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Abstract
Which concepts can we learn efficiently on average? In this paper, we investigate the capability of
a natural average-case learning framework, heuristic PAC (heurPAC) learning to answer this and
some other related questions. Roughly speaking, we say that a concept class is heurPAC learnable
if there exists a learning algorithm that given n, s ∈ N and ε, δ, η ∈ (0, 1] as input, learns all but η
fraction of n-input target functions represented as s-bit strings in the class from passively collected
examples and then outputs an ε-close hypothesis with failure probability at most δ in polynomial-
time in n, s, ε−1, δ−1, and η−1, where each example is generated according to some example
distribution.

First, we establish a positive learnability result. Specifically, we show that a simple Fourier-
based algorithm heurPAC learns Ω(log n)-junta functions on the uniform distribution, which is a
central open question in the original PAC learning model. Our technical contribution is to intro-
duce the notion of elusive functions that captures hard-to-learn cases and to establish a polynomial
relation between the running time and the fraction of such elusive functions. Second, we present
clear relations between heurPAC learnability and cryptography. Particularly, we show that for any
efficiently evaluated class C , (1) if C is not heurPAC learnable, then an auxiliary-input one-way
function (AIOWF) exists; (2) if C is not heurPAC learnable on the uniform distribution, then an
infinitely-often one-way function (io-OWF) exists. As a corollary, we also present new character-
izations for AIOWF and io-OWF based on heurPAC learnability, which is conceptually stronger
than the previous ones that are based on average-case learnability for fixed parameters. These re-
sults show that our framework might yield heuristic learners with theoretical guarantees for broader
classes than the usual PAC learning framework, and any efficiently evaluated class has a potential
for such a heuristic learner or a secure cryptographic primitive. Through this paper, we suggest
further research toward the win-win “learning vs. cryptography” paradigm.
Keywords: PAC learning, computational learning theory, average-case learnability, cryptography.

1. Introduction

Which concepts can we learn efficiently from experience? This is one of the most central ques-
tions in computational learning theory (CoLT). The most studied model which captures the notion
of “learning from experience” is the Probably Approximately Correct (PAC) learning model, in-
troduced by Valiant (1984). Roughly speaking, we say that a concept class C , defined as a set
of Boolean-valued functions, is (polynomially) PAC learnable if there exists an algorithm which
learns any unknown target function f ∈ C (which represents a “concept”) under any example dis-
tribution D (which represents an “environment”) in the following sense: (1) the learner is given an
accuracy parameter ε ∈ (0, 1], a confidence parameter δ ∈ (0, 1], and passively collected examples
of the form (x, f(x)) as information on f , where each x is selected independently and identically
according to D, and (2) the learner is asked to generate a good hypothesis h which is ε-close to f
(i.e., Prx∼D[h(x) ∕= f(x)] ≤ ε) with probability at least 1 − δ efficiently, or more specifically, in
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polynomial-time in the size of input for f , the length of binary representation for f , ε−1, and δ−1.
It is worthy to note that many researchers have studied PAC learnability for several natural classes
such as Boolean circuits, formulas, algebraic polynomials, automatons, decision trees, threshold
functions, and so on since Valiant introduced this model. Further, there are not only theoretical
interests but also a series of work that have resulted in several sophisticated strategies for learn-
ing; for instance, Occam’s razor (Blumer et al., 1987) and boosting (Schapire, 1990). For further
backgrounds, refer to textbooks on the subject, for instance, written by Kearns and Vazirani (1994)
and Wigderson (2019, Section 17).

Although Valiant’s PAC learning model provides a natural formulation for the task of learning,
the condition for “learnable” seems quite strict. Despite much effort by researchers, few concept
classes are known to be PAC learnable at the moment: O(1)-degree polynomial threshold func-
tions (Blumer et al., 1989) and O(1)-degree F2-polynomials (Helmbold et al., 1992). Further, sev-
eral natural classes are unlearnable under some reasonable assumptions (e.g., Kearns and Valiant,
1994; Daniely and Shalev-Shwartz, 2016). Thus, many researchers have sought a way to overcome
this difficulty by considering a weaker condition for learnable; for instance, allowing a learner to
have superpolynomial resources (e.g., quasi-polynomial and nontrivial savings) or additional query
access (e.g., membership queries), or focusing on only restricted example distributions (e.g., the
uniform distribution). In fact, almost all remarkable positive results in CoLT have been devel-
oped in such relaxed frameworks including the work on learning deterministic finite automatons
(DFAs) (Angluin, 1987), AC0 circuits (Linial et al., 1993), decision trees (DTs) (Kushilevitz and
Mansour, 1993), disjunctive normal form formulas (DNFs) (Jackson, 1997), and AC0[p] circuits for
any prime number p (Carmosino et al., 2016).

One of such relaxations is by considering the average-case learnability. In other words, we
try to learn almost all target functions in the class instead of all target functions. This relaxation
is reasonable under the following observation: the notion of hard-to-learn is rephrased as look-
ing “random” in the sense that any feasible algorithm cannot find crucial knowledge for learning
from its behavior, and in real life, such “random” concepts seem empirically rare. In fact, this ob-
servation has been theoretically confirmed for several classes such as DNFs (Aizenstein and Pitt,
1995), and some novel techniques for average-case learning have been proposed (e.g., Jackson and
Servedio, 2005; Sellie, 2009; Jackson et al., 2011; Angluin and Chen, 2015). As another line of
research, cryptographic primitives based on average-case learnability were proposed by Blum et al.
(1994); Nanashima (2020). Presently, such implications for (worst-case) PAC learnability are still
not known.

Despite its advantage and importance, the theory of average-case learnability is less developed
compared to other learning frameworks or the original average-case theory on computational com-
plexity. In fact, the meanings of “learnable on average” are implicit and slightly vary according
to contexts, and some of them seem weak for the formulation of “learnable on average” (see also
Section 1.2). Our main goal is to suggest a standard and natural learning framework for discussing
average-case learnability. We will then provide fundamental knowledge and advantage of the pro-
posed framework to invoke further research for developing the theory of average-case learnability.

1.1. This Work: Heuristic PAC Learning

Our framework is informally motivated by the natural demands for heuristic learning: more re-
sources (i.e., computational costs and examples) yield better heuristics, and for better heuristics, the

2



A THEORY OF HEURISTIC LEARNABILITY

number of resources needed is supposed not to increase drastically. Generally, to collect resources
for learning requires more or lower costs. A heuristic learner satisfying the above demands yields
an effective learning procedure through the interactive use of the learner: First, we begin with learn-
ing under a reasonable amount of resources, and then based on the result obtained, we collect and
provide more resources to the learner. We repeat this until a desirable result is obtained.

However, it is not easy to reflect the above demands in the learning framework: the meaning
of “good” heuristic learning is quite ambiguous. At least a good heuristic learner should be able to
learn a “large” fraction of target functions “accurately” in the best possible way. The problem is
that, in general, there might be a tradeoff between such accuracy and largeness, and the priority is
also different depending on the situation.

Our basic idea to resolve the above problem is to introduce a new parameter, heuristic parameter
η, to the original PAC learning framework. To be more specific, a learner takes three parameters as
input: an accuracy parameter ε ∈ (0, 1], a confidence parameter δ ∈ (0, 1] (as usual PAC learning),
and an additional heuristic parameter η ∈ (0, 1]. Afterward, the learner is asked to PAC learn all
but η fraction of target functions in the class instead of all targets functions with accuracy ε and
confidence δ within a feasible number of steps, i.e., polynomial-time in ε−1, δ−1, and η−1.

Now, we are ready to present the formal definition of the above framework, which we refer to
as heuristic PAC learning. In this paper, we define a concept class by an evaluation rule E = {En :
{0, 1}∗ × {0, 1}n → {0, 1}}n∈N, where En is given a binary representation for an n-input target
function f and its input x ∈ {0, 1}n and evaluates the value of f(x). Note that any evaluation rule
E naturally determines a concept class C = {Cn}n∈N as follows: for each n ∈ N,

Cn = {f(x) := E(u, x) : u ∈ {0, 1}∗} .

For a function s : N → N, we say that a concept class C is s(n)-represented if Cn is determined
by an evaluation En : {0, 1}s(n) × {0, 1}n → {0, 1} for each n ∈ N, i.e., each n-input target
function has a representation of length s(n). For convenience, we identify a function f : {0, 1}n →
{0, 1} in an s(n)-represented class with a binary string f ∈ {0, 1}s(n). Our learning framework is
defined for s(n)-represented concept classes as follows.

Definition 1 (Heuristic PAC learning) Let s : N → N and C be an s(n)-represented concept
class. We say that a randomized oracle machine L, herein referred to as a learner, (polynomially)
heuristic PAC (heurPAC) learns C if L satisfies the following conditions:

• L is given n, s(n) ∈ N, parameters ε, δ, η ∈ (0, 1] and access to an example oracle EX(f,D)
determined by a target function f : {0, 1}n → {0, 1} and an example distribution D on
{0, 1}n;

• for each access, EX(f,D) returns an example of the form (x, f(x)), where x is selected
identically and independently with respect to D;

• for any n ∈ N, ε, δ, η ∈ (0, 1], example distribution D on {0, 1}n, L outputs, for at least
(1 − η)-fraction of target functions f ∈ {0, 1}s(n), a hypothesis h : {0, 1}n → {0, 1} that
is ε-close to f under D with probability at least 1 − δ; namely, L satisfies the following
condition:

Pr
f∼{0,1}s(n)

!
Pr

L,EX(f,D)

!
LEX(f,D) outputs h such that Pr

x←D
[h(x) ∕= f(x)] ≤ ε

"
≥ 1− δ

"
≥ 1−η;
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• L halts in polynomial-time in n, s(n), ε−1, δ−1, and η−1 for each input.

We say that C is (polynomially) heurPAC learnable if there is a learner that heurPAC learns C .
For a family of distributions D = {Dn}n∈N, where Dn denotes a distribution on {0, 1}n, we

say that C is heurPAC learnable on D if there exists a learner which heurPAC learns C on the
example distribution D (instead of all example distributions).

It should be noted that the above definition relies on the assumption that any concept is represented
in the same length s(n), and the reader may think that the uniform distribution over all strings of
length s(n) is quite unnatural as distribution on target functions. In previous work, particularly, such
a distribution on target functions is usually given as a uniform distribution over valid target functions
or by some randomized procedure. However, we claim that the above formulation about a distri-
bution on target functions is applicable for almost all such cases. For instance, as long as a natural
distribution on target functions is polynomial-time sampleable in n and s(n) with non-negligible
success probability, we can automatically find a representation for our formulation without chang-
ing its learnability. We demonstrate this by regarding random seeds for selecting a target function
as a new representation. Refer to Appendix B.1 for a formal statement on this. Therefore, in the
subsequent argument, we may implicitly consider other forms of distributions on target functions
when it is trivially polynomial-time sampleable with non-negligible probability.

Another natural learning framework is the prediction model introduced by Pitt and Warmuth
(1990), whose capability is known to be equivalent to the PAC learning model (Haussler et al.,
1988). In fact, the above heurPAC learning model can be regarded as a natural average-case exten-
sion of the PAC learning model in the sense that its equivalence to the prediction model is preserved.
In other words, the heurPAC learnability is equivalent to the learnability determined by a natural
average-case extension of the prediction model (Definition 21). Refer to Appendix B.2 for a formal
statement on this.

1.2. Comparison with Related Models

In average-case learning on the uniform distribution, positive results have been derived for random
O(log n)-depth DTs (Jackson and Servedio, 2005), poly(n)-size monotone DNFs (Sellie, 2008;
Jackson et al., 2011), and poly(n)-size DNFs (Sellie, 2009). The main difference between their work
and ours is in the setting of a heuristic parameter η. Their work guarantees a polynomial-time learner
only in the case where η = 1/poly(n) for the input size n, and the learnability for η = n−ω(1) is
not taken into account. Additionally, some of the learners (e.g., Jackson and Servedio, 2005) do
not work in polynomial-time1 in η−1. Angluin and Chen (2015) and its related work presented a
positive results for random DFAs. In addition to the difference in a heuristic parameter, their learner
requires richer information as labels in examples than binary labels (i.e., states of DFAs).

Generally, the above results were shown by (1) introducing a particular learning strategy L,
(2) finding a “good” property P such that L can learn any target function with P in polynomial-
time, and (3) showing that a random target function satisfies P with probability p := 1 − n−ω(1).
However, this type of argument gives rise to a certain threshold on η depending on p. Therefore,
for heurPAC learning, we may need to introduce a smoother classification of target functions on
the level of hardness of learning in step (2) and establish polynomial relations among the level of
hardness, the computational complexity of the learner, accuracy, and a heuristic parameter.

1. Note that O(nc log log c)-time or even O(n22
c

)-time are polynomial-time with respect to η = n−c for a constant c.
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Blum et al. (1994) constructed a cryptographic primitive (i.e., infinitely-often one-way func-
tion) based on the hardness of average-case learning on a polynomial-time sampleable distribution2.
Their learning model corresponds to our model where parameters are fixed in advance to arbitrary
functions ε = 1/poly(n), η = 1/poly(n), and δ = 1/poly(n). This condition is essentially based
on the security condition for weak one-way functions, and these parameters are determined by a
success probability of an adversary for the cryptographic primitive. A similar result for a weaker
cryptographic primitive (i.e., auxiliary-input one-way function) was reported by Nanashima (2020)
based on average-case weak learnability on all example distributions, where parameters are fixed in
advance to some functions ε = 1/2 − 1/poly(n), η = 1 − 1/poly(n), and δ = 1 − 1/poly(n). In
addition to the weakness of learnability, his model is unfamiliar in the sense that the distribution on
target functions is also given as input. Note that it is not clear whether boosting techniques (e.g.,
Schapire, 1990; Boneh and Lipton, 1993) can be applied to show the equivalence between weak
learnability for fixed parameters and heurPAC learnability. The main reason is that an average-case
weak learner is not guaranteed to succeed even in other settings on a target function or an example
distribution for boosting.

2. Our Results

As discussed in Section 1.2, a well-structured knowledge of hard-to-learn functions seems crucial
for the heurPAC learnability. Therefore, the natural question is whether the heurPAC learning model
is more capable than the PAC learning model. As a first result, we provide an affirmative answer to
this question by presenting a heurPAC learner for junta functions on the uniform distribution.

A junta function is a function whose value is determined by only a small part of the input,
formally defined as follows.

Definition 2 (Junta functions) For a function f : {0, 1}n → {0, 1}, we say that a coordinate
i ∈ {1, . . . , n} is relevant if f(x) ∕= f(y) for some points x, y ∈ {0, 1}n which differ only at the
coordinate i. For k ≤ n, we say that f is a k-junta function if it has at most k relevant coordinates.

Technically, we assume that any k-junta function is specified by a truth table of k-input function
(we refer to it as a base function for convenience) and correspondence between k coordinates in
{1, . . . , n} and input for the base function. As a natural distribution on k-junta functions, we con-
sider a uniform distribution over pairs of a base function and correspondence to coordinates.

Learning small junta functions essentially corresponds to distinguishing relevant features from
irrelevant ones in collected data. Although this task is both theoretically and practically fundamental
in learning theory, an efficient PAC learner has not yet been found even for the uniform example
distribution, and this problem is regarded as one of the most central challenges in CoLT since it was
posed by Blum and Langley (1997).

Our first result is to show the heurPAC learnability for junta functions on the uniform distribu-
tion. This shows one advantage of our average-case relaxation for a natural learning problem unless
a PAC learner for junta functions is developed.

Theorem 3 k(n)-junta functions are heurPAC learnable on the uniform distribution for any k(n) =
Ω(log n).

2. They originally considered weaker learnability for infinitely many input sizes to get a standard one-way function.
Their result can be extended trivially to a usual learning setting for any input size at the expense of a security
condition in cryptography, in particular, “sufficiently large” condition.
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The above result guarantees a polynomial-time learner for an input size n if k(n) = Θ(log n). In the
case where k(n) = ω(log n), the length s(n) of representation for k(n)-junta functions is greater
than 2k(n) = nω(1). Therefore, the above result does not indicate a polynomial-time learner in n
because a heurPAC learner is allowed to work in polynomial-time in s(n). Further, our result does
not work in a case where k(n) = o(log n). In average-case learning, in general, a successful learner
does not always work for its subclass, not as in PAC learning. This is because such a subclass could
be a hard-core class consisting of hard functions for the learner. Thus, the above result on junta
functions is also incomparable with results on its superclasses such as DTs and DNFs.

Therefore, several questions on heurPAC learning such as learnability for DNFs, DTs, or junta
functions on other example distributions are still open at the moment. To answer these questions,
we may require a deeper understanding of such classes or new learning strategies, and finding
them could take several decades as other notorious open problems in CoLT. As a second result,
however, we claim that even such a situation where heurPAC learnability has not been revealed is
still meaningful. We will see this advantage of the heurPAC learning framework by showing that
the hardness of heurPAC learning is capable of constructing secure cryptographic primitives.

Let us mention some backgrounds. The goal of cryptography is, roughly speaking, to produce
protocols for protecting private information against feasible adversaries. Intuitively, by regard-
ing adversaries as learners, learning theory and cryptography have opposite goals, i.e., finding and
hiding information. Valiant (1984) showed that a standard cryptographic primitive (i.e., a pseudo-
random function) yields the hardness of PAC learning in his pioneer paper. However, the opposite
direction from the hardness of learning to cryptography, initiated by Impagliazzo and Levin (1990),
is less understood, and an explicit barrier by oracle separation has also been found (Xiao, 2009). To
the best of our knowledge, all known constructions of cryptographic primitives based on hardness of
learning need “strong” hardness assumptions compared to usual PAC learning such as hardness of
average-case weak learning (Blum et al., 1994; Nanashima, 2020), specific learning problem (e.g.,
LWE) (Regev, 2009), or query learning in subexponential-time (Oliveira and Santhanam, 2017).

Technically, our second result weakens the hardness assumptions employed by Blum et al.
(1994); Nanashima (2020) from weak learning for fixed parameters to strong learning for parame-
ters given as input. By contraposition, we strengthen the consequence for a cryptographic adversary
to a strong heurPAC learner, which is quite nontrivial at present, as mentioned in Section 1.2.

First, we establish a relation between heurPAC learnability (on all example distributions) and
an auxiliary-input one-way function (AIOWF), which is a weaker variant of the standard one-way
function introduced by Ostrovsky and Wigderson (1993). Roughly speaking, an auxiliary-input
primitive is defined as a family of primitives and has relaxed security conditions that at least one
primitive in the family is required to be secure depending on each adversary. For further back-
grounds and motivations of studying such primitives, refer to, e.g., the work by Vadhan (2006)
and Nanashima (2021). It is worthy to note that employing AIOWF is sufficient to show the hard-
ness of PAC learning (Applebaum et al., 2008). The formal definition is given as follows.

Definition 4 (Auxiliary-input function) A (polynomial-time computable) auxiliary-input function
is a family f = {fz : {0, 1}n(|z|) → {0, 1}ℓ(|z|)}z∈{0,1}∗ which has a polynomial-time evaluation
algorithm F such that for any z ∈ {0, 1}∗ and x ∈ {0, 1}n(|z|), F (z, x) outputs fz(x).

We may write n(|z|) (resp. ℓ(|z|)) as n (resp. ℓ) when the dependence of |z| is obvious. For any
n ∈ N, let Un denote a random variable following the uniform distribution over {0, 1}n.
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Definition 5 (Auxiliary-input one-way function) We say that an auxiliary-input function f =
{fz : {0, 1}n → {0, 1}ℓ}z∈{0,1}∗ is an auxiliary-input one-way function (AIOWF) if for any poly-
nomial p and polynomial-time randomized algorithm A, there exists an infinite subset ZA ⊆ {0, 1}∗
such that for any z ∈ ZA,

Pr
A,Un

#
A(z, fz(Un)) ∈ f−1

z (fz(Un))
$
<

1

p(|z|) .

Then our main theorem is stated as follows.

Theorem 6 Let C be any concept class evaluated in polynomial-time. If C is not heurPAC learn-
able, then AIOWF exists.

Further, if we assume a hardness of learnability on the uniform distribution, we can remove
auxiliary-input from the above result. Strictly speaking, for a heurPAC learner which works on
any parameters, we need to consider a cryptographic primitive that is secure “infinitely-often” on
security parameter n, which is defined formally as follows:

Definition 7 (Infinitely-often one-way function) Let s, ℓ : N → N be polynomials. We say that a
function f = {fn : {0, 1}s(n) → {0, 1}ℓ(n)}n∈N is an infinitely-often one-way function (io-OWF)
if for any polynomial p and polynomial-time randomized algorithm A, f satisfies the following
condition for infinitely many n ∈ N,

Pr
A,Uℓ(n)

#
A(1n, fn(Uℓ(n))) ∈ f−1

n (fn(Uℓ(n)))
$
<

1

p(n)
.

Then we can show the following theorem.

Theorem 8 Let C be any concept class evaluated in polynomial-time. If C is not heurPAC learn-
able on the uniform distribution, then io-OWF exists.

The above is extended to a case of any fixed polynomial-time sampleable3 example distribution.
This can be roughly shown by regarding the sampling algorithm as a part of the evaluation for the
concept class.

Corollary 9 Let C be a polynomial-time evaluated class and D be a polynomial-time sampleable
distribution. If C is not heurPAC learnable on D, then io-OWF exists.

Additionally, the opposite direction from a one-way function to the hardness of heurPAC learn-
ing also holds, which is based on the famous work by Håstad et al. (1999); Goldreich et al. (1986)
and a similar observation by Valiant (1984); Applebaum et al. (2008). Thus, we have characteriza-
tions of the existence of AIOWF and io-OWF based on heurPAC learnability. To avoid redundancy,
we assume efficiency of evaluations for concept classes in Corollaries 10– 12.

Corollary 10 The existence of the following notions is equivalent:

1. AIOWF;

3. We say that D = {Dn}n∈N is polynomial-time sampleable if there exists a polynomial-time randomized algorithm
M such that the distribution on outputs of M(1n) is statistically identical to Dn for each n ∈ N.
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2. a concept class not heurPAC learnable; and

3. a concept class not weakly4 heurPAC learnable.

Corollary 11 The existence of the following notions is equivalent:

1. io-OWF;

2. a concept class not heurPAC learnable on the uniform distribution;

3. a concept class not heurPAC learnable with membership queries on the uniform distribution;

4. a concept class not weakly heurPAC learnable on the uniform distribution; and

5. a concept class not weakly heurPAC learnable with membership queries on the uniform dis-
tribution.

It is worthy to note that Corollary 10 yields several new insights into the hardness of PAC
learning. For instance, computational zero-knowledge in cryptography is characterized by AI cryp-
tography (Vadhan, 2006). Thus, our result provides a closer relationship between the average-case
hardness of learning and the hardness of obtaining knowledge in cryptography. Even within learn-
ing theory, this result implies that if worst-case PAC learning on the uniform distribution is easy,
then average-case PAC learning on any distribution is also easy because the former is sufficient to
break any AI cryptography, as observed by Applebaum et al. (2008). Such a relationship seems
quite non-trivial and fundamental knowledge on two worst-case requirements in PAC learning (on
target functions and example distributions), which had not been known before.

Theorems 6 and 8 also hold even for a nonuniform computational model by the same proof,
where the learner is given additional advice of length poly(n, s(n), ε, δ, η) for input (n, s(n), ε, δ, η)5.
Then under the Universality Conjecture, recently introduced by Santhanam (2020), we have the fol-
lowing relation between original PAC learning and heurPAC learning.

Corollary 12 Under the Universality Conjecture, the existence of the following notions is equiva-
lent in the nonuniform setting:

1. a concept class not heurPAC learnable;

2. a concept class not PAC learnable with membership queries on the uniform distribution; and

3. a concept class not heurPAC learnable on the uniform distribution.

It should be noted that Corollary 12 is regarded as a certain equivalence between worst-case
learnability and average-case learnability, which is remarkably nontrivial at present. Thus, our work
also enhances the importance of the study on the Universality Conjecture and the minimum circuit
size problem (MCSP). For further details, see the original paper (Santhanam, 2020) and related
work on MCSP.

4. In weak heurPAC learning, parameters ε, δ, and η are fixed in advance to some functions ε = 1/2−1/poly(n, s(n)),
η = 1− 1/poly(n, s(n)), and δ = 1− 1/poly(n, s(n)). For the detail, see also Theorem 22.

5. This model is equivalent to the usual nonuniform model when the input (n, s(n), ε, δ, η) is given as a 5-tuple of unary
strings, because there are at most poly(N) ways to separate input of length N into 5-tuple.
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3. Discussion and Future Directions

In this paper, we introduced a heurPAC learning model as a standard model to discuss average-case
learnability. Then we showed (1) a new positive result for Ω(log n)-junta functions and (2) weak
cryptographic primitives based on the hardness of heurPAC learning.

The result (1) shows hope that an infeasible task in PAC learning could turn to be feasible
in heurPAC learning. Further, the result (2) provides us a win-win “learning vs. cryptography”
paradigm, which is the main advantage of the heurPAC learning model. In the real world, there are
many concepts we may wish to learn, but in general, finding efficient learners for such classes might
require several novel techniques. In heurPAC learning, however, we can use such classes first as a
secure cryptographic primitive. Of course, such a tentative primitive might be broken in the future
as current cryptosystems, but then the adversary will immediately yield a heuristic learner for the
original class as desired at first. Thus, any concept class provides an application at any stage as a
touchstone for heuristic learning or a cryptographic primitive. This paradigm is quite fundamental
and could be extended to other computational models such as quantum computing in future work.

Unfortunately, the “learning vs. cryptography” paradigm brought by this work is imperfect in
several senses. For a heurPAC learner which works on any example distribution, our work produces
only an auxiliary-input primitive, which is much weaker than a standard primitive. Even if we fix
an example distribution to a specific polynomial-time sampleable distribution, the consequence is
enhanced only up to the “infinitely-often” security. Thus, as a primary future direction, we suggest
improving this paradigm toward the standard one-way function. This challenge is rephrased by a
term in the work (Impagliazzo, 1995) as follows: “Is it possible to change Pessiland into dream-
land for learners?” In this work, we sowed a seed by introducing heurPAC learning toward such
terraforming of Pessiland.

The heurPAC learning model also offers a good lens to review previous work on CoLT and
provides several fascinating questions, for instance, heuristic learnability for other natural classes
or richer learning frameworks such as agnostic learning. For such direction, the argument on the
result (1) might help lay out a proof plan. Additionally, even for the classes known to be PAC
learnable, the learning cost could decrease in heurPAC learning. We also believe that such a study
on heurPAC learnability will bring further interrelationship between learning theory and broad fields
in the theory of computing such as algorithm theory, complexity theory, and cryptography.

4. Overview of Techniques

We present a high-level overview of ideas to prove Theorems 3, 6, and 8. In this section, we may
ignore arguments on confidence δ and quantitative statements to focus only on essential ideas.

4.1. HeurPAC Learning Junta Functions

We first specify a learning strategy and then introduce the key concept classifying junta functions
on the level of hardness of learning. Technically, our contribution is the latter part of analyzing
hard-to-learn functions, and the learning strategy indeed follows a simple Fourier-based algorithm,
introduced by Mossel et al. (2004). In fact, this algorithm learns junta functions in the exact sense,
i.e., ε = 0.

Now, we review the Fourier-based algorithm for learning junta functions. Note that a polynomial-
time learning algorithm is allowed to work in poly(n, 2k)-time for k-junta functions because the
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length of representation must be larger than 2k. To learn junta functions on the uniform distribu-
tion, the essential task is to find relevant coordinates. This is because if a learner knows all relevant
coordinates, then by reading poly(n, 2k) examples, the learner can determine each value in the truth
table of the base function with high probability. Because the number of such entries is 2k, the ad-
ditional running time to identify the target function from information on relevant coordinates is at
most poly(n, 2k).

To find relevant coordinates, we apply Fourier properties of junta functions as employed by Mos-
sel et al. (2004). For a function f : {0, 1}n → {0, 1}, a Fourier coefficient %f(α) on α ∈ {0, 1}n
is defined by %f(α) = Ex[(−1)f(x)+χα(x)], where χα(x) = x1α1 ⊕ · · · ⊕ xnαn denotes a linear
function. Refer to textbook (O’Donnell, 2014) for further backgrounds on Fourier analysis. We
also use the notation |α| = #{i : αi ∕= 0} for any α ∈ {0, 1}∗. Then any k-junta function
f : {0, 1}n → {0, 1} has the following crucial properties:

1. if %f(α) ∕= 0, then all coordinates i ∈ {1, . . . , n} satisfying αi ∕= 0 are relevant;

2. for any relevant coordinate i, there exists α ∈ {0, 1}n such that αi ∕= 0, %f(α) ∕= 0, and
|α| ≤ k;

3. for any α ∈ {0, 1}n, %f(α) is computed with access to EX(f, Un) in time poly(n, 2k) with
high probability (we abuse the notation Un to refer to the uniform distribution over {0, 1}n).

Therefore, for each target k-junta function f : {0, 1}n → {0, 1}, we can find all relevant
coordinates by computing a coefficient %f(α) for each α with 1 ≤ |α| ≤ k and identifying all
coordinates i satisfying αi ∕= 0 when %f(α) ∕= 0. However, since the number of such α is

&
n
1

'
+

· · ·+
&
n
k

'
, it takes superpolynomial-time when k = ωn(1) holds.

Now, we introduce a strategy for heurPAC learning. To reduce the above running time, we set
a threshold m (≤ k) to limit the scope of searching relevant coordinates according to a heuristic
parameter η. Then we compute %f(α) for all α satisfying |α| ≤ m (instead of k) as above and find
a subset I of relevant coordinates. Note that, for any restriction ρ on a set of at most k in size, we
can simulate an example oracle for f restricted by ρ (denoted by f |ρ) in time poly(n, 2k) with high
probability by querying EX(f, Un) until it returns an example consistent with ρ. Thus, we restrict
f by all of at most 2k restrictions ρ on I , find new relevant coordinates by computing (f |ρ(α) for all
α with |α| ≤ m again, and put them into I . We repeat these processes as the main loop until I gets
unchanged. Because f has at most k relevant coordinates, the main loop will stop within k times.

The above algorithm does not always find all relevant coordinates; particularly, in the case
where all restricted functions become m-th order correlation-immune (introduced by Siegenthaler,
1984) at some stage, i.e., all Fourier coefficients are zero on α with 1 ≤ |α| ≤ m. Although an
upper bound on correlation-immune functions was proposed by Schneider (1997), this bound is
insufficient to guarantee the performance of the above algorithm because there are functions that
turned into correlation-immune by the above procedure. Therefore, we need the following notion to
capture such “bad” functions more directly.

Definition 13 (Elusive function) For any n,m ∈ N with m ≤ n, we say that a function f :
{0, 1}n → {0, 1} is m-elusive if a subset I ⊆ {1, . . . , n} yielded by the following procedure does
not correspond to a set of relevant coordinates of f .
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(Procedure.) Repeat the following operation to I := ∅: add simultaneously all i ∈
{1, . . . , n} satisfying the condition that there exist a restriction ρ on I and α ∈ {0, 1}n−|I|

such that αi ∕= 0, |α| ≤ m, and (f |ρ(α) ∕= 0. If I gets unchanged, then output I .

It can be easily seen that any “bad” function must have an m-elusive base function, so we will bound
the fraction ηk,m of m-elusive functions in k-input base functions. Because an elusive function is
defined by the above adaptive procedure, we cannot apply the enumerating technique by Schneider
(1997) directly. Thus, we herein take a different approach for the upper bound on elusive functions,
which was originally motivated by the technique on error-correcting codes.

Our idea is quite simple: we regard a truth table of m-elusive function as a code of length 2k

and then give a lower bound on the minimum distance. Technically, we will show that the minimum
distance of m-elusive functions is greater than m + 1 based on Fourier analysis and properties of
correlation-immune functions (refer to Appendix C.1). Thus, each m-elusive function has at least a
distinct Hamming ball of volume roughly V ≈ (2k+1/m)m/2, and ηk,m is bounded above by 1/V .

In the case of k = Ω(log n), the above upper bound is enough to show that nm ≤ poly(η−1
k,m, 2k)

for sufficiently large n. Notice that the above learner with a threshold m succeeds in finding
relevant coordinates for all junta functions whose base function is not m-elusive in time at most
nm · poly(n, 2k). Thus, by choosing a minimum threshold m satisfying the condition ηk,m ≤ η,
the learner satisfies the condition on a heuristic parameter. Since η < ηk,m−1 holds for such
m, the running time is roughly bounded above by nm · poly(n, 2k) ≤ nm−1 · poly(n, 2k) ≤
poly(n, 2k, η−1

k,m−1) ≤ poly(n, 2k, η−1) as desired.

4.2. Weak Cryptography Based on HeurPAC Learnability

To demonstrate Theorems 6 and 8, we combine techniques employed by Blum et al. (1994); Nanashima
(2020) for weak learning with a hardness amplification by Levin’s version of XOR lemma (Fact 3)
introduced by Levin (1987). For a target function f , define another function f⊕ by f⊕(x(1), . . . , x(d)) =)

i f(x
(i)) for a proper d ∈ N. From the learning perspective, the XOR lemma provides a boosting

method translating a weak hypothesis for f⊕ into a strong hypothesis for f under a distribution D
on input with access to EX(f,D). Although a similar method was used for boosting in PAC learning
by Boneh and Lipton (1993), we need additional ideas for average-case learning.

In the work by Blum et al. (1994); Nanashima (2020), roughly speaking, they constructed a
pseudorandom generator based on the hardness of weak learnability for a randomly selected f . Note
that a pseudorandom generator is another cryptographic primitive whose output cannot be distin-
guished from truly random strings by polynomial-time adversaries with a non-negligible probability,
and it must be also a one-way function (for further details, refer to Section A.1). The output of their
generator corresponds to labels in examples, i.e., values of a target function f , and the represen-
tation for f is regarded as a random seed for the generator. To prove the claim by contraposition,
they employed Yao’s next-bit generator (Yao, 1982) to translate an adversary for the generator into
a weak hypothesis for f .

To enhance the above result to strong learnability, the first attempt is to let an algorithm learn f⊕

instead of f . Notice that we can easily simulate examples for f⊕ just by XORing several examples
for f . Then, we can translate an adversary for the resulting generator into a weak hypothesis for f⊕

and construct a strong hypothesis for the original target function f by applying the XOR lemma. A
similar strategy was also used in the context of “hardness vs. randomness” (e.g., Nisan and Wigder-
son, 1994). However, this is insufficient for heurPAC learning because it reduces the accuracy error
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ε but does not have any effect on the heuristic error η at all. For instance, if two-thirds of target
functions in class C are constant, the output of the above generator is trivially distinguishable from
a random string, but there is no guarantee that C is heurPAC learnable because the other functions
could be extremely hard to learn. In other words, we need a two-dimensional boosting method not
only on the accuracy parameter ε but also on the heuristic parameter η for heurPAC learning.

At this point, we present our new construction of the pseudorandom generator. The central
idea is intuitive: taking additional XOR among various target functions selected independently and
identically at random in the class. In other words, we construct the above generator in such a way
that each bit corresponds to a value of a new target function f⊕⊕ : {0, 1}nd → {0, 1} defined by

f⊕⊕(x(1), . . . , x(d)) :=
v*

i=1

f (i)⊕(x(1), . . . , x(d)) =
v*

i=1

d*

j=1

f (i)(x(j)),

where x(j) ∈ {0, 1}n for each j, f (i) denotes a random target function for each i, and v and d
(which stand for “variety” and “duplication,” respectively) are determined depending on ε and η.

Herein, we present a brief explanation of how to translate an adversary A for the above generator
into a strong hypothesis for all but η fraction of target functions. First, we introduce the notion of a
“bad” function for A as a function that reduces the advantage of A drastically under the condition
that f (i) ≡ f for some i ∈ {1, . . . , v}. Then, we show that the fraction ηB of “bad” functions is not
so large, which follows from the fact that the probability that all selected functions are not “bad”
is quite small (less than (1 − ηB)

v). In fact, by proper choices of v and the notion of “bad,” ηB is
bounded above by η. In this case, it is enough to learn all target functions that are not “bad”.

If a target function f is not “bad,” then there exists at least one position i∗ ∈ {1, . . . , v} such
that the advantage of A does not decrease so much even if f (i∗) ≡ f . In such a scenario, a learner
can guess i∗ at random, select other functions f (i) for each i ∈ {1, . . . , v} \ {i∗} by itself, simulate
an example oracle for f⊕⊕, and translate A into a weak hypothesis for f⊕⊕ by using Yao’s next bit
generator. Because the learner knows all functions f (i) except f , the learner can also construct a
weak hypothesis for f⊕ and a strong hypothesis for the original target f by using the XOR lemma.

In fact, there are several flaws including formality in the above sketch. The most critical one is
that we cannot fix d and v in advance because they depend on the input, especially, ε and η. Because
the learner itself relies on the adversary and its advantage, the above heurPAC learner is not well-
defined. To resolve this, we must first fix some pseudorandom generator G, independent of v and d,
assume an arbitrary adversary A for G, and then construct a learner based on G and A. For such a
prior generator G, we take different approaches in the cases of AIOWF and io-OWF.

In the case of AIOWF, an adversary must break a primitive for any auxiliary-input; thus, we
can use non-determinism on descriptions of the primitives. We fix the prior generator G to the
natural universal generator composed of the standard evaluation algorithms for n2-sized circuits,
where the description of circuits is regarded as auxiliary-input. For any adversary A for G, we can
construct a heurPAC learner L as follows: L determines d and m based on its input and A properly,
constructs an auxiliary-input analog of pseudorandom generator G′ by applying the dualization
technique (Nanashima, 2020) in the above construction (i.e., L regards a target function f as input
for G′ and input for f as auxiliary-input for G′), and reduces the circuit complexity of G′ by using
a standard padding technique to fit the form of G. Then, L constructs an adversary for G′ based on
A and a strong hypothesis for the original target function as the above argument.
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In the case of io-OWF, we cannot use the above non-determinism, so we need to construct one
specific generator. For each input size n, representation size s, v, and d, we map each (n, s, v, d) ∈
N4 to a different security parameter N ∈ N by using a reasonable pairing function. We define the
prior generator G by using the above construction with respect to (n, s, v, d) reconstructed from a
security parameter N , where the input for a target function is regarded as a part of seeds for G and
outputted directly to avoid reducing the stretch of G as employed by Blum et al. (1994). Then, for
any adversary A for G, we can construct a heurPAC learner on the uniform distribution as in the
case of AIOWF. Note that for the learner working in all settings of (n, ε, η), the adversary A must
work for all corresponding security parameters N , which is the main source of the “infinitely often”
security in Theorem 8.
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Organization of Appendices

In appendices, we present formal descriptions based on the sketch in the main text. In Appendix A,
we introduce additional preliminaries for the formal arguments. In Appendix B, we present the
proof of the basic facts introduced in Section 1. We present the formal argument of Sections 4.1
and 4.2 in Appendices C and D, respectively. In Appendix D.3, we also mention the corollaries
presented in Section 2.

Appendix A. Preliminaries

For each n ∈ N, we define [n] = {1, . . . , n}. For any binary string x ∈ {0, 1}n and k ∈ [n], let
x[k] denote a prefix x1 ◦ · · · ◦ xk. For a randomized algorithm A using r(n) random bits on n-bit
input, we use A(x; s) to refer to the execution of A(x) with random tape s for x ∈ {0, 1}n and
s ∈ {0, 1}r(n).
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We fix a proper binary encoding for circuits and identify a circuit with its binary encoding.
Additionally, we assume that (1) every binary string represents some circuit (by assigning invalid
encodings to the trivial circuit C(x) ≡ 0); and (2) zero-padding is available. These assumptions
allow us to assure that there exists a function es(·) such that any n-input circuit of size s(n) has a
binary representation of the length es(n) = O(s(n) log(s(n))) for any function s : N → N.

For any distribution D on binary strings, we use the notation x ← D to denote a random
sampling x according to D. For a finite set S, we also use the notation x ←u S to denote the
uniform sampling from S. For x ∈ {0, 1}∗, let D(x) ∈ [0, 1] be the probability that x is generated
according to D. For each m ∈ N, we also use the notation Dm to refer to the distribution on m-tuple
of strings where each element is selected independently and identically according to D. Herein, we
assume basic knowledge of probability theory, including union bound, Markov’s inequality, and
Hoeffding’s inequality.

For a function f : {0, 1}n → {0, 1}, we define its weight w(f) by #{x ∈ {0, 1}n : f(x) = 1}.
For any d ∈ N and function f : {0, 1}n → {0, 1}, we define a function f⊕d : {0, 1}dn → {0, 1} by

f⊕d(x(1), . . . , x(d)) =

d*

i=1

f(x(i)),

where x(i) ∈ {0, 1}n for each i ∈ [d].
In this paper, we may use {−1, 1} instead of {0, 1} to refer to a binary value, where −1 (resp. 1)

corresponds to 1 (resp. 0). In such a case, for a Boolean-valued function f : {0, 1}n → {−1, 1} and
α ∈ {0, 1}n, a Fourier coefficient of f on α is rewritten simply as %f(α) = Ex[f(x)χα(x)], where
χα(x) = (−1)x1α1+···+xnαn . We will also introduce the following notion of correlation-immune.

Definition 14 (Correlation-immune, Siegenthaler, 1984) For n,m ∈ N (m ≤ n), we say that a
function f : {0, 1}n → {0, 1} is m-th order correlation-immune if %f(α) = 0 for any α ∈ {0, 1}n
with 1 ≤ |α| ≤ m.

A.1. Weak Cryptography

In this section, we formally introduce other standard cryptographic primitives.

Definition 15 (Pseudorandom generator) Let Σ = {0, 1} be an alphabet set and s, ℓ : N → N
be polynomially-related functions. We say that G = {Gz : {0, 1}s(|z|) → {0, 1}ℓ(|z|)}z∈Σ∗ is an
auxiliary-input pseudorandom generator (AIPRG) if G is polynomial-time computable, s(n) < ℓ(n)
for any n ∈ N, and for any polynomial p and polynomial-time randomized algorithm A, there exists
an infinite subset ZA ⊆ Σ∗ such that for any z ∈ ZA,

++Pr
#
A(z,Gz(Us(|z|))) = 1

$
− Pr

#
A(z, Uℓ(|z|)) = 1

$++ < 1

p(|z|) .

Further, we say that G = {Gz : {0, 1}s(|z|) → {0, 1}ℓ(|z|)}z∈Σ∗6 is an infinitely-often pseudo-
random generator (io-PRG) if G satisfies the above conditions except for Σ = {1}.

Definition 16 (Pseudorandom function) Let Σ = {0, 1} be an alphabet set. We say that F =
{Fz : {0, 1}|z| × {0, 1}|z| → {0, 1}}z∈Σ∗ is an auxiliary-input pseudorandom function (AIPRF)

6. We may write {Gz}z∈Σ∗ as {Gn}n∈N in the case where Σ = {1}.
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if F is polynomial-time computable, and for any polynomial p and polynomial-time randomized
oracle machine A?, there exists an infinite subset ZA ⊆ Σ∗ such that for every z ∈ ZA,

++++ Pr
A,u∼{0,1}|z|

,
AFz(u,·)(z) = 1

-
− Pr

A,φ|z|

,
Aφ|z|(·)(z) = 1

-++++ <
1

p(|z|) ,

where φ|z| : {0, 1}|z| → {0, 1} denotes a truly random function.
Further, we say that F = {Fz : {0, 1}s(|z|) × {0, 1}m(|z|) → {0, 1}}z∈Σ∗ is an infinitely-often

pseudorandom function (io-PRF) if F satisfies the above conditions except for Σ = {1}.

Definition 17 (Distributional one-way function) Let s, ℓ : N → N be polynomials. We say that a
function f = {fn : {0, 1}s(n) → {0, 1}ℓ(n)}n∈N is an infinitely-often distributional one-way func-
tion (io-DistOWF) if there exists a polynomial p such that for all polynomial-time randomized algo-
rithms A, the statistical distance between

&
A(1n, fn(Us(n))), fn(Us(n))

'
and

&
Us(n), fn(Us(n))

'
is

greater than 1/p(n) for infinitely many n ∈ N.

Fact 1 (Goldreich et al., 1986; Håstad et al., 1999; Impagliazzo and Luby, 1989) The followings 1–
3 are equivalent:

1. AIOWF exists;

2. AIPRG exists; and

3. AIPRF exists.

Further, the followings 4–7 are equivalent:

4. io-OWF exists;

5. io-PRG exists;

6. io-PRF exists; and

7. io-DistOWF exists.

Appendix B. Basic Facts on HeurPAC Learning

In this section, we formally state and prove basic facts for heurPAC learning in Section 1. In fact,
proofs in this section are somewhat fundamental, so the reader may skip them.

B.1. Natural Representation of Target Functions

We show that our formulation in Definition 1 captures several natural distributions on target func-
tions. Generally speaking, Theorem 18 shows that we can find a representation for our formulation
whenever such a natural distribution is approximately simulated by an efficient algorithm.

Theorem 18 Let s : N → N be a function and C = {Cn}n∈N be a concept class, where Cn ⊆
{f : {0, 1}n → {0, 1}} and every f ∈ Cn has representation with a length of at most s(n) for
each n ∈ N. Let R = {Rn}n∈N be any (natural) family of distributions, where Rn is a distribution
on Cn. Suppose there exists a randomized machine M which approximately simulates R in the
following sense:

18
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• for any n ∈ N, M(n, s(n)) outputs a target function f ∈ Cn or a special symbol ⊥ (which
represents “abortion”) in time p(n, s(n)) where p represents a polynomial;

• there exist polynomials pu and pℓ such that for any n ∈ N and f ∈ Cn,

1

pℓ(n, s(n))
·Rn(f) ≤ Pr

M
[M(n, s(n)) outputs f ] ≤ pu(n, s(n)) ·Rn(f).

Let C ′ : {0, 1}p(n,s(n)) × {0, 1}n → {0, 1} be an evaluation defined by

C ′(r, x) =

.
f(x) if f ← M(n, s(n); r)

1 if ⊥ ← M(n, s(n); r).

A concept class C ′ defined by C ′ is heurPAC learnable iff C is heurPAC learnable with respect to
R, i.e., there exists a learner L satisfying the same conditions in Definition 1 except that a target
function is selected according to Rn for each input size n. The same relation also holds in heurPAC
learning on a fixed example distribution.

Further, if C is evaluated in polynomial-time, then C ′ is also evaluated in polynomial-time.

Proof First, we assume that there exists a heurPAC learner L for C with respect to R. Then, we
can construct a heurPAC learner L′ for C ′ as follows: on input (n, s(n), ε, δ, η), L′ first examines
whether a constant function 1 is ε-close to the target function with confidence error δ by looking
at O(ε−2 log δ−1) examples. Hence, we can assume that the target function is not a constant func-
tion 1. Then L′ executes L(n, s(n), ε, δ, η

pu(n,s(n))
) for the same example oracle and outputs L’s

hypothesis. Obviously, L′ halts in time poly(n, s(n), ε−1, δ−1, η−1).
Let B a set of “bad” functions L fails in learning in the above setting. By the choice of the

heuristic parameter, we have that
/

f∈B Rn(f) ≤ η
pu(n,s(n))

. Notice that L′ fails in learning only if
L also fails. Over the choice of a concept in C ′ (i.e., randomness for M ), such a “bad” function is
selected with probability at most

0

f∈B
Pr[M outputs f ] ≤

0

f∈B
Rn(f) · pu(n, s(n)) ≤ η.

In the opposite direction, we assume that there exists a heurPAC learner L′ for C ′. W.l.o.g., we
can assume that L′ succeeds in learning a constant function 1, which is the case where M outputs ⊥.
Then, we can construct a heurPAC learner L for C as follows: On input (n, s(n), ε, δ, η), L executes
L′(n, s(n), ε, δ, η

pℓ(n,s(n))
) with the same example oracle and outputs L′’s hypothesis. Obviously, L

halts in time poly(n, s(n), ε−1, δ−1, η−1).
Let B be a set of “bad” functions L′ fails in learning in the above setting. Notice that L fails in

learning only if L′ also fails, i.e., a target function is contained in B. By the choice of the heuristic
parameter, we have that

η

pℓ(n, s(n))
≥

0

f∈B
Pr[M outputs f ] ≥

0

f∈B

Rn(f)

pℓ(n, s(n))
.

This implies that
/

f∈B Rn(f) ≤ η. This proof also holds even in learning on a fixed distribution.
If C is evaluated in polynomial-time, then C ′ is also evaluated in polynomial-time because

executions of f ← M(n, s(n); r) and f(x) halt in polynomial-time.
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B.2. Equivalence to Average-Case Prediction Model

In this part, we extend the equivalence property between the capabilities of the PAC learning model
and the prediction model (Haussler et al., 1988) to average-case learnability. First, we introduce a
natural average-case extension of the prediction model (Pitt and Warmuth, 1990) as follows.

Definition 19 (Average-case prediction) Let s : N → N and C be an s(n)-represented concept
class. We say that C is polynomially predictable on average if there exists a polynomial m :=
m(n, s(n), ε−1) and a randomized algorithm P such that for any n ∈ N, ε ∈ (0, 1], and distribution
D on {0, 1}n, P satisfies the following expression:

Pr
P,f∼{0,1}s(n)

x(1),...,x(m),x∗←D

,
P
1
n, s(n), ε,

1
x(1), f(x(1))

2
, . . . ,

1
x(m), f(x(m))

2
, x∗

2
= f(x∗)

-
≥ 1− ε

and halts in polynomial-time in n, s(n), and ε−1.

Note that we refer to x∗ in the above expression as a challenge. First, we show the following
equivalence.

Theorem 20 A concept class C is heurPAC learnable iff C is polynomially predictable on average.

Proof First, we assume that L is a heurPAC learner for C . We construct an average-case predictor
P as follows: on input n, s(n) ∈ N and the error parameter ε, P executes L in the settings of an
accuracy parameter ε/3, a confidence parameter ε/3, and a heuristic parameter ε/3, and then P
outputs the value of L’s hypothesis on the challenge as P ’s prediction. Because L halts in time
poly(n, s(n), ε−1), it is enough to take poly(n, s(n), ε−1) examples. Thus, P also halts in time
poly(n, s(n), ε−1).

Notice that if P fails in the prediction, then at least one of the following three events occurs:
(1) a target function is hard to learn for L; (2) a target function is not a hard instance, but L fails in
producing a good hypothesis ε/3-close to the target function; or (3) L succeeds in producing such a
good hypothesis h, but h is inconsistent with the target function on the challenge. By the choice of
parameters for L, each event will occur with probability at most ε/3. Thus, by the union bound, the
failure probability of P is at most 3 · ε/3 = ε.

In the opposite direction, we assume that an algorithm P polynomially predicts C on average.
We construct a heurPAC learner L as follows: on input (n, s(n), ε, δ, η), L outputs a hypothesis
hXm,r defined by

hXm,r(x) = P (n, s(n), εδη, Xm, x; r),

where Xm = ((x(1), b(1)), . . . , (x(m), b(m))) denotes L’s example set of size m = m(n, s(n), (εδη)−1),
and r ∈ {0, 1}poly(n,s(n),1/εδη) denotes randomness for P selected by L.

By the correctness of P , we have that

Pr
f,r,Xm,x

[hXm,r(x) ∕= f(x)] ≤ εδη,

where each example in Xm and x are selected according to an example distribution D.
By Markov’s inequality, we obtain:

Pr
f

!
Pr

r,Xm,x
[hXm,r(x) ∕= f(x)] ≥ εδ

"
≤ η.
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By applying Markov’s inequality again, we have that for all but η fraction of target functions f ,

Pr
r,Xm

!
Pr

x←D
[hXm,r(x) ∕= f(x)] ≥ ε

"
≤ δ.

Because P is computable in time poly(n, s(n), (εδη)−1), L can output the above hypothesis hXm,r

in time poly(n, s(n), ε−1, δ−1, η−1) by using the standard encoding.

Blum et al. (1994) proposed the following weak version of the average-case prediction model.

Definition 21 (Average-case weak prediction) Let s : N → N and C be an s(n)-represented
concept class. We say that C is weakly predictable on average if there exist polynomials m :=
m(n, s(n)) and p(n, s(n)) and a randomized algorithm P such that for any n ∈ N and distribution
D on {0, 1}n, P satisfies the expression:

Pr
P,f∼{0,1}s(n)

x(1),...,x(m),x∗←D

,
P
1
n, s(n),

1
x(1), f(x(1))

2
, . . . ,

1
x(m), f(x(m))

2
, x∗

2
= f(x∗)

-
≥ 1

2
+

1

p(n, s(n))

and halts in polynomial-time in n and s(n).

Note that we refer to the above function p as an advantage of P . Herein, we present a clear
relation between average-case weak predictability and weak heurPAC learnability as follows.

Theorem 22 For any s(n)-represented concept class C , the following statements are equivalent:

1. C is weakly predictable on average and

2. C is heurPAC learnable in time poly(n, s(n)) for fixed parameters ε, δ, and η satisfying the
expression:

ε ≤ 1

2
− 1

pε(n, s(n))
, η ≤ 1− 1

pη(n, s(n))
, and δ ≤ 1− 1

pδ(n, s(n))
,

where pε, pη, and pδ are some polynomials.

The above equivalence also holds even on a fixed example distribution.

Proof (1=⇒2) Let P be a prediction algorithm for C and p(n, s(n)) be its advantage. Then we
construct a weak heurPAC learner L as follows: on input n and s(n), L outputs a hypothesis h
defined by

hXm,r(x) = P (n, s(n), Xm, x; r) ,

where Xm denotes L’s example set of size m and r denotes randomness for P selected by L.
Obviously, L halts in polynomial-time in n and s(n).

Because L executes P in the valid settings for the same target function f and the example
distribution D, we have that

Pr
f,r,Xm,x

[hXm,r(x) ∕= f(x)] ≤ 1

2
− 1

p(n, s(n))
.
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By Markov’s inequality,

Pr
f,r,Xm

!
Pr

x←D
[hXm,r(x) ∕= f(x)] ≥ 1

2
− 1

2p(n, s(n))

"
≤

1
2 − 1

p(n,s(n))

1
2 − 1

2p(n,s(n))

= 1− 1

p(n, s(n))− 1

≤ 1− 1

p(n, s(n))
.

Let Ef,r,Xm denote the above event that Prx[hXm,r(x) ∕= f(x)] ≥ 1
2 − 1

2p(n,s(n)) . By applying
Markov’s inequality again,

Pr
f

!
Pr

r,Xm
[Ef,r,Xm ] ≥ 1− 1

2p(n, s(n))

"
≤

1− 1
p(n,s(n))

1− 1
2p(n,s(n))

= 1− 1

2p(n, s(n))− 1

≤ 1− 1

2p(n, s(n))
.

Therefore, the heurPAC learner L achieves the following parameters

ε =
1

2
− 1

2p(n, s(n))
, η = 1− 1

2p(n, s(n))
, and δ = 1− 1

2p(n, s(n))
.

(2=⇒1) Let L be a weak heurPAC learner for C with parameters ε, η, and δ as in Theorem 22.
First, we apply the standard repeating and testing technique to reduce the confidence parameter
to 2−(ns(n)+1) with multiplicative loss of time poly(n, s(n)). For details, refer to (Haussler et al.,
1988, Lemma 3.4). Thus, we assume that δ = 2−(ns(n)+1) in this proof.

We construct a weak predictor P for C as follows: on input n and s(n), P takes enough ex-
amples to successfully execute L(n, s(n)). If L outputs some hypothesis h, then P estimates the
probability ph that h agrees with the target function under the example distribution within accuracy
±1/2pε(n, s(n)) with probability at least 1 − 2ns(n)+1. Note that, by the standard empirical esti-
mation, it is enough to take M = O(pε(n, s(n))

2ns(n)) = poly(n, s(n)) examples. If the estimate
p̃ is at least 1/2 + 1/2pε(n, s(n)), then P outputs h(x∗), otherwise outputs a random bit as P ’s
prediction. It can be verified easily that the number of required examples is at most poly(n, s(n)),
and P halts in time poly(n, s(n)).

At first we assume that L always succeeds in learning at least (1−η) fraction of target functions
(i.e., δ = 0) and in estimating ph within error ±1/2pε(n, s(n)) with probability 1. Let f denote
a target function. If L outputs a hypothesis h that is ε-close to f , then the estimate p̃ satisfies
the condition p̃ ≥ (1 − ε) − 1/2pε(n, s(n)) ≥ 1/2 + 1/2pε(n, s(n)), so such an h is used for
prediction. On the other hand, if a hypothesis h passes the test, then such an h must satisfy the
condition ph + 1/2pε(n, s(n)) ≥ 1/2 + 1/2pε(n, s(n)), i.e., ph ≥ 1/2. Even if h does not pass the
test, P makes a prediction at random. Thus, for any target function, P succeeds in predicting with
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probability at least 1/2. Therefore, P ’s success probability is at least

(1− η)(1− ε) + η · 1
2
≥ (1− η)

3
1

2
+

1

pε(n, s(n))

4
+ η · 1

2

≥ 1

2
+

1− η

pε(n, s(n))

≥ 1

2
+

1

pη(n, s(n))pε(n, s(n))
.

Even if we take the confidence errors of L and the estimation into account, the error is bounded
above by 2−ns(n), which is negligible in n and s(n). Therefore, the above P still succeeds in
predicting with probability at least 1/2 + 1/poly(n, s(n)).

Note that the above argument does not depend on a specific example distribution, so it holds
even in learning on a fixed distribution.

Appendix C. Heuristic PAC Learning Ω(logn)-Junta Functions

In this section, we show the following learnability for junta functions based on the sketch in Sec-
tion 4.1. For convenience, we apply {−1, 1} to a binary value instead of {0, 1} in Appendix C.

Theorem 3 For any k(n) = Ω(log n), k(n)-junta functions are heurPAC learnable on the uniform
distribution.

As stated in Section 4.1, the essential task for the above result is to find all relevant coordinates
of the target junta function. Thus, we only focus on the essential task in this section. For the sake
of simplicity, we also assume that a learner with access to EX(f, Un) can simulate EX(f |ρ, Un−|I|)

for any subset I ⊆ [n] of size at most k and restriction ρ on I in time poly(n, 2k).
Before presenting the main algorithm, we will first introduce a subroutine Find as Algorithm 1.

When Find is given oracle access to EX(f, Un) for a k-junta function f : {0, 1}n → {−1, 1}
and a threshold m (≤ k), it determines relevant coordinates by identifying all non-zero Fourier
coefficients of order of up to m. Formally, Find satisfies Lemma 23.

Algorithm 1 Find(n, k,m, δ)

Input : n, k,m ∈ N, δ ∈ (0, 1], and oracle access to EX(f, Un)
Output: a subset of relevant coordinates I ⊆ [n]

1 let I = ∅ and M = ⌈22k+1(m lnn+ ln δ−1 + ln 2)⌉
2 forall α ∈ {0, 1}n with 1 ≤ |α| ≤ m do
3 take samples (x(1), b(1)), . . . , (x(M), b(M)) ← EX(f, Un)

4 estimate %f(α) by f̃(α) = 1
M

/M
i=1 b

(i) · χα(x
(i))

5 if
+++f̃(α)

+++ ≥ 3 · 2−(k+1) then
6 add all coordinates j ∈ [n] satisfying that αj ∕= 0 to I
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Lemma 23 For any input n, k,m ∈ N, δ ∈ (0, 1] and k-junta function f : {0, 1}n → {−1, 1},
Algorithm 1 (Find) outputs a subset I ⊆ [n] of all coordinates i satisfying the following condition:

there exists α ∈ {0, 1}n such that (i) αi ∕= 0, (ii) |α| ≤ m, and (iii) %f(α) ∕= 0,

with probability at least 1− δ over the choice of examples by EX(f, Un).
Further, the running time is bounded above by

nm ·O
1
n · 22k(m log n+ log δ−1)

2
≤ nm · poly(n, 2k, log δ−1).

Proof This lemma mainly follows from the following basic fact: for any k-junta function, if %f(α) ∕=
0 for α ∈ {0, 1}n, then

+++ %f(α)
+++ = |E[f(x)χα(x)]| = |2Pr[f(x) = χα(x)]− 1| ≥ 2−(k−1),

where the last inequality holds because f(x) and χα(x) depend only on at most k coordinates. By
Hoeffding’s inequality, Find estimates each Fourier coefficient within an estimation error ±2−(k+1)

with failure probability at most 2 exp
&
−2M2−2(k+1)

'
≤ δ/nm as indicated in line 4. Note that

Find estimates all Fourier coefficients on α with 1 ≤ |α| ≤ m, and the number of such α is at
most nm. Thus, with probability at least 1 − δ, α ∈ {0, 1}n passes the test in line 5 if and only if
α satisfies the conditions (ii) and (iii). Because Find puts i satisfying the condition αi ∕= 0 into I
for only α that passed the test, I consists of i satisfying the condition in the lemma.

For each α ∈ {0, 1}n, Find takes at most O(nM) = O
&
n · 22k(m log n+ log δ−1)

'
time.

Since the number of α with 1 ≤ |α| ≤ m is at most nm, the running time of Find is bounded above
by

nm ·O
1
n · 22k(m log n+ log δ−1)

2
.

We use the above subroutine with a proper threshold m depending on η repeatedly to find all
relevant coordinates of f as follows: Let I = ∅. We find some relevant coordinates by using Find
with the threshold m and putting them into I . Then, we find other relevant coordinates and put them
into I by applying Find again with respect to the same threshold m and a restricted function f |ρ for
all restrictions ρ on I . We repeat this procedure until I gets unchanged.

Notice that the above strategy does not depend on the position of relevant and irrelevant co-
ordinates. Thus, unless Find fails at some stage, it corresponds to the procedure in Definition 13
for a base function of a target function. Therefore, it is enough to establish the upper bound on
the fraction of m-elusive functions in k-input functions to guarantee the success probability of the
above strategy over the choice of target junta functions. For this reason, we will prove the following
technical lemma in the next section.

Lemma 24 For any n,m ∈ N with 2 ≤ m ≤ n, the fraction of n-input m-elusive functions is
bounded above by

3
m+ 1

2n+1

4m−1
2

.
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Algorithm 2 A Heuristic Learner for k-Junta Functions (HeurJunta)
Input : input size n ∈ N, parameters δ, η ∈ (0, 1], and oracle access to EX(f, Un)
Output: the set I of relevant coordinates for f

7 let I = ∅ find the minimum m ∈ N satisfying that 2 ≤ m ≤ k − 1 and

3
m+ 1

2k+1

4m−1
2

≤ η, (1)

if not, then set m := k
8 while |I| < k do
9 let Iprev := I

10 forall restrictions ρ on I do
11 Inew ←Find(n− |Iprev|, k,m, δ

k2k−1 ) with oracle access to EX(f |ρ, Un−|Iprev |)

12 (if any) add all elements in Inew to I

13 if I = Iprev then break;
14 return I

Assume that Lemma 24 is correct at first. Then the heuristic algorithm to find relevant coordi-
nates can be obtained in accordance with the above strategy as shown in Algorithm 2.

We show the following theorem on HeurJunta, which immediately implies Theorem 3.

Theorem 25 Assume that k := k(n) ≥ c log n for sufficiently large n, where c > 0 is a constant.
On any input (n, δ, η), Algorithm 2 (HeurJunta) outputs a set of all relevant coordinates for at least
(1− η) fraction of k-junta functions with probability at least 1− δ in time

η−
4
c · poly(n, 2k, ln δ−1) ≤ poly(n, 2k, ln δ−1, η−1).

Proof We only consider the case where n is sufficiently large to satisfy the condition k ≥ c log n.
For each loop in lines 8–13, the size of I increases by at least one. When the size of I reaches

k, then HeurJunta jumps out of the loop. Thus, the loop is repeated at most k times. For each loop,
Find is executed at most 2|I| ≤ 2k−1 times. Therefore, by the choice of confidence for Find, all
(at most k2k−1) executions of Find will succeed with probability at least 1 − δ. In the subsequent
argument, we assume that all executions of Find will succeed.

First, we show the correctness of HeurJunta. If m = k, then Find estimates all Fourier coeffi-
cients of order up to k and finds all relevant coordinates for any target k-junta functions. Thus, we
only need to consider the case where m ≤ k − 1.

Note that HeurJunta is not affected by the position of relevant coordinates. By assuming that
Find does not fail, HeurJunta fails in finding all relevant coordinates for a target k-junta function
f if and only if the base function of f is m-elusive. By Lemma 24, the fraction of such m-elusive
functions in k-input base functions is at most

3
m+ 1

2k+1

4m−1
2

≤ η.
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The remaining part is to give an upper bound on the running time of HeurJunta. We can assume
that m satisfies the condition m2 ≤ 2m (i.e., m ≥ 4), otherwise HeurJunta halts in time at most
k2k−1 · poly(n, 2k, log δ−1) = poly(n, 2k, log δ−1) by Lemma 23.

In both cases where m ≤ k − 1 and m = k, the inequality (1) is not satisfied by m − 1. Thus,
we have that 3

2k

m

4m

< η−2 · 22−m ·
3
2k

m

42

< 22kη−2,

and

mm =

3
m2

m

4m

≤
3
2m

m

4m

≤
3
2k

m

4m

< 22kη−2.

From the above two inequalities, we obtain

2km < 22kη−2 ·mm < 24kη−4.

Remember that 2k ≥ nc holds. By Lemma 23, the running time of HeurJunta is bounded above by

k · 2k−1 · nm · poly(n, 2k, log δ−1) ≤ 2
km
c · poly(n, 2k, log δ−1)

≤ 2
4k
c η−

4
c · poly(n, 2k, log δ−1)

≤ η−
4
c · poly(n, 2k, log δ−1).

C.1. A Proof of Lemma 24

As mentioned in Section 4.1, our basic strategy is to give a lower bound on the minimum distance
of m-elusive functions, where the minimum distance of a class of functions is defined as follows.

Definition 26 (Minimum distance) The Hamming distance d(f, g) between two functions f, g :
{0, 1}n → {−1, 1} is given by d(f, g) = #{x ∈ {0, 1}n : f(x) ∕= g(x)}.

For a class Cn of n-input functions, the minimum distance of Cn is defined by

min
f,g∈Cn:f ∕=g

d(f, g).

We will use the following useful facts on m-th correlation-immune functions.

Fact 2 (O’Donnell, 2014, Corollary 6.14) A function f : {0, 1}n → {−1, 1} is m-th order correlation-
immune iff f ’s mean is unchanged by any restriction on a set of size by at most m.

Lemma 27 If f : {0, 1}n → {−1, 1} is m-th order correlation-immune, then for any restriction ρ
on the set of size i (≤ m),

w(f |ρ) =
w(f)

2i
.

Further, w(f) = 2m ·M for some M ∈ N ∪ {0} whenever f is m-th order correlation-immune.
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Proof Let ρ be an arbitrary restriction on the set of size i. From Fact 2 and simple calculation, we
have that

1− 2−n+1 · w(f) = E[f ]
(Fact 2)
= E[f |ρ] = 1− 2−n+i+1 · w(f |ρ).

Thus, w(f |ρ) = 2−iw(f) holds. By applying this for i = m, we have that w(f) = 2m · w(f |ρ).

As a first step, we present a lower bound on the minimum distance of correlation-immune func-
tions.

Lemma 28 For m ≥ 2, the minimum distance of m-th order correlation-immune functions is
greater than m+ 1.

Proof For contradiction, we assume that there exist two distinct functions f, f ′ : {0, 1}n →
{−1, 1} which are m-th order correlation-immune and their Hamming distance is at most m + 1.
In other words, there exist ℓ (≤ m+ 1) distinct elements x(1), . . . , x(ℓ) ∈ {0, 1}n such that f takes
a different value from f ′ on only x(1), . . . , x(ℓ).

From Lemma 27, there exists M ∈ N ∪ {0} such that w(f ′) = 2mM . Because the distance
between f and f ′ is at most m+ 1, we have that

2m(M − 1) < 2mM − (m+ 1) ≤ w(f) ≤ 2mM + (m+ 1) < 2m(M + 1),

where the first and last inequalities hold because m ≥ 2. Thus, by Lemma 27, w(f) = 2mM =
w(f ′).

For each j ∈ [ℓ − 1], we can take ij ∈ [n] such that x(ℓ)ij
∕= x

(j)
ij

because x(ℓ) ∕= x(j). Let

I = {i1, . . . , iℓ−1}. Now we define a restriction ρ on I by ρ(i) = x
(ℓ)
i for each i ∈ I . Because

|I| ≤ m, we have that w(f ′|ρ) = w(f ′) · 2−|I| and w(f |ρ) = w(f) · 2−|I| by applying Lemma 27.
From the definition, ρ is inconsistent with all of x(1),. . . , x(ℓ−1). Therefore, f |ρ takes a different

value from f ′|ρ on only x(ℓ). This implies that either w(f |ρ) = w(f ′) · 2−|I| + 1 or w(f |ρ) =
w(f ′) · 2−|I| − 1. In any case, we have that

w(f |ρ) = w(f ′) · 2−|I| ± 1 = w(f) · 2−|I| ± 1 ∕= w(f) · 2−|I| = w(f |ρ),

which is a contradiction.

Herein, we show the lower bound on the minimum distance of elusive functions.

Theorem 29 For m ≥ 2, the minimum distance of m-elusive functions is greater than m+ 1.

Proof Fix two distinct n-input m-elusive functions f and g arbitrarily. Let I and J be the sets
yielded by the procedure in Definition 13 for f and g, respectively. Note that I (resp. J) is strictly
contained in the set of relevant coordinates for f (resp. g). For any restriction ρ on I (resp. J),
every α with 1 ≤ |α| ≤ m satisfies the condition (f |ρ(α) = 0 (resp. (g|ρ(α) = 0), otherwise, another
element i satisfying αi ∕= 0 must be added to I (resp. J). This means that f (resp. g) becomes m-th
order correlation-immune by applying any restriction on I (resp. J).

We demonstrate the theorem by using case studies on I and J .
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(i) I = J . In this case, for any restriction ρ on I , f |ρ and g|ρ are both m-th order correlation-
immune. However, because f ∕= g, one of such restrictions ρ must satisfy f |ρ ∕= g|ρ. From
Lemma 28, the Hamming distance between f |ρ and g|ρ must be greater than m+ 1, so are f and g.

(ii) I ∕= J . Remark that the procedure in Definition 13 does not depends on the order of the
choice of α and ρ, so we can fix the order. Then at some stage, either of (a) (f |ρ(α) ∕= 0 and
(g|ρ(α) = 0 or (b) (f |ρ(α) = 0 and (g|ρ(α) ∕= 0 must occur, otherwise, I = J . W.l.o.g., we can
assume that the event (a) occurs. In other words, there exist a set S ⊆ I ∩ J , a restriction ρ on
S, and α ∈ {0, 1}n−|S| such that (f |ρ(α) ∕= 0 and (g|ρ(α) = 0. For convenience, we will use the
following notations: n′ = n− |S|, f ′ ≡ f |ρ, and g′ ≡ g|ρ.

Let T = {i ∈ [n′] : αi ∕= 0}. Because all i ∈ T is added to I by performing the procedure,
T ⊆ I \ S holds. Note that the value of χα is determined only by a partial assignment to T . Now
we define integers M+

f ′ ,M
−
f ′ ,M

+
g′ , and M−

g′ as follows.

M+
f ′ = #{x ∈ {0, 1}n′

: χα(x) = 1 and f ′(x) = −1}

M−
f ′ = #{x ∈ {0, 1}n′

: χα(x) = −1 and f ′(x) = −1}

M+
g′ = #{x ∈ {0, 1}n′

: χα(x) = 1 and g′(x) = −1}

M−
g′ = #{x ∈ {0, 1}n′

: χα(x) = −1 and g′(x) = −1}.

By a simple calculation,

%f ′(α) = Ex∼{0,1}n′ [f ′(x)χα(x)] = 2−(n′−1)
1
M−

f ′ −M+
f ′

2

%g′(α) = Ex∼{0,1}n′ [g′(x)χα(x)] = 2−(n′−1)
1
M−

g′ −M+
g′

2
.

Therefore, we have that M−
f ′ ∕= M+

f ′ and M−
g′ = M+

g′ .
For any restriction ρ+ on I \ S satisfying χα|ρ+ = 1; notice that f ′|ρ+ (= (f |ρ)|ρ+) is m-th

order correlation-immune, thus, w(f ′|ρ+) = 2m · Mρ+ for some Mρ+ ∈ N ∪ {0} by Lemma 27.
This implies that

M+
f ′ =

0

ρ+on I\S:
χα|ρ+=1

w(f ′|ρ+) =
0

ρ+on I\S:
χα|ρ+=1

2mMρ+ .

Therefore, M+
f ′ is divisible by 2m. By the same argument, M−

f ′ is also divisible by 2m. Because

M+
f ′ ∕= M−

f ′ , we have that
+++M+

f ′ −M−
f ′

+++ ≥ 2m. Thus, the Hamming distance between f ′ and g′ is
bounded as follows.

d(f ′, g′) ≥
+++M+

f ′ −M+
g′

++++
+++M−

f ′ −M−
g′

+++ ≥
+++M+

f ′ −M+
g′ −

1
M−

f ′ −M−
g′

2+++ =
+++M+

f ′ −M−
f ′

+++ ≥ 2m.

Therefore, the Hamming distance between f and g is also at least 2m > m+ 1 for m ≥ 2.

Theorem 29 implies Lemma 24 as follows.
Proof (Lemma 24) For each n-input function f , we define a Hamming ball Bf of radius ⌊m+1

2 ⌋ as

Bf =

5
g : {0, 1}n → {−1, 1} | d(f, g) ≤

6
m+ 1

2

78
.
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Then for any n-input function f , the size (volume) V of Bf is bounded below as follows.

V =

⌊m+1
2

⌋0

i=0

3
2n

i

4
≥

3
2n

⌊m+1
2 ⌋

4
≥

9
2n

⌊m+1
2 ⌋

:⌊m+1
2

⌋

≥
3

2n+1

m+ 1

4m−1
2

.

Let Nn,m be the number of n-input m-elusive functions. From Theorem 29, for any two distinct n-
input m-elusive functions f and g, Vf and Vg are disjoint, otherwise, d(f, g) ≤ ⌊m+1

2 ⌋+ ⌊m+1
2 ⌋ ≤

m+ 1. Thus, we have that

22
n ≥ Nn,m · V ≥ Nn,m ·

3
2n+1

m+ 1

4m−1
2

.

Hence, we can conclude that

#(n-input m-elusive functions)
#(n-input functions)

=
Nn,m

22n
≤

3
m+ 1

2n+1

4m−1
2

.

Appendix D. Weak Cryptography and HeurPAC Learnability

In this section, we show the following main theorem and its corollaries. Note that Theorems 6 and 8
immediately follow from Theorem 30 and Fact 1.

Theorem 30 For any class C evaluated in polynomial-time, the followings hold:

1. if C is not heurPAC learnable, then AIPRG exists and

2. if C is not heurPAC learnable on the uniform distribution, then io-PRG exists.

Now, we introduce the following key lemma, which was originally introduced by Levin (1987).

Fact 3 (Levin’s version of XOR lemma) There exists a randomized algorithm Boost such that for
any function f : {0, 1}n → {0, 1} and distribution D on {0, 1}n, Boost is given d ∈ N, γ ∈ (0, 1],
a circuit C⊕ : {0, 1}dn → {0, 1} of size s, and oracle access to EX(f,D) as input, then it outputs
a (possibly randomized) circuit C : {0, 1}n → {0, 1} of size at most poly(n, d, s, γ−1) in time
poly(n, d, s, γ−1). Further, if the given C⊕ satisfies the expression:

Pr
x←Dm

[C⊕(x) = f⊕d(x)] ≥ 1

2
+ γ,

then, the resulting circuit C satisfies the expression:

Pr
C,x←D

[C(x) = f(x)] ≥ 1

2
+

γ
1
d

2
,

with high probability over the choice of examples.
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Proof Refer to (Goldreich et al., 2011, Sections 2 and 3). Note that their construction algorithm in
the XOR lemma (Goldreich et al., 2011, Lemma 2) works even in the case where ε is given as input
(instead of a fixed function). Fact 3 is shown by setting the function ε in the XOR lemma to γ in the
above statement.

Note that the failure probability of Boost can be reduced to arbitrary δ within multiplicative loss
of time O(log δ−1) by applying the standard repeating and testing technique. Thus, for the sake of
simplicity, we assume that Boost succeeds in finding a circuit C as in Fact 3 with probability 1.

D.1. The Case of AIPRG

First, we introduce a natural universal AIPRG as follows.

Definition 31 An auxiliary-input function UC = {UCz : {0, 1}n(|z|) → {0, 1}n(|z|)+1}z∈{0,1}∗ ,
where n(|z|) = maxn ∈ N : en2(n) · (n+ 1) ≤ |z|, is given by

UCz(x) = C(1)
z (x) ◦ · · · ◦ C(n+1)

z (x),

where z = C
(1)
z ◦ · · · ◦ C(n+1)

z ◦ zleft, each C
(i)
z ∈ {0, 1}en2 (n) (regarded as an n-input circuit of

size n2), and zleft ∈ {0, 1}|z|−en2 (n)·(n+1).

Then we can restate Theorem 30 (1) and present a formal proof as follows.

Theorem 32 Let C be a concept class with a polynomial-time evaluation C : {0, 1}s(n)×{0, 1}n →
{0, 1}. If UC (in Definition 31) is not AIPRG, then C is heurPAC learnable.

Proof By the assumption that UC is not AIPRG, there exist a polynomial-time adversary7 A and a
function γ(n) = poly−1(n) such that for all z ∈ {0, 1}∗,

Pr[A(z, UCz(Un)) = 1]− Pr[A(z, Un+1) = 1] ≥ γ(n).

We consider heurPAC learning on the setting of input size n, accuracy parameter ε, heuristic
parameter η, and example distribution D on {0, 1}n. Remark that we will construct the heurPAC
learner with non-negligible confidence error in n, s(n), ε−1, and η−1, which can be improved to
arbitrary δ by applying the standard repeating and testing method with multiplicative loss of time
ln δ−1 · poly(n, s(n), ε−1, η−1). For a more detailed explanation, refer to (Haussler et al., 1988,
Lemma 3.4).

The outline of the heurPAC learner is given as follows: first, we define an intermediate auxiliary-
input generator G based on C and the given ε and η, then we construct an adversary A′ for G based
on A, and finally for any but η fraction of target function f , we construct a hypothesis h that is
ε-close to f based on A′ with access to an example oracle. Note that the above G,A′ and h are
uniformly and efficiently constructible.

7. Strictly speaking, to remove the vertical bars for an absolute value in Definition 15, we test the behavior of the
adversary for the given z first, then take a negation according to the result.
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Now we define a generator G : {0, 1}d·(vs(n)+1)·n × {0, 1}vs(n) → {0, 1}vs(n)+1 as follows:

G
1
x(1,1) ◦ · · · ◦ x(1,d) ◦ x(2,1) · · · ◦ x(2,d) ◦ x(3,1) ◦ · · · ◦ x(vs(n)+1,d), f (1) ◦ · · · ◦ f (v)

2

=

d*

j=1

v*

ℓ=1

f (ℓ)
1
x(1,j)

2
◦ · · · ◦

d*

j=1

v*

ℓ=1

f (ℓ)
1
x(vs(n)+1,j)

2
,

where x(i,j) ∈ {0, 1}n for each (i, j) ∈ [vs(n)+1]×[d], v = ⌈nη ⌉, and d denotes an integer specified
later to satisfy that d ≥ ε−1 · g(d, n, s(n), ε−1, η−1) for a certain function g(d, n, s(n), ε−1, η−1) =
O(log(poly(d, n, s(n), ε−1, η−1))). Note that, as we will see below, g depends only on γ(·) and the
running time of C, and it is enough to take as d = ε−2 ·O(log n+ log s(n) + log η−1) at the end.

It can be easily verified that each bit of G is computable in time d · v · p(n, s(n)) for some
polynomial p depending on the computational complexity of C. Define N := N(d, n, s(n), ε, η) ∈
N as

N = max
;
vs(n),

<=
d · v · p(n, s(n))

>?
,

and another generator G′ : {0, 1}d(vs(n)+1)n × {0, 1}N → {0, 1}N+1 by

G′(X,u) = G(X,u[vs(n)]) ◦ uvs(n)+1 ◦ · · · ◦ uN .

Then each bit of G′ is computable in time d · v · p(n, s(n)) ≤ N2. Therefore, by embedding a given
X ∈ {0, 1}d(vs(n)+1)n into G′, we can construct N + 1 circuits C(1)

X , . . . , C
(N+1)
X ∈ {0, 1}en2 (N)

of input length N and size N2 such that

G′(X,u) = C
(1)
X (u) ◦ · · · ◦ C(N+1)

X (u).

Thus, by plugging C
(1)
X , . . . , C

(N+1)
X into A, we have that for any X ∈ {0, 1}d(vs(n)+1)n,

Pr
A,UN

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , G′(X,UN )) = 1
-
− Pr

A,UN+1

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , UN+1) = 1
-
≥ γ(N).

(2)
Define an adversary A′ for G as

A′(X, r) = A
1
C

(1)
X ◦ · · · ◦ C(N+1)

X , r ◦ r′
2
,

where X ∈ {0, 1}d(vs(n)+1)n, r ∈ {0, 1}vs(n)+1, r′ ∈ {0, 1}N−vs(n), and r′ is selected at random
by A. Then A′ is executed in time poly(N) = poly(d, n, s(n), ε−1, η−1) and satisfies the condition
that for any X ∈ {0, 1}d(vs(n)+1)n,

Pr
A′,f (1),...,f (v)

,
A′(X,G(X, f (1) ◦ · · · ◦ f (v))) = 1

-
− Pr

A′,Uvs(n)+1

#
A′(X,Uvs(n)+1) = 1

$

= Pr
A,Uvs(n),UN−vs(n)

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , G(X,Uvs(n)) ◦ UN−vs(n)) = 1
-

− Pr
A,Uvs(n)+1,UN−vs(n)

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , Uvs(n)+1 ◦ UN−vs(n)) = 1
-

= Pr
A,UN

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , G′(X,UN )) = 1
-
− Pr

A,UN+1

,
A(C

(1)
X ◦ · · · ◦ C(N+1)

X , UN+1) = 1
-

≥ γ(N), (3)
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where the last inequality follows from inequality (2).
Now, we assume that γ(N) > 2e−n. Note that we will deal with the other case where γ(N) ≤

2e−n later. For convenience, we will use the following notations:

pTR
X := Pr

A′,Uvs(n)+1

#
A′(X,Uvs(n)+1) = 1

$

pTR
D := EX←Dd(vs(n)+1)

#
pTR
X

$
= Pr

X←Dd(vs(n)+1)

A′,Uvs(n)+1

#
A′(X,Uvs(n)+1) = 1

$
,

where we regard (x(1), . . . , x(d(vs(n)+1))) ← Dd(vs(n)+1) as a concatenated string x(1) ◦ · · · ◦
x(d(vs(n)+1)).

For the example distribution D, we define “bad” target functions as follows: f ∈ {0, 1}s(n) is
“bad” iff for all i ∈ [v],

Pr
X←Dd(vs(n)+1),
A′,f (1),...,f (i−1),
f (i+1),...,f (v)

,
A′(X,G(X, f (1) ◦ · · · ◦ f (i−1) ◦ f ◦ f (i+1) ◦ · · · ◦ f (v))) = 1

-
−pTR

D ≤ γ(N)

2
.

Let BD ⊆ {0, 1}s(n) be the set of all “bad” target functions. Then we will show the following two
claims: (1) |BD| ≤ η · |{0, 1}s(n)| and (2) for any f /∈ BD, we can construct a hypothesis h that is
ε-close to f based on A′.

We show the first claim by contradiction. Assume that Prf∼{0,1}s(n) [f ∈ BD] > η. Then we
have that

γ(N) ≤ min
X∈SuppDd(vs(n)+1)

3
Pr

A′,f (1),...,f (v)

,
A′(X,G(X, f (1) ◦ · · · ◦ f (v))) = 1

-
− pTR

X

4
(∵ (3))

≤ Pr
X←Dd(vs(n)+1)

A′,f (1),...,f (v)

,
A′(X,G(X, f (1) ◦ · · · ◦ f (v))) = 1

-
− pTR

D

= Pr
,
∃i ∈ [v] s.t. f (i) ∈ BD

-
·
1
Pr

,
A′(X,G(X, f (1) ◦ · · · ◦ f (v))) = 1

+++∃i ∈ [v] s.t. f (i) ∈ BD

-
− pTR

D

2

+ Pr
,
∀i ∈ [v] f (i) /∈ BD

-
·
1
Pr

,
A′(X,G(X, f (1) ◦ · · · ◦ f (v))) = 1

+++∀i ∈ [v] f (i) /∈ BD

-
− pTR

D

2

≤ 1 · γ(N)

2
+ Pr

,
∀i ∈ [v] f (i) /∈ BD

-
· 1

≤ γ(N)

2
+ (1− η)v ≤ γ(N)

2
+ (1− η)

n
η ≤ γ(N)

2
+ e−n < γ(N),

which is a contradiction. Therefore, Prf∼{0,1}s(n) [f ∈ BD] ≤ η holds.
For the second claim, assume that the target function f is not “bad,” i.e., there exists i∗ ∈ [v]

such that

Pr
X←Dd(vs(n)+1),

A′,f (1),...,f (i∗−1),

f (i∗+1),...,f (v)

,
A′(X,G(X, f (1) ◦ · · · ◦ f (i∗−1) ◦ f ◦ f (i∗+1) ◦ · · · ◦ f (v))) = 1

-
−pTR

D >
γ(N)

2
.

(4)
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For heurPAC learning, the learner randomly guesses the above i∗. In the following, we assume
that the learner succeeds in guessing such an i∗, which occurs with probability at least 1/v.

We apply Yao’s next-bit generator to translate the distinguisher A′ into a prediction algorithm
for f⊕⊕ : {0, 1}dn → {0, 1} defined by

f⊕⊕(x(1), . . . , x(d)) =
d*

j=1

v*

ℓ=1

f (ℓ)
1
x(j)

2
, where f (i∗) ≡ f.

Notice that G can be rewritten by using f⊕⊕ as

G(x(1,1)◦· · ·◦x(1,d)◦· · ·◦x(vs(n)+1,1)◦· · ·◦x(vs(n)+1,d), f (1)◦· · ·◦f (i∗−1)◦f ◦f (i∗+1)◦· · ·◦f (v)))

= f⊕⊕(x(1,1), . . . , x(1,d)) ◦ · · · ◦ f⊕⊕(x(vs(n)+1,1), . . . , x(vs(n)+1,d))

Now, we construct a learning algorithm L⊕⊕ as Algorithm 3. For the sake of simplicity, we use the
notation F to refer to (f (1), . . . , f (i∗−1), f (i∗+1), . . . , f (v)).

Algorithm 3 L⊕⊕

Input : examples S =
@
(x(1), b(1)), . . . , (x(vs(n)), b(vs(n)))

A
, and a challenge x ← Dd,

where f⊕⊕ : {0, 1}dn → {0, 1} (defined as above w.r.t. F ←u {0, 1}s(n)(v−1)),
and (x(i), b(i)) ←EX(f⊕⊕, Dd).

Output: f⊕(x)

15 select i ←u [vs(n) + 1] and c∗, ci, . . . , cvs(n) ←u {0, 1}
16 let X = x(1) ◦ · · · ◦ x(i−1) ◦ x ◦ xi ◦ · · · ◦ x(vs(n))

17 execute b ← A′ &X, b(1) ◦ · · · ◦ b(i−1) ◦ c∗ ◦ ci, ◦ · · · ◦ cvs(n)
'

18 if b = 1 then return c∗, otherwise return 1− c∗

Then the running time of L⊕⊕ is bounded above by

O(dnvs(n)) + (the running time of A′) ≤ O(dnvs(n)) + poly(N),

and by the standard hybrid argument (for the details, refer to Goldreich, 2006),

Pr
L⊕⊕,S,x,F

#
L⊕⊕(S, x) = f⊕⊕(x)

$
≥ 1

2
+

γ(N)

2(vs(n) + 1)
.

Hence, we have that

Pr
L⊕⊕,S,F

!
Pr

x←D

#
L⊕⊕(S, x) = f⊕⊕(x)

$
≥ 1

2
+

γ(N)

4(vs(n) + 1)

"
≥ γ(N)

4(vs(n) + 1)
, (5)

otherwise,

Pr
L⊕⊕,S,x,F

#
L⊕⊕(S, x) = f⊕⊕(x)

$
< 1 · γ(N)

4(vs(n) + 1)
+

3
1

2
+

γ(N)

4(vs(n) + 1)

4
· 1 =

1

2
+

γ(N)

2(vs(n) + 1)
.

Now, consider a hypothesis constructed by the following procedure:
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1. guess i∗ satisfying inequality (4) by ĩ ←u [ℓ];

2. select F ←u {0, 1}s(n)(v−1);

3. get examples S =
@
(x(1), f(x(i))), . . . , (x(dvs(n)), f(x(dvs(n))))

A
← EX(f,D);

4. calculate each value f (ℓ)(x(i)) for i ∈ [dvs(n)] and ℓ ∈ [v]\ {̃i} and construct an example set
S′ of size vs(n) for a new target function f⊕⊕ under an example distribution Dd (note that
we need dvs(n) examples for the original f );

5. select a random seed r ∈ {0, 1}O(dnvs(n))+poly(N) for L⊕⊕;

6. define h⊕⊕
ĩ,r,S,F

: {0, 1}dn → {0, 1} by h⊕⊕
ĩ,r,S,F

(x) = L⊕⊕(S′, x; r).

Then under the condition that f /∈ BD,

Pr
ĩ
[̃i satisfies inequality (4)] ≥ 1

v
.

By applying inequality (5), with probability at least γ(N)
4(vs(n)+1) ,

Pr
x←Dd

[h⊕⊕
i∗,r,S,F (x) = f⊕⊕(x)] ≥ 1

2
+

γ(N)

4(vs(n) + 1)

for any i∗ satisfying inequality (4). Now we move on to the following step 7,

7. define a hypothesis h⊕
ĩ,r,S,F

: {0, 1}dn → {0, 1} by

h⊕
ĩ,r,S,F

(x) = h⊕⊕
ĩ,r,S,F

(x)⊕ f (1)⊕d
(x)⊕ · · ·⊕ f (̃i−1)

⊕d
(x)⊕ f (̃i+1)

⊕d
(x)⊕ · · ·⊕ f (v)⊕d

(x),

Then we can show that for any f /∈ BD,

Pr
x←Dd

[h⊕
ĩ,r,S,F

(x) = f⊕d(x)] = Pr
x←Dd

[h⊕⊕
ĩ,r,S,F

(x) = f⊕⊕(x)] ≥ 1

2
+

γ(N)

4(vs(n) + 1)
, (6)

with probability at least 1
v · γ(N)

4(vs(n)+1) over the choices of ĩ, r, S, and F .
Now assume that the learner can find such a good hypothesis h⊕ ≡ h⊕i∗,r,S,F satisfying in-

equality (6). Then by applying the algorithm Boost in the XOR lemma (Fact 3) on input d,
γ(N)/4(vs(n) + 1), and h⊕ with access to EX(f,D), the learner can also construct (possibly
randomized) h : {0, 1}n → {0, 1} such that

Pr
h,x←D

[h(x) ∕= f(x)] ≤ 1

2
− 1

2
·
3

γ(N)

4(vs(n) + 1)

4 1
d

.

To bound the above error probability, we will use the following simple inequality.

Claim 1 For any x > 0 and d > 0, if d ≥ lnx−1, then

1− x
1
d ≤ lnx−1

d
.
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Proof (Claim 1) The claim simply holds by rearranging the following inequality:
3
1− lnx−1

d

4d

≤ e− lnx−1
= x.

Now, assume that d ∈ N was selected to satisfy the expression that

d ≥ 1

ε
·
&
ln γ(N)−1 + ln(vs(n) + 1) + ln 4

'
. (7)

Then, we can show that h is ε/2-close to f as follows:

Pr
h,x←D

[h(x) ∕= f(x)] ≤ 1

2
− 1

2
·
3

γ(N)

4(vs(n) + 1)

4 1
d

≤ 1

2d
·
&
ln γ(N)−1 + ln(vs(n) + 1) + ln 4

'
(∵ Claim 1)

≤ ε

2
. (∵ (7))

To derandomize the hypothesis h, we simply select a binary string at random and embed it into h as
h’s randomness. By Markov’s inequality, such an h is ε-close to f with probability at least 1/2.

Remember that N ≤
√
d · poly(n, s(n), η−1) and γ−1(N) ≤ poly(N). Therefore, there exist a

constant c > 0 and a function l(n, s(n), η) = O(log n+ log s(n) + log η−1) such that

c

ε
ln d+

l(n, s(n), η)

ε
≥ 1

ε
·
&
ln γ(N)−1 + ln(vs(n) + 1) + ln 4

'
.

It is not hard to see that, for instance, the following choice of d is enough for inequality (7),

d = max

.<c
ε

>2
,

B
l(n, s(n), η)

ε

C2

, 49

D
= O

&
ε−2(log n+ log s(n) + log η−1)

'
.

Therefore, the running time of the above learning procedure is at most

dnvs(n) · poly(N) + poly

3
n, d, dnvs(n)poly(N),

4(vs(n) + 1)

γ(N)

4
≤ poly(n, s(n), ε−1, η−1),

and the confidence probability is at least

1

v
· γ(N)

4(vs(n) + 1)
· 1
2
.

By applying the standard repeating and testing technique, the confidence error can be reduced
to an arbitrary δ in time

O
&
v · 4(vs(n) + 1) · γ(N)−1 · ln δ−1

'
·poly(n, s(n), ε−1, η−1) ≤ poly(n, s(n), ε−1, η−1) · ln δ−1.

The remaining part is the case where γ(N) ≤ 2e−n. In this case, we have that

2n < en ≤ 2γ(N)−1 ≤ q(n, s(n), ε−1, η−1),

35



NANASHIMA

for some polynomial q. Thus, the learner can approximate a truth-table of arbitrary target function
f directly from examples (i.e., η = 0). Specifically, for each x ∈ {0, 1}n, the learner tries to find
the pair (x, f(x)) in M := ⌈2nε−1(n ln 2+ ln δ−1)⌉ examples from EX(f,D), and then the learner
outputs a hypothesis h consistent with the identified (partial) truth-table.

We show the correctness of the method as follows. If x ∈ {0, 1}n satisfies D(x) > ε/2n, then
from the standard probabilistic argument, (x, f(x)) is contained in M examples with probability at
least 1 − δ/2n. By the union bound, the learner can find all such x with probability at least 1 − δ.
In this case, the hypothesis h corresponds to f on every x satisfying D(x) > ε/2n. Thus, the error
probability is bounded above by 2n · ε/2n = ε on the distribution D. Obviously, the running time is
bounded above by the expression:

O(2n · nM) = 22n · poly(n, ε−1) · ln δ−1

≤ q(n, s(n), ε−1, η−1)2 · poly(n, ε−1) · ln δ−1 ≤ poly(n, s(n), ε−1, η−1) · ln δ−1.

D.2. The Case of io-PRG

In the case of io-PRG, we will use the famous pairing function at the core of the construction.

Fact 4 (Cantor’s pairing function, Cantor, 1878) Define a function NC : N× N → N by

NC(n,m) =
1

2
(n+m− 1)(n+m− 2) +m.

Then NC is a bijection, and its inverse function N−1
C (N) = (n,m) can be expressed as follows:

a =

B√
8N + 1− 3

2

C
, m = N − 1

2
(a2 + a), n = a+ 2−m.

We define a function NC,4 : N4 → N by NC,4(n1, n2, n3, n4) = NC(NC(NC(n1, n2), n3), n4).
From Fact 4, it is not hard to see the following:

• NC,4 is a bijection, and its inverse function N−1
C,4 is efficiently computable and

• maxi∈[4] ni ≤ NC,4(n1, n2, n3, n4) ≤ poly(n1, n2, n3, n4).

Now, we restate Theorem 30 (2) and present its formal proof as follows.

Theorem 33 Let C be a concept class with a polynomial-time evaluation C : {0, 1}s(n)×{0, 1}n →
{0, 1}. If C is not heurPAC learnable on the uniform distribution, then io-PRG exists.

Proof For each N ∈ N, let (n, s, v, d) = N−1
C,4(N). We define a generator G = {GN :

{0, 1}N2(N2+1)+N2 → {0, 1}N2(N2+1)+N2+1}N∈N as follows:

GN (x) =

E
FFG

FFH

x(1,1) ◦ · · · ◦ x(vs+1,d) ◦ xleft ◦
d*

j=1

v*

ℓ=1

f (ℓ)
1
x(1,j)

2
◦ · · · ◦

d*

j=1

v*

ℓ=1

f (ℓ)
1
x(vs+1,j)

2
if s = s(n)

0N
2(N2+1)+N2+1 otherwise
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where x(i,j) ∈ {0, 1}n for each (i, j) ∈ [vs(n) + 1] × [d], f (ℓ) ∈ {0, 1}s(n) for each ℓ ∈ [v],
xleft ∈ {0, 1}N2(N2+1)+N2−(dn(vs(n)+1)+vs(n)), and

x = f (1) ◦ · · · ◦ f (v) ◦ x(1,1) ◦ · · · ◦ x(1,d) ◦ x(2,1) · · · ◦ x(2,d) ◦ x(3,1) ◦ · · · ◦ x(vs+1,d) ◦ xleft.

Note that G is computable in time poly(N) + dv(vs + 1) · poly(n, s(n)) = poly(N). In the
remaining part, we show by contraposition that G is io-PRG if C is not heurPAC learnable on the
uniform distribution.

Let A be a polynomial-time adversary for G. Because NC,4(n, s, v, d) ≤ poly(n, s, v, d), there
exists a function γ(n, s, η−1, d) = poly−1(n, s, η−1, d) such that for each n, d ∈ N and η ∈ (0, 1],

Pr
#
A
&
1N , GN (UN4+2N2)

'
= 1

$
− Pr

#
A
&
1N , UN4+2N2+1

'
= 1

$
≥ γ(n, s(n), η−1, d),

where N = NC,4(n, s(n), ⌈nη ⌉, d).
The subsequent argument mainly follows the proof of Theorem 32. We consider heurPAC learn-

ing on a setting of input size n, accuracy parameter ε, and heuristic parameter η. Let v = ⌈nη ⌉ and
N = NC,4(n, s(n), v, d) as above.

For the sake of simplicity, let pTR denote the following probability:

pTR := Pr
A,UN4+2N2+1

#
A
&
1N , UN4+2N2+1

'
= 1

$
.

We define a “bad” target function f ∈ {0, 1}s(n) as a function satisfying the condition that for any
i ∈ [v],

Pr
A,UM ,

f (1),...,f (i−1),
f (i+1),...,f (v)

,
A(1N , GN (f (1) ◦ · · · ◦ f (i−1) ◦ f ◦ f (i+1) ◦ · · · ◦ f (v) ◦ UM )) = 1

-
−pTR ≤ γ(n, s(n), η−1, d)

2
,

where M := N4 + 2N2 − v · s(n). Let B be the set of such “bad” functions.
First, assume that γ(n, s(n), η−1, d) > 2e−n. Then by the same argument as Theorem 32, we

have that Prf∼{0,1}s(n) [f ∈ B] ≤ η.
Thus, we consider a case where f /∈ B, i.e., there exists at least one i∗ ∈ [v] such that

Pr
A,UM ,

f (1),...,f (i∗−1),

f (i∗+1),...,f (v)

,
A(1N , GN (f (1) ◦ · · · ◦ f (i∗−1) ◦ f ◦ f (i∗+1) ◦ · · · ◦ f (v) ◦ UM )) = 1

-
−pTR >

γ(n, s(n), η−1, d)

2
.

For heurPAC learning, the learner randomly guesses the above i∗. In the following, we assume
that the learner succeeds in guessing such an i∗, which occurs with probability at least ⌈n/η⌉−1.

Now, we apply Yao’s next bit generator to translate the distinguisher A into a weak learner L⊕⊕

for f⊕⊕ : {0, 1}dn → {0, 1} defined by

f⊕⊕(x(1), . . . , x(d)) =
d*

j=1

v*

ℓ=1

f (ℓ)
1
x(j)

2
, where f (i∗) ≡ f.
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Then, GN is rewritten by using f⊕⊕ as

GN (f (1)◦· · ·◦f (i∗−1)◦f◦f (i∗+1)◦· · ·◦f (v)◦x(1,1)◦· · ·◦x(1,d)◦· · ·◦x(vs(n)+1,1)◦· · ·◦x(vs(n)+1,d)◦xleft)
= x(1,1) ◦ · · · ◦ xleft ◦ f⊕⊕(x(1,1), . . . , x(1,d)) ◦ · · · ◦ f⊕⊕(x(vs(n)+1,1), . . . , x(vs(n)+1,d)).

Now, we construct a learning algorithm L⊕⊕ as Algorithm 4. Note that, for the sake of simplicity,
we use the notation F to refer to (f (1), . . . , f (i∗−1), f (i∗+1), . . . , f (v)) below.

Algorithm 4 L⊕⊕

Input : parameters n ∈ N, s(n) ∈ N, v = ⌈n/η⌉ ∈ N, and d ∈ N,
examples S =

@
(x(1), b(1)), . . . , (x(vs(n)), b(vs(n)))

A
, and a challenge x ← Ud

n ,
where f⊕⊕ : {0, 1}dn → {0, 1} (defined as above w.r.t. F ←u {0, 1}s(n)(v−1)),
and (x(i), b(i)) ←EX(f⊕⊕, Ud

n).
Output: f⊕⊕(x)

19 let N = NC,4(n, s(n), v, d)

20 select xleft ←u {0, 1}N4+2N2−(dn(vs(n)+1)+vs(n))

21 select i ←u [vs(n) + 1] and c∗, ci, . . . , cvs(n) ←u {0, 1}
22 let X = x(1) ◦ · · · ◦ x(i−1) ◦ x ◦ x(i) ◦ · · · ◦ x(vs(n)) ◦ xleft
23 execute b ← A

&
1N , X ◦ b1 ◦ · · · ◦ bi−1 ◦ c∗ ◦ ci, ◦ · · · ◦ cvs(n)

'

24 if b = 1 then return c∗, otherwise return 1− c∗

Note that the following distribution H0 is statistically identical to UN4+2N2+1:

H0 = GN (UN4+2N4)[N4+2N4−vs(n)] ◦ Uvs(n)+1.

Thus, by applying the standard hybrid argument, we can show that (for a more detailed discussion,
refer to Goldreich, 2006),

Pr
L⊕⊕,S,x,F

#
L⊕⊕(n, s(n), ⌈n/η⌉, d, S, x) = f⊕⊕(x)

$
≥ 1

2
+

γ(n, s(n), η−1, d)

2(⌈n/η⌉s(n) + 1)
.

We can also easily check that L⊕⊕ is executed in time poly(NC,4(n, s(n), v, d)) ≤ poly(n, s, η−1, d).
By applying the same algorithm in the proof of Theorem 32 with access to EX(f, Un), we can

translate the above L⊕⊕ into a randomized hypothesis h satisfying the condition that

Pr
h,x←Un

[h(x) ∕= f(x)] ≤ 1

2
− 1

2

3
γ(n, s(n), η−1, d)

4(⌈n/η⌉s(n) + 1)

4 1
d

,

with confidence probability at least

1

v
· γ(n, s(n), η

−1, d)

4(⌈n/η⌉s(n) + 1)
≥ poly−1(n, s(n), η−1, d).

At this point, we assume that d ∈ N was selected to satisfy the condition that

d ≥ 1

ε
·
&
ln γ(n, s(n), η−1, d)−1 + ln(⌈n/η⌉s(n) + 1) + ln 4

'
. (8)
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Then, we can show that h is ε/2-close to f as follows:

Pr
h,x←D

[h(x) ∕= f(x)] ≤ 1

2
− 1

2
·
3
γ(n, s(n), η−1, d)

4(⌈n/η⌉s(n) + 1)

4 1
d

≤ 1

2d
·
&
ln γ(n, s(n), η−1, d)−1 + ln(⌈n/η⌉s(n) + 1) + ln 4

'
(∵ Claim 1)

≤ ε

2
. (∵ (8))

To derandomize the hypothesis h, we simply select a binary string at random and embed it into h as
h’s randomness. By Markov’s inequality, such an h is ε-close to f with probability at least 1/2.

Because γ−1(n, s(n), η−1, d) ≤ poly(n, s(n), η−1, d), there exist a constant c > 0 and a func-
tion l(n, s(n), η) = O(log n+ log s(n) + log η−1) such that

c

ε
ln d+

l(n, s(n), η)

ε
≥ 1

ε
·
&
ln γ(n, s(n), η−1, d)−1 + ln(⌈n/η⌉s(n) + 1) + ln 4

'
.

It is not hard to see that, for instance, the following choice of d is enough for inequality (8) to hold,

d = max

.<c
ε

>2
,

B
l(n, s(n), η)

ε

C2

, 49

D
= O

&
ε−2(log n+ log s(n) + log η−1)

'
.

Therefore, the above procedure is executed in time at most

poly(n, s(n), η−1, d) ≤ poly(n, s(n), ε−1, η−1).

By applying the standard repeating and testing technique, arbitrary confidence δ can also be achieved
in time

O
&
poly(n, s(n), ε−1, η−1) · ln δ−1

'
· poly(n, s(n), ε−1, η−1) ≤ poly(n, s(n), ε−1, η−1) · ln δ−1.

In the remaining case where γ(n, s(n), η−1, d) ≤ 2e−n, we have that for the above choice of d,

2n < en ≤ 2 · γ(n, s, η−1, d)−1 ≤ poly(n, s(n), ε−1, η−1).

Therefore, as in the proof of Theorem 32, the learner can directly approximate a truth table of an
arbitrary target function with probability at least 1− δ in time poly(n, s(n), ε−1, η−1) · ln δ−1.

D.3. Corollaries of Theorems 6 and 8

In this section, we present Corollaries 9–12 to Theorems 6 and 8. To show Corollary 9, we will
apply Corollary 11. Thus, we will present the formal proofs for Corollaries 10 and 11 first, then
Corollaries 9 and 12.
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D.3.1. PROOF OF COROLLARY 10

(3=⇒2) holds obviously, and (2=⇒1) follows from Theorem 6.
For (1=⇒3), assume that AIOWF exists. Then, by Fact 1, AIPRF F = {Fz : {0, 1}|z| ×

{0, 1}|z| → {0, 1}}z∈{0,1}∗ also exists.

Now, we determine a concept class C by the following evaluation C = {Cn : {0, 1}⌈n/2⌉ ×
{0, 1}n → {0, 1}}n∈N: for each n ∈ N,

C2n−1(u, y) = 1

C2n(u, z ◦ x) = Fz(u, x),

where u ∈ {0, 1}n, z, x ∈ {0, 1}n, and y ∈ {0, 1}2n−1.
Then C is obviously polynomial-time evaluated. Now, we show that C is not weakly heurPAC

learnable by contradiction. By Theorem 22, we assume that there exists a weak predictor L for C
with an error parameter ε ≤ 1/2− poly−1(n).

We construct an adversary A for F based on P as follows: on input z ∈ {0, 1}n and query
access to a function f : {0, 1}n → {0, 1} (which is either of a pseudorandom function or a truly
random function), A executes P , where A passes (z ◦ x, f(x)) as each example and z ◦ x∗ as a
challenge for independently selected x, x∗ ←u {0, 1}n. If P outputs some prediction b, then A
checks whether f(x∗) = b by its own oracle access. If P succeeds in predicting, A outputs 1,
otherwise, it outputs 0. Thus, the probability that A outputs 1 is exactly the same as the probability
that P succeeds in predicting over the choice of f and randomness for A. Obviously, A halts in
polynomial-time in n.

On one hand, consider the case where f is selected from pseudorandom functions. In this case,
it is not hard to check that A executes P in the valid setting where the target function is f and the
example distribution is z ◦ Un. Thus, A outputs 1 with probability at least 1/2 + 1/poly(n).

On the other hand, consider the case where f is selected from all n-input functions, i.e., a truly
random function. Because P looks at only poly(n) values of f , randomly selected x∗ is contained
in previous examples with only negligibly small probability. Additionally, if x∗ is not contained
in the previous examples, then P cannot guess the value of f(x∗) better than at random because f
is a truly random function. Thus, A outputs 1 with probability at most 1/2 + negl(n), where negl

denotes some negligible function.
Therefore, A distinguishes the above two cases with non-negligible probability, which contra-

dicts the assumption that F is AIPRF.

D.3.2. PROOF OF COROLLARY 11

(5=⇒4), (5=⇒3), and (4=⇒2) hold obviously, and (2=⇒1) follows from Theorem 8.
The remaining part (1=⇒5) mainly follows from the observation by Valiant (1984). Assume

that io-OWF exists, then io-PRF F = {Fn : {0, 1}n × {0, 1}n → {0, 1}}n∈N also exists from
Fact 1.

Let C be a concept class with an evaluation C = {Cn : {0, 1}n×{0, 1}n → {0, 1}}n∈N defined
by Cn(u, x) = Fn(u, x). Note that C can obviously be evaluated in polynomial-time. Thus, we
only need to show that C is not weakly heurPAC learnable with membership queries on the uniform
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distribution by contradiction. From Theorem 22 (for learning with membership queries8), we can
assume that there exists a weak predictor P for C with an error parameter ε ≤ 1/2− poly−1(n).

We can construct an adversary A for F based on P as follows: on input 1n and query access
to a function f : {0, 1}n → {0, 1} (which is either of a pseudorandom function or a truly random
function), A executes P where the target function is f and the example distribution is Un. Note
that A can correctly answer all P ’s queries by its own query access to f . If P outputs a prediction
b for a challenge x∗, then A checks whether f(x∗) = b. If P succeeds in predicting, A outputs 1,
otherwise, A outputs 0. Obviously, A halts in polynomial-time in n.

The following argument is almost the same as the one in Appendix D.3.1. If f is selected
from pseudorandom functions, then A can execute P properly and output 1 with probability at least
1/2+1/poly(n). On the other hand, if f is selected from truly random functions, then a polynomial-
time predictor P cannot succeed in predicting non-negligibly better than at random. Thus, A outputs
1 with probability at most 1/2+negl(n), where negl denotes some negligible function. Therefore, A
distinguishes the above two cases with non-negligible probability, which contradicts the assumption
that F is io-PRF.

D.3.3. PROOF OF COROLLARY 9

Let C be a concept class with a polynomial-time evaluation C : {0, 1}s(n) × {0, 1}n → {0, 1} and
assume that C is not heurPAC learnable on a polynomial-time sampleable distribution D. W.l.o.g.,
we can also assume that s(·) is an increasing function. By Theorem 8, we only need to construct
another concept class C ′ which is not heurPAC learnable on the uniform distribution.

Let M be the sampling algorithm for D, i.e., M(1n) is statistically identical to Dn for each
n ∈ N. W.l.o.g., we can assume that M(1n) uses p(n) random bits for some increasing polynomial p
such that p(n) ≥ n. Then, we determine C ′ by the following evaluation C ′ : {0, 1}s(n)×{0, 1}n →
{0, 1}:

C ′(u, x) =

.
C(u[s(n′)],M(1n

′
;x)) if n = p(n′) for some n′ ∈ N

1 otherwise.

We also define a function f = {fN : {0, 1}m·p(n) → {0, 1}nm}N∈N where (n,m) = N−1
C (N) as

follows: for each N ∈ N,

fN (x) = M(1n;x(1)) ◦ · · · ◦M(1n;x(m))

where x = x(1) ◦ · · · ◦ x(m) and |x(i)| = p(n) for each i ∈ [m].
Notice that C ′ is evaluated in time poly(p−1(n), s(p−1(n))) ≤ poly(n, s(n)), and f is polynomial-

time computable.
We only consider the case where f is not an io-DistOWF, otherwise there exists another con-

cept class which is not heurPAC learnable on the uniform distribution by Fact 1 and Corollary 11.
Therefore, we additionally assume that there exists a polynomial-time randomized algorithm I such
that the statistical distance between following two distributions is at most 1/4: for any n,m ∈ N
and target function u ∈ {0, 1}s(n),

8. In the prediction with membership query (pwm) model formally introduced by Angluin and Kharitonov (1995), a
predictor is given examples and a challenge one by one, and the membership query oracle is also available only before
the learner gets the challenge. It is easily checked that the proof of Theorem 22 holds even if the membership query
oracle is available.
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1.
11

U
(1)
p(n), . . . , U

(m)
p(n)

2
,
&
x(1), . . . , x(m)

'
,
&
C(u, x(1)), . . . , C(u, x(m))

'2
; and

2.
&
I
&
1NC(n,m), x(1) ◦ · · · ◦ x(m)

'
,
&
x(1), . . . , x(m)

'
,
&
C(u, x(1)), . . . , C(u, x(m))

''
,

where x(i) = M
1
1n;U

(i)
p(n)

2
for each i ∈ [m].

Now, we show that C ′ is not heurPAC learnable on the uniform distribution by contradiction.
Assume that L′ is a heurPAC learner for C ′ which works on the uniform example distribution. Then
we construct a heurPAC learner L for C which works on D.

On given parameters n, ε, δ, η, we let L execute L′ with parameters n′ = p−1(n), ε′ = ε, δ′ =
1/4, and η′ = η. Let m (≤ poly(n, ε−1, η−1)) be the number of examples sufficient to execute L′.
By the construction of C ′, a distribution on target functions for C ′ corresponds to a distribution on
target functions for C, and a random choice of input for C ′ (according to the uniform distribution)
corresponds to a random choice of input for C (according to D). Thus, if random seeds for M are
available in addition to outputs of M (i.e., examples selected according to D), then L can validly
simulate examples for learning C ′. However, such random seeds for M are unavailable for L.

Therefore, L first applies the inverter I with the security parameter NC(n,m) to obtain the
random seeds, then executes L′ by regarding the inverse elements as inputs in examples for learning
C ′ on the uniform distribution. Since the statistical distance between true examples and examples
generated by I as above is at most 1/4 over the choice of examples for C ′ and random seeds for
I , the loss of confidence probability is at most 1/4. Thus, L can learn C with confidence error at
most 1/4 + 1/4 = 1/2, which can be improved to arbitrary δ by applying the standard repeating
and testing method. Therefore, C is heurPAC learnable on D, which contradicts the assumption.

D.3.4. PROOF OF COROLLARY 12

We consider the nonuniform computational model in this section.
In this paper, we do not present a formal description of the Universality Conjecture to avoid

introduction of several additional notions. For the details, refer to the original paper (Santhanam,
2020). Thus, we introduce the following as a fact.

Fact 5 (Santhanam, 2020, Theorem 22) Under the Universality Conjecture, the followings are
equivalent:

1. AIOWF exists;

2. n2-sized circuits are not PAC learnable with membership queries on the uniform distribution;
and

3. io-OWF exists.9

Note that Theorems 6 and 8 hold even in the nonuniform model by the same proof. This is
because a learner can get polynomial-length advice to execute an adversary and evaluate a concept
class as its own advice. By Theorems 6 and 8, items 1 and 3 in Corollary 12 correspond to items 1
and 3 in Fact 5, respectively.

Thus, the remaining part is to show the correspondence between item 2 in Corollary 12 and
item 2 in Fact 5, which can be stated as follows:

9. In his work, the equivalence also holds even for the standard one-way function with “sufficiently large” security.
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Claim 2 The followings are equivalent:

1. n2-sized circuits are not PAC learnable with membership queries on the uniform distribution
and

2. there exists a concept class C with a polynomial-time evaluation C : {0, 1}s(n) × {0, 1}n →
{0, 1} such that C is not PAC learnable with membership queries on the uniform distribution.

Proof For the sake of simplicity, we will omit the argument on advice for nonuniform computation.
(1)=⇒(2) obviously holds.
(2)=⇒(1) is shown by the simple padding argument. Assume that C is computable by a circuit

of size p(n, s(n)) where p is a polynomial. For each target function f ∈ {0, 1}s(n) in C , we define
a function f ′ : {0, 1}n+

√
p(n,s(n)) → {0, 1} by f ′(x) = f(x[n]). Then f ′ must be computable

by a circuit of size p(n, s(n)) ≤
1
n+

=
p(n, s(n))

22
. Thus, any learner for n2-sized circuits

successfully PAC learns f ′ is time poly(n +
=

p(n, s(n)), ε−1, δ−1) ≤ poly(n, s(n), ε−1, δ−1).
Note that an example oracle EX(f ′, U

n+
√

p(n,s(n))
) and a membership oracle for f ′ are trivially

simulated by EX(f, Un) and a membership oracle for f , respectively. Thus, we can construct a
learner that PAC learns C with membership queries based on a learner that PAC learns n2-sized
circuits with membership queries.

43


