)

where we used for example that low-degree polynomials of τ2 are hypercontractive (see the bound
on R1 in Section G.1). From the same argument as in the bound of R3 in Section G.1, we have

Ex,w
[
B(Sd−1; 1)mQ1(x;w)2m

]1/(2m)
≤ C2m

D(Sd−1; 1)1/2

B(Sd−1; 1)1/2
= Od(d

−1/2). (94)

Combining Eqs. (93) and (94) yields

c1 = Od(d
−1/2). (95)

Step 3. Bound 2nd order term.
We have He2(x) = x2 − 1 and B(Sd−1; 2)1/2 ·Q2(

√
dx) = a2,d · (x2 − 1) with a2,d = Θd(1).

We can rewrite

He2(τ · x1) = τ2B(Sd−1; 2)1/2 ·Q2(
√
dx)/a2,d + τ2 − 1.

Hence, by triangle inequality,

c1 := Eg,w
[(
µ2(σ)He2(τ · x;w)/2− ξd,2B(Sd−1; 2)Q2(x;w)

)2m]1/(2m)

≤ Eτ
[(
τ · µ2(σ)/(2a2,d)− ξd,2B(Sd−1; 2)1/2

)2m]1/(2m)
· Ex,w

[
B(Sd−1; 2)mQ2(x;w)2m

]1/(2m)

+
|µ2(σ)|

2
Eτ
[
(τ2 − 1)2m

]1/(2m)
.
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The first term is bounded as the 1-st order term while the second term is bounded as the 0-th order
term. Combining the two yields

c2 = Od(d
−1/2). (96)

Step 4. Conclude.
Combining the bounds (92), (95) and (96), we get by triangle inequality

Eτ,x,w
[(
A≤2(x;w)−B≤2(τ · x;w)

)2m]1/(2m)
≤ c0 + c1 + c2 = Od(d

−1/2) ,

which concludes the proof.

Lemma 34 Let ε > 0 and w ∼ Unif(Sd−1(1)). Then there exists C, c > 0 such that

P(Acε) ≤ C exp(−cd2ε).

Proof [Proof of Lemma 34] Let us use the correspondence between uniform distribution and Gaus-
sian distribution: w ∼ z/‖z‖2, where z ∼ N(0, Id). We have for k = 1, . . . , d− 1,

P(|〈w,Lkw〉| ≥ t) = P(|〈z,Lkz〉/‖z‖22| ≥ t) ≤ P(|〈z,Lkz〉/d| ≥ t/2) + P(‖z‖22 ≤ d/2).

Note that for any k ∈ [d − 1], we have ‖Lk‖F ≤
√
d and ‖Lk‖op ≤ 1. By the Hanson-Wright

inequality, for any k 6= 0, we have

P
(∣∣〈z,Lkz〉/d∣∣ > t

)
≤ 2 exp{−cd ·min(t2, t)}.

Furthermore, by standard concentration of the norm of Gaussian vectors, we have

P(‖z‖22 ≤ d/2) ≤ C exp(−cd).

Taking t = Cdε−1/2 and combining the above two bounds, we get

P(|〈w,Lkw〉| ≥ t) ≤ 2 exp(−cd2ε) + C exp(−cd).

Taking the union bounds over k ∈ [d− 1] concludes the proof.
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Appendix H. Technical background of function spaces

H.1. Functions on the sphere

H.1.1. FUNCTIONAL SPACES OVER THE SPHERE

For d ≥ 3, we let Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} denote the sphere with radius r in Rd.
We will mostly work with the sphere of radius

√
d, Sd−1(

√
d) and will denote by τd the uniform

probability measure on Sd−1(
√
d). All functions in this section are assumed to be elements of

L2(Sd−1(
√
d), τd), with scalar product and norm denoted as 〈 · , · 〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫
Sd−1(

√
d)
f(x) g(x) τd(dx) . (97)

For ` ∈ Z≥0, let Ṽd,` be the space of homogeneous harmonic polynomials of degree ` on Rd
(i.e. homogeneous polynomials q(x) satisfying ∆q(x) = 0), and denote by Vd,` the linear space of
functions obtained by restricting the polynomials in Ṽd,` to Sd−1(

√
d). With these definitions, we

have the following orthogonal decomposition

L2(Sd−1(
√
d), τd) =

∞⊕
`=0

Vd,` . (98)

The dimension of each subspace is given by

dim(Vd,`) = B(Sd−1; `) =
2`+ d− 2

d− 2

(
`+ d− 3

`

)
. (99)

For each ` ∈ Z≥0, the spherical harmonics {Y (d)
`,j }1≤j≤B(Sd−1;`) form an orthonormal basis of Vd,`:

〈Y (d)
ki , Y

(d)
sj 〉L2 = δijδks.

Note that our convention is different from the more standard one, that defines the spherical harmon-
ics as functions on Sd−1(1). It is immediate to pass from one convention to the other by a simple
scaling. We will drop the superscript d and write Y`,j = Y

(d)
`,j whenever clear from the context.

We denote by Pk the orthogonal projections to Vd,k in L2(Sd−1(
√
d), τd). This can be written

in terms of spherical harmonics as

Pkf(x) ≡
B(Sd−1;k)∑

l=1

〈f, Ykl〉L2Ykl(x). (100)

We also define P≤` ≡
∑`

k=0 Pk, P>` ≡ I− P≤` =
∑∞

k=`+1 Pk, and P<` ≡ P≤`−1, P≥` ≡ P>`−1.

H.1.2. GEGENBAUER POLYNOMIALS

The `-th Gegenbauer polynomialQ(d)
` is a polynomial of degree `. Consistently with our convention

for spherical harmonics, we view Q
(d)
` as a function Q(d)

` : [−d, d] → R. The set {Q(d)
` }`≥0 forms

64



INVARIANCES IN KERNELS AND RANDOM FEATURES

an orthogonal basis on L2([−d, d], τ̃1d ), where τ̃1d is the distribution of
√
d〈x, e1〉 when x ∼ τd,

satisfying the normalization condition:

〈Q(d)
k (
√
d〈e1, ·〉), Q(d)

j (
√
d〈e1, ·〉)〉L2(Sd−1(

√
d)) =

1

B(Sd−1; k)
δjk . (101)

In particular, these polynomials are normalized so that Q(d)
` (d) = 1. As above, we will omit the

superscript (d) in Q(d)
` when clear from the context.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v ∈ Sd−1(
√
d)

and consider the subspace of V` formed by all functions that are invariant under rotations in Rd that
keep v unchanged. It is not hard to see that this subspace has dimension one, and coincides with the
span of the function Q(d)

` (〈v, · 〉).
We will use the following properties of Gegenbauer polynomials

1. For x,y ∈ Sd−1(
√
d)

〈Q(d)
j (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2 =
1

B(Sd−1; k)
δjkQ

(d)
k (〈x,y〉). (102)

2. For x,y ∈ Sd−1(
√
d)

Q
(d)
k (〈x,y〉) =

1

B(Sd−1; k)

B(Sd−1;k)∑
i=1

Y
(d)
ki (x)Y

(d)
ki (y). (103)

These properties imply that —up to a constant— Q
(d)
k (〈x,y〉) is a representation of the projector

onto the subspace of degree -k spherical harmonics

(Pkf)(x) = B(Sd−1; k)

∫
Sd−1(

√
d)
Q

(d)
k (〈x,y〉) f(y) τd(dy) . (104)

For a function σ ∈ L2([−
√
d,
√
d], τ1d ) (where τ1d is the distribution of 〈e1,x〉whenx ∼ Unif(Sd−1(

√
d))),

denoting its spherical harmonics coefficients ξd,k(σ) to be

ξd,k(σ) =

∫
[−
√
d,
√
d]
σ(x)Q

(d)
k (
√
dx)τ1d (dx), (105)

then we have the following equation holds in L2([−
√
d,
√
d], τ1d ) sense

σ(x) =

∞∑
k=0

ξd,k(σ)B(Sd−1; k)Q
(d)
k (
√
dx).

For any rotationally invariant kernelHd(x1,x2) = hd(〈x1,x2〉/d), with hd(
√
d · ) ∈ L2([−

√
d,
√
d], τ1d ),

we can associate a self adjoint operator Hd : L2(Sd−1(
√
d))→ L2(Sd−1(

√
d)) via

Hdf(x) ≡
∫
Sd−1(

√
d)
hd(〈x,x1〉/d) f(x1) τd(dx1) . (106)
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By rotational invariance, the space Vk of homogeneous polynomials of degree k is an eigenspace
of Hd, and we will denote the corresponding eigenvalue by ξd,k(hd). In other words Hdf(x) ≡∑∞

k=0 ξd,k(hd)Pkf . The eigenvalues can be computed via

ξd,k(hd) =

∫
[−
√
d,
√
d]
hd
(
x/
√
d
)
Q

(d)
k (
√
dx)τ1d (dx) . (107)

H.1.3. HERMITE POLYNOMIALS

The Hermite polynomials {Hek}k≥0 form an orthogonal basis ofL2(R, γ), where γ(dx) = e−x
2/2dx/

√
2π

is the standard Gaussian measure, and Hek has degree k. We will follow the classical normalization
(here and below, expectation is with respect to G ∼ N(0, 1)):

E
{

Hej(G) Hek(G)
}

= k! δjk . (108)

As a consequence, for any function g ∈ L2(R, γ), we have the decomposition

g(x) =

∞∑
k=0

µk(g)

k!
Hek(x) , µk(g) ≡ E

{
g(G) Hek(G)} . (109)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polyno-
mials introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a

√
d scaling

in domain) are constructed by Gram-Schmidt orthogonalization of the monomials {xk}k≥0 with
respect to the measure τ̃1d , while Hermite polynomial are obtained by Gram-Schmidt orthogonaliza-
tion with respect to γ. Since τ̃1d ⇒ γ (here⇒ denotes weak convergence), it is immediate to show
that, for any fixed integer k,

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(Sd−1; k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (110)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P . As a
consequence, for any fixed integer k, we have

µk(σ) = lim
d→∞

ξd,k(σ)(B(Sd−1; k)k!)1/2, (111)

where µk(σ) and ξd,k(σ) are given in Eq. (109) and (105).

H.2. Functions on the hypercube

Fourier analysis on the hypercube is a well studied subject O’Donnell (2014). The purpose of
this section is to introduce some notations that make the correspondence with proofs on the sphere
straightforward. For convenience, we will adopt the same notations as for their spherical case.

H.2.1. FOURIER BASIS

Denote Qd = {−1,+1}d the hypercube in d dimension. Let us denote τd to be the uniform prob-
ability measure on Qd. All the functions will be assumed to be elements of L2(Qd, τd) (which
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contains all the bounded functions f : Qd → R), with scalar product and norm denoted as 〈·, ·〉L2

and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫

Qd

f(x)g(x)τd(dx) =
1

2n

∑
x∈Qd

f(x)g(x).

Notice that L2(Qd, τd) is a 2n dimensional linear space. By analogy with the spherical case we
decompose L2(Qd, τd) as a direct sum of d+ 1 linear spaces obtained from polynomials of degree
` = 0, . . . , d

L2(Qd, τd) =
d⊕
`=0

Vd,`.

For each ` ∈ {0, . . . , d}, consider the Fourier basis {Y (d)
`,S }S⊆[d],|S|=` of degree `, where for a

set S ⊆ [d], the basis is given by

Y
(d)
`,S (x) ≡ xS ≡

∏
i∈S

xi.

It is easy to verify that (notice that xki = xi if k is odd and xki = 1 if k is even)

〈Y (d)
`,S , Y

(d)
k,S′〉L2 = E[xS × xS′ ] = δ`,kδS,S′ .

Hence {Y (d)
`,S }S⊆[d],|S|=` form an orthonormal basis of Vd,` and

dim(Vd,`) = B(Qd; `) =

(
d

`

)
.

As above, we will omit the superscript (d) in Y (d)
`,S when clear from the context.

H.2.2. HYPERCUBIC GEGENBAUER

We consider the following family of polynomials {Q(d)
` }`=0,...,d that we will call hypercubic Gegen-

bauer, defined as

Q
(d)
` (〈x,y〉) =

1

B(Qd; `)

∑
S⊆[d],|S|=`

Y
(d)
`,S (x)Y

(d)
`,S (y).

Notice that the right hand side only depends on 〈x,y〉 and therefore these polynomials are uniquely
defined. In particular,

〈Q(d)
` (〈1, ·〉), Q(d)

k (〈1, ·〉)〉L2 =
1

B(Qd; k)
δ`k.

Hence {Q(d)
` }`=0,...,d form an orthogonal basis of L2({−d,−d + 2, . . . , d − 2, d}, τ̃1d ) where τ̃1d is

the distribution of 〈1,x〉 when x ∼ τd, i.e., τ̃1d ∼ 2Bin(d, 1/2)− d/2.
We have

〈Q(d)
` (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2 =
1

B(Qd; k)
Qk(〈x,y〉)δ`k.
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For a function σ(·/
√
d) ∈ L2({−d,−d + 2, . . . , d − 2, d}, τ̃1d ), denote its hypercubic Gegenbauer

coefficients ξd,k(σ) to be

ξd,k(σ) =

∫
{−d,−d+2,...,d−2,d}

σ(x/
√
d)Q

(d)
k (x)τ̃1d (dx).

Notice that by weak convergence of 〈1,x〉/
√
d to the normal distribution, we have also conver-

gence of the (rescaled) hypercubic Gegenbauer polynomials to the Hermite polynomials, i.e., for
any fixed k, we have

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(Qd; k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (112)

H.3. Hypercontractivity of Gaussian measure and uniform distributions on the sphere and
the hypercube

By Holder’s inequality, we have ‖f‖Lp ≤ ‖f‖Lq for any f and any p ≤ q. The reverse inequality
does not hold in general, even up to a constant. However, for some measures, the reverse inequality
will hold for some sufficiently nice functions. These measures satisfy the celebrated hypercontrac-
tivity properties Gross (1975); Bonami (1970); Beckner (1975, 1992).

Lemma 35 (Hypercube hypercontractivity Beckner (1975)) For any ` = {0, . . . , d} and fd ∈
L2(Qd) to be a degree ` polynomial, then for any integer q ≥ 2, we have

‖fd‖2Lq(Qd) ≤ (q − 1)` · ‖fd‖2L2(Qd).

Lemma 36 (Spherical hypercontractivity Beckner (1992)) For any ` ∈ N and fd ∈ L2(Sd−1)
to be a degree ` polynomial, for any q ≥ 2, we have

‖fd‖2Lq(Sd−1) ≤ (q − 1)` · ‖fd‖2L2(Sd−1).

Lemma 37 (Gaussian hypercontractivity) For any ` ∈ N and f ∈ L2(R, γ) to be a degree `
polynomial on R, where γ is the standard Gaussian distribution. Then for any q ≥ 2, we have

‖f‖2Lq(R,γ) ≤ (q − 1)` · ‖f‖2L2(R,γ).

The Gaussian hypercontractivity is a direct consequence of hypercube hypercontractivity.
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