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Abstract

Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action
spaces such as the [0, 1] interval, where similar actions are guaranteed to have similar rewards. A
central theme here is the adaptive discretization of the action space, which gradually “zooms in” on
the more promising regions thereof. The goal is to take advantage of “nicer” problem instances,
while retaining near-optimal worst-case performance. While the stochastic version of the problem is
well-understood, the general version with adversarial rewards is not. We provide the first algorithm
for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds.
In particular, we recover the worst-case optimal regret bound for the adversarial version, and the
instance-dependent regret bound for the stochastic version.

A version with full proofs (and additional results) appears at arxiv.org/abs/2006.12367v2.
Keywords: Lipschitz bandits, adaptive discretization

1. Introduction

Multi-armed bandits is a simple yet powerful model for decision-making under uncertainty, exten-
sively studied since 1950ies and exposed in several books, e.g., (Bubeck and Cesa-Bianchi, 2012;
Slivkins, 2019; Lattimore and Szepesvari, 2020). In a basic version, the algorithm repeatedly chooses
actions (a.k.a. arms) from a fixed action space, and observes their rewards. Only rewards from the
chosen actions are revealed, leading to the exploration-exploitation tradeoff.

We focus on Lipschitz bandits, a prominent version that studies large, structured action spaces
such as the [0, 1] interval. Similar actions are guaranteed to have similar rewards, as per Lipschitz-
continuity or a similar condition. In applications, actions can correspond to items with feature vectors,
such as products, documents or webpages; or to offered prices for buying, selling or hiring; or to
different tunings of a complex system such as a datacenter or an ad auction.

A key theme here is adaptive discretization of the action space which gradually “zooms in” on the
more promising regions thereof (Kleinberg et al., 2008, 2019; Bubeck et al., 2008, 2011a; Slivkins
et al., 2013; Slivkins, 2014; Munos, 2011; Slivkins, 2011; Valko et al., 2013a; Minsker, 2013; Bull,
2015; Ho et al., 2016; Grill et al., 2015). This approach takes advantage of “nice” problem instances —
ones in which near-optimal arms are confined to a relatively small region of the action space — while
retaining near-optimal worst-case performance. The point of departure for all this work is uniform
discretization (Kleinberg and Leighton, 2003; Kleinberg, 2004; Kleinberg et al., 2008, 2019; Bubeck
et al., 2008, 2011a), a simple algorithm which discretizes the action space uniformly and obtains
worst-case optimal regret bounds.

(© 2021 C. Podimata & A. Slivkins.
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All prior work on Lipschitz bandits concerns the stochastic version, in which the rewards of each
action are drawn from the same, albeit unknown, distribution in each round. In contrast, adversarial
bandits allow the rewards to be adversarially chosen. This version is also widely studied in the
literature (starting from Auer et al., 2002b), and tends to be much more challending. The adversarial
version of Lipschitz bandits is not understood beyond uniform discretization.

We provide the first algorithm for adaptive discretization in adversarial Lipshitz bandits, and
derive instance-dependent regret bounds.! Our regret bounds are optimal in the worst case, and
improve dramatically when the near-optimal arms comprise a small region of the action space. In
particular, we recover the instance-dependent regret bound for the stochastic version of the problem
(Kleinberg et al., 2008, 2019; Bubeck et al., 2008, 2011a).

Problem Statement: Adversarial Lipschitz Bandits. We are given a set A of actions (a.k.a. arms),
the time horizon 7', and a metric space (A4, D), also called the action space. The adversary chooses
randomized reward functions g1, ... ,g97 : A — [0, 1]. In each round ¢, the algorithm chooses
an arm z; € A and observes reward g;(z;) € [0, 1] and nothing else. We focus on the oblivious
adversary: all reward functions are chosen before round 1. The adversary is restricted in that the
expected rewards E[g;(-)] satisfy the Lipschitz condition:?

Elg:(x) = g:(y)] < D(w,y) Va,y€ A tell] (1.D)

The algorithm’s goal is to minimize regret, a standard performance measure in multi-armed bandits:
R(T) := sup,c Zte[T] gi(x) = gi (). (1.2)

A problem instance consists of action space (\A, D) and reward functions g , ... , gr. The stochastic

version of the problem (stochastic rewards) posits that each g; is drawn independently from some
fixed but unknown distribution G. A problem instance is then the tuple (A, D, G, T).

The canonical examples are a d-dimensional unit cube (A, D) = ([0,1]%, £,), p > 1 (where
lp(x,y) = |z — y||p is the p-norm), and the exponential tree metric, where A is a leaf set of a
rooted infinite tree, and the distance between any two leaves is exponential in the height of their least
common ancestor. Our results are equally meaningful for large but finite action sets.

Our results are most naturally stated without an explicit Lipschitz constant L. The latter is
implicitly “baked into” the metric D, e.g., if the action set is [0, 1] one can take D(z,y) = L |x — y.
However, we investigate the dependence on L in corollaries. Absent L, one can take D < 1 w.l.o.g.

Our Results. We present ADVERSARIALZOOMING, an algorithm for adaptive discretization of the
action space. Our main result is a regret bound of the form
E[R(T)] < O( TE+D/(+2)), (1.3)

where z = AdvZoomDim > 0 is a new quantity called the adversarial zooming dimension.> This
quantity, determined by the problem instance, measures how wide-spread the near-optimal arms are
in the action space. In fact, we achieve this regret bound with high probability.

1. That is, regret bounds which depend on the properties of the problem instance that are not known initially.

2. The expectation in (1.1) is over the randomness in the reward functions. While adversarial bandits are often defined
with deterministic reward functions, it is also common to allow randomness therein, e.g., to include stochastic bandits
as a special case. The said randomness is essential to include stochastic Lipschitz bandits as a special case. Indeed,
for stochastic rewards, (1.1) specializes to the Lipschitz condition from prior work on stochastic Lipschitz bandits.
A stronger Lipschitz condition g:(z) — ¢+(y) < D(x, y) is unreasonable for many applications; e.g., if the rewards
correspond to user’s clicks or other discrete signals, we can only assume Lipschitzness “on average”.

3. As usual, the O(-) and Q(-) notation hides polylog(T’) factors.
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The meaning of this result is best seen via corollaries:

e We recover the optimal worst-case regret bounds for the adversarial version. Prior work
(Kleinberg, 2004; Kleinberg et al., 2008, 2019; Bubeck et al., 2008, 2011a) obtains Eq. (1.3)
for the d-dimensional unit cube, and more generally Eq. (1.3) with z = CovDim, the covering
dimension of the action space. The latter bound is the best possible for any given action space.
We recover it in~ the sense that AdvZoomDim < CovDim. Moreover, we match the worst-case
optimal regret O(\/ﬁ ) for instances with K < oo arms and any metric space.

e We recover the optimal instance-dependent regret bound from prior work on the stochastic
version (Kleinberg et al., 2008, 2019; Bubeck et al., 2008, 2011a). This bound is Eq. (1.3)
with z = ZoomDim, an instance-dependent quantity called the zooming dimension, and it is
the best possible for any given action space and any given value of ZoomDim (Slivkins, 2014).
ZoomDim can be anywhere between 0 and CovDim, depending on the problem instance. We
prove that, essentially, AdvZoomDim = ZoomDim for stochastic rewards.

e Our regret bound can similarly improve over the worst case even for adversarial rewards. In
particular, we may have AdvZoomDim = 0 for arbitrarily large CovDim, even if the reward
functions change substantially. Then we obtain O(+/T) regret, as if there were only two arms.

Adaptive discretization algorithms from prior work (Kleinberg et al., 2008, 2019; Bubeck et al.,
2008, 2011a) do not extend to the adversarial version. For example, specializing to K -armed bandits
with uniform metric D = 1, these algorithms reduce to a standard algorithm for stochastic bandits
(UCB1, Auer et al., 2002a), which fails badly for many simple instances of adversarial rewards.

Adpversarial Zooming Dimension. The new notion of AdvZoomDim can be defined in a common
framework with CovDim and ZoomDim from prior work. All three notions are determined by the
problem instance, and talk about set covers in the action space. Each notion specifies particular
subset(s) of arms to be covered, denoted A, C A, € > 0, and counts how many “small” subsets are
needed to cover each A.. For a parameter ~v > 0 called the multiplier, the respective “dimension” is

inf { d>0: A. can be covered with ~y - £~ % sets of diameter at most g, Ve>0 } . (1.4)

Generally, a small “dimension” quantifies the simplicity of a problem instance.

The covering dimension CovDim has 4. = A. The intuition comes from the d-dimensional cube,
for which CovDim = d. * Thus, we are looking for the covering property enjoyed by the unit cube.
Note that CovDim is determined by the action space alone, and is therefore known to the algorithm.

Both ZoomDim and AdvZoomDim are about covering near-optimal arms. Each subset 4. com-
prises all arms that are, in some sense, within € from being optimal. These subsets may be easier to
cover compared to A; this may reduce (1.4) compared to the worst case of CovDim.

The zooming dimension ZoomDim is only defined for stochastic rewards. It focuses on the stan-
dard notion of stochastic gap of an arm  compared to the best arm: Gap(x) := maxyec4 E[g:(y)] —
E[g:(x)]. Each subset A; is defined as the set of all arms = € A with Gap(x) < O(e).

AdvZoomDim extends ZoomDim as follows. The adversarial gap of a given arm x measures this
arm’s suboptimality compared to the best arm on a given time-interval [0, t|. Specifically,

AdvGap,(z) := % maXyeA Zq—g[t} 9-(y) — g- (). (1.5)

4. More formally, the covering dimension of ([0, 1]¢, £,), p > 1 is d, with multiplier v = poly(d, p).
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Given € > 0, an arm z is called inclusively e-optimal if AdvGap,(z) < O(e In*2T) for some
end-time ¢ > (e72); the precise definition is spelled out in Eq. (3.1). In words, we include all arms
whose adversarial gap is sufficiently small at some point in time. It suffices to restrict our attention
to a representative set of arms Arepr C A With |Arepr| < O(T1HC0im) specified in the analysis.”
Thus, the subset A, is defined as the set of all arms & € Ayep; that are inclusively e-optimal.

By construction, AdvZoomDim < CovDim for any given multiplier v > 0. For stochastic rewards,
AdvZoomDim coincides with ZoomDim up to a polylog (T, | Arepr| ) multiplicative change in .

The definition of AdvZoomDim is quite flexible. First, we achieve the stated regret bound for all
4 > 0 at once, with a multiplicative '/(**+2) dependence thereon. Second, we could relax (1.4) to
hold only for € smaller than some threshold 6; the regret bound increases by +O(v/T §—CovPin),

Examples. We provide a flexible family of examples with small AdvZoomDim. Fix an arbitrary
action space (A, D) and time horizon T'. Consider M problem instances with stochastic rewards,
each with ZoomDim < d. Construct an instance with adversarial rewards, where each round is
assigned in advance to one of these stochastic instances. This assignment can be completely arbitrary:
e.g., the stochastic instances can appear consecutively in “phases” of arbitrary duration, or they can be
interleaved in an arbitrary way. Then AdvZoomDim < d for constant M, d under some assumptions.

In particular, we allow arbitrary disjoint subsets S1, ... ,.Sy C A such that each stochastic
instance ¢ € [M ] can behave arbitrarily on S; as long as the spread between the largest and smallest
mean rewards exceeds a constant. All arms outside S; receive the same “baseline” mean reward,
which does not exceed the mean rewards inside S;. The analysis of this example is somewhat
non-trivial, and separate from the main regret bound (1.3).

Challenges and Techniques. We build on the high-level idea of zooming from prior work on the
stochastic version (Kleinberg et al., 2008, 2019; Bubeck et al., 2008, 2011a), but provide a very
different implementation of this idea. We maintain a partition of the action space into “active regions”,
and refine this partition adaptively over time. We “zoom in” on a given region by partitioning it into
several “children” of half the diameter; we do it only if the sampling uncertainty goes below the
region’s diameter. In each round, we select an active region according to (a variant of) a standard
algorithm for bandits with a fixed action set, and then sample an arm from the selected region
according to a fixed, data-independent rule. The standard algorithm we use is EXP3.P (Auer et al.,
2002b); prior work on stochastic rewards used UCB1 (Auer et al., 2002a).

Adversarial rewards bring about several challenges compared to the stochastic version. First, the
technique in EXP3.P does not easily extend to variable number of arms, or to increasing the action set
by “zooming” (whereas the technique in UCB1 does, for stochastic rewards). Second, the sampling
uncertainty is not directly related to the total probability mass allocated to a given region. In contrast,
this relation is straightforward and crucial for the stochastic version. Third, the adversarial gap is
much more difficult to work with. Indeed, the analysis for stochastic rewards relies on two crucial
but easy steps — bounding the gap for regions with small sampling uncertainty, and bounding the
“total damage” inflicted by all small-gap arms — which no longer work for adversarial rewards.

These challenges prompt substantial complications in the algorithm and the analysis. For example,
to incorporate “children” into the multiplicative weights analysis, we split the latter into two steps:
first we update the weights, then we add the children. To enable the second step, we partition the
parent’s weight equally among the children. Effectively, we endow each child with a copy of the
parent’s data, and we need to argue that the latter is eventually diluted by the child’s own data.

5. Essentially, Arep: contains a uniform discretization for scale 1/7 and also the local optima for such discretization.
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Another example: to argue that we only “zoom in” if the parent has small adversarial gap, we
need to enhance the “zoom-in rule”: in addition to the “aggregate” rule (the sampling uncertainty
must be sufficiently small), we need the “instantaneous” one: the current sampling probability must
be sufficiently large, and it needs to be formulated in just the right way. Then, we need to be much
more careful about deriving the “zooming invariant”, a crucial property of the partition enforced by
the “zoom-in rule”. In turn, this derivation necessitates the algorithm’s parameters to change from
round to round, which further complicates the multiplicative weights analysis.

An important part of our contribution is formalizing what we mean by “nice” problem instances,
and boiling the analysis down to an easily interpretable notion such as AdvZoomDim.

Remarks. We obtain an anytime version, with similar regret bounds for all time horizons 7" at once,
using the standard doubling trick: in each phase i € N, we restart the algorithm with time horizon
T = 2'. The only change is that the definition of AdvZoomDim redefines A. to be the set of all arms
that are inclusively e-optimal within some phase.

Our regret bound depends sublinearly on the doubling constant Cqp; : the smallest C' € N such
that any ball can be covered with C' sets of at most half the diameter. Note that Cgp; = 2¢ for a
d-dimensional unit cube, or any subset thereof. The doubling constant has been widely used in
theoretical computer science, e.g., see (Kleinberg et al., 2009) for references.

Related Work. Lipschitz bandits are introduced in (Agrawal, 1995) for action space [0, 1], and
optimally solved in the worst case via uniform discretization in (Kleinberg, 2004; Kleinberg et al.,
2008, 2019; Bubeck et al., 2008, 2011a). Adaptive discretization is introduced in (Kleinberg et al.,
2008, 2019; Bubeck et al., 2008, 2011a), and subsequently extended to contextual bandits (Slivkins,
2014), ranked bandits (Slivkins et al., 2013), and contract design for crowdsourcing (Ho et al., 2016).
(The terms “zooming algorithm/dimension” trace back to Kleinberg et al. (2008, 2019).) Kleinberg
et al. (2008, 2019) consider regret rates with instance-dependent constant (e.g., log(t) for finitely
many arms), and build on adaptive discretization to characterize worst-case optimal regret rates
for any given metric space. Pre-dating the work on adaptive discretization, Kocsis and Szepesvari
(2006); Pandey et al. (2007); Munos and Coquelin (2007) allow a “taxonomy” on arms without any
numerical information (and without any non-trivial regret bounds).

Several papers recover adaptive discretization guarantees under mitigated Lipschitz conditions:
when Lipschitzness only holds near the best arm z* or when one of the two arms is z* (Kleinberg
et al., 2008, 2019; Bubeck et al., 2008, 2011a); when the algorithm is only given a taxonomy of
arms, but not the metric (Slivkins, 2011; Bull, 2015); when the actions correspond to contracts
offered to workers, and no Lipschitzness is assumed (Ho et al., 2016), and when expected rewards
are Holder-smooth with an unknown exponent (Locatelli and Carpentier, 2018).

In other work on mitigating Lipschitzness, Bubeck et al. (2011b) recover the optimal worst-case
bound with unknown Lipschitz constant. Munos (2011); Valko et al. (2013a); Grill et al. (2015)
consider adaptive discretization in the “pure exploration” version, and allow for a parameterized
class of metrics with unknown parameter. Krishnamurthy et al. (2020) posit a weaker, “smoothed”
benchmark and recover adaptive discretization-like regret bounds without any Lipschitz assumptions.

All work discussed above assumes stochastic rewards. Adaptive discretization is extended to
expected rewards with bounded change over time (Slivkins, 2014), and to a version with ergodicity
and mixing assumptions (Azar et al., 2014). For Lipschitz bandits with adversarial rewards, the
uniform discretization approach easily extends (Kleinberg, 2004), and nothing else is known.®

6. We note that Maillard and Munos (2010) achieve O(+v/T') regret for the full-feedback version.
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While Lipschitz bandits only capture “local” similarity between arms, other structural models
such as convex, e.g., (Flaxman et al., 2005; Agarwal et al., 2010, 2011; Saha and Tewari, 2011;
Bubeck et al., 2015; Bubeck and Eldan, 2016; Bubeck et al., 2017) (resp., linear, e.g., (Dani et al.,
2008; Abbasi-Yadkori et al., 2011; Abernethy et al., 2008)) bandits allow for long-range inferences:
by observing some arms, an algorithm learns something about other arms that are far away. This is
why (’)(\/T ) regret rates are achievable in adversarial convex (resp., linear) bandits and to extensions
thereof (e.g., (Valko et al., 2013b, 2014)), via different techniques.

Organization. Our algorithm is presented in Section 2. Sections 3 and 4 state our results and outline
the regret analysis. The examples are spelled out in Appendix 5. While the results in Section 3
are stated in full generality, we present the algorithm and the analysis for the special case of d-
dimensional unit cube for ease of exposition. The extension to arbitrary metric spaces requires a
careful decomposition of the action space, but no new ideas otherwise; it is outlined in Appendix 6.
All omitted proofs can be found in the full version.

2. Our Algorithm: Adversarial Zooming

For ease of presentation, we develop the algorithm for the special case of d-dimensional unit cube,
(A, D) = (]0,1]¢, £s). Our algorithm partitions the action space into axis-parallel hypercubes. More
specifically, we consider a rooted directed tree, called the zooming tree, whose nodes correspond
to axis-parallel hypercubes in the action space. The root is .4, and each node « has 2¢ children that
correspond to its quadrants. For notation, I/ is the set of all tree nodes, C(u) is the set of all children
of node u, and L(u) = max, ye, D(x,y) is its diameter in the metric space; w.l.o.g. L(-) < 1.

On a high level, the algorithm operates as follows. We maintain a set A; C U of tree nodes in
each round ¢, called active nodes, which partition the action space. We start with a single active
node, the root. After each round ¢, we may choose some node(s) u to “zoom in” on according to
the zoom-in rule, in which case we de-activate u and activate its children. We denote this decision
with z¢(u) = 1{zoom in on u at round ¢}. In each round, we choose an active node U; according
to the selection rule. Then, we choose a representative arm z; = repr,(U;) € U to play in this
round. The latter choice can depend on ¢, but not on the algorithm’s observations; the choice could
be randomized, e.g., we could choose uniformly at random from Uy.

The main novelty of our algorithm is in the zoom-in rule. However, presenting it requires some
scaffolding: we need to present the rest of the algorithm first. The selection rule builds on EXP3
(Auer et al., 2002b), a standard algorithm for adversarial bandits. We focus on EXP3.P, a variant that
uses “optimistic” reward estimates, the inverse propensity score (IPS) plus a “confidence term” (see
Eq. (2.1)). This is because we need a similar “confidence term” from the zooming rule to “play nicely”
with the EXP3 machinery. If we never zoomed in and used n = 7; for multiplicative updates in each
round, then our algorithm would essentially coincide with EXP3.P. Specifically, we maintain weights
wy,y(u) for each active node v and round ¢, and update them multiplicatively, as per Eq. (2.2). In
each round ¢, we define a probability distribution p; on the active nodes, proportional to the weights
wy,y,. We sample from this distribution, mixing in some low-probability uniform exploration.

We are ready to present the pseudocode (Algorithm 1). The algorithm has parameters 3;, v¢, 1 €
(0, 1/2] for each round ¢; we fix them later in the analysis as a function of ¢ and | A;|. Their meaning is
that 3; drives the “confidence term”, -, is the probability of uniform exploration, and 7; parameterizes
the multiplicative update. To handle the changing parameters 7;, we use a trick from (Bubeck, 2010;
Bubeck and Cesa-Bianchi, 2012): conceptually, we maintain the weights wy , for all values of 7
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Algorithm 1: ADVERSARIALZOOMING

Parameters: [3;,v;,n; € (0,1/2] for each round t.

Variables: active nodes A; C U, weights wy,, : U — (0,00] Vroundt, n € (0,1/2]
Initialization: w,(-) = 1 and A; = {root} and f; =71 = = 1/2.
fort=1,...,Tdo

pe < { distribution p; over A, proportional to weights wy ,, }.
Add uniform exploration: distribution 7;(+) <= (1 — ;) pe(+) + v /| As| over A;.
Select a node Uy ~ m(+), and then its representative: x; = repr(U;). // selection rule
Observe the reward g;(z¢) € [0, 1].
for u € A; do
~ 1{u =10, 1+4logT
gt(u) = gt(xt) {U t} + ( a8 )Bt // IPS + "conf term" 2.1)
mi(w) i (u)
Wt o) = won(w) -exp (n Gilw)), Yn € (0.2 1/ e vpdzze  (22)
if zt(u) = 1 then // zoom—in rule
At+1 «— A UC(U) \ {u} // activate children of u, deactivate u
Wi41(v) = w1 (w)/|C(w)| forallv € C(u). // split the weight

simultaneously, and plug in = 7, only when we compute distribution p;. Explicitly maintaining all
these weights is cleaner and mathematically well-defined, so this is what our pseudocode does.

For the subsequent developments, we need to carefully account for the ancestors of the currently
active nodes. Suppose node w is active in round ¢, and we are interested in some earlier round s < ¢.
Exactly one ancestor of u in the zooming tree has been active then; we call it the active ancestor of u
and denote act,(u). If w itself was active in round s, we write actg(u) = u.

For computational efficiency, we do not explicitly perform the multiplicative update (2.2). Instead,
we recompute the weights w;, ,,, from scratch in each round ¢, using the following characterization:’

Lemma 1 Let Cproa(u) =[], |C(v)|, where v ranges over all ancestors of node w in the zooming
tree (not including w itself). Then for all nodes u € Ay, rounds t, and parameter values n € (0,1/2],

Wit () = Corbal) - exp (15 e 9 (acto(w)) ). (23)

Remarks. We make no restriction on how many nodes u can be “zoomed-in” in any given round.
However, our analysis implies that we cannot immediately zoom in on any “newborn children”.

When we zoom in on a given node, we split its weight equally among its children. Maintaining
the total weight allows the multiplicative weights analysis to go through, and the equal split allows
us to conveniently represent the weights in Lemma 1 (which is essential in the multiplicative weights
analysis, too). An undesirable consequence is that we effectively endow each child with a copy of
the parent’s data; we deal with it in the analysis via Eq. (4.4).

The meaning of the confidence term in Eq. (2.1) is as follows. Define the toral confidence term

conf;®*(u) :=1/B; + > orepy Br/mr(acts(u)). (2.4)

7. We also use Lemma 1 in several places in the analysis.
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Essentially, we upper-bound the cumulative gain from node u up to time ¢ using
confi®*(u) + > e IPSi(acty(u)), where IPSi(u) := gi(z) L{u=U}/m(u). (2.5

The +4log T term in Eq. (2.1) is needed to account for the ancestors later in the analysis; it would
be redundant if there were no zooming and the active node set were fixed throughout.

The Zoom-In Rule. Intuitively, we want to zoom in on a given node u when its per-round sampling
uncertainty gets smaller than its diameter L(u), in which case exploration at the level of w is no longer
productive. A natural way to express this is conff°*(u) < t - L(u), which we call the aggregate
zoom-in rule. However, it does not suffice: we also need an instantaneous version which asserts that
the current sampling probability is large enough. Making this precise is somewhat subtle. Essentially,
we lower-bound conf}°*(u) as a sum of “instantaneous confidence terms”

conf ™t (v) := B, 4 B, /7, (act (u)), T € [1], (2.6)

where 3, € (0, 1/2] are new parameters. We require each such term to be at most L(u). In fact, we
require a stronger upper bound el(w) — 1, which plugs in nicely into the multipliticative weights
argument, and implies an upper bound of L(w). Thus, the zoom-in rule is as follows:

zt(u) =1 { confimst(y) < eHW — 1 } -1 { conf{**(u) <t-L(u)} (2.7)
Parameters BT must be well-defined for all 7 € [0, T'] and satisfy the following, for any rounds ¢ < ¢':

{ B, decreasesin 7 } and { B, > /3 } and ftt, Brdr < /8%/ - é (2.8)

We cannot obtain the third condition of Eq. (2.8) with equality because parameters 3; and Et depend
on | A;|, and the latter is not related to ¢ with a closed form solution.

3. Our Results

Running Time. The per-round running time of the algorithm is o (Td/ (d+2) ), where d = CovDim.
Indeed, given Lemma 1, in each round ¢ of the algorithm we only need to compute the weight wy ,(-)
for all active nodes and one specific 7 = 7. This takes only O(1) time per node (since we can
maintain the total estimated reward ., gr(act-(u)) separately). So, the per-round running time
is O(|Ar
Regret Bounds. Our regret bounds are broken into three steps. First, we state the “raw” regret
bound in terms of the algorithm’s parameters, with explicit assumptions thereon. Second, we tune the
parameters and derive the “intermediate” regret bound of the form O(1/T |Ar|). Third, we derive
the “final” regret bound, upper-bounding | Ar| in terms of AdvZoomDim. For ease of presentation,
we use failure probability § = T~2; for any known § > 0, regret scales as log 1/s. The covering
dimension is denoted d, for some constant multiplier vy > 0 (we omit the log(+o) dependence). The
precise definition of an inclusively e-optimal arm in the definition of AdvZoomDim is that

AdvGap,(-) < 30e In(T) \/d In (Cqpy - T) for some end-time ¢t > £~ 2/9. 3.1

), which is at most O ( T%(@+2) ) as we prove in Lemma ??.
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Theorem 2 Assume the sequences {n;} and {3} are decreasing in t, and satisfy

ne < By <ve/|Adl and gy (1+ Be(1+4logT) ) < v/ Al (3.2)

With probability at least 1 — T2, ADVERSARIALZOOMING satisfies

1 In(Cap - |A
R(T) < O(InT) <\/dT+ 5t n ‘“;71T [A7]) + e B+ lnT> (3.3)
<0 (\/T |A7| ) -In*(T) \/dIn (T |Ar|)In(Cap |A7|) (tuning the parameters)
(3.4
< O(T%) . (dl/Q(WCdbl)l/(ZH) 1n5T), (3.5)

where d = CovDim and z = AdvZoomDim with multiplier v > 0. The parameters in (3.4) are:

Bi=Br=m=+2In(|A] -T3)In(Car - |Ae|) / 1/t |4 d-InT,

Y = (2+4logT) |Ae] - Br. (3.6)

Remark 3 We can relax the definition of AdvZoomDim so that (1.4) needs to hold only for scales ¢
smaller than some threshold 0. Then we obtain the regret bound in (3.5) plus O ( VT §—Covhin )

Special cases. First, we argue that for stochastic rewards AdvZoomDim coincides with the zooming
dimension ZoomDim from prior work, up to a small change in the multiplier y. (We specify the latter
by putting it in the subscript.) The key is to relate each arm’s stochastic gap to its adversarial gap.

Lemma 4 Consider an instance of Lipschitz bandits with stochastic rewards. For any v > 0, with
probability at least 1 — /T it holds that:

ZoomDim,.; < AdvZoomDim,.; < ZoomDim,, where f = (O(poly(d) In3 T))log(cdbl)_zoommmw.

This lemma holds for any representative set .Azepr. Then the base in factor f scales with In(|Azepr|).
Second, for problem instances with K < oo arms, we recover the standard (’3(@ ) regret
bound by observing that any problem instance has AdvZoomDim = 0 with multiplier v = K and
Arepr = [K]. ADVERSARIALZOOMING satisfies R(T) < O( VKT - \/Capy - In° T' ) w.h.p.
Third, we analyze the dependence on the Lipschitz constant. Fix a problem instance, and
multiply the metric by some L > 1. The Lipschitz condition (1.1) still holds, and the definition of
AdvZoomDim implies that regret scales as L?/(*t2)_ This is optimal in the worst case by prior work.?

Corollary 5 Fix a problem instance and a multiplier -y > 0, and let R, (T') denote the right-hand
side of (3.5). Consider a modified problem instance with metric D' = L - D, for some L > 1. Then
ADVERSARIALZOOMING satisfies R(T) < L#/*%2) . R_(T), with probability at least 1 — T2,

8. For a formal statement, consider the unit cube with A = [0,1]% and metric D(z,y) = L - ||z — y||p, for some
constants d € N and p > 1. Then the worst-case optimal regret rate is O ( LY@+ L pld+D)/(d+2) ) The proof for
d =1 can be found, e.g., in Ch. 4.1 of Slivkins (2019); the proof for d > 1 can be derived similarly.
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4. Regret Analysis (Outline)

We outline the key steps and the proof structure; the lengthy details are in the next section. For ease
of presentation, we focus on the d-dimensional unit cube (A, D) = ([0, 1]%, £oo).

We start with some formalities. First, we posit a representative arm repr,(u) € u for each
tree node v and each round ¢, so that z; = repr,(U;). W.l.o.g., all representative arms are chosen
before round 1. Thus, we can endow v with rewards g;(u) := g;(repr,(u)). Second, let 5 (u) €
arg maxXgecy 4 g 9¢ () be the best arm in u over the set S of rounds (ties broken arbitrarily). Let
xg = v§(A) be the best arm over S. Let uj be the active node at round ¢ which contains :c[*t].

The representative set Arepr C A (used in the definition of AdvZoomDim) consists of arms
repr(u), 7 (u) for all tree nodes of height at most 1 + log 7" and all rounds ¢. Only these arms are
invoked by the algorithm or the analysis. This enables us to transition to deterministic rewards that
satisfy a certain “per-realization” Lipschitz property (Eq. (??) in the appendix).

Part I: Properties of the Zoom-In Rule. This part depends on the zoom-in rule, but not on the
selection rule, i.e., it works no matter how distribution 7; is chosen. First, the zoom-in rule ensures
that all active nodes satisfy the following property, called the zooming invariant:

conf;°*(u) > (t — 1) - L(u) if node u is active in round ¢ 4.1)

It is proved by induction on ¢, using the fact that when a node does not get zoomed-in, this is
because either instantaneous or the aggregate zoom-in rule does not apply.

Let us characterize the lifespan of node w: the time interval [7o(u), 71 ()] during which the node
is active. We lower-bound the deactivation time, using the instantaneous zoom-in rule:

node u is zoomed-in = 7(u) > 1/L(u). 4.2)

It follows that only nodes of diameter L(-) > 1/27 can be activated. Next, we show that a node’s
deactivation time is (approx.) at least twice as the parent’s:

node u is zoomed-in = 71(u) > 27 (parent(u)) — 2. 4.3)

We use this to argue that a node’s own datapoints eventually drown out those inherited from the
parent when the node was activated. Specifically:

node w is active at time ¢t = 1 > orepy Llactr(u)) < 4log(T) - L(u). (4.4)

Next, we prove that the total probability mass spent on a zoomed-in node must be large:

node u is zoomed-in = M (u) ;= E?:(Zg(u) () > QL%(U) 4.5)

This statement is essential for bounding the number of active nodes in Part IV. To prove it, we
apply both the zooming invariant (4.1) and the (aggregate) zooming rule. Finally, the instantaneous
zoom-in rule implies that the zoomed-in node is chosen with large probability:

node u is zoomed-in at round t = 7 (w) /my(uf) > B2/, (4.6)

Part II: Multiplicative Weights. This part depends on the selection rule, but not on the zooming
rule: it works regardless of how z;(u) is defined. We analyze the following potential function:

1/n o .
Dy(n) = ( ITlf,l Y ued, W1y (uw) ) , where w1, (u) is given by (2.3), with ®¢(-) = 1.

10
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We upper- and the lower-bound the telescoping product

L ‘I)T d (I)t 77t . . < @t(m) >
Q:=1In < Dol ) (H B 1)> = Z Q:, where Q; = In 7‘1’:5—1(7715—1) )

te[T]

We lower-bound @ in terms of the “best node” w7, accounting for the ancestors via Cprod(-):

Q= Zte[T] gi(acty(uy)) — In (‘AT’ 'Cprod(u})) /nr. 4.7)

For the upper bound, we focus on the @; terms. We transition from potential ®;_;(7;) to ®¢(n;) in
two steps: first, the weights of all currently active nodes get updated, and then we zoom-in on the
appropriate nodes. The former is handled using standard techniques, and the latter relies on the fact
that the weights are preserved. We obtain:

Q < Xieimy 9t(@e) + Xy O T) (e + Bt Xyen, Ge(u) ) - (4.8)

Part I1I: from Estimated to Realized Rewards. We argue about realized rewards, with probability
(sat) at least 1 — /7. We bring in two more pieces of the overall puzzle: a Lipschitz property and a
concentration bound for IPS estimators. If node w is active at time ¢, then

> el gT(:U‘[*t] (W) = > ey Llactr(u)) — 4/td InT < > repy 9r(actr(u)). (4.9)

(We only use Lipschitzness through (4.9).) For any subsets A~ C A, 7 € [T it holds that:

>orelt), uear 9r(w) — IPS:(u)| < O(InT)/Be + 3 ey, uear Br/mr(w). (4.10)

The analysis of EXP3.P derives a special case of (4.10) with A7 = {u} in all rounds 7. The stronger
version relies on negative association between random variables g (u),u € AL.

Putting these two properties together, we relate estimates g;(u) with the actual gains g;(u). First,
we argue that we do not over-estimate by too much: fixing round ¢,

S et uen, O (3:(0) = o)) < OMT) (14 Sy B 142]) . @11

This holds for any subsets A. C A., 7 € [t] which only contain ancestors of the nodes in A}.
Second, we need a stronger version for a singleton node u, one with L(u) on the right-hand side.
If node w is zoomed-in in round ¢, then for each arm y € u we have:

> refy 9rlactr(u)) —g-(y) <O (L(u) tIn(T) 4+ vtd InT + (In T)/ﬂt> . (4.12)

Third, we argue that the estimates g;(u) form an approximate upper bound. We only need this
property for singleton nodes: for each node v which is active at round ¢, we have

> orepy 9r(actr(u)) — gr (m[*t] (u)) > -0 (\/ﬁ InT + (lnT)/6t> . (4.13)
To prove (4.13), we also use the zooming invariant (4.1) and the bound (4.4) on inherited diameters.

Using these lemmas in conjunction with the upper/lower bounds of () we can derive the “raw”
regret bound (3.3), and subsequently the “tuned” version (3.4).

11
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Part IV: the Final Regret Bound. We bound |Ar| to derive the final regret bound in Theorem 2.
First, use the probability mass bound (4.5) to bound |Ar| in the worst case. We use an “adversarial
activation” argument: given the rewards, what would an adversary do to activate as many nodes
as possible, if it were only constrained by (4.5)? The adversary would go through the nodes in the
order of decreasing diameter L(-), and activate them until the total probability mass exceeds 7". The
number of active nodes with diameter L(u) € [e, 2¢], denoted N>°*(¢), is bounded via CovDim.
Second, we bound AdvGap,(-). Plugging probabilities 7, into (4.6), bound the “estimated gap”,

~ * ~ Cprod(uf
> orery 9r(actr(uf)) — 3oy 9r(actr(u)) < In (%) /- (4.14)

for a node u which is zoomed-in at round ¢. To translate this to the actual AdvGap,(-), we bring in
the machinery from Part III and the worst-case bound on | Ap| derived above.

AdvGap, (repr(u)) < L(u) - O (m(:r)\/d I (Caor - T)) . (4.15)

We can now upper-bound N2°*(¢) via AdvZoomDim rather than CovDim. With this, we run another
“adversarial activation” argument to upper-bound |A7| in terms of AdvZoomDim.

5. AdvZoomDim Examples

We provide a flexible “template” for examples with small AdvZoomDim. We instantiate this template
for some concrete examples, which apply generically to adversarial Lipschitz bandits.

Theorem 6 Fix action space (A, D) and time horizon T. Let d be the covering dimension. °

Consider problem instances 11 , ... ,Iy with stochastic rewards, for some M. Suppose each
Z; has a constant zooming dimension z, with some fixed multiplier v > 0. Construct the combined
instance: an instance with adversarial rewards, where each round is assigned in advance (but
otherwise arbitrarily) to one of these stochastic instances.

Then AdvZoomDim < z with probability at least 1 — /T, with multiplier

log(Cdbl)fz
= ((’) <M1n(T)\/dln (Capr T) - 1n (T |Arepr|)> > .

The representative set Arepr C A (needed to specify AdvZoomDim) can be arbitrary.
This holds under the following assumptions on problem instances I;:

e There are disjoint subsets S1, ... , Sy C A such that each stochastic instance I;, i € [M]
assigns the same “baseline” mean reward b; to all arms in U;j;S;j, mean rewards at least b;
to all arms inside S;, and mean rewards at most b; to all arms in A\ SUP e (] S;.

e For each stochastic instance I;, i € [M], the difference between the largest mean reward and
b; (called the spread) is at least 1/3.

9. As before, the covering dimension is with some constant multiplier 7o > 0, and we suppress the logarithmic
dependence on .

12
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We emphasize the generality of this theorem. First, the assignment of rounds in the combined

instance to the stochastic instances Z; , ... ,Zjs can be completely arbitrary: e.g., the stochastic
instances can appear consecutively in “phases” of arbitrary duration, or they can be interleaved in
an arbitrary way. Second, the subsets S7, ... , Sy C A can be arbitrary. Third, each stochastic

instance Z;, i € [M] can behave arbitrarily on S;, as long as p} — b} > 1/3, where p and b} are,
resp., the largest and the smallest rewards on S;. The baseline reward can be any b; < b}, and outside
Uje[a]S; one can have any mean rewards that are smaller than b;.

Now we can take examples from stochastic Lipschitz bandits and convert them to (rather general)
examples for adversarial Lipschitz bandits. Rather than attempt a compehensive survey of examples
for the stochastic case, we focus on two concrete examples that we adapt from (Kleinberg et al.,
2019): concave rewards and “distance to the target”. For both examples, we posit action space
A = [0, 1] and distances D(x, y) = |z —y|. Note that the covering dimension is d = 1. The expected
reward of each arm x in a given stochastic instance i is denoted y;(x). In both examples, z;(-) will
have a single peak, denoted =} € A, and the baseline reward satisfies p;(z}) — b; > 1/3.

e Concave rewards: For each instance 4, u;(x) is a strongly concave function on S;, in the
sense that p/ (z) exists and p/(x) < e for some ¢ > 0. Then the zooming dimension is
z = 1/2 < d = 1, with appropriately chosen multiplier v > 0. '

e “Distance to target”: For each instance 4, y;(x) = min (0, u;(z}) — D(z, z}) ) for all arms
x € ;. Then the zooming dimension is in fact z = 0.

6. Extension to Arbitrary Metric Spaces

In this appendix, we sketch out an extension to arbitrary metric spaces. The main change is that the
zooming tree is replaced with a more detailed decomposition of the action space. Similar decomposi-
tions have been implicit in all prior work on adaptive discretization, starting from (Kleinberg et al.,
2019; Bubeck et al., 2011a). No substantial changes in the algorithm or analysis are needed.

Preliminaries. Fix subset S C A and ¢ > 0. The diameter of S'is sup,, ,cs D(7,y). An e-covering
of S is a collection of subsets S’ C A of diameter at most ¢ whose union covers S. The e-covering
number of S, denoted N:(S), is the smallest cardinality of an e-covering. Note that the covering
property in (1.4) can be restated as inf {d > 0: N(A:) <v-e79 Ve>0}.

A greedy e-covering of S is an e-covering constructed by the following “greedy” algorithm:
while there is a point z € S which is not yet covered, add the closed ball B(z,e/2) to the covering.
Thus, this e-covering consists of closed balls of radius £/2 whose centers are at distance more than
e/2.

A rooted directed acyclic graph (DAG) is a DAG with a single source node, called the root. For
each node u, the distance from the root is called the height of v and denoted h(u). The subset of
nodes reachable from u (including w itself) is called the sub-DAG of u. For an edge (u,v), we say
that u is a parent and v is a child relative to one another. The set of all children of w is denoted C(u).

Metric Space Decomposition. Our decomposition is a rooted DAG, called Zooming DAG, whose
nodes correspond to balls in the metric space.

10. A somewhat subtle point: an algorithm tailored to concave-rewards instances can achieve @(ﬁ) regret, e.g., via
uniform discretization (Kleinberg and Leighton, 2003). However, this algorithm would not be optimal in the worst
case: it would only achieve regret O(T>/*) whereas the worst-case optimal regret rate is O(T%/?).

13
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Definition 7 (zooming DAG) A zooming DAG is a rooted DAG of infinite height. Each node u
corresponds to a closed ball B(u) in the action space, with radius r(u) = 27" and center
x(u) € A. These objects are called, respectively, the action-ball, the action-radius, and the action-
center of u. The following properties are enforced:

(a) each node w is covered by the children: B(u) C Uycc(u)B(v).

(b) each node u overlaps with each child v: B(u) N B(v) # 0.

(c) for any two nodes of the same action-radius r, their action-centers are at distance > r.
The action-span of u is the union of all action-balls in the sub-DAG of u.

Several implications are worth spelling out:

o the nodes with a given action-radius r cover the action space (by property (a)), and there are at
most ;. (A) of them (by property (c)). Recall that NV, (A) < - r~¢, where d is the covering
dimension with multiplier ~.

e each node u has at most V,.(,,) 2(B(u)) < Capy children (by properties (b,c)), and its action-
span lies within distance 3 r(u) from its action-center (by property (b)).

A zooming DAG exists, and can be constructed as follows. The nodes with a given action-radius
r are constructed as a greedy (2r)-cover of the action space. The children of each node u are all
nodes of action-radius r(u)/2 whose action-balls overlap with B(u).

Our algorithm only needs nodes of height up to O(logT"). We assume that some “zooming
DAG”, denoted ZoomDAG, is fixed and known to the algorithm.

Note that a given node in ZoomDAG may have multiple parents. Our algorithm adaptively
constructs subsets of ZoomDAG that are directed trees. Hence a definition:

Definition 8 (zooming tree) A subgraph of ZoomDAG is called a zooming tree if it is a finite directed
tree rooted at the root of ZoomDAG. The ancestor path of node w is the path from the root to u.

For a d-dimensional unit cube, ZoomDAG can be defined as a zooming tree, as per Section 2.

Changes in the Algorithm. When zooming in on a given node w, it activates all children of u in
ZoomDAG that are not already active (whereas the version in Section 2 activates all children of ).
The representative arms repr,(u) are chosen from the action-ball of w.

Changes in the Analysis. We account for the fact that the action-span of each node u lies within
3r(u) of its action-center (previously it was just r(u)). This constant 3 is propagated throughout.
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