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Abstract
We propose a new framework, inspired by random matrix theory, for analyzing the dynamics of
stochastic gradient descent (SGD) when both number of samples and dimensions are large. This
framework applies to any fixed stepsize and on the least squares problem with random data (finite-
sum). Using this new framework, we show that the dynamics of SGD become deterministic in the
large sample and dimensional limit. Furthermore, the limiting dynamics are governed by a Volterra
integral equation. This model predicts that SGD undergoes a phase transition at an explicitly given
critical stepsize that ultimately affects its convergence rate, which is also verified experimentally.
Finally, when input data is isotropic, we provide explicit expressions for the dynamics and average-
case convergence rates (i.e., the complexity of an algorithm averaged over all possible inputs).
These rates show significant improvement over classical worst-case complexities.
Keywords: stochastic optimization, convex optimization, random matrix theory

1. Introduction

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is one of the most popular and im-
portant stochastic optimization methods for use in large-scale problems. There are well-established
worst-case convergence rates, but SGD lacks a detailed theory that encompasses both its successes
and its empirically observed peculiarities. For example, the solutions to which SGD converges have
qualitative differences that seemingly depend on how SGD is tuned (Jastrzebski et al., 2017; Keskar
et al., 2016). Furthermore, the dependence of the runtime of SGD on its stepsize is complicated, and
stepsize selection is an active area of research (Schaul et al., 2013; Vaswani et al., 2019; Mahsereci
and Hennig, 2017; Bollapragada et al., 2018; Friedlander and Schmidt, 2012). Beyond the confines
of SGD, the behavior of other stochastic optimization algorithms is even more poorly understood
(Sutskever et al., 2013). Because of these challenges, making good quantitative predictions for the
dynamics of stochastic algorithms remains a difficult, broad and deep problem.

A prolific technique for analyzing optimizations methods, both stochastic and deterministic, is
the stochastic differential equations (SDE) paradigm (Li et al., 2017; Mandt et al., 2016; Jastrzebski
et al., 2017; Su et al., 2016; Kushner and Yin, 2003; Ljung, 1977; Hu et al., 2017; Chaudhari and
Soatto, 2018). These SDEs relate to the dynamics of the optimization method by taking the limit
when the stepsize goes to zero, so that the trajectory of the objective function over the lifetime of
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the algorithm converges to the solution of an SDE. Naturally, in practice, the stepsize is taken as
large as possible, which limits the predictive power of the SDE method.

A related popular paradigm for analyzing the behavior of SGD is the noisy gradient model.
Often used in conjunction with the SDE approach, in this model, one supposes that the stochastic
gradient estimators in SGD are the true gradient plus some independent noise (typically assumed
to be Gaussian with some covariance structure) (Li et al., 2017; Mandt et al., 2016; Jastrzebski
et al., 2017; Simsekli et al., 2019) or more generally the gradient estimators are independent with
a common distribution, see for e.g. (Huang et al., 2020). The latter is equivalent to the “streaming
setting” (Jain et al., 2018b) or the “one-pass” assumption on the data (Gurbuzbalaban et al., 2020).
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Figure 1: The proposed Volterra equation
model accurately tracks SGD on
a random least-squares problem
for any choice of stepsize. Other
models introduce biases that sub-
stantially impact model fidelity.

Here one generates a new sample at each iteration
and does not reuse any past data. In practice, SGD is
typically implemented on a finite dataset with multi-
ple passes over the data. Such modeling assumptions
on the stochastic gradient estimators can not capture
the full dynamics of SGD (see Figure 1).

We offer a new alternative, inspired by the phe-
nomenology of random matrix theory. We prove
that SGD with a fixed stepsize γ has deterministic
dynamics, when run on the least squares problem
with high–dimensional random data, and, we ana-
lyze these dynamics to provide stepsize selection and
convergence properties (see Figure 1 for a compar-
ison). We neither impose direct assumptions on the
gradient estimators nor take the stepsize to 0 and
we work in the non-streaming or finite sum setting
(a.k.a. incremental gradient). These deterministic
dynamics are governed by a Volterra integral equa-
tion, that is, the function values converge to the so-
lution ψ0 of

ψ0(t) = z(t) + rγ2

∫ t

0
h2(t− s)ψ0(s) ds, where h2(t) =

∫ ∞
0
x2e−2γtx dµ(x) . (1)

Here, r is the ratio of the number of parameters to sample size, and µ is the distribution of
the eigenvalues of the Hessian’s objective. The function z is an explicit forcing function, which
has dependence on all parts of the problem, including the initialization x0 and the target b. See
Theorem 1 for the precise statement. The value of the stepsize γ can be as large as the convergence
threshold which we explicitly provide. This Volterra equation (1) has rich behavior; the asymptotic
suboptimality of ψ0 has a discontinuity in γ at a critical stepsize (see Theorem 2).

Notation. We denote vectors in lowercase boldface (x) and matrices in uppercase boldface (H).
A sequence of random variables {yd}∞d=0 converges in probability to y, indicated by yd

Pr−−−→
d→∞

y,

if for any ε > 0, lim
d→∞

Pr(|yd − y| > ε) = 0. Probability measures are denoted by µ and their

densities by dµ. We say a sequence of random measures µd converges to µ weakly in probability if
for any bounded continuous function f , we have

∫
f dµd →

∫
f dµ in probability. For two random

variables x and y we write x law
= y to mean they have the same distribution.
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1.1. Problem setting.

We consider the least–squares problem when the number of samples (n) and features (d) are large:

arg min
x∈Rd

{
f(x)

def
=

1

2n

n∑
i=1

(aix− bi)2
}
, with b def

= Ax̃+
√
nη, (2)

where A ∈ Rn×d is a random data matrix whose i-th row is denoted by ai ∈ Rd, x̃ ∈ Rd is the
signal vector, and η ∈ Rn is a source of noise. The target b = Ax̃+

√
nη comes from a generative

model corrupted by noise.
We apply SGD (incremental gradient) to the finite sum, quadratic problem above. On the k-th

iteration it selects a uniformly random subset Bk ⊂ {1, 2, · · · , n} and makes the updates

xk+1 = xk −
γ

n

∑
i∈Bk

∇fi(xk) = xk −
γ

n
ATPk(Axk − b), where Pk

def
=
∑
i∈Bk

eie
T
i . (3)

HerePk is a random orthogonal projection matrix with ei the i-th standard basis vector, β def
= |Bk| ∈

N is a batch-size parameter, which we will allow to depend on n, γ > 0 is a stepsize parameter, and
the function fi is the i-th element of the sum in (2). Typical stepsizes for SGD (see e.g (Bottou et al.,
2018, Thm 4.6)) include the second moment of the stochastic gradients, which under our problem
setting grows like n. This explains the dependency on n in (3). We remark that β can equal 1 in
which case (3) reduces to the simple SGD setting.

To perform our analysis we make the following explicit assumptions on the signal x̃, the noise
η, and the data matrixA.

Assumption 1.1 (Initialization, signal, and noise) The initial vector x0 ∈ Rd, the signal x̃ ∈ Rd,
and noise vector η ∈ Rn satisfy the following conditions:

1. The difference x0 − x̃ is any deterministic vector such that ‖x0 − x̃‖22 = R.

2. The entries of the noise vector η are i.i.d. random variables that verify for some constant R̃ > 0

E [η] = 0, E [‖η‖22] = R̃, and E [‖η‖p∞] = O(nε−p/2) for any ε, p > 0. (4)

Any subexponential law for the entries of η (say, uniform or Gaussian with variance R̃/n) will
satisfy (4). The scalings of the vectors x0 − x̃ and η arise as a result of preserving a constant
signal-to-noise ratio in the generative model. Such generative models with this scaling have been
used in numerous works (Mei and Montanari, 2019; Hastie et al., 2019; Gerbelot et al., 2020).

Next we state an assumption on the eigenvalue and eigenvector distribution of the data matrix
A. We then review practical scenarios in which this is verified.

Assumption 1.2 (Data matrix) LetA be a random n×d matrix such that the number of features,
d, tends to infinity proportionally to the size of the data set, n, so that d

n → r ∈ (0,∞). Let

H
def
= 1

nA
TA with eigenvalues λ1 ≤ . . . ≤ λd and let δλi denote the Dirac delta with mass at λi.

We make the following assumptions on the eigenvalue distribution of this matrix:
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1. The eigenvalue distribution of H converges to a deterministic limit µ with compact support.
Formally, the empirical spectral measure (ESM) satisfies

µH =
1

d

d∑
i=1

δλi → µ weakly in probability . (5)

2. The largest eigenvalue λ+
H ofH converges in probability to the largest element λ+ in the support

of µ, i.e.

λ+
H

Pr−−−→
d→∞

λ+. (6)

3. (Orthogonal invariance) Let U ∈ Rd×d and O ∈ Rn×n be orthogonal matrices. The matrix A
is orthogonally invariant in the sense that

AU
law
= A and OA

law
= A (7)

Assumption 1.2 characterizes the distribution of eigenvalues for the random matrix H which
asymptotically equals the distribution µ. The ESM and its convergence to the limiting spectral
distribution µ are well studied in random matrix theory, and for many random matrix ensembles the
limiting spectral distribution is known. In machine learning literature, it has been shown that the
spectrum of the Hessians of neural networks share many characteristics with the limiting spectral
distributions found in classical random matrix theory (Dauphin et al., 2014; Papyan, 2018; Sagun
et al., 2016; Behrooz et al., 2019; Martin and Mahoney, 2018).
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Figure 2: The ESM of matrices 1
nA

TAwith
i.i.d. entries converges as n, d →
∞ to the Marchenko-Pastur dis-
tribution, shown here for different
values of r = d/n.

The last assumption, orthogonal invariance, is
a rather strong condition as it implies that the sin-
gular vectors of A are uniformly distributed on the
sphere. The classic example of a matrix which satis-
fies this property are matrices whose entries are gen-
erated from standard Gaussians. There is however,
a large body of literature (Knowles and Yin, 2017;
Cipolloni et al., 2020) showing that other classes of
large dimensional random matrices behave like or-
thogonally invariant ensembles; weakening the or-
thogonal invariance assumption is an interesting fu-
ture direction of research which is beyond the scope
of this paper. Moreover our numerical simulations
suggest that (7) is unnecessary as our Volterra equa-
tion holds for ensembles without this orthogonal in-
variance property (see one-hidden layer networks in
Section 4). For a more thorough review of random matrix theory see (Bai and Silverstein, 2010;
Tao, 2012).

Examples of data distributions. In this section we review examples of data-generating distribu-
tions that verify Assumption 1.2.
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Example 1: Isotropic features with Gaussian entries. The first model we consider has entries
of A which are i.i.d. standard Gaussian random variables, that is, Aij ∼ N(0, 1) for all i, j. This
ensemble has a rich history in random matrix theory. When the number of features d tends to infinity
proportionally to the size of the data set n, d

n → r ∈ (0,∞), the seminal work of Marčenko and
Pastur (1967) showed that the spectrum ofH = 1

nA
TA asymptotically approaches a deterministic

measure µMP, verifying Assumption 1.2. This measure, µMP, is given by the Marchenko-Pastur
law:

dµMP(λ)
def
= δ0(λ) max{1− 1

r , 0}+

√
(λ− λ−)(λ+ − λ)

2πλr
1[λ−,λ+] ,

where λ−
def
= (1−

√
r)2 and λ+ def

= (1 +
√
r)2 .

(8)

Example 2: Planted spectrum One may wonder if there are limits to what singular value dis-
tributions can appear for orthogonally invariant random matrices, but as it turns out, any singular
value distribution is attainable. Suppose that

A = UΣV T , (9)

where V ∈ Rd×d and U ∈ Rn×n are random matrices, uniformly chosen from the orthogonal
group and Σ ∈ Rn×d is any deterministic matrix such that the squared singular values of Σ have an
empirical distribution that converges to a desired limit µ. Then A is orthogonally invariant. As in
the previous case, we assume that the dimensions of the matrix A grow at a comparable rate given
by d

n → r ∈ (0,∞). Constructions like this appear in neural networks initialized with random
orthogonal weight matrices, and they produce exotic singular value distributions (Saxe et al., 2013,
Figure 7).

Example 3: Linear neural networks. This model encompasses linear neural networks with a
squared loss, where the m layers have random weights (Wi with i = 1, . . . ,m) and the final layer’s
weights are given by the regression coefficient x. The entries of these random weight matrices are
sampled i.i.d. from a standard Gaussian. The optimization problem in (2) becomes

min
x

{
f(x) =

1

2n
‖Ax− b‖22

}
, whereA = W1W2W3 · · ·Wm. (10)

It is known that products of Gaussian matrices satisfy (7) with a limiting spectral measure in the
large n limit and fixed depth given by the Fuss-Catalan law (Alexeev et al., 2010; Liu et al., 2011).

1.2. Main contributions

A new paradigm for analyzing the dynamics of SGD. We propose a framework for the analysis
of SGD that exploits the fact that when increasing the problem size (i.e. n and d large), statistics that
are driven by the full population converge to deterministic processes; the spirit of which is behind
law of large numbers and concentration of measure. A practical outcome of this framework is a new
expression for the function values of SGD as a Volterra equation:

Theorem 1 (Concentration of SGD) Suppose the stepsize satisfies γ < 2
r

( ∫∞
0 x dµ(x)

)−1 and
the batchsize satisfies β(n) ≤ n1/5−δ for some δ > 0. Let the constant T > 0. Under Assump-
tions 1.1 and 1.2,

sup
0≤t≤T

∣∣f(xbnβ tc)− ψ0(t)
∣∣ Pr−−−→
n→∞

0 , (11)
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where the function ψ0 is the solution to the Volterra equation

ψ0(t) = R
2 h1(t) + R̃

2

(
rh0(t) + (1− r)

)
+

∫ t

0
γ2rh2(t− s)ψ0(s) ds,

and hk(t) =

∫ ∞
0

xke−2γtx dµ(x) for all k ≥ 0.

(12)
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Figure 3: Phase transition of the convergence
rate (y-axis) as a function of the step-
size (x-axis, γ) for the isotropic fea-
tures model. Smaller stepsizes (dot-
ted) yield convergence rates which
depend linearly on γ with a slope that
is always frozen on λ−. The con-
vergence rate abruptly changes be-
havior once it hits the critical step-
size (solid gray, γ∗), becoming a non-
linear function of γ. The critical step-
size appears to be a good predictor
for the optimal stepsize. In addition,
the more over-parameterized the data
matrix (r → 0) is, the smaller the
window of convergent stepsizes and
as H becomes ill-conditioned (r →
1), the linear rate degenerates and the
high temperature phase disappears.

The expression highlights how the algorithm,
stepsize, signal and noise levels interact with each
other to produce different dynamics. For in-
stance, our framework allows one to see the ef-
fect of the entire spectrum of the data matrix on
the dynamics. Also we note that the batch-size β
does not appear in the limiting Volterra equation.
Numerical simulations in Section 4 confirm that
ψ accurately predicts the behavior of SGD.

Phase transition of SGD dynamics and critical
stepsize. We prove a surprising dichotomy in
the dynamics of SGD for a general measure: SGD
undergoes a phase transition at a critical stepsize
which we denote by γ∗

γ∗
def
=

1
r
2

∫∞
0

x2

x−λ− dµ(x)
. (13)

Starting at small stepsizes, we see that the lin-
ear rate of convergence for SGD freezes on the
smallest eigenvalue of H, that is f(xbnβ tc

) de-

creases like e−2γλ−t. However when γ passes the
transition point γ∗, the dynamics of SGD have a
more complicated dependency on the stepsize (in
particular it is no longer log-linear in γ). This is
strongly reminiscent of a freezing transition, of-
ten seen in the free energies of random energy
models (see Derrida (1981)), with γ playing the
role of temperature. This is summarized in our
second main contribution – the asymptotic rates
for SGD under a general spectral measure µ (see
Appendix E.1).

Theorem 2 (Critical stepsize, asymptotic rates)

Suppose r 6= 1 (i.e. strongly convex regime). For
γ∗ < γ < 2

r

( ∫∞
0 x dµ(x)

)−1, the value of λ∗(γ)
is given as the unique solution to

rγ2

∫ ∞
0

e2γλ∗th2(t) dt = 1 . (14)
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Table 1: Asymptotic convergence guarantees for f(xbnβ tc
)− R̃

2

(
1− rγ

2

)−1
max{0, 1−r} (neigh-

borhood, last iterate) on the isotropic features model. Stepsizes smaller than γ∗ have linear
rates based only on λ− multiplied by a polynomial term (tα in Theorem 2). Larger step-
sizes have linear rates with factor λ∗ made explicit here. Average-case complexity are
strictly better than the worst-case complexity, in some cases by a factor γ vs γ2. Note also
how the rates highlight the freezing transition in the strongly convex regime. For worst-
case rates, see (Bottou et al., 2018, Theorem 4.6) (Ghadimi and Lan, 2013, Theorem 2.1);
λ+ can be replaced by the max-`2-row-norm in the worst-case bounds below.

Strongly convex, γ < γ∗ Strongly convex, γ = γ∗

Worst exp(−γtλ− + γ2

2 (λ+)2t) exp(−γtλ− + γ2

2 (λ+)2t)

Average exp(−2γλ−t) · 1
t3/2

exp(−2γλ−t) · 1
t1/2

Strongly convex, γ > γ∗
Non-strongly convex

w/ noise, r = 1, R̃ > 0

Worst exp(−γtλ− + γ2

2 (λ+)2t) (R+ R̃ · d) · 1
t

Average exp[−γt
(
1− rγ

2

)(
1 + r +

√
(1 + r)2 − 8

γ

)]
R· 1

t1/2
+ R̃· 1

t1/2

The function ψ0(t) satisfies that for some explicit constant c(R, R̃, µ) > 0,

ψ0(t)− R̃

2
· rµ({0}) + (1− r)

1− γr
2

( ∫∞
0 x dµ(x)

) ∼ c

γ
e−2γtλ∗(γ). (15)

If in addition γ∗ > 0, and µ([λ−, λ−+t]) ∼ cµtαas t→ 0 then there is a constant c(R, R̃, γ, µ) > 0
so that for 0 < γ < γ∗,

ψ0(t)− R̃

2
· rµ({0}) + (1− r)

1− γr
2

( ∫∞
0 x dµ(x)

) ∼ c

tα
e−2γtλ− . (16)

We also give rates for the case of r = 1 in Thm 31. We note that the convergence threshold for
the stepsize is given by 2

r (tr(H)/d)−1. This threshold was observed in Jain et al. (2018a) for the
streaming setting. See App. E.1 for further discussion and the derivation.

Average-case complexity for SGD. Our last contribution is one of the first average-case com-
plexity results for any stochastic optimization algorithm. The value ψ0(t) is the average func-
tion value at iteration t after first taking the model size to infinity. Particularly, if we denote
Tε = inf{t > 0 : f(xt) − ψ0(∞) < ε} and τε = inf{t > 0 : ψ0(t) − ψ0(∞) < ε} for ε > 0,
then by concentration (Thm 1) lim

n→∞
E [Tε] = τε, where the expectation is taken over all sources of

randomness. Consequently, this yields a notion of average complexity for SGD to a neighborhood.
When the data matrixA satisfies the isotropic features modelA, we give an explicit formula for the
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expected function values ψ0(t), the critical stepsize γ∗, and the corresponding λ∗ (Appendix E.2,
Theorem 37 and Section 3, Theorem 3). Table 1 summarizes our average rates.

The average-case complexity in the strongly convex case has significantly better linear rates than
the worst-case guarantees and, in particular, there is no dependence on λ+. We additionally capture
a second-order behavior, the polynomial correction term (green in Table 1). This polynomial term
has little effect on the complexity compared to the linear rate. However as the matrixH becomes ill-
conditioned (r → 1), the polynomial correction starts to dominate the average-case complexity. The
sublinear rates in Table 1 for r = 1 show this effect and it accounts for the improved average-case
rates in the convex setting. This improvement in the average rate indeed highlights that the support
of the spectrum does not fully determine the rate. Many eigenvalues contribute meaningfully to
the average rate. Hence, our results are not and can not be purely explained by the support of the
spectrum. As noted in Paquette et al. (2020), the worst-case rates when r = 1 have dimension-
dependent constants due to the distance to the optimum ‖x0 − x?‖2 ≈ d, which appears in the
bounds.

Related work. Average-case versus worst-case complexity. Traditional worst-case analysis of
optimization algorithms provide complexity bounds no matter how unlikely (Nemirovski, 1995;
Nesterov, 2004; Moulines and Bach, 2011). There are a plethora of results on the worst-case anal-
ysis of SGD (Robbins and Monro, 1951; Bertsekas and Tsitsiklis, 2000; Ghadimi and Lan, 2013;
Bottou et al., 2018; Gower et al., 2019) and in particular, specific results for SGD applied to the
least squares problem (see e.g. (Bertsekas, 1997; Defossez and Bach, 2015; Bach and Moulines,
2013; Jain et al., 2018a,b)). The later references (Jain et al., 2018a,b) considered only the ”stream-
ing” setting as well as algorithms which averaged the iterates (Defossez and Bach, 2015; Bach and
Moulines, 2013). Instead, as in this paper, we work in the finite sum setting and we analyze the
last iterate convergence. Worst-case analysis gives convergence guarantees, but the bounds are not
always representative of typical runtime.

Average-case analysis, in contrast, gives sharper runtime estimates when some or all of its inputs
are random. This type of analysis has a long history in computer-science and numerical analysis and
it is often used to justify the superior performances of algorithms such as QuickSort (Hoare, 1962)
and the simplex method, see for e.g., (Spielman and Teng, 2004; Smale, 1983; Borgwardt, 1986).
Despite its rich history, average-case is rarely used in optimization due to the ill-defined notion
of a typical objective function. Recently Pedregosa and Scieur (2020); Lacotte and Pilanci (2020)
derived a framework for average-case analysis of gradient-based methods on the least-squares prob-
lem with vanishing noise and it was later extended by Paquette et al. (2020). Similar results for the
conjugate gradient method were derived in Paquette and Trogdon (2020); Deift and Trogdon (2020).
Our work is in the same line of research–providing the first average-case complexity for SGD.

For stochastic algorithms, Sagun et al. (2017) showed empirical evidence that SGD on neural
networks exhibits concentration of the function values. Other works Mei et al. (2019); Huang et al.
(2020); Sirignano and Spiliopoulos (2020); Gurbuzbalaban et al. (2020); Mei et al. (2018) have
used random matrix theory to analyze stochastic algorithms, but only in online or one-pass settings
(n � d). We emphasize that our work applies to the finite sum setting; as we allow for multiple
passes over the data.

Continuous time processes. A popular approach (Li et al., 2017; Mandt et al., 2016; Jastrzebski
et al., 2017; Nguyen et al., 2019; Zhu et al., 2019; An et al., 2018) is to model the dynamics of SGD
by imposing some structure on the noise and, by sending stepsize to 0, relate the iterates of SGD to

8
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the stochastic differential equation (SDE):

dXt = −∇f(Xt) dt+ (γΣ(Xt))
1/2 dBt. (17)

Here one typically assumes the stochastic gradient noise ∇fi(x) − ∇f(x) is normally distributed
(but not necessarily (Simsekli et al., 2019)) with some specific covariance structure Σ(X). A
common choice, called the stochastic modified equation (SME) (Li et al., 2017; Mandt et al.,
2016), matches the covariance matrix Σ(X) of the Gaussian noise with the actual covariance of
the stochastic gradients at x (i.e. Σ(X) = 1

n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T ). This

covariance makes SME have correct mean behavior so the expected function values of the SME
model are good approximations for the expected function values of SGD. Li et al. (2017) show that
by taking the stepsize γ small, the behavior of SGD and SME align. They and Mandt et al. (2016)
also give a modified SME which gives even higher order accuracy of SGD as stepsize goes to 0.

These SDEs have been used to study numerous properties of SGD including the dynamics of
regularized loss functions (Kunin et al., 2020) and generalization (Pflug, 1986; Jastrzebski et al.,
2017; Zhu et al., 2019; Simsekli et al., 2019). Despite their wide use, it has been observed that
there is no small stepsize limit SGD that converges to an SDE (Yaida, 2019). Our approach, instead,
looks at the large-n limit and shows, in fact, that SGD concentrates while maintaining fixed stepsize.
Moreover, our Volterra equation is relatively easy to analyze. We note that the SME has the same
mean behavior as SGD so when n → ∞, the mean behavior of SME and our Volterra equation
match. However the SME does not capture this concentration effect and greatly overestimates the
fluctuations of the sub-optimality.

2. Dynamics of SGD: reduction to the Volterra equation

In this section, we develop the framework for the dynamics of SGD and sketch the argument of our
main result (Theorem 1). Full proofs can be found in Appendix B.

Step 1: Change of basis. A key feature of the SGD least squares iteration (3) is that the projection
of xk onto a singular vector vj of A with singular value σj decreases in expectation exponentially
in the number of iterations at a rate proportionally to the squared singular value σ2

j (Strohmer and
Vershynin, 2009; Steinerberger, 2020). This observation suggests the following change of basis.
Consider the singular value decomposition of 1√

n
A = UΣV T , where U and V are orthogonal

matrices, i.e. V V T = V TV = I and Σ is the n × d singular value matrix with diagonal entries
diag(σj), j = 1, . . . , d. We define the spectral weight vector ν̂k

def
= V T (xk − x̃), which therefore

evolves like
ν̂k+1 = ν̂k − γΣTUTPk(UΣν̂k − η). (18)

For this point on, we consider the evolution of ν̂. We note our above observation on the singular
vectors only holds on average for individual coordinates of xk, and it does not alone explain the
emergence of the Volterra equation dynamics. It also guarantees nothing about the concentration of
the suboptimality.

Step 2: Embedding into continuous time. We next consider an embedding of the ν̂ into con-
tinuous time. This is done to simplify the analysis, and it does not change the underlying behavior
of SGD. We let Nt be a standard univariate Poisson process with rate n

β , so that for any t > 0,

E(Nt) = nt
β . We embed the spectral weights ν̂ into continuous time, by taking νt = ν̂τNt . We note

9
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that we have scaled time (by choosing the rate of the Poisson process) so that in a single unit of time
t, the algorithm has done one complete pass (in expectation) over the data set.

We then show that f(xNt) is well approximated by ψ0(t). As the mean of Nt is large for any
fixed t > 0, the Poisson process concentrates around nt

β , and it follows as an immediate corollary
that f(xbntβ c

) is also well approximated by ψ0(t).

Step 3: Doob–Meyer decomposition & the approximate Volterra equation. Under this con-
tinuous time scaling, we can write the function values at xt in terms of νt as

ψε(t)
def
= f(xNt) =

1

2
‖Σνt −UTη‖2 =

1

2

d∑
j=1

σ2
j ν

2
t,j −

n∧d∑
j=1

σjνt,j (UTη)j +
1

2
‖η‖2, (19)

where νt,j is the j-th coordinate of the vector νt. Hence the dynamics of ψε(t) are governed by
the behaviors of νt,j and ν2

t,j processes. Using (18) and Doob decomposition for quasi-martingales
(Protter, 2005, Thm 18, Chpt. 3), we have an expression for the νt,j and ν2

t,j , that is, if we let Ft be
the σ-algebra of the information available to the process at time t ≥ 0, we get

νt,j = ν0,j +

∫ t

0
Bs,j ds+ M̃t,j and ν2

t,j = ν2
0,j +

∫ t

0
As,j ds+Mt,j ,

where Bt,j
def
= ∂t E[νt,j | Ft] = −γσ2

j νt,j + γσj(U
Tη)j , (20)

At,j
def
= ∂t E[ν2

t,j | Ft] = 2νt,jBt,j+ β−1
n−1

(
Bt,j
)2

+γ2σ2
j

(
1− β−1

n−1

) n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνt − η)
)2
,

and (Mt,j , M̃t,j : t ≥ 0) areFt–adapted martingales. The last identities for Bt,j andAt,j are derived
in Lemma 8 in Appendix B).

We will now see how the terms At,j and Bt,j can be simplified in the large-n limit. In this
regime, sums of spectral quantities converge to integrals against the limiting spectral measure µ
as a direct consequence of Assumptions 1.1 and 1.2. Since we are working in the regime where
β = o(n), the terms with β−1

n−1 vanish in the large-n limit, disappearing entirely when β = 1, and
explaining why β = o(n) does not affect the limiting dynamics of SGD. Our key lemma, which
explains the Volterra dynamics of the mean of f(xNT ) (Lemma 14, App. B.6.2), is that

(
eTj U

T ei
)2

self averages to 1
n , and this is the point where we leverage orthogonal invariance ofA most heavily.

These simplifications can be summarized as

At,j ≈ Ât,j
def
= −γ2σ2

j ν
2
t,j + γ2σjνt,j(U

Tη)j + γ2 2σ2
jψε(t)

n . (21)

The expression Ât,j explains the limiting Volterra dynamics for ψε(t), and why the mean “gradient
flow” term does not correctly describe the dynamics of SGD. Due to the gradient flow term, the
squared spectral weights ν2

t,j tend to decay linearly with rate 2γσ2
j . On the other hand, coordinates

can not decay too quickly, as there is a mass redistribution term, which explains the rate at which
mass from other spectral weights is added to ν2

t,j and which is due to SGD updates being noisy
analogues for gradient flow. Finally, there is a noise term which in principle depends on νt,j which
would greatly complicate the limiting dynamics. However, when averaged in j the independence
of the noise η leads to a concentration effect, due to which only the mean behavior of νt,j survives.

10
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As this mean is just gradient flow, this leads to a simple deterministic forcing term in the Volterra
equation.

Plugging (21) into (19) and (20), we can produce a perturbed Volterra equation for ψε(t). For
any t > 0 we have

ψε(t) =
Rh1(t)

2
+
R̃(rh0(t) + (1− r))

2
+ ε

(n)
1 (t) +

∫ t

0

(
γ2rh2(s) + ε

(n)
2 (s)

)
ψε(t− s) ds, (22)

for error terms ε(n)
i (see Appendix B.6 for a precise definition of the errors). The hk(t) are defined

in Theorem 1 as the Laplace transforms of the measure µ, and arise naturally due to the presence of
the gradient flow generator.

Step 4: Control of the errors and stability of the Volterra equation. The expression (22) is a
Volterra equation of convolution type — a well-studied equation, see e.g., Gripenberg et al. (1990),
with established stability and existence/uniqueness theorems. In particular, we can summarily con-
clude that (see Proposition 11 in Appendix B.5)

max
i=1,2

sup
0≤t≤T

|ε(n)
i (t)| Pr−−−→

n→∞
0 =⇒ sup

0≤t≤T
|ψε(t)− ψ0(t)| Pr−−−→

n→∞
0.

Thus, Theorem 1, the dynamics for SGD immediately follows provided control of the errors in (22).
Beyond controlling the error of At,j − Ât,j , we must separately control the fluctuations of the

martingale terms in (20), which represent the randomness of SGD. A central challenge here is to
show in a suitable sense that the entries of

√
nνt remain bounded on compact sets of time (see the

discussion in Appendix B.6 for a detailed overview), which in turn can be seen as a consequence
of the updates of SGD being very nearly orthogonal to any fixed row of U . Here again we use the
orthogonal invariance of A, but in a weaker way, in that we only need that the maximum of the
entries of U are in control. Such results are well-developed for other random matrix ensembles.

3. Explicit formulas for isotropic features

We solve the Volterra equation and derive exact expressions for the average-case analysis, the criti-
cal stepsize γ∗, and the rate λ∗ (Thm 2) under the isotropic features model. In this case, the empirical
spectral measure converges to the Marchenko-Pastur measure µMP (8). Volterra equations of con-
volution type can be solved using Laplace transforms, which conveniently, for Marchenko-Pastur,
are explicit due to a connection with the Stieltjes transform. This leads us to our next main result.

Theorem 3 (Dynamics of SGD in noiseless setting) Suppose R̃ = 0 and the stepsize γ < 2
r .

Define the constants % and ω and critical stepsize

% =
1 + r

2

(
1− rγ

2

)
, ω =

1

4

(
1− rγ

2

)2
(

8

γ
− (1 + r)2

)
, and γ∗ =

2√
r(r −

√
r + 1)

. (23)

The iterates of SGD satisfy if γ ≤ γ∗,

f(xbnβ tc
) Pr−−−→
n→∞

R · 1

γ

(
1− rγ

2

)∫ ∞
0

xe−2γxt

(x− %)2 + ω
dµMP(x)

and if γ > γ∗, for some explicit constant c(γ, r), the iterates of SGD follow

f(xbnβ tc
) Pr−−−→
n→∞

R · 1

γ

(
1− rγ

2

)∫ ∞
0

xe−2γxt

(x− %)2 + ω
dµMP(x) +R · c(γ, r) · e−2γ(%+

√
|ω|)t.

11
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We only record the dynamics for SGD in the noiseless regime and refer the reader to the Ap-
pendix E.2, Theorem 37 for the noisy setting. We first observe the freezing transition as predicted
by renewal theory – a jamming term appears for γ > γ∗ that slows convergence. We note that when
the ratio of features to samples r does not equal 1, the least squares problem in (2) is (almost surely)
strongly convex as dµMP has a gap between the first non-zero eigenvalue and zero (see Figure 2). As
r approaches 1, the smallest non-zero eigenvalue become arbitrarily close to 0. This phenomenon
suggests different convergence rates in the regimes r = 1 and r 6= 1. Moreover, we see the explicit
value of λ∗, %+

√
|ω| which vanishes when r = 1. We present our average-case rates in Table 1.

4. Numerical simulations

We compare models of SGD’s dynamics on two data distributions for moderately-sized problems
(n = 1000): the isotropic features model (see Section 1.1) and one-hidden layer network with
random weights. In the latter model, the entries of A are the result of a matrix multiplication
composed with an activation function g : R→ R:

Aij
def
= g

( [WY ]ij√
m

)
, whereW ∈ Rn×m, Y ∈ Rm×d are random matrices. (24)

For the simulations, we took this activation function g to be a shifted ReLU function; the shift makes
E [A] = 0 (see Appendix A for details). This model encompasses two-layer neural networks with a
squared loss, where the first layer has random weights and the second layer’s weights are given by
the regression coefficients x. Note that while the isotropic features model satisfies our assumptions,
the one-hidden layer model does not. For all these approaches, we compute the objective subopti-
mality as a function of the number of passes over the dataset (epochs) for the models: (1). SDE (i.e.,
Σ(X) = 0.01I in (17)), (2). SME (i.e., Σ(X) matches covariance of the stochastic gradients), (3).
streaming (regenerate ai at each step), and (4). our Volterra equation. See Appendix F for full
details on the setup as well as experiments with other values of r. The outcome is displayed in
Figure 4 and discussed in the caption. The fit of the Volterra equation to SGD is extremely accurate
across different stepsizes and data distributions (some not covered by our assumptions) and even for
medium-sized problems (n = 1000). We also note that while SME is often a good approximation,
obtaining convergence rates from it is an open problem. On the other hand, the proposed Volterra
equation can be analyzed through its link with renewal theory.

Conclusion and future work. We have shown that the SGD method on least squares objectives
admits a tight analysis in the large n and d limit. We described the dynamics of this algorithm
through a Volterra integral equation and characterize its average-case convergence rate as well as
its stepsize regimes. Although our results only hold in the large n-limit, the Volterra equation is
remarkably accurate for relatively small dimensions (see e.g. Figure 4).

While our theoretical results focus on problems with isotropic data matrix A, Figure 4 shows
that the Volterra equation also predicts the dynamics on data generated from a one-hidden layer
network model. This suggests that the Volterra prediction might hold in even greater generality,
that is, we expect the orthogonal invariance assumption can be relaxed somewhat, but not entirely.
Another direction of future work consists in extending to include other algorithms and problems,
particularly non-convex objective functions. We believe the framework presented here should apply
to methods like SGD momentum, RMSprop or ADAM and problems such as PCA.

12
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Figure 4: Comparison of different SGD models: isotropic features (top) and one-hidden layer
network (bottom); r = 1.2. Across all stepsizes the Volterra overlaps the objective sub-
optimality of the empirical SGD runs (orange). The SME (teal) fits SGD for small step-
sizes, whereas streaming (blue) and SDE (pink) have noticeable divergences from SGD
for all stepsizes. Stochastic methods were averaged across 10 runs, with filled area rep-
resenting the standard deviation. The parameter γmax is the largest stepsize which still
yields convergence of SGD, γmax = 2

r (1
d tr(H))−1 from Theorem 2.
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SGD in the Large:
Average-case Analysis, Asymptotics, and Stepsize Criticality

Supplementary material

The appendix is organized into six sections as follows:

1. Appendix A expands upon the data examples in Section 1.1.

2. Appendix B derives the Volterra equation and proves the main concentration for the dynamics
of SGD (Theorem 1).

3. We show in Appendix C that the error terms associated with concentration of measure on
the high-dimensional orthogonal group disappear in the large-n limit. This includes the key
lemma, Proposition 14.

4. Appendix D shows the error terms which vanish due to martingale concentration results.

5. Appendix E derives the average-case complexity results from Section 3 and provides a proof
of the Malthusian exponent (Theorem 2).

6. Appendix F contains details on the simulations.

Unless otherwise stated, all the results hold under Assumptions 1.1 and 1.2. We include all state-
ments from the previous sections for clarity.

Notation. All stochastic quantities defined hereafter live on a probability space denoted by (Pr,Ω,F)
with probability measure Pr and the σ-algebra F containing subsets of Ω. A random variable (vec-
tor) is a measurable map from Ω to R (Rd) respectively. Let X : (Ω,F) → (R,B) be a random
variable mapping into the borel σ-algebra B and the set B ∈ B. We use the standard shorthand for
the event {X ∈ B} = {ω : X(ω) ∈ B}. We denote the minimum of a and b by min{a, b} = a∧ b.
An event E that occurs with high probability (or shortened to w.h.p.) is one whose probability
depends on n, related to matrix dimension in our paper, and the probability of its complementary
event goes to 0 as n → ∞. Whereas event E is said to occur with overwhelming probability (or
w.o.p.) if the probability of its complementary event goes to 0 faster than any polynomial order of
n as n→∞, i.e. for any k > 0,

lim
n→∞

Pr(Ec)nk = 0.

Throughout the paper, β = β(n), which denotes the size of Bk, a uniformly random subset of
{1, · · · , n} at the k-th iteration of SGD, is assumed to satisfy β ≤ n1/5−δ for some δ > 0.

Appendix A. Data distributions

A.1. Elaboration on isotropy

We recall that in Assumption 1.2, we have assumed that the data matrixA is orthogonally invariant.
This is a strong from of isotropy, under which the matrix looks the same in any orthogonal basis. On
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a technical level, we work in this setting as it leads to a singular value decomposition with especially
simple statistics.

To state this property, we recall that the set of n × n orthogonal matrices form a group O(n)
under multiplication, and that this group naturally admits a Lie group structure. In particular, there
is a probability measure on this group, the Haar measure, which is invariant by left and right mul-
tiplication by fixed orthogonal matrices. To refer to a random matrix whose law is Haar measure,
we will simply say a Haar-distributed orthogonal matrix. While it may appear unwieldy, there are
many exceptionally nice tools that exist for working with this measure. We will elaborate on many
of them in Section C. We also refer to Meckes (2019) for a rich exposition on the intrinsic properties
of this group.

The main feature that we will need is the following:

Lemma 4 Suppose that A is an n × d orthogonally invariant random matrix in that AOd
law
= A

andOnA
law
= A for any orthogonal matricesOn ∈ O(n) andOd ∈ O(d). Then there is a singular

value decomposition
A = UΣV

with Σ an n× d random matrix having

Σ11 ≥ Σ22 ≥ Σ33 ≥ · · · ≥ Σmm where m = min{n, d},

so that (U ,Σ,V ) are independent, and U and V are Haar orthogonally distributed.

Proof The key observation is that if we introduce a new, independent Haar distributed random
matrix U ∈ O(n), then UTA has the same law as A and moreover (U ,UTA) are independent.

To see that UTA has the same law asA we just observe that conditionally on UT , UTA
law
= A by

assumption. As the conditional law does not depend on U , it follows that UTA
law
= A and U is

independent ofUTA. Extending this, if we introduce two new independent Haar distributed random
matrices U ∈ O(n) and V in O(d), it follows that (U ,UTAV T ,V ) is a triple on independent
random matrices. Let

UTAV T = ŨΣṼ

be the singular value decomposition with Σ having the properties stated in the lemma. Then

A = UT (UAV )V T = (UŨ)Σ(Ṽ V ),

with U ,V and (ŨΣṼ ) independent. By invariance of Haar measure, the triple (UŨ ,V Ṽ ,Σ)
remain independent and uniformly distributed on O(n) and O(d) respectively.

As a consequence, we will frequently condition on the singular values Σ of A, and most estimates
we need are estimates that hold conditionally on Σ.

A.2. Isotropic features and Random features

In this section, we expand upon Assumptions 1.1 and 1.2 in the main text of the paper. We discuss
in detail two examples: isotropic features and one-hidden layer networks.
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A.2.1. ISOTROPIC FEATURES

In their seminal work, Marčenko and Pastur (1967) show that the spectrum of H = 1
nA

TA under
the isotropic features model converged to a deterministic measure. Subsequent work then charac-
terized the convergence of the largest eigenvalue ofH . We summarize these results below.

Lemma 5 (Isotropic features) (Bai and Silverstein (2010, Theorem 5.8)) Suppose the matrix
A ∈ Rn×d is generated using the isotropic features model. Then the empirical spectral measure
(EMS) µH converges weakly almost surely to the Marchenko-Pastur measure µMP and the largest
eigenvalue of H , λ+

H , converges in probability to λ+ where λ+ = (1 +
√
r)2 is the top edge of the

support of the Marchenko-Pastur measure.

The results stated so far did not require that the entries of A are normally distributed, and hold
equally well for any i.i.d. matrices with mean 0, entry variance 1 and bounded fourth-moment.
Under the additional assumption that the entries of A are normally distributed, it is easily checked
by a covariance computation that for fixed orthogonal matrices U and V the entries UA and AV
remain independent, mean 0 and variance 1. We summarize this claim below.

Lemma 6 For an n × d matrix A of i.i.d. standard normal random variables, UA and AV are
again n× d matrices of independent standard normals for fixed orthogonal matrices U and V .

We emphasize that while this is not true for matrices A with entries that are independent of mean
0 and variance 1, there are many senses in which this is approximately true (see Knowles and Yin
(2017)).

A.2.2. ONE-HIDDEN LAYER NETWORKS

One-hidden layer network with random weights. In this model, the entries of A are the result
of a matrix multiplication composed with a (potentially non-linear) activation function g : R→ R:

Aij
def
= g

( [WY ]ij√
m

)
, whereW ∈ Rn×m, Y ∈ Rm×d are random matrices. (25)

The entries of W and Y are i.i.d. with zero mean, isotropic variances E [W 2
ij ] = σ2

w and E [Y 2
ij ] =

σ2
y , and light tails (see App. A.2 for details). As in the previous case to study the large dimensional

limit, we assume that the different dimensions grow at comparable rates given by m
n → r1 ∈ (0,∞)

and m
d → r2 ∈ (0,∞). This model encompasses two-layer neural networks with a squared loss,

where the first layer has random weights and the second layer’s weights are given by the regression
coefficients x. Particularly, the optimization problem in (2) becomes

min
x

{
f(x) =

1

2n
‖g
(

1√
m
WY

)
x− b‖22

}
. (26)

The model was introduced by (Rahimi and Recht, 2008) as a randomized approach for scaling
kernel methods to large datasets, and has seen a surge in interest in recent years as a way to study
the generalization properties of neural networks (Hastie et al., 2019; Mei and Montanari, 2019;
Pennington and Worah, 2017).

The difference between this and the isotropic features model is the activation function, g. We
assume g to be entire with a growth condition and have zero Gaussian-mean (App. A.2). These
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assumptions hold for common activation functions such as sigmoid g(z) = (1+e−z)−1 and softplus
g(z) = log(1 + ez), a smoothed variant of ReLU.

Benigni and Péché (2019) recently showed that the empirical spectral measure and largest eigen-
value of H converge to a deterministic measure and largest element in the support, respectively.
This implies that this model verifies Assumption 1.2. However, contrary to the isotropic features
model, the limiting measure does not have an explicit expression, except for some specific instances
of g in which it is known to coincide with the Marchenko-Pastur distribution.

For the one-hidden layer network, following (Benigni and Péché, 2019), we assume that the
activation function g is an entire function with a growth condition satisfying the following zero
Gaussian mean property:

(Gaussian mean)
∫
g(σwσyz)

e−z
2/2

√
2π

dz = 0 . (27)

The additional growth condition on the function g is precisely given as there exists positive constants
Cg, cg, A0 > 0 such that for any A ≥ A0 and any n ∈ N

sup
z∈[−A,A]

|g(n)(z)| ≤ CgAcgn . (28)

This growth condition is verified for polynomials which can approximate to arbitrary precision
common activation functions such as the sigmoid g(z) = (1 + e−z)−1 and the softplus g(z) =
log(1 + ez), a smoothed approximation to the ReLU. The Gaussian mean assumption (27) can
always be satisfied by incorporating a translation into the activation function.

In addition to the i.i.d., mean zero, and isotropic entries, we also require an assumption on the
tails ofW and Y , that is, there exists constants θw, θy > 0 and α > 0 such that for any t > 0

Pr(|W11| > t) ≤ exp(−θwtα) and Pr(|Y11| > t) ≤ exp(−θytα). (29)

Although stronger than bounded fourth moments, this assumption holds for any sub-Gaussian ran-
dom variables (e.g., Gaussian, Bernoulli, etc). Under these hypotheses, Assumption 1.2 is verified.

Lemma 7 (One-hidden layer network) (Benigni and Péché (2019, Theorems 2.2 and 5.1)) Sup-
pose the matrix A ∈ Rn×d is generated using the random features model. Then there exists a de-
terministic compactly supported measure µ such that µH −→

d→∞
µ weakly almost surely. Moreover

λ+
H

Pr−−−→
d→∞

λ+ where λ+ is the top edge of the support of µ.

Appendix B. Derivation of the dynamics of SGD

In this section, we derive the Volterra equation from (12), that is,

ψ0(t) = R
2 h1(t) + R̃

2

(
rh0(t) + (1− r)

)
+

∫ t

0
γ2rh2(t− s)ψ0(s) ds,

and hk(t) =

∫ ∞
0

xke−2γtx dµ(x).

(30)

and prove Theorem 1:
sup

0≤t≤T

∣∣f(xbnβ tc)− ψ0(t)
∣∣ Pr−−−→
n→∞

0, (31)

provided that error terms go to zero. We begin by setting up the tools to derive an approximate
Volterra equation.
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B.1. Change of basis

Recall the iterates of SGD satisfy

xk+1 = xk −
γ

n

∑
i∈Bk

∇fi(xk) = xk −
γ

n
ATPk(Axk − b), where Pk

def
=
∑
i∈Bk

eie
T
i . (32)

Here Pk is a random orthogonal projection matrix with ei the i-th standard basis vector, β ∈ N is
a batch-size parameter, which we will allow to depend on n, γ > 0 is a stepsize parameter, and the
function fi is the i-th element of the sum in (2).

We recall that b has the representation b = Ax̃+
√
nη, and both x̃ and η have norms bounded

independently of n. Hence we can represent the updates of SGD (3) equation in matrix form as

xk+1 = xk −
γ

n
ATPk(A(xk − x̃) +

√
nη).

We will consider a singular value decomposition guaranteed by Lemma 4 of 1√
n
A = UΣV T ,

where U and V are Haar distributed orthogonal matrices, i.e. V V T = V TV = I and Σ is the
n × d singular value matrix with diagonal entries diag(σi), i = 1, . . . , n. Our analysis will use a

different choice of variables. So we define the vector ν̂k
def
= V T (xk − x̃), which therefore evolves

like
ν̂k+1 = ν̂k − γΣTUTPk(UΣν̂k − η). (33)

B.2. Embedding into continuous time

We next consider an embedding of the process ν̂k into continuous time. This is done to simplify
the analysis, and it does not change the underlying behavior of SGD. Let N0 = N ∪ {0}. We define
an infinite random sequence {τk : k ∈ N0} ⊂ [0,∞) with 0 = τ0 < τ1 < τ2 < · · · , which will
record the time at which the k-th update of SGD occurs. The distribution of these {τk : k ∈ N0}
will follow a standard rate-(nβ ) Poisson process. This means that the family of interarrival times

{τk − τk−1 : k ∈ N} are i.i.d. Exp(nβ ) random variables, i.e., those with mean β
n , and we note

that this randomization is independent of both the SGD, A and b. The function Nt will count the
number of arrivals of this Poisson process before time t, that is

Nt = sup{k ∈ N0 : τk ≤ t}.

Then for any t > 0, Nt has the distribution of Poisson(nβ t).
We embed the process ν̂ into continuous time, by taking νt = ν̂τNt . We note that we have scaled

time (by choosing the rate of the Poisson process) so that in a single unit of time t, the algorithm
has done one complete pass (in expectation) over the data set, i.e. SGD has completed one epoch.

B.3. Doob-Meyer decomposition

We compute the Doob decomposition for quasi-martingales (Protter, 2005, Thm. 18, Chpt. 3) of νt
and of ν2

t,j , where νt,j is the j-th coordinate of νt where j ranges from j = 1, . . . , d. Here we let Ft
be the σ-algebra of information available to the process at time t ≥ 0. So we take, for any j ∈ [d],

Bt
def
= ∂t E[νt | Ft] = lim

ε↓0
ε−1 E[νt+ε − νt | Ft]

At,j
def
= ∂t E[ν2

t,j | Ft] = lim
ε↓0

ε−1 E[ν2
t+ε,j − ν2

t,j | Ft].
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In terms of this random variable, we have a decomposition

νt = ν0 +

∫ t

0
Bs ds+ M̃t,

ν2
t,j = ν2

0,j +

∫ t

0
As,j ds+Mt,j ,

(34)

where (Mt,j ,M̃t : t ≥ 0) are Ft–adapted martingales.
For the computation ofAt,j we observe that as ε→ 0,At,j is dominated by the contribution of a

single Poisson point arrival; as in time ε, the probability of having multiple Poisson point arrivals is
O(β−2n2ε2), whereas the probability of having a single arrival is 1− e−β−1nε ∼ β−1nε as ε→ 0.
For notational simplicity, we let the projection matrix P ∈ Rd×d be an i.i.d. copy of P1, which
is independent of all the randomness so far and we let B be the corresponding random subset of
{1, 2, . . . , n} that defines P . It follows

Bt =
n

β
E

[
νt − γΣTUTP (UΣνt − η)− νt

∣∣∣∣ Ft],
At,j =

n

β
E

[(
νt,j − γeTj ΣTUTP (UΣνt − η)

)2

− ν2
t,j

∣∣∣∣ Ft].
The mean term of νt simplifies significantly, and by no accident: by construction, the SGD

update rule has a conditional expectation which is proportional to the gradient of the objective
function. Observe that since

E[P ] =
β

n

n∑
i=1

eie
T
i =

β

n
I,

the previous equation simplifies to:

Bt = −γΣT (Σνt −UTη) and Bt,j = −γσ2
j νt,j + γσj(U

Tη)j . (35)

We now turn to the evaluation of At,j . If we let P =
∑

i∈B eieTi ,

At,j = −2νt,jγeTj ΣTUT (UΣνt − η) + γ2n

β
E

(
eTj ΣTUTP (UΣνt − η)

∣∣∣∣ Ft)2

= 2νt,jBt,j + γ2
nσ2

j

β
E

(∑
i∈B

(
eTj U

T ei
)(

eTi (UΣνt − η)
) ∣∣∣∣ Ft)2

.

(36)

To compute this conditional expectation, we record the following lemma.

Lemma 8 Suppose that u and v are fixed vectors in Rn. Then

E

(∑
i∈B

uivi

)2

=
β(β − 1)

n(n− 1)
(uTv)2 +

(
β

n
− β(β − 1)

n(n− 1)

) n∑
i=1

(uivi)
2.

Proof This reduces to the two probabilities:

Pr(i ∈ B) =
β

n
, and Pr(i, ` ∈ B) =

β(β − 1)

n(n− 1)
,
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where i 6= ` are any fixed numbers in {1, 2, . . . , n}. The proof now follows by expanding both
sides.

Using Lemma 8, we can therefore simplify (36) by writing

At,j = 2νt,jBt,j +
β − 1

n− 1

(
Bt,j
)2

+ γ2σ2
j

(
1− β − 1

n− 1

) n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνt − η)
)2
. (37)

B.4. Constructing the approximate Volterra equation

In this section, we derive an approximate Volterra equation. First, we can write the function values
at the iterates xt in terms of νt,

ψε(t)
def
= f(xNt) =

1

2n
‖A(xNt − x̃)−

√
nη‖2 =

1

2
‖Σνt −UTη‖2.

=
1

2

d∑
j=1

σ2
j ν

2
t,j −

n∧d∑
j=1

σjνt,j (UTη)j +
1

2
‖η‖2.

(38)

Hence the dynamics of ψε(t) are governed by the behaviors of νt,j and ν2
t,j processes. We now

return to At,j . The key lemma to simplifying (37) is that the
(
eTj U

T ei
)2 expression in (37) self-

averages to 1
n . Furthermore, we are working in the regime when β = o(n), and hence the terms

with β
n will vanish in the large-n limit. Thus we define

Ât,j
def
= 2νt,jBt,j+γ2σ2

j

n∑
i=1

1

n

(
eTi (UΣνt−η)

)2

= −γ2σ2
j ν

2
t,j+γ2σjνt,j(U

Tη)j+γ
2
2σ2

jψε(t)

n
.

(39)
We will show that Ât,j is a good approximation for At,j in a suitably strong sense so that we can
derive a deterministic Volterra equation description for ψε(t) in the large-n limit. For the moment,
let’s group these error terms together. Define the càdlàg process

Et,j
def
= ν2

t,j − ν2
0,j −

∫ t

0
Âs,j ds. (40)

In the following lemma, we get an expression for νt,j .

Lemma 9 For any t ≥ 0 and for any 1 ≤ j ≤ d,

ν2
t,j = e−2tγσ2

j ν2
0,j +

∫ t

0
e−2(t−s)γσ2

j

((
γ2σjνs,j(U

Tη)j +
γ22σ2

jψε(s)

n

)
ds+ dEs,j

)
and νt,j = e−γσ

2
j tν0,j +

∫ t

0
e−γσ

2
j (t−s)(γσj(UTη)j ds+ dM̃s,j

)
.

Proof We show the first equation. The second follows by a similar argument. Using the definition
of Et,j , the following holds

ν2
t,j = ν2

0,j +

∫ t

0

(
−γ2σ2

j ν
2
s,j + γ2σjνs,j(U

Tη)j + γ2
2σ2

jψε(s)

n

)
ds+ Et,j .
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Using càdlàg differentiation, we get that

d(e2tγσ2
j ν2
t,j) = e2tγσ2

j γ2σjνt,j(U
Tη)j + e2tγσ2

j γ2
2σ2

jψε(t)

n
+ e2tγσ2

j dEt,j .

Hence integrating both sides, one obtains

ν2
t,j = e−2tγσ2

j

(
ν2

0,j +

∫ t

0
e2sγσ2

j

(
γ2σjνs,j(U

Tη)j + γ2
2σ2

jψε(s)

n

)
ds+

∫ t

0
e2sγσ2

j dEs,j
)
,

which completes the proof.

We then apply Lemma 9 to (38) and we derive the approximate Volterra equation

ψε(t) =
1

2

d∑
j=1

σ2
j

(
e−2tγσ2

j ν2
0,j +

∫ t

0
e−2(t−s)γσ2

j γ2
2σ2

jψε(s)

n
ds

)

+
1

2

d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γ2σ3
j νs,j(U

Tη)j ds+
1

2
‖η‖2 −

n∧d∑
j=1

σjνt,j (UTη)j

+
1

2

d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j dEs,j .

(41)

In this expression, we have gathered the terms on each line that have different limit behaviors. On
the first line, we have the terms, that due to the convergence of the empirical measure of singular
values (Assumption 1.2), will have continuum limits. The second line are those terms that survive
in the limit due to the effect of noise η. The third line are error terms that vanish in the limit. We
will make explicit the convergence in the first two lines in the following lemmata.

B.5. Stability of the Volterra equation

We begin by defining some Laplace transforms of the limiting spectral measures, for k ∈ N0,

hk(t)
def
=

∫ ∞
0

xke−2γtx dµ(x). (42)

We begin by showing that the terms on the first line of (41) converge to some finite limit. Under our
Assumption 1.2,

Lemma 10 Locally uniformly on compact sets of time,

1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j

Pr−−−→
n→∞

Rh1(t)

2
and (43)

d∑
j=1

γ2
σ4
j

n
e−2tγσ2

j
Pr−−−→

n→∞
γ2rh2(t). (44)
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Proof We begin by showing that each term in (43) and (44) converge pointwise in probability. Note
that the convergence of (44) is trivial because of Assumption 1.2. Hence, it only remains to show
pointwise convergence of (43).

Under Assumption 1.1 and using uniform distribution of V we have that ν0 = V (x0 − x̃) is
a uniformly distributed vector on the sphere of norm

√
R. Observe first that conditioned on Σ, the

conditional expectation of the LHS of (43) is given by

E

[
1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j

∣∣∣∣Σ] =
R

2

1

d

d∑
j=1

σ2
j e
−2tγσ2

j .

The vector ν2
0 follows the Dirichlet distribution, which is negatively associated. In particular,

E(ν2
0,jν

2
0,j) ≤ E(ν2

0,j)E(ν2
0,j) . Further E(ν4

0,j) ≤ 3R2d−2, as the moments are strictly bounded
by the normal moments. Hence, the variance is bounded by

Var

(
1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j

∣∣∣∣Σ) = E

[(1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j −

R

2

1

d

d∑
j=1

σ2
j e
−2tγσ2

j
)2∣∣∣∣Σ]

= E

[( 1

2d

d∑
j=1

σ2
j e
−2tγσ2

j (dν2
0,j −R)

)2∣∣∣∣Σ]

≤ 1

4d2
E

[ d∑
j=1

(σ2
j e
−2tγσ2

j )2(dν2
0,j −R)2

∣∣∣∣Σ]

=
1

4d

[
1

d

d∑
j=1

σ4
j e
−2·2tγσ2

j

]
(d2E[ν4

0,j ]−R2) = O
(

1

d

)
.

Therefore, for ε > 0, conditional Chebyshev inequality gives

Pr

(∣∣∣∣12
d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j−

R

2

1

d

d∑
j=1

σ2
j e
−2tγσ2

j

∣∣∣∣ > ε

∣∣∣∣Σ) ≤ 1

ε2
Var

(
1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j

∣∣∣∣Σ)−−−→n→∞
0.

Applying the law of total probability to this and combining it with the weak convergence of ESM
in probability (Assumption 1.2) gives

Pr

(∣∣∣∣12
d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j −

Rh1(t)

2

∣∣∣∣ > ε

)

≤ Pr

(∣∣∣∣12
d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j −

R

2

1

d

d∑
j=1

σ2
j e
−2tγσ2

j

∣∣∣∣ > ε

2

)

+ Pr

(∣∣∣∣R2 1

d

d∑
j=1

σ2
j e
−2tγσ2

j − Rh1(t)

2

∣∣∣∣ > ε

2

)
−−−→
n→∞

0.

Now we show the uniform convergence of (43) on time interval [0, T ] for a fixed time T > 0
(the same argument applies to (44)). Considering mesh points on [0, T ] with spacing, let us say
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λ > 0, we can say that the pointwise convergence holds on those mesh points and so does the
supremum convergence on them. For an arbitrary time t ∈ [0, T ], there exists a mesh point t0 such
that |t− t0| ≤ λ. Then, since e−2tγσ2

j is a Lipschitz function on [0, T ] with some Lipschitz constant
C > 0, we have

sup
0≤t≤T

∣∣∣∣12
d∑
j=1

σ2
j (e
−2tγσ2

j − e−2t0γσ2
j )ν2

0,j

∣∣∣∣ ≤ Cλ

2

d∑
j=1

σ2
j ν

2
0,j .

Note that
∑d

j=1 σ
2
j ν

2
0

Pr−−−→
n→∞

R
∫∞

0 x2dµ(x) < ∞ using a similar idea by conditioning on Σ and
applying Assumption 1.2. Then observe, applying triangle inequality and taking supremum on
t ∈ [0, T ] gives

sup
0≤t≤T

∣∣∣∣12
d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j −

Rh1(t)

2

∣∣∣∣ ≤ sup
t0∈[0,T ]

∣∣∣∣12
d∑
j=1

σ2
j e
−2t0γσ2

j ν2
0,j −

Rh1(t0)

2

∣∣∣∣
+ sup

0≤t≤T

∣∣∣∣12
d∑
j=1

σ2
j (e
−2tγσ2

j − e−2t0γσ2
j )ν2

0,j

∣∣∣∣
+ sup
t,t0∈[0,T ]

R

2

∣∣h1(t0)− h1(t)
∣∣.

Given that µ has a finite support, we have supt,t0∈[0,T ] |h1(t) − h1(t0)| ≤ C ′λ for some C ′ > 0.
Now the claim follows as λ can be chosen as small as possible.

We can now recast (41) as an approximate Volterra type integral equation, where

ψε(t) =
Rh1(t)

2
+R̃ · rh0(t) + (1− r)

2
+ε

(n)
1 (t)+

∫ t

0

(
γ2rh2(t−s)+ε

(n)
2 (t−s)

)
ψε(s) ds, (45)

and where ε(n)
i are defined implicitly by comparison with (41). In particular, ε(n)

2 (t) is given by the
difference

ε
(n)
2 (t) =

d∑
j=1

γ2
σ4
j

n
e−2tγσ2

j − γ2rh2(t),

which is therefore guaranteed to converge to 0 by Lemma 10. The other error ε(n)
1 is substantially

more complicated; we discuss it fully in (54), Section B.6.
However, all we need to show is that this error tends to 0, as Volterra equations are stable:

Proposition 11 (Stability of the Volterra equation) Fix a constant T > 0 and suppose ψε solves
(45) with bounded error terms,

sup
0≤t≤T

|ε(n)
1 (t)| Pr−−−→

n→∞
0 and sup

0≤t≤T
|ε(n)

2 (t)| Pr−−−→
n→∞

0.

Suppose that ψ0 solves (45) with ε(n)
1 = ε

(n)
2 = 0. Then for any fixed length of time T , the perturbed

solution of the Volterra equation ψε converges uniformly, in probability, to the unperturbed solution
of the Volterra equation, ψ0(t):

sup
0≤t≤T

|ψε(t)− ψ0(t)| Pr−−−→
n→∞

0.
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Proof Throughout this proof, we set R+ = {x ∈ R : x ≥ 0} and we use the notation L1
loc(R

+) to
be the locally integrable functions on R+. We will supress the n dependency in the error terms ε(n)

1

and ε(n)
2 . We begin by defining some notation for solving Volterra equations, namely the kernel and

forcing function respectively by

kε(t)
def
= −

(
γ2rh2(t) + ε2(t)

)
and fε(t)

def
=
Rh2(t)

2
+ R̃ · rh0(t) + 1− r

2
+ ε1(t). (46)

Here we use the convention that k0 and f0 correspond to where ε1(t) = ε2(t) = 0. Under this
notation, the Volterra equation in (45) becomes

ψε(t) +

∫ t

0
kε(t− s)ψε(s) ds = fε(t). (47)

Now we check that kε(t) ∈ L1
loc(R

+) with high probability. To see this we only need that h2(t) ∈
L1

loc(R
+) as the supremum condition on ε2(t) guarantees that the error term in kε is bounded with

high probability and therefore ε2(t) is in L1
loc(R

+) with high probability. Since h2(t) ≥ 0, we can
apply Tonelli’s theorem∫ ∞

0
h2(t) dt =

∫ ∞
0

∫ ∞
0

x2e−2γtx dt dµ(x) =

∫ ∞
0

x

2γ
dµ(x) <∞.

Here we used that µ(x) is compactly supported to conclude the last integral. Hence it follows that
h2(t) ∈ L1(R+) which shows that kε(t) ∈ L1

loc(R
+). To prove the conclusion of the proposition,

we will use a stability theorem together with the existence and uniqueness for Volterra equations of
convolution type kernels. The solutions of convolution kernel Volterra equations rely on a function
defined through the kernel k called the resolvent of the kernel k. We define this resolvent as the
function rε : R+ → R such that

rε(t) =
∞∑
j=1

(−1)j−1k∗jε (t), (48)

where the function k∗jε (t), j ≥ 1 is the (j − 1)-fold convolution of the kernel kε with itself. We
want to show that a perturbed kernel kε results in a perturbation of the resolvent. Since kε ∈
L1

loc(R
+), the stability theorem for kernels, Theorem 3.1 in Gripenberg et al. (1990), says that the

resolvent rε ∈ L1
loc(R

+) is unique and depends continuously on kε in the L1
loc(R

+) topology. As

sup
0≤t≤T

|ε2(t)| Pr−−−→
n→∞

0, we have that

∫ T

0
|kε(t)− k0(t)| dt =

∫ T

0
|ε2(t)| dt

Pr−−−→
n→∞

0,

so by continuity in L1
loc, we get that∫ T

0
|rε(t)− r0(t)| dt

Pr−−−→
n→∞

0.
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Using this resolvent, the unique solution to the Volterra equation in (47) (Gripenberg et al., 1990,
Theorem 3.5) is give by

ψε(t) = fε(t)− (rε ∗ fε)(t). (49)

A simple computation yields that

|ψε(t)− ψ0(t)| ≤ |fε(t)− f0(t)|+
∣∣ ∫ t

0
(r0 − rε)(t− s)f0(s) ds

∣∣
+
∣∣ ∫ t

0
rε(t− s)[f0(s)− fε(s)] ds

∣∣
≤ |fε(t)− f0(t)|+ sup

0≤s≤t
|f0(t)|

∫ t

0
|(r0 − rε)|(t− s) ds

+ sup
0≤s≤t

|f0(s)− fε(s)|
∫ t

0
|rε(t− s)| ds.

Since hk(t) is bounded, we clearly have that sup0≤t≤T |f0(t)| is bounded. Working on the event that
rε(t) ∈ L1

loc(R
+) (i.e.

∫ T
0 |rε(t)| dt is bounded),

∫ T
0 |rε(t)−r0(t)| dt is small, and sup0≤t≤T |ε1(t)|

is small, it follows that

sup
0≤t≤T

|ψε(t)− ψ0(t)| ≤ sup
0≤t≤T

|ε1(t)|+ sup
0≤t≤T

|f0(t)|
∫ T

0
|r0 − rε|(t) dt

+ sup
0≤t≤T

|ε1(t)|
∫ T

0
|rε(t)| dt.

Since every term on the RHS is small and the complement of the event on which we proved the
inequality above has small probability, the result immediately follows.

This yields one of the main theorems of this paper which we restate for clarity (Theorem 1):

Theorem 12 (Concentration of SGD) Suppose β ∈ N is a batch-size parameter such that 0 <
β ≤ n1/5−δ for some δ > 0 and the stepsize is γ < 2

r

( ∫∞
0 x dµ(x)

)−1. Let the constant T > 0.
Under Assumptions 1.1 and 1.2, the function values at the iterates of SGD converge to

sup
0≤t≤T

∣∣f(xbnβ tc)− ψ0(t)
∣∣ Pr−−−→
n→∞

0, (50)

where the function ψ0 is the solution to the Volterra equation

ψ0(t) = R
2 h1(t) + R̃

2

(
rh0(t) + (1− r)

)
+

∫ t

0
γ2rh2(t− s)ψ0(s) ds,

and hk(t) =

∫ ∞
0

xke−2γtx dµ(x).

(51)

Proof By definition of Nt and ψε(t), we have

f
(
xbnβ tc

)
= f

(
xNτbnβ/tc

)
= ψε(τbnβ tc

).
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Also, Proposition 11 gives

sup
0≤t≤T

|ψε(t)− ψ0(t)| Pr−−−→
n→∞

0.

Therefore, triangle inequality gives

sup
0≤t≤T

∣∣f(xbnβ tc)− ψ0(t)
∣∣ ≤ sup

0≤t≤T

∣∣ψε(τbnβ tc)− ψ0(τbnβ tc
)
∣∣+ sup

0≤t≤T

∣∣ψ0(τbnβ tc
)− ψ0(t)

∣∣,
and by the continuity of ψ0(t), it would suffice to show

sup
0≤t≤T

∣∣τbnβ tc − t∣∣ Pr−−−→
n→∞

0. (52)

First, note that

sup
0≤s≤T

∣∣Ns
β

n
− s
∣∣ Pr−−−→
n→∞

0 (53)

holds. For a fixed time s ∈ [0, T ], this comes from the strong law of large numbers, see (Kingman,
1993, (4.18)). And the result for the supremum on [0, T ] follows using monotonicity ofNt on [0, T ]
and the meshing arguments as used in proving Lemma 10.

Now for t > 0, let s > 0 be such that bnβ tc = Ns, or t = Ns
β
n + β

nr for 0 ≤ r < 1. Therefore,
observe ∣∣τbnβ tc − t∣∣ =

∣∣τNs −Ns
β

n
− β

n
r
∣∣ ≤ ∣∣τNs − s∣∣+

∣∣Ns
β

n
− s
∣∣+

β

n
r.

The last term converges to 0 as n→∞, and so does the second term in probability, by (53). So,
it is left to show the convergence in probability of the first term. By the definition of Ns, we have

s−∆ ≤ τNs ≤ s,

where ∆ denotes the largest spacing between adjacent jumps in [0,T]. Note that Ns ≤ NT ≤ 2Tn
β

with overwhelming probability (Klar, 2000, Prop. 1). Recalling again that τk− τk−1, k ∈ N, follow
Exp(nβ ) independently on k ∈ N, we have for u > 0,

Pr
(
(∆ > u) ∩ (NT ≤

2Tn

β
)
)

= 1− Pr
(
(∆ ≤ u) ∩ (NT ≤

2Tn

β
)
)

≤ 1− (1− e−
n
β
u
)NT

≤ NT e
−n
β
u ≤ 2Tn

β
e
−n
β
u
.

This implies

Pr
(
∆ > u

)
≤ Pr

(
(∆ > u) ∩ (NT ≤

2Tn

β
)
)

+ Pr(NT >
2Tn

β
)→ 0

as n→∞ and we obtain the claim.
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B.6. Bounding the errors ε(n)
1

In this section, we give a high–level overview of the errors and how they converge to 0. We will
have the following error pieces:

ε
(n)
1 (t)

def
= ε

(n)
IC (t) + ε

(n)
KL(t) + ε

(n)
M (t) + ε

(n)
beta(t) + ε

(n)
eta(t). (54)

We define these terms momentarily and we will verify that ε(n)
1 is indeed equal to these pieces in

Lemma 21. We remark that before controlling the errors, we will need to make an a priori estimate
that (effectively) shows the function values remain bounded. Thus, we define the stopping time, for
any fixed θ > 0, by

ϑ
def
= inf

{
t ≥ 0 : ‖UΣνt − η‖ > nθ

}
. (55)

We then show:

Lemma 13 For any θ > 0, and for any T > 0, ϑ > T with high probability.

This is achieved by a simple martingale-type estimate, which is similar to the standard convergence
arguments for SGD. The proof is given in Section B.7. We will need it in what follows. We will also
condition on Σ going forward.

B.6.1. ERRORS FROM THE CONVERGENCE OF THE INITIAL CONDITIONS

The error ε(n)
IC (t) arises due to convergence errors in the signal and initialization. It was already

essentially discussed in Lemma 10. We define it by

ε
(n)
IC (t)

def
=

1

2

d∑
j=1

σ2
j e
−2tγσ2

j ν2
0,j −

Rh1(t)

2
. (56)

It accounts for the convergence of the initialization in the large d limit and relies on the convergence
of the empirical spectral distribution. Due to Lemma 10, we have already shown it converges to 0.

B.6.2. ERRORS WHICH VANISH DUE TO THE KEY LEMMA

The vanishing of the error ε(n)
KL(t) is the key lemma. To explain why we call it this: let us specialize

to the case of η = 0 and β = 1. If we were content to evaluate the expected function values, when
averaging over the randomness inherent in the SGD algorithm, then this would be the only error that
we would need to control. Thus in some sense, it can be viewed as the minimal estimate that needs
to be shown to prove the Volterra equation holds. This error is given by

ε
(n)
KL(t)

def
=

1

2

d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j

( n∑
i=1

((
eTj U

T ei
)2 − 1

n

)(
eTi (UΣνs − η)

)2)
ds. (57)

After interchanging the order of summation, it suffices to show:

Lemma 14 (Key lemma) For any T > 0 and for any ε > 0, with overwhelming probability

max
1≤i≤n

max
0≤t≤T

∣∣∣∣ d∑
j=1

σ2
j e
−2tγσ2

j

((
eTj U

T ei
)2 − 1

n

)∣∣∣∣ ≤ nε−1/2.
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This we show in Section C.2. Note that by combining this with (57) and Lemma 13, we conclude
that for any ε > 0 and any T, with high probability

max
0≤t≤T

|ε(n)
KL(t)| ≤ n2ε−1/2

∫ T

0

1

2
ds→ 0.

B.6.3. MARTINGALE ERRORS

The martingale errors are due to the randomness in the algorithm itself. They in part are small
because the singular vector matrix U is delocalized, in that its offdiagonal entries in any fixed
orthogonal basis are nε−1/2 with overwhelming probability. The martingale errors are given by

ε
(n)
M (t)

def
=

1

2

d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j dMs,j . (58)

Estimating this error requires a substantial build-up. The most important technical input, which
we will use in multiple places, is that the function values do not concentrate too heavily in any
coordinate direction. As an input, we will use Lemma 13, and so we work with the stopped process
defined for any t ≥ 0 by νϑt

def
= νt∧ϑ. In some sense, this is the most challenging and important

technical statement that we prove:

Proposition 15 For any T > 0, any ε > 0, there is a sufficiently small θ > 0 so that

sup
0≤t≤T

sup
1≤i≤n

(
eTi (UΣνϑt − η)

)2 ≤ βnε−1

with overwhelming probability.

We expect that the upper bound on β in Theorem 12 is a limitation of our method, and that similar
statements should hold for larger β. This proposition is proven in Section D.2.

With Proposition 15 in hand, we can then bound the martingale errors.

Proposition 16 For any T > 0, with overwhelming probability,

sup
0≤t≤T

|ε(n)
M (t ∧ ϑ)| Pr−−−→

n→∞
0.

This is proven in Section D.2. Having done Proposition 15, the proof of Proposition 16 reduces to
standard martingale techniques.

B.6.4. ERRORS DUE TO MINIBATCHING

The Volterra equation that we prove (12) importantly does not depend on the minibatching size.
Naturally, the dynamics do depend on β, and so there are error terms which must be controlled and
which are in part small due to the minibatching parameter β satisfying β/n → 0. These errors are
given by

ε
(n)
beta(t)

def
=

1

2

d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j

(
β − 1

n− 1
B2
s,j −

β − 1

n− 1

n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνs − η)
)2)

ds.

(59)
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Note in particular that when β = 1 this vanishes identically.
Much of this error term is controlled using delocalization of U and Lemma 13. However, there

is one error β(Bs,j)2 which requires extra work. This we would like to tend to 0 in a sufficiently
strong sense. On consideration of (35), we see that this in turn requires that νs itself be delocalized
in the sense that |νs,j | ≤ nε−1/2 with overwhelming probability.

Proposition 17 For any ε > 0 and T > 0, with overwhelming probability,

sup
0≤t≤T

max
1≤j≤d

|νϑt,j | ≤ βnε−1/2.

The dependence on β is only through Proposition 15, on which this relies. The proof is found in
Section D.2. Now Proposition 17 with eigenvector delocalization gives the following proposition.

Proposition 18 For any ε > 0 and any T > 0, with overwhelming probability,

sup
0≤t≤T

|ε(n)
beta(t)| ≤ nε−1/2.

This is proven in Section C.3.

B.6.5. ERRORS DUE TO THE MODEL NOISE

Finally, there are errors that arise due to the noise η. The model noise η in fact induces a change in
the dynamics of the algorithm. This change is reflected in an additional forcing term that appears in
the Volterra equation. This forcing term is controlled (in some sense) by the mean behavior of νt,j .
The model noise error is defined by

ε
(n)
eta(t)

def
=

d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γσ3
j νs,j(U

Tη)j ds+
1

2
‖η‖2−

n∧d∑
j=1

σjνt,j(U
Tη)j−R̃ ·

rh0(t) + (1− r)
2

.

(60)
The fundamental identity that needs to be shown here is that averages of νs,j(UTη)j converge.

Within ε(n)
eta(t) there are many such averages, and so we formulate a general claim to this effect.

Proposition 19 Let {cj}n1 be a deterministic sequence with |cj | ≤ 1 for all j and define ϑ as in
Lemma 13. Then for any t > 0 and any ε > 0,∣∣∣∣ n∑

j=1

cjσjν
ϑ
t,j(U

Tη)j −
‖η‖2

n

n∑
j=1

cj(1− e−(t∧ϑ)γσ2
j )

∣∣∣∣ ≤ ‖η‖2√βnε−1/2,

with overwhelming probability.

This is proven in Section D.2.
Using a mesh argument, and appealing to the convergence of the empirical spectrum, we can

then show that ε(n)
eta(t) tends to 0.

Proposition 20 For any T > 0,

max
0≤t≤T

|ε(n)
eta(t)| Pr−−−→

n→∞
0.

This is proven in Section C.4.
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B.6.6. VERIFICATION OF (54)

The combination of Propositions 14, 16, 18, and 20 together show all remaining errors are small in
(54). Before proceeding, we connect (54) to the previous sections to demonstrate this is truly the
sum of errors that must be controlled.

Lemma 21 Equation (54) holds.

Proof We recall the approximate Volterra equation in (41). The error ε(n)
1 (t) is defined implicitly

in (45). By using (56) and (60), we conclude that

ε
(n)
1 (t)− ε(n)

IC (t)− ε(n)
eta(t) =

1

2

d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j dEs,j . (61)

Recall from (40) and (34)

Et,j =

∫ t

0
As,j ds+Mt,j −

∫ t

0
Âs,j ds.

Using (37) and (39), we can express

dEt,j = dMt,j

+

(
β − 1

n− 1

(
Bt,j
)2 − β − 1

n− 1

n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνt − η)
)2)

dt

+

( n∑
i=1

((
eTj U

T ei
)2 − 1

n

)(
eTi (UΣνt − η)

)2)
dt.

Each of these three lines, on substituting into (61), produces ε(n)
M (t), ε

(n)
beta(t), and ε(n)

KL(t), respec-
tively.

B.6.7. PROOF ORGANIZATION

We organize the remainder of the proof as follows. We begin by proving Lemma 13 in Section B.7
using standard martingale techniques. Arguments along this line are well–known in the context of
analysis of SGD, and this argument is similar (and in fact easier) than convergence arguments for
SGD.

In Section C, we introduce standard machinery for concentration of Lipschitz functions on the
orthogonal group. In this section, we then make the error estimates that follow from this type of
estimate. In particular we prove that the key lemma, Lemma 14 holds. We also show Proposition
18 and Proposition 20 hold. Note these latter propositions depend on some estimates that require
other martingale techniques.

In Section D, we give the estimates that depend heavily on martingale concentration techniques.
In Section D.1, we outline the general martingale concentration techniques that we need. These
extend general martingale techniques in ways that are appropriate to our setting. In Section D.2,
we prove the remaining propositions, beginning with the main technical proposition Proposition 15.
We then give the bounds that prove Propositions 16, 17, and 19.
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B.7. An a priori bound for the objective function values

Here we combine some of the estimates already developed to give a simple starting bound for the
function values ψε(t) in the proof of Lemma 13. We will need this starting bound in many of our
future estimates. We will do this by constructing an appropriate supermartingale, which we then
use to control the evolution of ψε.
Proof [Proof of Lemma 13] For convenience, we will set ψε = ψ. We recall from (38) that

ψ(t) =
1

2

d∑
j=1

σ2
j ν

2
t,j −

n∧d∑
j=1

σjνt,j (UTη)j +
1

2
‖η‖2.

Hence using (36) and (35),

lim
ε↓0

ε−1E[ψ(t+ ε)− ψ(t) | Ft] =
1

2

d∑
j=1

σ2
jAt,j −

n∧d∑
j=1

σjBt,j (UTη)j

=
1

2

d∑
j=1

σ2
j

(
−2νt,jγeTj ΣTUT (UΣνt − η) + γ2n

β
E

(
eTj ΣTUTP (UΣνt − η)

∣∣∣∣ Ft)2)

+ γ
n∑
j=1

(ηTUΣej)e
T
j ΣT (Σνt −UTη)

= −γ(Σνt −UTη)TΣΣT (Σνt −UTη) + γ2 n

2β

n∑
j=1

E

(
eTj ΣΣTUTP (UΣνt − η)

∣∣∣∣ Ft)2

.

Using Lemma 8, we can give the expression

lim
ε↓0
ε−1E[ψ(t+ ε)− ψ(t) | Ft] = −γ(Σνt −UTη)TΣΣT (Σνt −UTη)

+ γ2 β − 1

2(n− 1)

d∑
j=1

(
eTj ΣΣTUT (UΣνt − η)

)2

+ γ2 1

2

(
1− β − 1

n− 1

) d∑
j=1

n∑
i=1

(
eTj ΣΣTUT ei

)2(
eTi (UΣνt − η)

)2

.

All three terms have the interpretation as a quadratic form xT Âx for some matrix Â and the vector
x = UΣνt − η. Specifically, we have

Â = −γUΣΣTUT +
γ2(β − 1)

2(n− 1)
UΣΣTΣΣTUT +

γ2

2

(
1− β − 1

n− 1

) n∑
i=1

eie
T
i ‖ΣΣTUT ei‖2.

As Σ is bounded, we can let ρ? be the largest eigenvalue of Â, which is symmetric, and which can
be bounded solely in terms of the norm of Σ. Then we conclude that

lim
ε↓0

ε−1E[ψ(t+ ε)− ψ(t) | Ft] ≤ 2ρ?ψ(t).
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It follows immediately that

Xt
def
= e−2ρ?tψ(t)

is a positive supermartingale. Hence by optional stopping, for any T > 0

Pr[ sup
0≤t≤T

Xt ≥ λ | F0] ≤ ψ(0)

λ
.

Hence,

Pr[ sup
0≤t≤T

ψ(t) ≥ λ | F0] ≤ ψ(0)e2ρ?T

λ
.

Taking λ = n2θ/2 completes the proof.

Appendix C. Estimates based on concentration of measure on the high–dimensional
orthogonal group

C.1. Generalities

We recall a few properties of Haar measure on the orthogonal group. We endow the orthogonal
group O(n) with the metric given by the Frobenius norm, so that d(O,U) = ‖O −U‖F . Say that
a function F : O(n)→ R is Lipschitz with constant L if

|F (O)− F (U)| ≤ L‖O −U‖F .

Recall that the orthogonal group can be partitioned as two disconnected copies of the special or-
thogonal group SO(n), which we endow with the same metric. These are given as the preimages
of {±1} under the determinant map. Haar measure on the special orthogonal group enjoys a strong
concentration of measure property.

Theorem 22 Suppose that F : SO(n)→ R is Lipschitz with constant L. Then for all t ≥ 0,

Pr[|F (U)− E[F (U)]| > t] ≤ 2e−cnt
2/L2

,

where c > 0 is an absolute constant.

See (Vershynin, 2018, Theorem 5.2.7) or (Meckes, 2019, Theorem 5.17) for precise constants. We
can derive concentration for even functions of the orthogonal group automatically:

Corollary 23 Suppose that F : O(n)→ R is Lipschitz with constant L and suppose that

E[F (U) detU ] = E[F (U)] = 0.

Then for all t ≥ 0,

Pr[|F (U)− E[F (U)]| > t] ≤ 2e−cnt
2/L2

,

where c > 0 is an absolute constant.
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Proof Under the assumption, the mean of F conditioning on either detU = 1 or detU = −1
is 0. Hence, by conditioning, we achieve the desired concentration around 0, which is the mean
E[F (U)].

As a useful illustration, an entry of U , which is a Haar–distributed random matrix on O(n) is
concentrated.

Corollary 24 For any n > 1, there is an absolute constant c > 0 so that for all t ≥ 0 and all i, j
in {1, 2, ..., n}

Pr[|Uij | > t] ≤ 2e−cnt
2
.

The same statement holds for any generalized entry xTUy for fixed unit vectors x,y, i.e.

Pr[|xTUy| > t] ≤ 2e−cnt
2
.

Proof The entry map U 7→ Uij is 1–Lipschitz. Moreover, it has mean 0, restricted to either
component, as

E[Uij det(U)] = 0 = E[Uij ].

Note that by distributional invariance, negating row i of U leaves the distribution of U invariant.
Doing so shows the second equality. Negating any row except for i (which exists as n > 1) shows
the first equality.

For the generalized entry, by the linearity of the expectation,

E[xTUy det(U)] =
∑
i,j

xiyj E[Uij det(U)] = 0 =
∑
i,j

xiyj E[Uij ] = E[xTUy].

Using that U 7→ xTUy is 1–Lipschitz, the proof follows.

C.2. Applications to the Volterra equation errors

More to the point, we need concentration of random combinations of functions weighted by entries
of U .

Lemma 25 Let T > 0 be fixed, and suppose that {gi} are functions from [0, T ] → R which are
bounded by L > 0 and have Lipschitz constant 1. Then, for any ε > 0, and any fixed unit vectors a
and b in Rn, with overwhelming probability

max
0≤t≤T

∣∣∣∣ n∑
j=1

gj(t)
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣∣∣ ≤ nε−1/2.

Proof We first prove the claim for a fixed t ∈ [0, T ] and generalize the result for any t ∈ [0, T ]
later using a mesh points argument. In proving this, we can take advantage of Corollary 23. For
t ∈ [0, T ], let Ft : O(n)→ R be

Ft(U)
def
=

n∑
j=1

gj(t)
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)
. (62)
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We can show that Ft is a Lipschitz function on O(n). Indeed, for U ,V ∈ O(n),

E[(aTU)j(b
TU)j ] = E[(aTV )j(b

TV )j ] =
1

n
〈a, b〉

and

|Ft(U)− Ft(V )|

=
∣∣ n∑
j=1

gj(t)
(
(aTU)j − (aTV )j

)
(bTU)j +

n∑
j=1

gj(t)(a
TV )j

(
(bTU)j − (bTV )j

)∣∣
≤

√√√√ n∑
j=1

(aT (U − V ))2

√√√√ n∑
j=1

g2
j (t)(b

TU)2
j +

√√√√ n∑
j=1

(bT (U − V ))2

√√√√ n∑
j=1

g2
j (t)(a

TV )2
j

≤ L‖aT (U − V )‖2‖bTU‖2 + L‖bT (U − V )‖2‖aTV ‖2
≤ 2L‖U − V ‖F .

Therefore, we conclude that Ft is a Lipschitz function of Lipschitz constant 2L. For j ∈ {1, · · · , n},
let

fj
def
= (aTU)j(b

TU)j − E[(aTU)j(b
TU)j ].

Then conditioning on detU = 1 and detU = −1, negating any column ofU leaves the distribution
of fj invariant, which gives

E[fj(U) detU ] = E[fj(U)] = 0,

and thus, using linearity,

E[Ft(U) detU ] = E[Ft(U)] = 0.

Now Corollary 23 gives, for s ≥ 0,

Pr[|Ft(U)− E[Ft(U)]| > s] ≤ 2e−cns
2
,

where c > 0 is an absolute constant. Or, replacing s = nε−1/2 gives the claim for a fixed time
t ∈ [0, T ].

Now we generalize the result to any time in [0, T ]. Assume that the claim is attained for mesh
points on [0, T ] with arbitrarily small spacing, say λ. Then for any t ∈ [0, T ], there exists a mesh
point t0 ∈ [0, T ] such that |t − t0| ≤ λ. The assumption that {gj} are Lipschitz functions with
Lipschitz constant 1 implies that |gj(t)− gj(t0)| ≤ |t− t0| ≤ λ. Then we see

∣∣ n∑
j=1

(gj(t)− gj(t0))
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣
≤

n∑
j=1

|gj(t)− gj(t0)|
∣∣((aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣ ≤ 2λn.
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Note that λ can be arbitrarily small. Thus we have∣∣∣∣ n∑
j=1

gj(t)
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣∣∣
≤
∣∣∣∣ n∑
j=1

gj(t0)
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣∣∣
+

∣∣∣∣ n∑
j=1

(gj(t)− gj(t0))
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣∣∣
≤ nε−1/2 + 2nλ < nε−1/2

with overwhelming probability and with small enough ε in the last part. All in all, we have with
overwhelming probability

max
0≤t≤T

∣∣∣∣ n∑
j=1

gj(t)
(
(aTU)j(b

TU)j − E[(aTU)j(b
TU)j ]

)∣∣∣∣ ≤ nε−1/2.

As ε > 0 is arbitrary, Lemma 14 follows immediately.
Proof [Proof of Lemma 14] We just need to apply Lemma 25 with

gj(t) = σ2
j e
−2γσ2

j t and a = b = ei.

Note that we are conditioning on Σ so that the expectation in the statement of Lemma 25 is only
taken over U . By the boundedness of σj , by dividing by a sufficiently large constant depending on
Σ, the Lemma applies.

C.3. Control of the beta errors

Next, we prove Proposition 18 provided that Proposition 17 holds.
Proof [Proof of Proposition 18] For t ∈ [0, T ], by equation (35), we have

(Bs,j)2 = (−γσ2
j ν

ϑ
t,j + γσj(U

Tη)j)
2 ≤ 2(γ2σ4

jβ + γ2σ2
j )n

2ε−1,

with overwhelming probability. Here Proposition 17 was used to bound νϑt,j , and Assumption 1.1
and Corollary 24 imply |(UTη)j | ≤ nε−1/2 w.o.p. by observing(

(UTη)j : 1 ≤ j ≤ n
) law

= ‖η‖
(
U1,j : 1 ≤ j ≤ n

)
.

We recall the definition of ϑ from Lemma 13 as

ϑ = inf
{
t ≥ 0 : ‖UΣνt − η‖ > nθ

}
,

where θ < ε/2. By applying Corollary 24 and the definition of ϑ, we get
n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνϑt − η)
)2 ≤ nε−1‖UΣνϑt − η‖2 ≤ n2ε−1,
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with overwhelming probability. Therefore,

|ε(n)
beta(t)|

=
1

2

∣∣∣∣ d∑
j=1

σ2
j

∫ t

0
e−2(t−s)γσ2

j

(
β − 1

n− 1

(
Bs,j

)2 − β − 1

n− 1

n∑
i=1

(
eTj U

T ei
)2(

eTi (UΣνs − η)
)2)

ds

∣∣∣∣
≤ 1

2

d∑
j=1

σ2
j

(∫ t

0
e−2(t−s)γσ2

j ds

)(
β

n
· 2
(
γ2σ4

j + γ2σ2
j

)
n2ε−1 +

β

n
· n2ε−1

)

=
1

2

d∑
j=1

1

2γ
· β
n
· n2ε−1(2γ2σ4

j + 2γ2σ2
j + 1)

≤ nε−1/2,

with small enough ε in the last line, given our assumption on β ≤ n1/5−ε.

C.4. Control of the eta errors

We now give the proof of Proposition 20 provided that Proposition 19 holds.
Proof [Proof of Proposition 20]

Note that the proof of Proposition 19 is based on conditioning on Σ. Therefore, Proposition
19 by substituting cj =

∫ t
0 e
−2(t−s)γσ2

j γσ2
j ds and cj = 1, respectively, implies with overwhelming

probability

∣∣∣∣ d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γσ3
j ν

ϑ
s,j(U

Tη)j−
‖η‖2

n

d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γσ2
j (1−e

−(s∧ϑ)γσ2
j ) ds

∣∣∣∣ ≤ ‖η‖2√βnε−1/2

and ∣∣∣∣n∧d∑
j=1

σjν
ϑ
t,j(U

Tη)j −
‖η‖2

n

n∧d∑
j=1

(1− e−(t∧ϑ)γσ2
j )

∣∣∣∣ ≤ ‖η‖2√βnε−1/2.

Therefore, it suffices to show

‖η‖2

n

d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γσ2
j (1−e

−sγσ2
j ) ds+

1

2
‖η‖2−‖η‖

2

n

n∧d∑
j=1

(1−e−tγσ
2
j )−R̃ ·rh0(t) + (1− r)

2

(63)
converges to 0 in probability as n→∞.
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Observe

‖η‖2

n

d∑
j=1

∫ t

0
e−2(t−s)γσ2

j γσ2
j (1− e

−sγσ2
j ) ds

=
‖η‖2

n

d∑
j=1

γσ2
j e
−2tγσ2

j

∫ t

0
e2sγσ2

j (1− e−sγσ
2
j ) ds

=
‖η‖2

n

d∑
j=1

e−2tγσ2
j

[
1

2
(e2tγσ2

j − 1)− (etγσ
2
j − 1)

]

=
‖η‖2

n

[
d

2
+

1

2

d∑
j=1

e−2γσ2
j t −

d∑
j=1

e−tγσ
2
j

]
.

Note that 1
2‖η‖

2 Pr−−−→
n→∞

R̃
2 ,

d‖η‖2
2n

Pr−−−→
n→∞

rR̃
2 by Assumptions 1.1 and ‖η‖

2

2n

∑d
j=1 e

−2γσ2
j t Pr−−−→

n→∞
R̃r
2 h0(t) by Assumptions 1.2. Moreover,

∑n∧d
j=1(1 − e−tγσ

2
j ) =

∑d
j=1(1 − e−tγσ

2
j ) always holds

because σj = 0 for j > n ∧ d and this cancels out ‖η‖
2

n

∑d
j=1 e

−tγσ2
j in (63).

Appendix D. Estimates based on martingale concentration

D.1. General techniques

We recall that the martingales Mt,j and M̃t,j are defined in (34). Both of these martingales need to
be controlled, but only after summing them in a specific way. First, we do not need these martingales
directly, but only certain integrals against these martingales. These are defined for all t ≥ 0 and all
j ∈ {1, 2, . . . , d},

X̃t,j =

∫ t

0
esγσ

2
j dM̃s,j

Xt,j =

∫ t

0
e2sγσ2

j dMs,j ,

(64)

which are again càdlàg, finite variation martingales. We will need to show concentration for sums
of these martingales such as

∑d
j=1 cjX̃t,j and

∑d
j=1 cjXt,j for bounded coefficients {cj} .

We formulate some general concentration lemmas for càdlàg, finite variation martingales Yt
with jumps given exactly by {τk : k ≥ 0}. For such a process, the jumps entirely determine its
fluctuations. We will define for any càdlàg process Y,

∆Yt
def
= Yt − Yt−,

which is 0 for all t except {τk : k ≥ 0}. For concreteness and for reference, we record that the
jumps of X̃ and X are given by

∆X̃τk,j = eγσ
2
j τk
(
eTj γΣTUTPk−1(UΣντk− − η)

)
,

∆Xτk,j = e2γσ2
j τk
(
ντk,j + ντk−,j

)(
eTj γΣTUTPk−1(UΣντk− − η)

)
,

(65)
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To control the fluctuations of these martingales, we need to control their quadratic variations.
The quadratic variation [Yt] is the sum of squares of all jumps of the process, and hence

[Yt]
def
=

Nt∑
k=1

(∆Yτk)2.

Likewise the predictable quadratic variation 〈Yt〉 is

〈Yt〉
def
=

Nt∑
k=1

E
[
(∆Yτk)2 |Fτk−

]
.

Moreover, for some of the martingales we consider here, it is possible to find good events on which
the quadratic variation or the predictable quadratic variations are in control. Then it is a relatively
standard fact that the fluctuations of these processes are in control:

Lemma 26 Suppose that (Yt : t ≥ 0) is a càdlàg finite variation martingale. Suppose there is an
event G which is measurable with respect to F0 that holds with overwhelming probability, and so
that for some T > 0

(i) [YT ]1G ≤ β
nTNT ; or (ii) 〈YT 〉1G ≤ β

nTNT and max
0≤t≤T

|Yt − Yt−|1G ≤ 1.

Then for any ε > 0 with overwhelming probability

sup
0≤t≤T

|Yt| ≤ nε.

Proof We begin with the proof of (i). Using the Burkholder–Davis–Gundy inequalities (see (Protter,
2005, Theorem IV.49)), for any p > 1 there is a constant Cp so that

E

(
sup

0≤t≤T
|Yt|1G

)p
≤ Cp E

[
[YT ]p1G

]
≤ Cp

( β
nT

)p
E[Np

T ].

There is an absolute constant C > 0 so that

E(Np
T ) ≤ Cp!(ENT )p,

and so we conclude that

E

(
sup

0≤t≤T
|Yt|1G

)p
≤ CCp.

Using Markov’s inequality, we conclude that

Pr({ sup
0≤t≤T

|Yt| ≥ nε}) ≤ Pr(Gc) + CCpn
−εp.

Hence letting p tend slowly to infinity with n, this concludes the proof of (i).
We turn to the proof of (ii). We need a tail bound for martingales (see (Shorack and Wellner,

1986, Appendix B.6 Inequality 1)), which states that

Pr({ sup
0≤t≤T

|Yt| > s} ∩ {〈YT 〉 ≤ r} ∩ G) ≤ 2 exp

(
− s2

2s
3 + 2r

)
.
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Taking s = r = nε, this vanishes faster than any power of n. The probability that NT > nε(E[NT ])
additionally decays faster than any power of n, so that we conclude that on G, sup0≤t≤T |Yt| ≤ nε

with overwhelming probability.

We will need an extension of this standard type of concentration, which allows for exceptional
jumps. Suppose we can decompose the jumps {τk} of (Yt : t ≥ 0) into two types {τk,1, τk,2}. In
our application, we shall pick the jumps of the second type to be those for which a fixed coordinate
1 ∈ Bk and the first type to be all that remains. Thus by properties of the Poisson process, the two
processes {τk,1, τk,2} are independent Poisson processes.

Lemma 27 Suppose that (Yt : t ≥ 0) is a càdlàg finite variation martingale with jumps given
by {τk}. Suppose these jumps are divided into two groups {τk,1, τk,2} by a rule depending only
on (k,Pk). Let Nt,1 and Nt,2 be the counting functions of the number of jumps from either type.
Suppose that the jumps of Yt of type 1 (the typical ones) satisfy

E[
(
∆Yτk,1

)2 | Fτk,1−] ≤ β

n
and |∆Yτk,1 | ≤ 1.

For the jumps of the second type, suppose that for some T > 0 there is a constant C > 1 so that
E[NT,2] ≤ C and a constant δ ∈ (0, 1) so that

(i). |∆Yτk,2 | ≤ δ|Yτk,2−|+ 1 or (ii). |Yτk,2 | ≤ δ|Yτk,2−|+ 1.

Then for any ε > 0 with overwhelming probability

sup
0≤t≤T

|Yt| ≤ nε.

Proof Let nt,1 and nt,2 be the Lévy measures for the jumps of Y of types 1 and 2; i.e. the measures
so that for any bounded continuous function f and ` ∈ {1, 2},

Nt,`∑
k=1

f
(
∆Yτk,`

)
−
∫
f(x)nt,`(dx)

is a martingale. We decompose the martingale (Yt : t ≥ 0) into pieces. Define

Yt,` =

Nt,`∑
k=1

∆Yτk,` −
∫
xnt,`(dx).

Then Yt = Yt,1 + Yt,2 for all t ≥ 0.
We use two different versions of the exponential martingale. The first, which we believe origi-

nates with Yor (1976) (c.f. (Lépingle, 1978, Lemme 2)) is

Ẑt,1
def
= exp

(
λYt,1 −

∫ (
eλx − 1− λx

)
nt,1(dx)

)
,

which is a martingale. The second is the Doléans exponential, which is the more commonly cited
((Protter, 2005, II. Theorem 37), Yor (1976)), and which shows

Ẑt,2
def
= exp

(
λYt,2

)Nt,2∏
k=1

f
(
λ(∆Yτk,2)

)
where f(x) = (1 + x)e−x.
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As both processes are finite variation and have no common jumps, their product remains a martin-
gale. Thus

Ẑt
def
= exp

(
λYt,1 + λYt,2 −

∫ (
eλx − 1− λx

)
nt,1(dx)

)Nt,2∏
k=1

f
(
λ∆Yτk,2

)
is a martingale. Note that the two martingales combine to form Yt. By the assumption, the jumps of
Yt,1 are less than or equal to 1. Hence the measure nt,1(dx) is supported on [−1, 1]. For |u| ≤ 1,

eu − 1− u ≤ u2

e−2 .

So we define a supermartingale (Zt : t ≥ 0) for any λ ≤ 1 by

Ẑt ≥ Zt
def
= exp

(
λYt −

∫
λ2x2

e− 2
nt,1(dx)

)Nt,2∏
k=1

f
(
λ∆Yτk,2

)
.

The integral
∫
x2nt,1(dx) is the predictable quadratic variation

〈Yt,1〉 =

Nt,1∑
k=1

E
[
(∆Yτk,1)2 | Fτk,1−

]
≤ β

nNt,1.

Now we fix a parameter r > 1
1−δ and let

ϑ = inf{t ≥ 0 : |Yt| ≥ r}.

By optional stopping for any bounded stopping time ρ ≥ 0,

E
[
Zϑ∧ρ1ϑ≤ρ

]
≤ E[Zϑ∧ρ] ≤ E[Z0] = 1. (66)

So, for λ ∈ (0, 1),

Zϑ∧ρ1ϑ≤ρ ≥ exp
(
λr − λ2

e−2
β
nNρ,1

)Nρ,2∏
k=1

f
(
λ∆Yτk,2)

)
1{Yϑ∧ρ≥r}

− exp
(
−λr − λ2

e−2
β
nNρ,1

)Nρ,2∏
k=1

|f
(
λ∆Yτk,2

)
|1{Yϑ∧ρ≤−r}.

We produce a similar bound on taking −λ ∈ (0, 1) although with the roles reversed.
The product may in principle be negative or 0. So we consider taking ρ = T ∧ τ1,2, for some

fixed T > 0. Then if ϑ < τ1,2, we have an empty product. Otherwise, we have ϑ = τ1,2, in which
case the product contains a single term.

If assumption (ii) is in force, then either the jump decreases the absolute value of Yτ1,2 as it is
opposite sign from Yτ1,2− and does not cross 0 or the second condition is in force. In that case, since
|Yτ1,2−| ≤ r, and since

r ≤ |Yτ1,2 | ≤ δr + 1,
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we would have r ≤ 1
1−δ . However, we have chosen r large enough that this is not the case. So, we

conclude that when assumption (ii) is in force, we could not have had ϑ = τ1,2. We conclude in the
case of assumption (ii) that

Zϑ∧ρ1{ϑ≤ρ} ≥ exp
(
λr − λ2

e−2
β
nNρ,1

)
1{Yϑ∧ρ≥r} − exp

(
−λr − λ2

e−2
β
nNρ,1

)
1{Yϑ∧ρ≤−r}. (67)

If assumption (i) is in force, then if Yϑ ≥ r, the jump of Y at τ1,2 is necessarily positive, as
this is the first time the martingale jumped above some level. As assumption (i) is in force, then
Yτ1,2− > 0 as well, and so the jump of type 2 must satisfy

∆Yτ1,2 ≤ δYτ1,2− + 1 ≤ δr + 1.

We conclude that when Yϑ ≥ r and assumption (i) holds,

f
(
λ∆Yτ1,2

)
≥ e−λ∆Yτ1,2 ≥ e−λ(δr+1).

If on the other hand Yϑ ≤ −r, then the jump must have been negative, and we conclude similarly
that

|f
(
λ∆Yτ1,2

)
| ≤ (1− λ∆Yτ1,2)e−λ∆Yτ1,2 ≤ (1 + λ(δr + 1))eλ(δr+1).

Hence

Zϑ∧ρ1{ϑ≤ρ} ≥ exp
(
−1 + λ(1− δ)r − λ2

e−2
β
nNρ,1

)
1{Yϑ∧ρ≥r}

− (1 + λ(δr + 1)) exp
(
1− λ(1− δ)r − λ2

e−2
β
nNρ,1

)
1{Yϑ∧ρ≤−r}.

(68)

In either case of (67) or (68), using (66) and the boundedness of

r 7→ λ(δr + 1)e−λ(1−δ)r,

there is a constant Cδ > 0 so that

E

(
exp
(
λ(1− δ)r − λ2

e−2
β
nNρ,1

)
1{Yϑ∧ρ≥r}

)
≤ Cδ.

With overwhelming probability β
nNρ,1 ≤ β

nNT ≤ 2T , and hence on the event E that βnNρ,1 ≤ 2T,

E

(
exp
(
λ(1− δ)r − λ2

e−22T
)
1{Yϑ∧ρ1E≥r}

)
≤ Cδ. (69)

Thus taking λ = 1 and r = (1− δ)−1(log n)2, we conclude that

e(logn)2 Pr(Yϑ∧ρ ≥ nε ∩ E) = O(1),

and hence Yϑ∧ρ ≤ nε with overwhelming probability.
By applying the same argument to−Yt which is again a martingale satisfying the same assump-

tions, we can conclude with overwhelming probability that

sup
{
|Yt| : 0 ≤ t ≤ (T ∧ τ1,2)

}
≤ 2(1− δ)−1(log n)2.
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Now we suppose that with overwhelming probability, we have shown for some ` ∈ N

sup
{
|Yt| : 0 ≤ t ≤ (T ∧ τ`,2)

}
≤ 2`(1− δ)−`(log n)2.

We now apply the same bounds to

Zt/Zt∧τ`,2
def
= exp

(
λ(Yt − Yt∧τ`,2)−

∫
λ2x2

e− 2
nt,1(dx)

) Nt,2∏
k=`+1

f
(
λ∆Yτk,2

)
.

In particular taking the conditional expectation, with the same ϑ and with ρ = T ∧ τ`+1,2

E[Zϑ∧ρ/Zϑ∧ρ∧τ`,21{ϑ≤ρ} | Fτk,2 ] ≤ 1.

Rearranging, we conclude

E

(
exp

(
λYϑ∧ρ −

∫
λ2x2

e− 2
nt,1(dx)

)Nϑ∧ρ,2∏
k=`+1

f
(
λ∆Yτk,2

)
| Fτ`,2

)
≤ exp

(
λYϑ∧ρ∧τ`,2

)
.

Hence following the same line of argument that leads to (69),

E

(
exp
(
λ(1− δ)r − λ2

e−22T
))

1{Yϑ∧ρ≥r}1E | Fτ`,2
)
≤ Cδ exp

(
λYϑ∧ρ∧τ`,2

)
.

Taking λ = 1 and r = 2`+1(1− δ)−`−1 and restricting to the event in the inductive hypothesis,

E

(
exp
(
2`+1(1− δ)−`(log n)2

)
1{Yϑ∧ρ≥r}1E | Fτ`,2

)
≤ Cδ exp

(
2`(1− δ)−`(log n)2

)
.

In particular, with overwhelming probability,

sup
{
|Yt| : 0 ≤ t ≤ (T ∧ τ`+1,2)

}
≤ 2`(1− δ)−`(log n)2.

The number of type-2 jumps before T is NT,2, which is Poisson with mean C. Hence with
overwhelming probability, for any ε > 0, NT,2 ≤

(
log 2

1−δ
)−1 ε

2 log n. Hence, we conclude that
with overwhelming probability,

sup
{
|Yt| : 0 ≤ t ≤ T

}
≤
(

2
1−δ
)NT,2(log n)2 ≤ nε(log n)2.

As ε > 0 may be picked as small as desired, the proof follows.

D.2. Applications to the control of errors in the Volterra equation

D.2.1. DELOCALIZATION OF THE FUNCTION VALUES: THE PROOF OF PROPOSITION 15

Proof [Proof of Proposition 15] It suffices to prove that for a fixed i and for any T > 0 and any
ε > 0,

sup
0≤t≤T

(
eTi (UΣνϑt − η)

)2 ≤ βnε−1
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with overwhelming probability.
Using Lemma 9, we have the representation

νt,j = e−γσ
2
j tν0,j +

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds+ e−γσ
2
j tX̃t,j .

Note that νϑt,j has the same representation by replacing t → t ∧ ϑ. Observe that each of the first
two terms has the contribution of O(nε−1/2) to |eTi (UΣνϑt − η)| with overwhelming probability.
Indeed, we have

eTi (UΣνϑt − η)−
d∑
j=1

Uijσje
−γtσ2

j X̃t,j = −ηi +
d∑
j=1

Uijσje
−γσ2

j tν0,j

+
d∑
j=1

Uijσj

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds

= O(nε−1/2).

(70)

Here the order of first term comes from Assumption 1.1. Corollary 23 gives the order of the second
term, by defining F (U) :=

∑d
j=1 Uijσje

−γσ2
j tν0,j with conditioning on ν0. The order of the last

term is obtained from Lemma 25 with setting a = ei, b = η and conditioning on Σ. Indeed, note
that E[Uij(U

Tη)j ] = 1
nηi so that w.o.p.,

E

[ d∑
j=1

γUijσ
2
j (U

Tη)j

∫ t

0
e−(t−s)γσ2

j ds

]
=

(
1

n

d∑
j=1

γσ2
j

∫ t

0
e−(t−s)γσ2

j

)
ηi = O(nε−1/2).

Therefore, it would suffice to bound

Yt
def
=

d∑
j=1

Uijσje
−γqσ2

j X̃t,j 0 ≤ t ≤ q, (71)

for some fixed q ≥ 0. Note that as we did in Lemma 10, showing the bound for a fixed q ∈ [0, T ]
should be sufficient, considering mesh points on [0, T ] with spacing, let us say, λ = λ(n) > 0,
which depends on n. Since the process νt is constant between jumps, the only cases which can not
be covered by mesh points are having multiple jumps between two adjacent mesh points. However,
as the possibility of such events is given by O(β−2n2λ), which can be smaller than any power of
polynomial of n, we conclude that every jump can be covered by mesh points with overwhelming
probability. Each jump for the process Y(·) is given by

∆Yτk+1

def
= Yτk+1

− Yτ(k+1)− = −
d∑
j=1

Uijσje
−(q−τk+1)γσ2

j eTj γΣTUTPk(UΣνϑτ(k+1)−
− η). (72)

Note that there are two different types of jumps, i.e.

1. Bk does not include the index i.

2. Bk includes the index i.
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Replacing Pk by
∑

l∈Bk eleTl , the jump ∆Yτk+1
can be translated as

∆Yτk+1
= −

∑
l∈Bk

[ d∑
j=1

γUijUljσ
2
j e
−(q−τk+1)γσ2

j
]
eTl (UΣνϑτ(k+1)−

− η). (73)

Let

Φi,l(t)
def
=

d∑
j=1

γUijUljσ
2
j e
−(q−t)γσ2

j , (74)

and let G = G(θ) for θ > 0 be the event defined as

G def
=

{
sup

1≤l≤n,l 6=i
max

0≤t≤T
|Φi,l(t)| ≤ nθ−1/2, max

0≤t≤T
|Φi,i(t)| < 2

}
. (75)

Note that this holds with overwhelming probability, by Lemma 25 and condition on the stepsize
γ, see Theorem 2. Furthermore, in order to apply the bootstrap argument, let us define, for ℵ ∈
[−ε/2, 1/2),

~ def
= inf{t ≤ ϑ : max

1≤l≤n
|eTl (UΣνt − η)| > n−ℵ}. (76)

Now we are ready to apply Lemma 27 to prove the claim.

Case 1. When Bk does not include the index i: we need to control E[(∆Y ~
τk+1,1

)2|Fτ(k+1)−] and
|∆Y ~

τk+1,1
|. Observe,

|∆Y ~
τk+1,1

| = |
∑
l∈Bk

Φi,le
T
l (UΣν~τk+1,1− − η)| ≤ βnθ−1/2−ℵ. (77)

On the other hand,

E[(∆Y ~
τk+1,1

)2|Fτ(k+1)− ] =
β(β − 1)

(n− 1)(n− 2)

[ n∑
l=1

Φi,le
T
l (UΣν~τk+1,1− − η)

]2
+

(
β

n− 1
− β(β − 1)

(n− 1)(n− 2)

) n∑
l=1

Φ2
i,l(e

T
l (UΣν~τk+1,1− − η))2

≤ β2

n2
n4θ +

β

n
n4θ−1

≤ β

n
(βn4θ−1 + n4θ−1).

(78)

Here Cauchy-Schwarz inequality as well as the definition of ϑ were used for the inequality.

Case 2. WhenBk includes the index i: In this case, we want to have the following: for some T > 0,
there is a constant C > 1 so that ENT,2 ≤ C and a constant δ ∈ (0, 1) so that

(i). |∆Y ~
τk+1,2

| ≤ δ|Y ~
τk+1,2−|+ 1 or (ii). |Y ~

τk+1,2
| ≤ δ|Y ~

τk+1,2−|+ 1.
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First recall that Nt has the distribution of Poisson(nβ t). Since Bk contains the index i with proba-

bility
(
n−1
β−1

)
/
(
n
β

)
= β

n , we have

E[NT,2] =
β

n

nT

β
= T <∞.

Now observe, with t
def
= τk+1,2 ∧ ~,

∆Y ~
τk+1,2

= −
∑
l∈Bk

[ d∑
j=1

γUijUljσ
2
j e
−(q−t)γσ2

j
]
eTl (UΣν~τk+1,2− − η)

= −
d∑
j=1

γU2
ijσ

2
j e
−(q−t)γσ2

j eTi (UΣν~τk+1,2− − η)

−
∑

l∈Bk,l 6=i

[ d∑
j=1

γUijUljσ
2
j e
−(q−t)γσ2

j
]
eTl (UΣν~τk+1,2− − η).

(79)

We will see that the first term will lead to the one including Y ~
τk+1,2− with errors. From Lemma 9,

we have

νt,j = e−γσ
2
j tν0,j +

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds+ e−γσ
2
j tX̃t,j ,

and this gives with overwhelming probability

Y ~
τk+1,2− =

d∑
j=1

Uijσje
−tγσ2

j X̃~
(τk+1,2−),j

=
d∑
j=1

Uijσj

[
ν~(τk+1,2−),j − e

−tγσ2
j ν0,j −

∫ t

0
e−(t−s)γσ2

j γσj(U
Tη)j ds

]

= eTi UΣν~τk+1,2−
−

d∑
j=1

Uijσje
−tγσ2

j ν0,j −
d∑
j=1

γUijσ
2
j (U

Tη)j

∫ t

0
e−(t−s)γσ2

j ds

= eTi UΣν~τk+1,2−
+O(nθ−1/2).

In the last line to get the order, we used Corollary 23 for the second term and Lemma 25 for the last
term with setting a = ei, b = η and conditioning on Σ. See the arguments after (70) for detail.
Thus, from (79) we have with overwhelming probability

∆Y ~
τk+1,2

= −
d∑
j=1

γU2
ijσ

2
j e
−(q−t)γσ2

j (Y ~
τk+1,2− +O(nθ−1/2))

−
∑

l∈Bk,l 6=i

[ d∑
j=1

γUijUljσ
2
j e
−(q−t)γσ2

j
]
eTl (UΣν~τk − η)

= −
d∑
j=1

γU2
ijσ

2
j e
−(q−t)γσ2

jY ~
τk+1,2− +O(nθ−1/2) +O(βnθ−1/2−ℵ),

(80)
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where Lemma 25 was used again in the last line; when l 6= i,

E
[ d∑
j=1

γUijUljσ
2
j e
−(q−t)γσ2

j
]

= 0.

Note that condition (ii) is satisfied from (80) after some appropriate scaling of Y ~
t , since

Y ~
τk+1,2

= Y ~
τk+1,2− + ∆Y ~

τk+1,2

=

(
1−

d∑
j=1

γU2
ijσ

2
j e
−(q−t)γσ2

j

)
Y ~
τk+1,2− +O(nθ−1/2) +O(βnθ−1/2−ℵ),

(81)

and
∣∣∣∣1−∑d

j=1 γU
2
ijσ

2
j e
−(q−t)γσ2

j

∣∣∣∣ < 1 on G.

Now, in view of (77), (78) and (81), scaling Y ~
t by max{

√
βn2θ−1/2, βnθ−1/2−ℵ, nθ−1/2}

makes every condition for cases 1 and 2 valid, so Lemma 27 gives

sup
0≤t≤T

|Y ~
t | ≤ n2θ−1/2 max{

√
βnθ, βn−ℵ, 1}. (82)

We summarize the following conclusion: if we let, for any ε > 0, ψ
(T )
i

def
= max

0≤t≤T
|eTi (UΣνt − η)|,

ψ
(T )
i ≤ n−ℵ w.o.p. =⇒ ψ

(T )
i ≤ n2θ−1/2 max{

√
βnθ, βn−ℵ, 1} w.o.p.

Thus under the assumption that β ≤ n1/5−δ ≤ n1/2−δ, and picking θ < δ/4 we conclude

ψ
(T )
i ≤ n−ℵ w.o.p. =⇒ ψ

(T )
i ≤ max{

√
βn3θ−1/2, n−ℵ−δ/2, n2θ−1/2} w.o.p.

Hence by iterating this inequality finitely many times, max{
√
βn3θ−1/2, n−ℵ−δ/2, n2θ−1/2} be-

comes
√
βn3θ−1/2 and the conclusion follows with the choice of θ < min{δ/4, ε/6}. The only

thing left to check is to bound ψ(T )
i with the initial condition ℵ = −ε/2, i.e.,

max
0≤t≤T

|eTi (UΣνϑt − η)| ≤ nε/2

with overwhelming probability. But this was already given by Lemma 13.

D.2.2. DELOCALIZATION OF THE SPECTRAL WEIGHTS: THE PROOF OF PROPOSITION 17

Proof [Proof of Proposition 17] It is sufficient to prove the same claim for a fixed j. To take
advantage of the main technical assumption Proposition 15, we will introduce a stopping time ~,
defined as (for some α ∈ (0, 1

2))

~ def
= inf

{
t ≤ ϑ : max

1≤i≤n

(
eTi (UΣνt − η)

)2
> βn−2α

}
. (83)

As with overwhelming probability this does not occur, it suffices to show a bound for the stopped
processes ν~t,j

def
= νt∧~,j .
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Using Lemma 9, we have the representation

νt,j = e−γσ
2
j tν0,j +

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds+ e−γσ
2
j tX̃t,j .

By replacing t→ t ∧ ~, we have the same representation for ν~t,j . We let G be the event that

|(UTη)j | ≤ nε/2−1/2 and max
i

∣∣eTj γΣTUT ei
∣∣ ≤ nε/2−1/2. (84)

By Corollary 24 this holds with overwhelming probability. The first two terms is nε−1/2 with
overwhelming probability, using Assumption 1.1. Hence it suffices to show that for any ε > 0,

sup
0≤t≤T

|X̃~
t,j | ≤ βnε−1/2

with overwhelming probability.
The quadratic variation is, from (65)

[X̃~
t,j ] =

Nt∧~∑
k=1

e2τk+1γσ
2
j
(
eTj γΣTUTPk−1(UΣν~τk − η)

)2
.

We observe that for τk ≤ ~ on G,(
eTj ΣTUTPk−1(UΣντk − η)

)2 ≤ β3 max
i

∣∣eTj γΣTUT ei
∣∣2n−2α ≤ C(T,Σ)β3nε−1−2α.

Using part (i) of Lemma 26, we have that max0≤t≤T |ν~t,j | ≤ βnε−α with overwhelming probability.

D.2.3. CONCENTRATION OF THE FUNCTION VALUES: THE PROOF OF PROPOSITION 16

Proof [Proof of Proposition 16] Recall that for fixed q ∈ [0, T ]

ε
(n)
M (q)

def
=

1

2

d∑
j=1

σ2
j

∫ q

0
e−2(q−s)γσ2

j dMs,j .

Hence we can write this as

ε
(n)
M (q) =

1

2

d∑
j=1

σ2
j e
−2qγσ2

jXq,j .

We consider the martingale

Yt
def
=

1

2

d∑
j=1

σ2
j e
−2qγσ2

jXt,j ,

and we show concentration for Yt, 0 ≤ t ≤ q. As in the proof of Proposition 15, it would suffice to
bound Yq for fixed q ∈ [0, T ] using the mesh arguments because the probability of having multiple
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jumps between two adjacent mesh points converges to zero faster than any polynomial order. Also,
Proposition 15 allows us to adopt a stopping time ~, defined as (for some α ∈ (0, 1

2))

~ def
= inf

{
t ≤ ϑ : max

1≤i≤n

(
eTi (UΣνt − η)

)2
> βn−2α

}
. (85)

As with overwhelming probability this does not occur, it suffices to show a bound for the stopped
processes ν~t,j

def
= νt∧~,j .

The jumps of this martingale are given by (see (65))

∆Y ~
τk

=
1

2

d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j
(
ν~τk,j + ν~τk−,j

)(
eTj γΣTUTPk−1(UΣν~τk− − η)

)
.

Therefore, the quadratic variation is

[Y ~
q ] =

Nq∑
k=1

(∆Y ~
τk

)2

=

Nq∑
k=1

[
1

2

d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j
(
ν~τk,j + ν~τk−,j

)(
eTj γΣTUTPk−1(UΣν~τk− − η)

)]2

=
1

4

Nq∑
k=1

[ d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j
(
2ν~τk−,j + eTj γΣTUTPk−1(UΣν~τk− − η)

)
·
(
eTj γΣTUTPk−1(UΣν~τk− − η)

)]2

≤ 1

2

Nq∑
k=1

[ ∑
i∈Bk−1

( d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j 2ν~τk−,j(e
T
j γΣTUT ei)

)(
eTi (UΣν~τk− − η)

)]2

+
1

2

Nq∑
k=1

[ d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j
(
eTj γΣTUTPk−1(UΣν~τk− − η)

)2]2

.

Note that the second term is bounded as

1

2

Nq∑
k=1

[ d∑
j=1

σ2
j e
−2γ(q−τk∧~)σ2

j
( ∑
i∈Bk−1

(
eTj γΣTUT ei

)(
eTi (UΣν~τk− − η)

)2]2

≤ Nq

2

[
n · (βnε−1/2

√
βn−α)2]2 =

Nqβ

2n
β5n4ε−4α+1.

Note that Corollary 24 was used to bound eTj γΣTUT ei. As for the first term, define

Wq,v,s,i
def
=

d∑
j=1

ν~s,je
−2γ(q−v)σ2

j eTj ΣTUT ei, (86)
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for 0 ≤ v ≤ q, 0 ≤ s ≤ v. Note that it suffices to bound max0≤s≤vWq,v,s,i for a fixed v, because
we can apply the union bound to 0 ≤ v ≤ q using the same meshing arguments as the ones used
after (71).

Observe,

Wq,v,s,i =

d∑
j=1

e−2γ(q−v)σ2
j σjUij

(
e−γσ

2
j sν0,j +

∫ s

0
e−γσ

2
j (s−u)γσj(U

Tη)j du+ e−γσ
2
j sX̃~

s,j

)
=

d∑
j=1

e−γ(2q−2v+s)σ2
j σjUijν0,j +

d∑
j=1

∫ s

0
e−γ(2q−2v+s−u)σ2

j γσ2
jUij(U

Tη)j du

+

d∑
j=1

e−γ2(q−v)σ2
j e−γsσ

2
σjUijX̃

~
s,j .

Note that the first and second terms are of O(nε−1/2) with overwhelming probability by the argu-
ments after (70). Also, the last term is bounded by

√
βnε−1/2 w.o.p. by the same arguments used

in showing the bound for Yt defined in (71). It is crucial that the additional coefficients e−γ2(q−v)σ2
j

are less than 1 so that the same arguments from (72) to (82) work.
Then the quadratic variation is bounded by

[Y ~
q ] ≤ CNq

[
β
√
βnε−1/2

√
βn−α

]2
+
Nqβ

2n
β5n4ε−4α+1 ≤ CNqβ

nT
β5nε−4α+1,

with some C > 0 and small enough ε > 0 in the last part, which will be an enough bound to apply
Lemma 26. Hence we conclude, with the same meshing arguments used in the proof of Proposition
15 and assumption on β ≤ n1/5−δ,

sup
0≤t≤T

|Y ~
t | ≤ β5/2nε−2α+1/2 ≤ nε−5δ/2+(1−2α),

and the claim follows by choosing α < 1/2 sufficiently close to 1/2.

D.2.4. CONCENTRATION OF CROSS-VARIATION OF THE MODEL NOISE WITH THE SPECTRAL

WEIGHTS: THE PROOF OF PROPOSITION 19

Proof [Proof of Proposition 19] We recall from the assumptions of the Proposition that we let {cj}n1
be a deterministic sequence with |cj | ≤ 1 for all j. We should show that for any t > 0 and for some
ε > 0 ∣∣∣∣ 1

‖η‖2
n∑
j=1

cjσjν
ϑ
t,j(U

Tη)j −
1

n

n∑
j=1

cj
(
1− e−γσ

2
j (t∧ϑ))∣∣∣∣ ≤√βnε−1/2

with overwhelming probability.
We begin again by using Lemma 9, due to which we have the representation

νt,j = e−γσ
2
j tν0,j +

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds+ e−γσ
2
j tX̃t,j .
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We replace this expression into the sum we wish to control, and observe that
n∑
j=1

cjσjν
ϑ
t,j(U

Tη)j =
n∑
j=1

cjσj(U
Tη)j

(
e−γσ

2
j tν0,j+

∫ t

0
e−γσ

2
j (t−s)γσj(U

Tη)j ds+e−γσ
2
j tX̃t,j

)
.

Under Assumption 1.1 and Corollary 23, the first sum vanishes with overwhelming probability. By
independence of η from U , we have that(

(UTη)j : 1 ≤ j ≤ n
) law

= ‖η‖
(
U1,j : 1 ≤ j ≤ n

)
.

Hence, by Lemma 25, for any ε > 0, with overwhelming probability,∣∣∣∣ n∑
j=1

cj
(UTη)2

j

‖η‖2

∫ t

0
e−γσ

2
j (t−s)γσ2

jds−
n∑
j=1

cj
n

∫ t

0
e−γσ

2
j (t−s)γσ2

jds

∣∣∣∣ ≤ nε−1/2.

Using that
∫ t

0 e
−γσ2

j (t−s)γσ2
jds = (1 − e−γσ

2
j t), we have reduced the problem to showing that for

any ε > 0 with overwhelming probability∣∣Yt∣∣ ≤√βnε−1/2 where Ys
def
=

1

‖η‖2
n∑
j=1

cjσj(U
Tη)je

−γσ2
j tX̃s,j for all s ≤ t.

To leverage Proposition 15, we again use the stopping time ~ (83). We will again apply Lemma 26.
The jumps of Y ~

t are given by, for any τk ≤ s,

∆Y ~
τk

= − 1

‖η‖2
n∑
j=1

cjσj(U
Tη)je

−γσ2
j t
(
eTj γΣTUTPk−1(UΣν~τk− − η)

)
.

If we letD be the diagonal matrix with entries −γcje−γσ
2
j t, then we have the representation

∆Y ~
τk

=
1

‖η‖2
ηTUDΣΣTUTPk−1(UΣν~τk− − η).

Using that 1
‖η‖2η

TUDΣΣTUT has a norm bounded only in terms of t,Σ and γ, it follows that

|∆Y ~
τk
| ≤ C(t,Σ, γ)βn−α. (87)

We turn to bounding the predictable quadratic variation. Using Lemma 8,

E((∆Y ~
τk

)2 | Fτk−) =
β(β − 1)

n(n− 1)

(
1

‖η‖2
ηTUDΣΣTUT (UΣν~τk− − η)

)2

+

(
β

n
− β(β − 1)

n(n− 1)

) n∑
i=1

(
1

‖η‖2
ηTUDΣΣTUT ei

)2(
eTi (UΣν~τk− − η)

)2

.

The first line we bound using thatUΣν~τk−−η is norm at most nε and thatUDΣΣTUT has a norm
bounded only by some C(t,Σ, γ). The second line we bound using that (eTi (UΣν~τk− − η))2 ≤
βn−2α. Together, these bounds give that

E((∆Y ~
τk

)2 | Fτk−) ≤ C(t,Σ, γ)

(
β2n−2+ε + β2n−1−2α

)
.

Hence the conclusion follows using Lemma 26.
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Appendix E. Analyzing the Volterra equation

E.1. General analysis of the Volterra equation

In this section, we analyze the solution of the Volterra equation (12) and give some basic properties
of its solution for general limiting spectral measures µ which is a compactly supported measure on
[0,∞). We recall for convenience that the Volterra equation is given by

ψ0(t) = R
2 h1(t) + R̃

2

(
rh0(t) + (1− r)

)
+ γ2r

∫ t

0
h2(t− s)ψ0(s) ds,

and hk(t) =

∫ ∞
0

xke−2γtx dµ(x),

(88)

where γ > 0 is a stepsize parameter. When convenient, we will simply write z(t) for the forcing
function

z(t)
def
= R

2 h1(t) + R̃
2

(
rh0(t) + (1− r)

)
. (89)

The parameter r ∈ (0,∞) is fixed, but we may consider limits of the Volterra equation under various
limits. The parameters R and R̃ are both non-negative, but to avoid trivialities, we should assume
at least one is positive. As the Volterra equation is linear, we may without loss of generality assume
R+ R̃ = 1.

The equation (88) appears frequently in the probability literature as the renewal equation (Resnick,
1992, (3.5.1)), (Asmussen, 2003, (2.1)); it appears naturally in renewal theory and in the Lotka pop-
ulation model, amongst others, which are neatly described in the references just mentioned. It
allows, for example, ψ0 to be given the amusing interpretation as the expected size of a population
which evolves in times (c.f. (Resnick, 1992, Example 3.5.2) or (Asmussen, 2003, Example 2.2)).
Much of the behavior of the equation is determined by the properties of the function γ2rh2(t). We
will let λ− be the leftmost endpoint of the support of µ restricted to (0,∞), and we record the
following elementary computation. For any α ∈ R,∫ ∞

0
e2γαtγ2rh2(t) dt =

{
γr
2

∫∞
0

x2

x−α dµ(x), if α ≤ λ−

∞ otherwise.
(90)

We begin by observing some elementary properties of the equation:

Theorem 28 There is a unique, positive solution to (12) which exists for all time. The solution is
bounded if and only if γ < 2

r

(∫∞
0 x dµ(x)

)−1 in which case

ψ0(∞)
def
= lim

t→∞
ψ0(t) =

R̃

2
· rµ({0}) + (1− r)

1− γr
2

(∫∞
0 x dµ(x)

) .
Proof In standard renewal notation (c.f. (Resnick, 1992, (3.5.1)), (Asmussen, 2003, (2.1))), we
would write (88)

ψ0 = z + ψ0 ∗ F

where F is the function

F (t) =

∫ t

0
γ2rh2(s) ds.
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The existence and uniqueness is now standard (compare with Proposition 11), see (Resnick, 1992,
Theorem 3.5.1) or (Asmussen, 2003, Theorem 2.4). By (90),

F (∞) =
γr

2

∫ ∞
0

x dµ(x).

Hence when this is bigger than 1, the solution ψ0(t) tends to infinity exponentially fast (Asmussen,
2003, Theorem 7.1) or (Resnick, 1992, Proposition 3.11.1). In the case that γr2

∫∞
0 x dµ(x) = 1, by

Blackwell’s Renewal theorem, ψ0(t) is asymptotic to a positive multiple of t (see (Resnick, 1992,
Theorem 3.10.1) or (Asmussen, 2003, Theorem 4.4)) and hence still diverges. Finally, in the case
that γr2

∫∞
0 x dµ(x) < 1 by (Resnick, 1992, Section 3.11) or (Asmussen, 2003, Proposition 7.4),

lim
t→∞

ψ0(t) =
limt→∞ z(t)

1− γr
2

∫∞
0 x dµ(x)

, (91)

which is the claimed result.

TWO PHASES

Hence, we will assume going forward that γ < γ0
def
=
(
r
2

∫∞
0 x dµ(x)

)−1. We shall see that it is
possible to say more about the rate of convergence in general. Define the Malthusian exponent λ∗

as the solution of ∫ ∞
0

e2γλ∗tγ2rh2(t) dt = 1, (92)

when it exists. Note by virtue of (90), if this exponent exists, it can just as well be defined as the
solution of

r

2

∫ ∞
0

x2

x− λ∗
dµ(x) =

1

γ
, (93)

and we necessarily have that λ∗ ≤ λ−. Define

γ∗ =
1

r
2

∫∞
0

x2

x−λ− dµ(x)
(94)

which exists and is positive exactly when
∫∞

0
x2

x−λ− dµ(x) < ∞. Note that γ∗ is strictly less than
γ0 if and only if λ− > 0. Moreover, we can completely give the asymptotic behavior of the Volterra
equation on either side of the critical point. Although, to do this for γ < γ∗, we will need some
further assumptions on µ.

Recall that a function f : (0,∞) → R is slowly varying if f(tx)/f(x) → 1 as t → ∞ for
any x > 0. A function f : (0,∞) → R is regularly varying if f(t) = g(t)tα for a slowly varying
function g. We will say that µ is left-edge-regular if there exists a regularly varying function L and
α > 0 so that

t 7→ µ((λ−, λ− + t]) ∼ tαL(1
t ), as t→∞, (95)

which for example is satisfied by Marchenko-Pastur (8). We show the following:
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Theorem 29 For γ ∈ (γ∗, γ0), the Malthusian exponent λ∗ exists and is the unique solution of
(93). The function ψ0(t) satisfies that for some explicit constant c(R, R̃, µ),

ψ0(t)− ψ0(∞) ∼ c(R, R̃, µ)

γ
e−2γ(λ∗)t.

If in addition γ∗ > 0 and µ is left-edge-regular, then for γ ∈ (0, γ∗)

ψ0(t)− ψ0(∞) ∼ e−2γ(λ−)tg(t)

where g(t) is some explicit regularly varying function.

Thus if one considers varying the stepsize γ from 0 up to γ∗ the process undergoes a transition
in behavior when γ = γ∗. For small γ, the exponential rate of change is frozen on the smallest
eigenvalue of the Hessian λ−. However as γ passes the transition point γ∗, the logarithm of the rate
becomes a smooth function. This is strongly reminiscent of a freezing transition, which is often seen
in the free energies of random energy models. See for example Fyodorov and Bouchaud (2008).

The proof is essentially an automatic consequence of established theory for Volterra equations.
As an input to the case of γ < γ∗, we need the following asymptotics of the functions hk, which are
the main way in which left-edge-regularity:

Lemma 30 Suppose that µ has left-edge-regularity, meaning that there is an α ≥ 0 and slowly
varying function L so that

µ((λ−, λ− + t]) ∼ tαL(1
t ) as t→ 0.

If λ− > 0 then for any k ≥ 0

hk(t)− (λ−)ke−2γλ−tµ({λ−}) ∼ e−2γλ−tt−αL(t)Γ(α+ 1)(λ−)k.

If λ− = 0 then for any k ≥ 0,

hk(t)− 1k=0µ({0}) ∼ t−k−αL(t)Γ(k + α+ 1).

This is a standard exercise, and we do not show its proof.
Proof [Proof of Theorem 29]

The case of γ ∈ (γ∗, γ0). We follow the notation of (Asmussen, 2003, Theorem 7.1) (see also
(Resnick, 1992, Proposition 3.11.1)). Before beginning, we observe that the Malthusian exponent
does exist for this region, as the function α 7→

∫∞
0

x2

x−α dµ(x), is an increasing continuous function
on (−∞, λ−). Hence by the definition of γ∗, the image of this function applied to [0, 2γλ−) is all
of [γ−1

0 , γ−1
∗ ). From (Asmussen, 2003, Proposition 7.6)

lim
t→∞

e2γλ∗t(ψ0(t)− ψ0(∞)) =

∫∞
0 e2γλ∗t(z(t)− z(∞)) dt− z(∞)

β∫∞
0 te2γλ∗tγ2rh2(t) dt

.

We evaluate these two integrals for convenience. Using the definition of z in (89)∫ ∞
0

e2γλ∗t(z(t)− z(∞)) dt− z(∞)

β
=

R

4γ

∫ ∞
0

x dµ(x)

x− λ∗
+
R̃r

4γ

∫ ∞
0

dµ(x)

x− λ∗
− R̃

4γλ∗
(1− r).
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For the denominator,∫ ∞
0

te2γλ∗tγ2rh2(t) dt = γ2r

∫ ∞
0

∫ ∞
0

x2te2γ(λ∗−x)t dt dµ(x)

=
r

4

∫ ∞
0

x2

(x− λ∗)2
dµ(x).

The case of γ ∈ (0, γ∗). By assumption we have that γ∗ > 0, and hence∫ ∞
0

x2

x− λ−
dµ(x) <∞.

Set F (t) =
∫ t

0 γ
2rh2(s) ds. Using that ψ0(∞) = z(∞)

1−F (∞) (see (91)),

ψ0(∞) = z(∞)

(
1−F (t)

1−F (∞)

)
+ F (t)ψ0(∞),

and hence the constant functionψ0 solves the Volterra equation (88) with forcing function z(∞)

(
1−F (t)

1−F (∞)

)
.

It follows that

ψ0(t)− ψ0(∞) = z(t)− z(∞)

(
1−F (t)

1−F (∞)

)
+ γ2r

∫ t

0
h2(t− s)(ψ0(s)− ψ0(∞)) ds. (96)

Define

Ẑ(t) = e2γλ−t
(
ψ0(t)−ψ0(∞)

)
, ẑ(t) = e2γλ−t

(
z(t)−z(∞) 1−F (t)

1−F (∞)

)
and

dF̂ (t)

dt
= γ2re2γλ−th2(t).

Then using (96),

Ẑ(t) = ẑ(t) +

∫ t

0

dF̂ (s)

ds
Ẑ(t− s) ds.

By the assumption that γ < γ∗, we have that

θ
def
=

∫ ∞
0

γ2re2γλ−th2(t) dt < 1.

In preparation to apply (Asmussen et al., 2003, Theorem 5), we need to evaluate the ratio of the
limits of the densities

lim
t→∞

ẑ(t)

F̂ ′(t)
= lim

t→∞

e2γλ−t
(
z(t)− z(∞) 1−F (t)

1−F (∞)

)
γ2re2γλ−th2(t)

= lim
t→∞

(
z(t)− z(∞)

γ2rh2(t)
+
z(∞)

γ2r

F (t)− F (∞)

h2(t)(1− F (∞))

)
.

(97)
To simplify this, we observe that

F (∞)− F (t) =
γr

2

∫ ∞
0

xe−2γtx dµ(x) =
γr

2
h1(t).

We also observe that

z(t)− z(∞) =
R

2
h1(t) +

R̃r

2
h0+(t) where h0+(t) = lim

ε↓0

∫ ∞
ε

e−2γtx dµ(x).

60



SGD IN THE LARGE

We conclude that

lim
t→∞

ẑ(t)

F̂ ′(t)
= lim

t→∞

(
Rh1(t) + R̃rh0+(t)

2γ2rh2(t)
− ψ0(∞)

2γ

h1(t)

h2(t)

)
. (98)

Hence we have from (98)

lim
t→∞

ẑ(t)

F̂ ′(t)
=

(R− γrψ0(∞))λ− + R̃r

2γ2r(λ−)2

def
= c∗. (99)

By the assumption on α, it can be checked that
∫∞

0 ẑ(t)dt < ∞. Moreover it follows that ẑ(t)
is subexponential as α > 0 (see (Asmussen et al., 2003, Section 3)), and hence by (Asmussen et al.,
2003, Theorem 5 (ii)),

Ẑ(t) ∼
(∫∞

0 ẑ(t) dt

(1− θ)2
+

c∗
1− θ

)
F̂ ′(t) ∼

(∫∞
0 ẑ(t) dt

(1− θ)2
+

c∗
1− θ

)
γ2re2γλ−th2(t).

∼
(∫∞

0 ẑ(t) dt

(1− θ)2
+

c∗
1− θ

)
γ2r

(
(λ−)2µ({λ−}) + t−αL(t)Γ(α+ 1)(λ−)2

)
.

The second line follows from Lemma 30.

We finish by observing that when λ− = 0, another behavior takes hold.

Theorem 31 Suppose that λ− = 0, and that the measure µ has left-edge-regularity, meaning that
there is an α > 0 and slowly varying function L so that

µ((λ−, λ− + t]) ∼ tαL(1
t ) as t→ 0.

Then

ψ0(t)− ψ0(∞) ∼ 1

1− γr
2

∫∞
0 x dµ(x)

{
R̃r
2 t
−αL(t)Γ(1 + α) if R̃ > 0,

R
2 t
−1−αL(t)Γ(2 + α) if R̃ = 0.

Proof We again apply (Asmussen et al., 2003, Theorem 5), and so we use the same change of
variables as in Theorem 29. We once more must compute (98), which by Lemma 30 is now equal
to∞. Since γ < γ0,

θ
def
=

∫ ∞
0

γ2rh2(t) dt =
γr

2

∫ ∞
0

x dµ(x) < 1.

Hence by (Asmussen et al., 2003, Theorem 5 (iii)),

Ẑ(t) ∼ 1

1− θ
ẑ(t) ∼ 1

1− θ

{
R̃r
2

∫∞
0+ e

−2γtx dµ(x) if R̃ > 0,
R
2

∫∞
0 xe−2γtx dµ(x) if R̃ = 0.

Then by Lemma 30, the proof is complete.

61



PAQUETTE LEE PEDREGOSA PAQUETTE

E.2. Explicit solution of the Volterra equation for Isotropic Features

In this section, we solve the Volterra equation for ψ0(t) in (12) when dµ satisfies the Marchenko-
Pastur law in (8). Throughout this section we use the following change of variables

ψ̂0(t)
def
= 2ψ0

(
t

2γ

)
.

Under this change of variables, the Volterra equation in (12) becomes

ψ̂0(t) = R · h1

(
t

2γ

)
+ R̃

(
rh0

(
t

2γ

)
+ (1− r)

)
+
rγ

2

∫ t

0
h2

(
1

2γ (t− s)
)
ψ̂0(s) ds

= R · ĥ1(t) + R̃
(
rĥ0(t) + (1− r)

)
+

∫ t

0
k(t− s)ψ̂0(s) ds,

(100)

where we set ĥk a scaled version of hk and the kernel k as

ĥk(t)
def
= hk

(
t

2γ

)
and k(t)

def
=
rγ

2
h2

(
t

2γ

)
. (101)

Volterra equations of convolution type can. be solved trivially by using Laplace transforms which
conveniently in the case of Marchenko-Pastur, we do have. Explicit formulas for the Laplace trans-
forms of hk(t) via the Stieltjes transform of µMP exist.

We now solve for ψ̂0 using Laplace transforms. We let Ψ(p) andK(p) be the Laplace transforms
of ψ̂0(t) and k(t) respectively. We can relate ĥ1(t) in (101) to the function k and hence it’s Laplace
transform by the following

∂tĥ1(t) = −R
∫ ∞

0
x2e−tx dµMP(x) = −2R

rγ
k(t) and L{ĥ1(t)} =

R
(

1− 2
rγK(p)

)
p

,

(102)
where we used that the first moment of µMP is 1 (Bai and Silverstein, 2010). We now define the
function T (t) to be the Laplace transform of Marchenko-Pastur and the Laplace transform of T
(i.e., the Laplace transform of the Laplace transform of µµMP), otherwise known as the Stieltjes
transform, as the following

T (t)
def
=

∫ ∞
0

e−xt dµMP and L{T (t)}(p) =
−p+ r − 1−

√
(−p− r − 1)2 − 4r

2rp
. (103)

It is clear that the Laplace transform for ĥ0 is given by using L{T (t)}. From the Volterra equation
(100) and the function ĥ0(t) (101), we get the following expression for Ψ(p) :

Ψ(p) =
R
(

1− 2
rγK(p)

)
p

+K(p)Ψ(p) + R̃

(
rL{T (t)}(p) +

(1− r)
p

)

Ψ(p) =

R
(

1− 2
rγ
K(p)

)
p + R̃

(
rL{T (t)}(p) + (1−r)

p

)
1−K(p)

.

(104)
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We now turn to giving an explicit expression for Ψ(p). We begin with the following lemma relating
the integral,

∫
x
x+p dµMP, to the Stieltjes transform of the semi-circle law. We let m be the Stieltjes

transform for semi-circle law

m(z)
def
=

1

2π

∫ 2

−2

√
4− y2

y − z
dy, (105)

and we record a few well-known properties of this Stieltjes transform:

Lemma 32 The Stieltjes transform m can be expressed as

m(z) =
−z +

√
z2 − 4

2
,

for z ∈ C with =z > 0, and it maps to the upper half plane (in fact to the upper half-disk). This can
be extended to z ∈ R \ [−2, 2] by continuity, and to the lower half plane by conjugation symmetry.
The function m is the solution of the functional equation

m(z) +
1

m(z)
= −z for all =z > 0. (106)

Hence, we define the conjugate of m as

m̂(z)
def
=

1

m(z)
=
−z −

√
z2 − 4

2
. (107)

Moreover the Stieltjes transform of m is related to the Marchenko-Pastur by the identity for p ∈
C \ [λ−, λ+] ∫ ∞

0

x

x+ p
dµMP(x) =

m(q)√
r
, (108)

where we set q
def
= −p+1+r√

r
.

Proof The results regarding the Stieltjes transform m are well-known and we refer the reader to
(Bai and Silverstein, 2010). It remains to prove (108) relating m to the Marchenko-Pastur. First we
observe that ∫ ∞

0

x

x+ p
dµMP(x) =

1

2πr

∫ λ+

λ−

√
(x− λ−)(λ+ − x)

x+ p
dx.

We recenter and rescale by sending x = λ−+λ+

2 + λ+−λ−
4 y, so that the follow holds√

(x− λ−)(λ+ − x) =
√
r ·
√

4− y2.

Using this change of variables and noting that λ
+−λ−

4 =
√
r, dx =

√
r dy, and λ++λ−

2 = 1 + r,
we deduce that ∫ ∞

0

x

x+ p
dµMP(x) =

1

2π

∫ 2

−2

√
4− y2

p+
(
λ−+λ+

2 + λ+−λ−
4 y

) dy

=
1

2π
√
r

∫ 2

−2

√
4− y2

y −
(
−p−(1+r)√

r

) dy.
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The result follows after noting the definition of m(z) and q.

By exploiting the relationship between Marchenko-Pastur and the Stieltjes transform m defined
in (105), we can evaluate some expressions against Marchenko-Pastur. To do so, it will be important
to define the following quantities

% =
1 + r

2

(
1− rγ

2

)
and ω =

1

4

(
1− rγ

2

)2
(

8

γ
− (1 + r)2

)
. (109)

Lemma 33 (Marchenko-Pastur Integrals) Suppose the constants % and ω are as in (109) and fix
the stepsize 0 < γ < 2

r . Define a critical stepsize γ∗ as

γ∗
def
=

2√
r(r −

√
r + 1)

. (110)

It then follows that

∫ ∞
0

x

x+ p∗
dµMP(x) =


(
1− rγ

2

)−1 γ(%+i
√
ω)

2 , if p∗ = −%− i
√
ω and γ < 2

r(
1− rγ

2

)−1 γ(%−i
√
ω)

2 , if p∗ = −%+ i
√
ω and γ ≤ γ∗(

1− rγ
2

) 2(%+i
√
ω)

rγ(%2+ω)
, if p∗ = −%+ i

√
ω and γ∗ < γ < 2

r .

(111)

Proof First suppose that ω < 0, then the follow holds

%+
√
|ω| = 1

2

(
1− rγ

2

)(
1 + r +

√
(1 + r)2 − 8

γ

)
.

We wish to show exactly when this quantity is equal to (1−
√
r)2 as this will give us the critical γ∗.

Let x =
√

(1 + r)2 − 8
γ and observe that 1 + r − x ≥ 0. Hence we have that

2(%+
√
|ω| − (1−

√
r)2)(1 + r − x) =

(
8
γ − 4r

)
− 2(1−

√
r)2(1 + r − x)

=
(
(1 + r)2 − 4r − x2

)
− 2(1−

√
r)2(1 + r − x)

= −(x− (1−
√
r)2)2.

Thus %+
√
|ω| < (1−

√
r)2 except at a single value of γ at which

(1 + r)2 − 8
γ = (1−

√
r)4 ⇐⇒ γ = γ∗

def
=

2√
r(r −

√
r + 1)

. (112)

Now we let p∗ be either of −%± i
√
ω, where we take the branch of the square root continuous

in the closed upper half plane (where ω ∈ C). We use the identity for p in C \ [λ−, λ+],∫ ∞
0

x

x+ p
dµMP(x) =

m(q)√
r
,

where we recall −q = p+1+r√
r
. We will apply this at p∗, and we set −q∗ = p∗+1+r√

r
.

We use the identity

γ

2
[(p+ %)2 + ω] =

(
1− rγ

2
+
rγp

2
√
r
m(q)

)(
1− rγ

2
+
rγp

2
√
r
m̂(q)

)
.
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In particular, evaluating this identity at p = p∗ the left-hand-side is 0, and we conclude that either(
1− rγ

2
+
rγp∗
2
√
r
m(q∗)

)
= 0 or

(
1− rγ

2
+
rγp∗
2
√
r

1

m(q∗)

)
= 0 (113)

When ω > 0, then as 1 − rγ
2 > 0, the correct choice is dictated by having either p∗m(q∗) < 0 or

p∗
m(q∗)

< 0. If =p∗ = −=q∗ < 0, we have =m(q∗) > 0, and so it must be the second of these two
identities in (113). Likewise, if =p∗ = −=q∗ > 0, then =m(q∗) < 0, and it is again the second of
these identities.

For ω < 0, we argue by continuity. For p∗ = −%− i
√
ω, the mapping 1

γ 7→ p∗ is a continuous

function for γ ≤ 2
r and we have that p∗ = −% +

√
|ω|. For ω ≥ 0 (i.e. 8

γ ≥ (1 + r)2), the second
identity in (113) holds. If for some value of γ, there were a transition in which identity in (113)
holds, then by continuity there would need to be a value of γ so that both hold, which occurs if and
only if(

1− rγ

2
+
rγp∗
2
√
r
m(q∗)

)
= 0 =

(
1− rγ

2
+
rγp∗
2
√
r

1

m(q∗)

)
⇐⇒ m(q∗)

2 = 1 or p∗ = 0.

As m(q∗) is positive for ω ≤ 0, we must therefore have m(q∗) = 1 which occurs if and only if
−p∗ = (1 −

√
r)2. From (112) this does not occur for p∗ = −% − i

√
ω, and in conclusion for this

branch of p∗ we are always in the second case of (113).
On the other hand for p∗ = −%+i

√
ω,when γ < γ∗ we must still be in the second case of (113).

By continuity, it suffices to check a single value of γ > γ∗ to determine in which case (113) we are
in. The most convenient value of γ = 2

r , but at this point, both are 0 as p∗ = 0. If we parameterize
the first equation in terms of t = rγ

2 , then we can write the second case of (113) as

1− t+
tp∗(t)√
rm(q∗(t))

= 0.

Differentiating in t, at t = 1, and observing p∗(1) = 0, we arrive at

−1 +
1√

rm(q∗(1))

dp∗(t)

dt

∣∣∣∣
t=1

= −1− max{r, 1}√
rm(q∗(1))

= −1− max{r, 1}
min{r, 1}

6= 0,

except when r = 1. Note that when r = 1, no ω < 0 is possible.
We summarize the outcome of this argument as follows(

1− rγ

2
+
rγp∗
2
√
r

1

m(q∗)

)
= 0, for p∗ = −%− i

√
ω and γ <

2

r
,(

1− rγ

2
+
rγp∗
2
√
r

1

m(q∗)

)
= 0, for p∗ = −%+ i

√
ω and γ ≤ γ∗,(

1− rγ

2
+
rγp∗
2
√
r
m(q∗)

)
= 0, for p∗ = −%+ i

√
ω and γ∗ < γ <

2

r
.

(114)

Suppose we are in the first two cases of (114), in particular, we have 1− rγ
2 + rγp∗

2
√
r

1
m(q∗)

= 0, then
the following holds

m(q∗) = −
(

1− rγ

2

)−1 rγp∗
2
√
r
.
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This then implies that ∫ ∞
0

x

x+ p∗
dµMP(x) = −

(
1− rγ

2

)−1γp∗
2
. (115)

On the other hand, when we are in the second case of (114), namely p∗ = −%+ i
√
ω and γ∗ < γ <

2
r , then m(q∗) = − 2

√
r

rγp∗

(
1− rγ

2

)
and consequently,∫ ∞

0

x

x+ p∗
dµMP(x) = −

(
1− rγ

2

)
2

rγp∗
. (116)

The result follows.

E.2.1. NOISELESS SETTING.

With these items in place we can start deriving an expression (104) in the noiseless setting, namely
when R̃ = 0. In order to do so, we need to compute the Laplace transform of k(t):

K(p) =

∫ ∞
0

e−pt
(∫ ∞

0

rγ

2
e−xtx2 dµMP(x)

)
dt =

rγ

2

∫ ∞
0

(∫ ∞
0

e−(x+p)t dt

)
x2 dµMP(x)

=
rγ

2

∫ ∞
0

x2

x+ p
dµMP(x). (117)

Using this definition for the Marchenko-Pastur measure (8), we deduce from (117) that

K(p) =
γ

4π

∫ λ+

λ−

x+ p− p
x+ p

√
(x− λ−)(λ+ − x) dx

=
γ

4π

∫ λ+

λ−

√
(x− λ−)(λ+ − x) dx− r · γ · p

2

∫ ∞
0

x

x+ p
dµMP(x).

By applying Lemma 32, we can connect the Stieltjes transform m to K. Recalling q = −p−(1+r)√
r

,
we deduce

K(p) =
rγ

2
−
√
r · γ · p

2
·m (q) (118)

Consequently a simple string computations give the following identity

R
(

1− 2
rγK(p)

)
(1−K(p))p

= R ·
p√
r
m(q)

p(1− rγ
2 + rγp

2
√
r
m(q))

= R ·
1√
r
m(q)

1− rγ
2 + rγp

2
√
r
m(q)

·
1− rγ

2 + rγp
2
√
r
m̂(q)

1− rγ
2 + rγp

2
√
r
m̂(q)

= R ·
1√
r
m(q)

(
1− rγ

2 + rγp
2
√
r
m̂(q)

)
(
1− rγ

2

)2
+ rγp

2
√
r

(
1− rγ

2

) (p+1+r√
r

)
+ 1

r

( rγp
2

)2
= R ·

1√
r
m(q)

(
1− rγ

2 + rγp
2
√
r
m̂(q)

)
(
1− rγ

2

)2
+ prγ(1+r)

2r

(
1− rγ

2

)
+ rγp2

2r

= R ·
1√
r
m(q)

(
1− rγ

2

)
+ pγ

2(
1− rγ

2

)2
+ pγ(1+r)

2

(
1− rγ

2

)
+ p2γ

2

.

(119)
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Lemma 34 Fix the stepsize 0 < γ < 2
r and set the following constants

γ∗ =
2√

r(r −
√
r + 1)

, % =
1 + r

2

(
1− rγ

2

)
, and ω =

1

4

(
1− rγ

2

)2
(

8

γ
− (1 + r)2

)
.

If γ ≤ γ∗, then the following holds

L−1


(

1− 2
rγK(p)

)
(1−K(p))p

 =
2

γ

(
1− rγ

2

)∫ ∞
0

xe−xt

(x− %)2 + ω
dµMP(x),

and in the case that γ∗ < γ < 2
r , one gets that

L−1


(

1− 2
rγK(p)

)
(1−K(p))p

 =
2

γ

(
1− rγ

2

)∫ ∞
0

xe−xt

(x− %)2 + ω
dµMP(x)

+
2i
√
ω

4ω
·
[
%− i

√
ω −

(
2

γ

)2 (
1− rγ

2

)2 %+ i
√
ω

r(%2 + ω)

]
e(−%+i

√
ω)t.

Proof We first suppose that γ ≤ γ∗ and define the function

y(t)
def
=

2

γ

(
1− rγ

2

)∫ ∞
0

xe−xt

(x− %)2 + ω
dµMP(x).

Then the Laplace transform of this function is given by the equation

Y (p)
def
= L{y(t)}(p) =

2

γ

(
1− rγ

2

)∫ ∞
0

x

(x+ p)((x− %)2 + ω)
dµMP(x).

The roots of (x− %)2 + ω are precisely %± i
√
ω so by partial fractions, we have that

x

(x+ p)((x− %)2 + ω)
=

1

(p+ %)2 + ω
· x

x+ p
− 2i

√
ω

4ω(p+ %+ i
√
ω)
· x

x− %− i
√
ω

+
2i
√
ω

4ω(p+ %− i
√
ω)
· x

x− %+ i
√
ω

(120)

provided that
√
ω 6= 0. Using Lemmas 32 and 33, we have that

2

γ

(
1− rγ

2

)∫ ∞
0

x

x− %− i
√
ω

dµMP(x) = %+ i
√
ω, (121)

2

γ

(
1− rγ

2

)∫ ∞
0

x

x− %+ i
√
ω

dµMP(x) = %− i
√
ω, and

∫ ∞
0

x

x+ p
dµMP(x) =

m(q)√
r
,

where the function m(q) and the point q = −p+1+r√
r

are defined in Lemma 32. A simple calculation
using (121) shows that

2

γ

(
1− rγ

2

)∫ ∞
0

(
2i
√
ω

4ω(p+ %− i
√
ω)
· x

x− %+ i
√
ω
− 2i

√
ω

4ω(p+ %+ i
√
ω)
· x

x− %− i
√
ω

)
dµMP(x)

=
2i
√
ω

4ω(p+ %− i
√
ω)
· (%− i

√
ω)− 2i

√
ω

4ω(p+ %+ i
√
ω)
· (%+ i

√
ω)

=
p

(p+ %)2 + ω
. (122)
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Combining the partial fractions decomposition of Y (s) in (120) and (121), we deduce that

Y (s) =

2
γ

(
1− rγ

2

)m(q)√
r

+ p

(p+ %)2 + ω
.

Since both Y (s) and the RHS make sense when ω = 0 by continuity this result holds when ω = 0.
After noting that

γ

2

[
(p+ %)2 + ω

]
=

(
1− rγ

2

)2

+
pγ(1 + r)

2

(
1− rγ

2

)
+
γp2

2
,

the result follows for γ ≤ γ∗ from comparing with (119).
Next, we consider the setting where γ > γ∗. In this case, we have that ω < 0. Let A1 and A2

be indeterminates and define

w(t)
def
=

2

γ

(
1− rγ

2

)∫ ∞
0

xe−xt

(x− %)2 + ω
dµMP(x) +A1

2i
√
ω

4ω
e(−%+i

√
ω)t +A2

2i
√
ω

4ω
e(−%−i

√
ω)t

= y(t) +A1
2i
√
ω

4ω
e(−%+i

√
ω)t +A2

2i
√
ω

4ω
e(−%−i

√
ω)t.

Particularly the Laplace transform of w(t) is

W (p)
def
= L{w(t)} = Y (p) +

2i
√
ω

4ω

A1

p+ %− i
√
ω

+
2i
√
ω

4ω

A2

p+ %+ i
√
ω
. (123)

As in the previous case, we have the partial fraction decomposition in (120) for Y (p) = L{y(t)}.
However in this case, using Lemmas 32 and 33, we get different formulas for (121):

2

γ

(
1− rγ

2

)∫ ∞
0

x

x− %+ i
√
ω

dµMP(x) =

(
2

γ

)2 (
1− rγ

2

)2 %+ i
√
ω

r(%2 + ω)
,

2

γ

(
1− rγ

2

)∫ ∞
0

x

x− %− i
√
ω

dµMP(x) = %+ i
√
ω, and

∫ ∞
0

x

x+ p
dµMP(x) =

m(q)√
r
.

(124)
With these equations, we have that

2

γ

(
1− rγ

2

)∫ ∞
0

(
2i
√
ω

4ω(p+ %− i
√
ω)
· x

x− %+ i
√
ω

− 2i
√
ω

4ω(p+ %+ i
√
ω)
· x

x− %− i
√
ω

)
dµMP(x)

=
2i
√
ω

4ω(p+ %− i
√
ω)

(
2

γ

)2 (
1− rγ

2

)2 %+ i
√
ω

r(%2 + ω)

− 2i
√
ω

4ω(p+ %+ i
√
ω)
· (%+ i

√
ω).

(125)
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We observe that if
(

2
γ

)2 (
1− rγ

2

)2 %+i
√
ω

r(%2+ω)
= %− i

√
ω, then by (122) we would be done. Therefore

we can use A1 to make this term equal to %− i
√
ω. Hence, we should choose A1 such that

A1 +

(
2

γ

)2 (
1− rγ

2

)2 %+ i
√
ω

r(%2 + ω)
= %− i

√
ω

⇒ A1 = %− i
√
ω −

(
2

γ

)2 (
1− rγ

2

)2 %+ i
√
ω

r(%2 + ω)
and A2 = 0.

If we define

Z(p)
def
=

2

γ

(
1− rγ

2

)∫ ∞
0

(
2i
√
ω

4ω(p+ %− i
√
ω)
· x

x− %+ i
√
ω

− 2i
√
ω

4ω(p+ %+ i
√
ω)
· x

x− %− i
√
ω

)
dµMP(x),

then by the construction of A1 and A2, we deduce that

Z(p) +
2i
√
ω

4ω

A1

p+ %− i
√
ω

+
2i
√
ω

4ω

A1

p+ %+ i
√
ω

=
p

(p+ %)2 + ω
.

from (122). Putting together this with (124) and the definition of W (p) in (123), we get that

W (p) =

2
γ

(
1− rγ

2

)m(q)√
r

+ p

(p+ %)2 + ω
.

The result then follows.

Theorem 35 (Dynamics of SGD, noiseless setting) Suppose R̃ = 0 and the batchsize satisfies
β(n) ≤ n1/5−δ for some δ > 0, and the stepsize is 0 < γ < 2

r . Define the critical stepsize
γ∗ ∈ R and constants % > 0 and ω ∈ C,

γ∗ =
2√

r(r −
√
r + 1)

, % =
1 + r

2

(
1− rγ

2

)
, and ω =

1

4

(
1− rγ

2

)2
(

8

γ
− (1 + r)2

)
.

The iterates of SGD satsify if γ ≤ γ∗

f(xbnβ tc
)

Pr−−−→
n→∞

R · 1

γ

(
1− rγ

2

)∫ ∞
0

xe−2γxt

(x− %)2 + ω
dµMP(x)

and if γ > γ∗, the iterates of SGD satisfy

f(xbnβ tc
)

Pr−−−→
n→∞

R · 1

γ

(
1− rγ

2

)∫ ∞
0

xe−2γxt

(x− %)2 + ω
dµMP(x)

+R · 1

4
√
|ω|
·
[
%+

√
|ω| −

(
2

γ

)2 (
1− rγ

2

)2 %−
√
|ω|

r(%2 − |ω|)

]
e−2γ(%+

√
|ω|)t.

Here the convergence is locally uniformly.

Proof The result follows immediately from Lemma 34 after noting that when γ∗ < γ we have
ω < 0 and that f(xbnβ tc

)
Pr−−−→

n→∞
ψ0(t) = 1

2 ψ̂0(2γt).

69



PAQUETTE LEE PEDREGOSA PAQUETTE

E.2.2. NOISY TERM

We now turn to solving the noisy term in (104) (i.e. the term with R̃), namely

R̃ ·
rL{T (t)}(p) + 1−r

p

1−K(p)
.

First we rewrite the Laplace transform of T in terms of the point q = −p−1−r√
r

. Recall the function

m(z) in (105) as in Lemma 32 by m(z) = −z+
√
z2−4

2 so that the Laplace transform of T becomes

rL{T (t)}(p) =

√
r

p
· q −

√
q2 − 4

2
+
r

p
=
r

p
−
√
r

p
m(q).

We note again from Lemma 32 that m(q)m̂(q) = 1 and m̂(q) = −q −m(q). Using the definition
of K(p) from (118), we get the following equality for the noisy term

R̃ ·
rL{T (t)}(p) + 1−r

p

1−K(p)
= R̃ · −

√
r ·m(q) + 1

p(1−K(p))
·

1− rγ
2 + rγp

2
√
r
m̂(q)

1− rγ
2 + rγp

2
√
r
m̂(q)

= R̃ ·
−
√
r
(
1− rγ

2

)
m(q)− rγp

2 + 1− rγ
2 + rγp

2
√
r
m̂(q)

p
[(

1− rγ
2

)2
+ rpγ(1+r)

2r

(
1− rγ

2

)
+ rγp2

2r

]
= R̃ ·

−
[

2
γ

√
r
(
1− rγ

2

)
+
√
rp
]
m(q) + p2 + p+ 2

γ

(
1− rγ

2

)
p((p+ %)2 + ω)

,

(126)

where % and ω are defined in (109). With this, we able to conclude derive an expression for the
noisy term in ψ̂0(t) of (100).

Lemma 36 Fix the stepsize 0 < γ < 2
r and set the following constants

γ∗ =
2√

r(r −
√
r + 1)

, % =
1 + r

2

(
1− rγ

2

)
, and ω =

1

4

(
1− rγ

2

)2
(

8

γ
− (1 + r)2

)
.

If γ ≤ γ∗, then the following holds

L−1

{
rL{T (t)}+ 1−r

p

1−K(p)

}
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2
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%2 + ω
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∫ ∞
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−rx+ 2
γ r
(
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2

)
(x− %)2 + ω

e−xt dµMP(x)

and in the case that γ∗ < γ < 2
r , one gets that

L−1

{
rL{T (t)}+ 1−r

p
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}
=
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(
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−rx+ 2
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(x− %)2 + ω

e−xt dµMP(x)

+
(2i
√
ω)r
[

2
γ

(
1− rγ

2

)
− (%− i

√
ω)
]

4ω(%− i
√
ω)

·
[
%− i

√
ω

2
γ

(
1− rγ

2

) − 2
γ (%+ i

√
ω)
(
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2

)
r(%2 + ω)

]
e(−%+i

√
ω)t.

Proof We first consider the setting where γ ≤ γ∗ and we define the functions

y(t)
def
=

∫ ∞
0

−rx+ 2r
γ

(
1− rγ

2

)
(x− %)2 + ω

e−xt dµMP(x) and j(t)
def
=

2
γ (1− r)

(
1− rγ

2

)
%2 + ω

.
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Then the Laplace transform of this function is given by the equation

Y (p)
def
= L{y(t)} =

∫ ∞
0

−rx+ 2r
γ

(
1− rγ

2

)
x(x+ p)[(x− %)2 + ω]

x dµMP(x). (127)

The roots of (x− %)2 + ω are precisely %± i
√
ω so by partial fractions, we have that

−rx+ 2r
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)
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+

2r
γ

(
1− rγ

2

)
− r(%+ i

√
ω)

(p+ %+ i
√
ω)(%+ i

√
ω)(2i

√
ω)
· x

x− %− i
√
ω

+

2r
γ

(
1− rγ

2

)
− r(%− i

√
ω)

(p+ %− i
√
ω)(%− i

√
ω)(−2i

√
ω)
· x

x− %+ i
√
ω
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(128)

We will consider each term individual. By using Lemma 32, we deduce that∫ ∞
0

rp+ 2r
γ

(
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2
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]
p
· x

x+ p
dµMP(x) =

m(q)√
r
·
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(
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2

)
p((p+ %)2 + ω)

. (129)

This matches the term in front of the m(q) in (126). For the last two terms, we apply Lemma 33
and some simple computations to conclude that
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=
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√
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√
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√
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)
=
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(
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2

) .
(130)

We next observe that L{1} = 1
p . This observation applied to the function j(t) together with the

terms not associated with m(q) in (128) gives the following result

2(1− r)
(
1− rγ

2

)
pγ(%2 + ω)

+ L(p) +
2r
(
1− rγ

2

)
pγ(%2 + ω)

=
p2 + p+ 2

γ

(
1− rγ

2

)
p((p+ %)2 + ω)

.

This combined with (129) and (126) shows that result holds when γ ≤ γ∗.
Next, we consider the setting where γ > γ∗. In this case, we always have that ω < 0. Let A1 be

an indeterminate and define

w(t)
def
= y(t) + j(t) +

2r
γ

(
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)
− r(%− i

√
ω)

(%− i
√
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√
ω)

A1e
(−%+i

√
ω)t.
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The Laplace transform of w(t) is

W (p)
def
= L{w(t)} = Y (p)+

2(1− r)
(
1− rγ

2

)
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· 1
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+
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√
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A1 ·
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√
ω
.

As in the previous case, we have that (127), (128), and (129) all still hold. The only difference
occurs in the second term in the function L(p) in (130). In this case using Lemma 33, we get that
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def
=
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(131)
Using the term A1, we are able to make L̂(p) exactly equal to the RHS of L(p). In particular, we
choose the constant A1 as

A1 =
%− i

√
ω

2
γ

(
1− rγ

2

) − 2(%+ i
√
ω)
(
1− rγ

2

)
rγ(%2 + ω)

. (132)

By this choice of A1, we guarantee that the sum of L̂(p) and the A1 term equals the RHS of L(p):

L̂(p) +
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(
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2

) .
The result then immediately follows from the previous case when γ > γ∗.

From this lemma, we can now derive the main result which shows that the function values
concentrate.

Theorem 37 (Dynamics of SGD, noisy setting) Suppose the batchsize satisfies β(n) ≤ n1/5−δ

for some δ > 0 and the stepsize is 0 < γ < 2
r . Define the critical stepsize γ∗ and constants % > 0

and ω ∈ C by

γ∗ =
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r(r −
√
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, % =
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)
, and ω =
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)2
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γ
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.

The iterates of SGD satisfy if γ ≤ γ∗
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]
.
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and if γ > γ∗, the iterates of SGD satisfy

f(xbnβ tc
)
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Here the convergence is locally uniformly.

Proof The result follows immediately from Lemma 36 after noting that when γ∗ < γ we have
ω < 0 and that f(xbnβ tc

)
Pr−−−→

d→∞
ψ0(t) = 1

2 ψ̂0(2γt).

E.2.3. COMPUTING AVERAGE-COMPLEXITY

With our explicit expressions for ψ0, we can now derive the complexity results.

Theorem 38 (Asymptotic convergence rates isotropic features) Suppose Assumptions 1.1 and 1.2
hold with dµ(x) = dµMP(x). Fix the stepsize 0 < γ < 2

r and let the batchsize satisfies β(n) ≤
n1/5−δ for some δ > 0. Define the constants % > 0, ω ∈ C, and critical stepsize γ∗ ∈ R as in (37).
If the ratio r = 1, the iterates of SGD satisfy
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n→∞

f(xbnβ tc
)

Pr∼ 1

γ3/2
·
(

1− rγ

2

)
·
√
λ+
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]
. (133)

If the ratio r 6= 1 and γ < γ∗, the iterates of SGD satisfy

lim
n→∞
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.

If the ratio r 6= 1 and γ = γ∗, the iterates of SGD satisfy

lim
n→∞
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.
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If the ratio r 6= 1 and γ > γ∗, the iterates of SGD satisfy

lim
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Here t = 1 corresponds to computing n stochastic gradients, the convergence is locally uniformly,
and the notation Pr∼ means that you take the limit in probability and then compute the asymptotic.

Proof Throughout the proof we use 2γt 7→ t and we define % and ω as in Theorem 37. Suppose we
have that r = 1. Because 1− γ

2 > 0, we know that γ < γ∗. By construction of γ∗ in (112), we have
that

(1 + r)2 − 8γ−1 < (1 + r)2 − 8γ∗ = (1−
√
r)4 = 0.

In particular, this means that ω > 0 and the roots of (x− %)2 + ω are precisely x = %±
√
−ω. As

ω > 0, these roots are complex with positive imaginary part and thus, (x − %)2 + ω 6= 0 for any
x ∈ [0, λ+]. So there exists a constant C > 0 such that (x − %)2 + ω > C for all x ∈ [0, λ+] and
consequently, ∫ ∞

0

x

(x− %)2 + ω
dµMP(x) is bounded. (134)

We begin by computing
∫∞

0
xe−xt

(x−%)2+ω
dµMP. If x ≥ log2(t)/t, then it is clear that e−tx decays

faster than any polynomial in t. Combining this with (134), we get that∫ ∞
log2(t)/t

xe−xt

(x− %)2 + ω
dµMP(x) decays faster than any polynomial in t.

Now we suppose that 0 ≤ x < log2(t)/t. Using a simple change of variables, we deduce that∫ log2(t)/t
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We have that
√
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t ≤
√
λ+ and 0 < ω ≤ (x − %)2 + ω so dominated convergence theorem

holds
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Consequently, we have that∫ ∞
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√
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Now we turn to
∫∞

0
e−xt

(x−%)2+ω
dµMP(x). As before, we know that∫ ∞

log2(t)/t

e−xt

(x− %)2 + ω
dµMP(x) decays faster than any polynomial in t.

Again using a simple change of variables, we deduce that∫ log2(t)/t
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By using dominated convergence theorem, we know that
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Consequently, we have that∫ ∞
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2
√
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· 1
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. (136)

After noting that t = 2γt and Theorem 37, the result immediately follows for the case when r = 1
in (133).

Next we consider the setting where r 6= 1. Suppose ` ∈ {0, 1}. By a simple change of variables
x = λ− + (λ+ − λ−)u, we have

1

2πr

∫ λ+
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e−xt

x1−`((x− %)2 + ω)

√
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=
1

2πr

(∫ log2(t)/t

0
+

∫ 1

log2(t)/t

)
(λ+ − λ−)2e−tλ

−
e−(λ+−λ−)ut

√
u(1− u)

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

] du.

Let’s first consider where u ≥ log2(t)/t. As r 6= 1, we have that λ− > 0 and therefore, (λ− +
(λ+ − λ−)u)1−` ≥ (λ−)1−`. If ω > 0, then 0 < ω < (λ− + (λ+ − λ−)u− %)2 + ω so that∫ 1

log2(t)/t

1

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du ≤ C, (138)

or equivalently this integral is bounded by some C > 0. Now we suppose that ω ≤ 0. The
roots of (λ− + (λ+ − λ−)u − %)2 + ω are precisely given by u = %−λ−±

√
−ω

λ+−λ− . By (112) if

γ 6= γ∗, we have that % +
√
−ω < (1 −

√
r)2 = λ−. Hence there exists a constant Ĉ > 0

such that Ĉ < (λ− + (λ+ − λ−)u − %)2 + ω for all u ∈ [0, 1]. It immediately follows that
(138) holds. Now suppose that γ = γ∗. Then % +

√
|ω| = (1 −

√
r)2 = λ− so the polynomial

(λ− + (λ+ − λ−)u − %)2 + ω is 0 when u = 0. We observe that u = 0 is not a double root since
there does not exist an r with γ = γ∗, ω = 0, and γ∗ < 2

r (here γ = γ∗ and ω = 0 imply that r = 1,
but then γ∗ = 2 which violates γ∗ < 2

r ). Consequently, we can write

(λ− + (λ+ − λ−)u− %)2 + ω = (λ+ − λ−)2u(u+ r2),
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where r2 > 0 as the second root is negative. Since the Marchenko-Pastur measure has
√
u-behavior

near 0, it immediately follows that∫ 1

log2(t)/t

1

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du

≤ 1

r2(λ−)`−1(λ+ − λ−)2

∫ 1

0

√
1− u√
u

du < C.

Hence in all cases we have that

(λ+ − λ−)2

2πr

∫ 1

log2(t)/t

e−(λ+−λ−)ut(
λ− + (λ+ − λ−)u)1−`

[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du

≤ e−(λ+−λ−) log2(t)C

where C > 0 is some constant. Since e−(λ+−λ−) log2(t) decays faster than polynomial, this part
of the integral does not have the interesting asymptotic. Now returning to (137) the interesting
asymptotic occurs near u = 0. First we consider the setting where γ 6= γ∗. As we saw for
u ∈ [log2(t)/t, 1], we also know that there exists a constant Ĉ > 0 such that

Ĉ < (λ− + (λ+ − λ−)u)1−`[(λ− + (λ+ − λ−)u− %)2 + ω
]

for all u ∈ [0, 1].

Using a change of variables u = v/t, we deduce that

∫ log2(t)/t

0

e−(λ+−λ−)ut

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du

≤ 1

Ĉ
· 1

t3/2

∫ log2(t)

0
e−(λ+−λ−)v

√
v(1− v

t ) dv

≤ 1

Ĉ
· 1

t3/2

∫ ∞
0

e−(λ+−λ−)v√v dv

Since the last integral is bounded, we can apply dominated convergence theorem. Using the change
of variables, u = v

t , we have that

∫ log2(t)/t

0

e−(λ+−λ−)ut

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du

=
1

t3/2
·
∫ log2(t)

0

e−(λ+−λ−)v

(λ− + (λ+ − λ−)vt )
1−`
[
(λ− + (λ+ − λ−)vt − %)2 + ω

]√v(1− v
t ) dv

∼ 1

t3/2

∫ ∞
0

e−(λ+−λ−)v

(λ−)1−`
[
(λ− − %)2 + ω

]√v dv

∼ 1

t3/2
·

√
π

2(λ+ − λ−)3/2(λ−)1−`((λ− − %)2 + ω)
.

(139)

76



SGD IN THE LARGE

Consequently, we get for any ` ∈ {0, 1}

1

2πr

∫ λ+

λ−

e−xt

x1−`
(
(x− %)2 + ω

)√(x− λ−)(λ+ − x) dx

∼ 1

4
√
πr
· (λ+ − λ−)1/2

(λ−)1−`
[
(λ− − %)2 + ω

] · e−λ−t · 1

t3/2
.

Now consider the setting where γ = γ∗. As we saw for u ∈ [log2(t)/t, 1], we know that the
polynomial has a root at u = 0 (not a double root). In particular, we get that

(λ− + (λ+ − λ−)u)1−`[(λ− + (λ+ − λ−)u− %)2 + ω
]

= (λ+ − λ−)2(λ− + (λ+ − λ−)u)1−`u(u+ r2),

where −r2 is the second root of the quadratic (λ− + (λ+ − λ−)u − %)2 + ω. We know this root
is negative (i.e. r2 > 0). Using a change of variables u = v/t and a simple lower bound on
(λ− + (λ+ − λ−)u)1−`, we get that∫ log2(t)/t

0

e−(λ+−λ−)ut

(λ− + (λ+ − λ−)u)1−`
[
(λ− + (λ+ − λ−)u− %)2 + ω

]√u(1− u) du

≤ 1

(λ−)1−`(λ+ − λ−)2r2
· 1

t1/2

∫ log2(t)

0

e−(λ+−λ−)v
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√
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≤ 1

(λ−)1−`(λ+ − λ−)2r2
· 1

t1/2

∫ ∞
0

e−(λ+−λ−)v

√
v

dv

Since the last integral is bounded, we can apply dominated convergence theorem. Using the change
of variables, u = v

t , we have that∫ log2(t)/t

0

e−(λ+−λ−)ut

(λ− + (λ+ − λ−)u)1−`
[
(λ+ − λ−)2u(u+ r2)

]√u(1− u) du

=
1
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·
∫ log2(t)

0
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1−`
[
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]√v(1− v
t ) dv

∼ 1

t1/2

∫ ∞
0
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(λ−)1−`
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] · 1√
v

dv

∼ 1

t1/2
·

√
π

(λ+ − λ−)5/2(λ−)1−`r2
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(140)

Consequently, we have when γ = γ∗ that

1

2πr

∫ λ+

λ−

e−xt

x1−`
(
(x− %)2 + ω

)√(x− λ−)(λ+ − x) dx

∼ 1

2
√
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· 1

r2(λ+ − λ−)1/2(λ−)1−` · e
−λ−t · 1

t1/2
.
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We note that the Dirac delta from the Marchenko-Pastur terms combined with the constant term
yields that

2
γ (1− r)

(
1− rγ

2

)
%2 + ω

+

2r
γ (1− r)

(
1− rγ

2

)
%2 + ω

max
{

0, 1− 1
r

}
=

2
γ

(
1− rγ

2

)
%2 + ω

max{0, 1− r}.

The result immediately follows.

Appendix F. Numerical simulation details and extra experiments

Problem setup. The vectors x0, x̃ and are sampled i.i.d. from the Gaussian N(0, 1
dI). The

objective function in which we run SGD is in all cases the least squares objective function f(x) =
1

2n‖Ax− b‖
2, where b is generated as in (2). The definition of A is different depending on the

data-generating process considered:

• For the isotropic features model, the rows of A are generated i.i.d. from a standard Gaussian
distribution.

• In the one-hidden layer model these are generated following (25), with both W and and Y
are i.i.d. from a standard Gaussian and n/m = X , m/d = Y , and g is a shifted hinge loss:

g(z) = max(x, 0)− 1√
2π

. (141)

The substraction of − 1√
2π

ensures that the zero Gaussian mean assumption is verified (27).

Throughout the experiments r is fixed to 1.5 and R̃ = 0. We experimented with different values,
and always obtained very similar qualitative results.

Algorithms. We simulate the SME and SDE models (see (17) for description) using Euler-
Murayama discretization with stepsize 10−3. The SDE model discretizes the same as equation
as the SME model (Eq. (17)) with a scaled identity covariance (Σ = σ2I). In this model σ2 is a
free parameter which for the experiments we set to 0.1, as this value was giving the closest fit to
SGD across the log-space grid of parameters 10−i, i = 0, 1, ....

For the streaming model, we use SGD updates and regenerate ai (following the same model as
SGD) at every step.

Extra experiments. We provide extra experiments following the same setting as in Figure 4 but
with different choices of the ratio r = d

n parameter.
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Figure 5: Comparison of different SGD models with r = 0.8 and r = 1.6: isotropic features
(top) and one-hidden layer network (bottom).
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