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Abstract
We study statistical problems, such as planted clique, its variants, and sparse principal component
analysis in the context of average-case communication complexity. Our motivation is to understand
the statistical-computational trade-offs in streaming, sketching, and query-based models. Commu-
nication complexity is the main tool for proving lower bounds in these models, yet many prior re-
sults do not hold in an average-case setting. We provide a general reduction method that preserves
the input distribution for problems involving a random graph or matrix with planted structure. Then,
we derive two-party and multi-party communication lower bounds for detecting or finding planted
cliques, bipartite cliques, and related problems. As a consequence, we obtain new bounds on the
query complexity in the edge-probe, vector-matrix-vector, matrix-vector, linear sketching, and F2-
sketching models. Many of these results are nearly tight, and we use our techniques to provide
simple proofs of some known lower bounds for the edge-probe model.
Keywords: Planted clique, sketching, query complexity, communication complexity

1. Introduction

The planted clique and sparse principal component analysis problems embody an enduring interest
in computational vs. statistical trade-offs. These problems have the intriguing property that it may
be easy to detect the presence of planted structure in super-polynomial time. However, it is a central
open problem to determine whether an efficient solution exists, even though we know that one is
possible information theoretically (Abbe, 2017; Bandeira et al., 2018; Berthet and Rigollet, 2013;
Jordan and Mitchell, 2015).

The planted clique problem involves distinguishing between two distributions on n-vertex graphs.
In the first, the graph is generated from the Erdos-Renyi model G(n, 1/2), where each edge is inde-
pendently present with 1/2 probability. The second distribution G(n, 1/2, k) has a k-clique planted
in a random subset of k vertices, and the remaining edges exist independently with 1/2 probability.
From an information theoretic point of view, detection is possible if k ≥ (2 + δ) log2 n for any con-
stant δ > 0 because the largest clique in a random graph has size (2 + o(1)) log2 n almost surely.
When the clique is very large, i.e., k �

√
n, many methods can distinguish the two distributions in

polynomial time (and find the planted clique). However, when k = o(
√
n), all known algorithms

require super-polynomial time (Alon et al., 1998; Arias-Castro and Verzelen, 2014; Dekel et al.,
2011; Feige and Krauthgamer, 2000; Frieze and Kannan, 2008; Kucera, 1995; Ma et al., 2015).
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A natural question is to understand the complexity of statistical problems in other models.
Query-based algorithms form the basis of sublinear time methods for massive graphs (Avrachenkov
et al., 2014; Leskovec and Faloutsos, 2006; Maiya and Berger-Wolf, 2010; Soundarajan et al., 2017).
In network monitoring applications, streaming and sketching algorithms are used for real-time data
analytics when the graph is too large to fit into memory or when the edges arrive over time (Ahmad
et al., 2017; Gupta et al., 2016). Typical network activity could be modeled as a distribution over
edge connections, and the presence of some planted subgraph structure could signify anomalous or
suspicious group behavior (Chandola et al., 2009; Huang and Kasiviswanathan, 2015). This moti-
vates understanding the query and streaming complexity of detection problems under average-case
distributions.

Rácz and Schiffer consider the edge-probe model, which measures the number of edge existence
queries to solve a problem (Rácz and Schiffer, 2020); this model is also known as the dense graph
model (Goldreich, 2017; Goldreich and Ron, 2009; Goldreich et al., 1998). Here, there are no
computational constraints, making it feasible to study clique detection when k = o(

√
n). Rácz and

Schiffer show that Θ̃(n2/k2) edge-probe queries are necessary and sufficient to detect a planted
k-clique, and they also prove similar bounds for finding the clique (Rácz and Schiffer, 2020). A
more general model involves linear sketches (Woodruff, 2014). Representing an n × n matrix A
as a vector vec(A) with n2 entries, a query returns u>vec(A) for a vector u with polynomially-
bounded entries. A restriction of the sketching model, the uTMv model, returns u>Mv for vectors
u,v, where M is an unknown matrix (Rashtchian et al., 2020). This specializes the Mv model,
which returns Mv (Sun et al., 2019). These models all generalize edge-probes.

Since there are advantages and disadvantages to these various types of queries, it is often worth-
while to understand the complexity of solving certain problems in each of the models. If an al-
gorithm can be implemented in a more restricted model, then it may be more useful in practice.
On the other hand, a lower bound for a more general model would imply the same bound for
any specialized model. To this end, it is common to prove lower bounds on the communication
complexity (Kushilevitz and Nisan, 2006; Rao and Yehudayoff, 2020). Then, by showing that a
query-efficient or space-efficient algorithm can solve a communication problem, lower bounds can
be derived for the query complexity.

1.1. Our Results

We provide a general method to encode a communication game as a statistical graph or matrix
problem while retaining the input distribution. In the next subsection, we provide technical details
about how to execute this approach. Here, we summarize our query complexity and communication
upper and lower bounds. Throughout, we often assume that k = o(

√
n) because otherwise there is

often an O(1) query upper bound (see Section 2.2).

• In Section 3, we provide an alternate proof of the Rácz-Schiffer bound showing that detecting
a planted k-clique requires Ω(n2/k2) edge-probe queries (Rácz and Schiffer, 2020). Then, we
investigate whether stronger models are able to succeed with fewer queries. Our most techni-
cal contribution shows that Ω̃(n2/k4) queries are necessary to detect a planted k-clique in the
linear sketching model (and hence also in the uTMv model); this appears in Section 5, and it
follows from an information complexity argument in Section 4. The linear sketching model
is more powerful, in general, than the edge-probe model, and we leave open the question of
whether the query complexity is Ω̃(n2/k4) or Õ(n2/k2) or somewhere in between.
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• We also consider detecting and finding a planted k × k bipartite clique (biclique). When we
have to output the planted biclique, we provide nearly tight upper and lower bounds in the Mv
model. When k = o(

√
n), it is easy to see that O(nk ) Mv queries suffice (Section 2.2), and

we prove that Ω( n
k logn) queries are necessary to find a planted k × k biclique (Section B).

We also obtain trade-offs in other query models, depending on the clique size, where we
generally consider a planted r × s biclique. We provide an Ω̃(n2/(r2s2)) lower bound for
general linear sketching. To complement this, we exhibit an algorithm in the uTMv model that
uses only Õ(n2/(r2s)) queries, assuming that r �

√
n log n. Our algorithm borrows ideas

from CountSketch (Charikar et al., 2002), as high-degree planted vertices can be considered
as `2 heavy hitters. Finally, we give a stronger Ω̃(n2/(rs)) lower bound in the edge-probe
model, which is tight up the logarithmic factors (Section A).

• We further uncover qualitatively different trade-offs by considering variants of the planted
clique detection problem. We investigate the sandwich semi-random version of planted clique
from (Feige and Krauthgamer, 2000). In this model, an adversary is allowed to remove
some number of edges that are not part of the planted clique. For this variant, we prove
that Θ̃(n2/k2) bits are required and sufficient for a related communication game (Section C).
The complexity in the linear sketching model is Θ̃(n2/k2), where the upper bound follows
from existing algorithms in the edge-probe model. This indicates that any improved algorithm
for the usual planted clique problem would require non-trivial algorithmic techniques.

• Then, we study a promise variant. If the players know that the planted clique occurs in
one of O(n2/k2) edge-disjoint subgraphs, then Θ̃(n2/k4) bits of communication are both
necessary and sufficient for detection (Section D). This shows that the k4 dependency is tight
in this promise variant. While our motivation is technical, related promise problems have
been studied for other average-case reductions (Brennan and Bresler, 2020) and for network
inference when prior information has been previously obtained (Soundarajan et al., 2017).

• Finally, we also provide lower bounds for the hidden hubs problem (Kannan and Vempala,
2017) (Section E) and for sparse PCA (Berthet and Rigollet, 2013) (Section F).

• Our edge-probe lower bounds extend to the F2 sketching model, where querying with a vec-
tor u returns the value uTvec(A) over F2, where again A is the adjacency matrix. While we
do not know a separation between these models for finding planted structure, the F2 sketch-
ing model is a formal generalization of the edge-probe model (using a standard basis vector
as the query). Our results also immediately provide upper and lower bounds for streaming
algorithms, but we focus on communication and query complexity for brevity.

1.2. Technical Overview

LOWER BOUNDS IN THE GENERAL LINEAR SKETCHING AND uTMv MODELS

We start by describing our lower bound techniques for the planted clique problem. The average case
notion of our problems makes reductions from standard problems in communication complexity,
such as multi-player set disjointness, non-trivial, as they do not give us instances from our desired
distribution. This is unlike existing worst-case clique communication lower bounds (Braverman
et al., 2018; Halldórsson et al., 2012), which reduce directly from set disjointness.

3



RASHTCHIAN WOODRUFF YE ZHU

We instead use a communication complexity model that allows the players to have access to
shared public randomness, as well as private randomness. Then, we consider a multi-player hypoth-
esis testing problem, introduced in (Braverman et al., 2016), where each player either receives an
independent sample from a distribution µ0 or a distribution µ1 and the players would like to decide
which case they are in. Using a strong data processing inequality, the information cost of such a pro-
tocol was shown to be Ω(1) if µ0 ≥ 1

cµ1 for a constant c > 0, even when information is measured
with respect to µ0 alone (Braverman et al., 2016). We combine this with the information complexity
framework of (Bar-Yossef et al., 2004) to prove a direct sum theorem for solving the OR of multiple
copies of this problem (here, the “OR” of many instances evaluates to true whenever at least one of
the component instances evaluates to true). We guarantee when the OR evaluates to 1, then exactly
one copy is from µ1. We note that Weinstein and Woodruff (Weinstein and Woodruff, 2015) prove a
distributional result for simultaneous multi-party communication, but this would only apply to non-
adaptive query algorithms, whereas our results apply even to adaptive query algorithms. Moreover,
the distributions considered in (Weinstein and Woodruff, 2015) are specific, and not the same as the
ones we need for our applications, which we now discuss.

The main remaining task is to choose distributions µ0 and µ1 so that the resulting multi-copy
distribution matches that of the planted clique problem. We first use a clique partitioning scheme of
(Conlon et al., 2014) which although related to results on proving worst-case clique communication
lower bounds (Braverman et al., 2018; Halldórsson et al., 2012), does not seem to have been used
before in this context. This gives us Ω(n2/k2) edge-disjoint cliques on k vertices each. We have(
k
2

)
players, and each is assigned one edge from each clique. We let µ0 be the uniform distribution,

so that if the OR of the Ω(n2/k2) instances above is 0, we have a graph from G(n, 1/2). Otherwise
the OR evaluates to 1 (i.e., the OR being true corresponds to having at least one planted k-clique).
We let µ1 be the constant distribution with value 1 (i.e., the value is always 1 in these positions),
and we randomly permute vertex labels, so that in this case we have exactly one planted clique on
k vertices and otherwise have a G(n, 1/2) instance. By our choice of µ0 and µ1, this gives us an
Ω(1) information cost lower bound per copy, an Ω(n2/k2) lower bound for the OR problem, and an
Ω̃(n2/k4) uTMv query lower bound by simulating each query across Θ(k2) players.

FROM THE uTMv TO THE Mv MODEL

While the above communication game can be applied to the Mv model, it would only give us an
Ω(n/k4) lower bound. We strengthen this to a nearly optimal Ω̃(n/k) lower bound for the related
planted bipartite clique (biclique) problem, and where the algorithm is promised to return a k × k
biclique when it exists (later, we more generally consider r×s bicliques, but for this discussion, we
let k = r = s). The issue is the algorithm retrieves too much information (Ω(n) bits) with each Mv
query. To get around this, we only consider inputs when there actually exists a randomly planted
biclique. Although the distinguishing problem is trivial now (we always have a biclique), since the
algorithm must return the vertices in the biclique, it still has a non-trivial task.

Next, we fix the set of k left vertices in the biclique. They are random and form a valid input
instance, but they are known to the algorithm. This might seem counterintuitive, as it only helps the
algorithm. Also, each Mv query only reveals O(k log n) bits of information, and thus we will only
pay an O(k log n) factor instead of an O(k2 log n) factor per query, in our query to communication
simulation. The next idea is to also fix k−1 of the vertices on the right in the biclique; they are again
random, and so they form a valid input instance, but they are known to the algorithm. Again, this
might seem counterintuitive, but it helps our analysis because now it gives us n− (k − 1) = Ω(n)
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possible remaining vertices in the right part, and any of them can be the potential last right vertex.
This gives us Ω(n) possible cliques rather than Ω(n/k) if we were to partition the right vertices
into vertex-disjoint bicliques, which we would need in order to have edge-disjoint bicliques, since
we have already fixed the vertices in the left of the biclique. We show the algorithm needs to reveal
Ω(n) bits of information to figure out the missing right vertex. Since each player now corresponds to
a row in this k×nmatrix, when we do the query to communication simulation we obtain an Ω̃(n/k)
overall lower bound, losing one factor of k for the number of players, and a factor of O(log n) to
transmit its dot product with the query vector. The full details are in Section B.

1.3. Related Work

Even though average-case reductions have been studied for many models, there seems to be a gap
in our understanding for communication complexity. In the context of graph problems, current
techniques usually construct a hard instance by identifying specific families of graphs that encode
a communication game. Unfortunately, this does not answer the question of whether the complex-
ity remains high when we are in a hypothesis testing setting; e.g., MAX-CLIQUE is NP-Hard, but
distinguishing between G(n, 1/2) or G(n, 1/2, k) for k ≥ (2 + δ) log2 n can be solved in quasi-
polynomial time by checking all cliques of size O(log n). In the realm of communication complex-
ity, known results for approximating the size of the maximum clique do not match the distributions
for the planted clique problem (Braverman et al., 2018; Halldórsson et al., 2012). At a high level,
we also use a combination of (nearly) covering the graph with subsets of vertices and then reduc-
ing to a version of set disjointness. However, we invoke a slightly different graph decomposition,
ensuring that the subsets intersect in at most one vertex, and moreover, the players can use public
randomness to match the input distribution of the average-case statistical problems.

The conjectured hardness of detecting/finding cliques has been used to derive statistical vs. com-
putational trade-offs for many average-case problems (Brennan and Bresler, 2019; Berthet and
Rigollet, 2013; Boix-Adserà et al., 2019; Kunisky et al., 2019). Thus, an open direction from our
work is whether analogous reductions can extend our communication complexity lower bounds to
other statistical problems (e.g., the stochastic block model) or property testing in the dense graph
model (Goldreich, 2017). Our study of the promise planted clique problem is inspired by conjec-
tures regarding the secret linkage of prior information of the planted clique (Brennan and Bresler,
2020). Recent work studies the query complexity of approximating the maximum clique and/or
finding the clique in the G(n, 1/2) model (Alweiss et al., 2021; Feige et al., 2020; Mardia et al.,
2020). Lower bounds for the planted clique problem have been shown for the statistical query
model (Feldman et al., 2017) and for sum-of-squares (Barak et al., 2019; Meka et al., 2015).

2. Preliminaries

Let [n] = {1, 2, . . . , n}. We use with high probability to mean 1 − O(1/nc) for a constant c > 0
and with constant probability to mean at least 9/10. The notation Õ, Ω̃, Θ̃ hides polylog(n) factors.

2.1. Problems, Games, and Query Models

For each problem, we define the null hypothesis H0 and the alternate hypothesis H1. The goal is to
determine which hypothesis a graph or matrix has been drawn from with constant probability.
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Table 1: Average-case query complexity for statistical problems (Section 2 has definitions). We
suppress polylog(n) factors and assume k = o(

√
n), k = Ω(log n) and r = Ω(

√
n log n).

F2 sketch & edge-probe Linear sketch & uTMv Mv Ref.

PC Θ̃(n2/k2) Ω̃(n2/k4) Õ(n2/k2) Ω̃(n/k4) O(n/k) Section 3 & 5

BPC Θ̃(n2/(rs)) Ω̃(n2/(r2s2)) Õ(n2/(r2s)) Ω̃(n/(r2s2)) Õ(n/min(r, s)) Section A

FINDBPC Θ̃(n2/k2) Ω̃(n2/k4) Õ(n2/k2) Θ̃(n/k) Section B

SRPC Θ̃(n2/k2) Θ̃(n2/k2) Ω̃(n/k2) O(n/k) Section C

PPC Θ̃(n2/k2) Θ̃(n2/k4) Ω̃(n/k4) Õ(min(n
k
, n2

k4
)) Section D

HH Ω̃(n2/k4) Õ(n2/k) Ω̃(n2/k4) Õ(n2/k) Ω̃(n/k4) Õ(n/k) Section E

SCDC Ω
(
k2

θ2

)
Ω̃
(

k4

t2θ4

)
Ω̃
(

k4

t3θ4

)
Section F

• Planted Clique (PC). The input is a graph with n vertices, described as an n× n adjacency
matrix A. For H0 each edge occurs with probability 1/2, i.e., A ∼ G(n, 1/2) in the Erdós-
Renyi model. For H1 there is a planted k-clique, i.e., a set R is randomly chosen over all
size k subsets of [n]; first A ∼ G(n, 1/2), then we set Aij to 1 for all i, j ∈ R with i 6= j.

• Bipartite Planted Clique (BPC). The input is a bipartite graph with n vertices on each side,
described as an n × n matrix A. For H0 each edge occurs with probability 1/2, i.e., each
entry of A is sampled from Bernoulli(1/2). ForH1 there is an r×s planted biclique, i.e.,
two sets R and S are randomly chosen over all size r subsets of [n] and all size s subsets of
[n] respectively, and then Aij is set to 1 for all i ∈ R and j ∈ S, and all the remaining entries
follow Bernoulli(1/2) independently.

• Semi-Random Planted Clique (SRPC). The semi-random model was introduced by Blum
and Spencer (Blum and Spencer, 1995). There are variants of the semi-random model, and
we specifically consider the sandwich model (Feige and Kilian, 1998). In this model, there is
an adversary which can remove arbitrary edges outside the planted clique. We describe our
hypothesis testing problem as follows:

H0: the adversary chooses any graph G∗ such that Gmin ⊆ G∗ ⊆ Gmax, where Gmax is a
random graph drawn from G(n, 1/2) and Gmin is the empty graph.

H1: the adversary chooses any graph G∗ such that Gmin ⊆ G∗ ⊆ Gmax, where Gmax is a
random graph drawn from G(n, 1/2, k) and Gmin only contains the planted clique.

• Promise Planted Clique (PPC). There is a fixed and known collection S of subsets of k
vertices such that every pair of subsets intersects in at most one vertex. For H0, the graph
is G(n, 1/2) as in the PC problem. For H1, the planted clique is chosen from S. Clearly,
|S| ≤ n2/k2, and if |S| = Θ(n2/k2), then k ≤ O(

√
n). The motivation for the PPC

problem is that we use a graph decomposition result to define S for some of our reductions
(see Section 3). Thus, the PPC problem captures the relative difficulty of the problem when
the set of possible cliques is known in advance. From an algorithmic point of view, this makes
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the problem trivial. On the other hand, from a query complexity point of view, our upper and
lower bounds for sketching algorithms nearly match for the PPC problem.

• Hidden Hubs (HH). In the hidden hubs model H(n, k, σ0, σ1), an n × n random matrix A
is generated as follows (Kannan and Vempala, 2017). First randomly choose a subset S of k
rows. Entries in rows outside S are generated from the Gaussian distribution p0 = N (0, σ2

0).
For each row in S, choose k entries to be generated from p1 = N (0, σ2

1), and the other n− k
entries from p0. The hypothesis testing problem (HH problem) is to distinguish H0 and H1,
where H0 is an n× n random matrix with all entries generated fromN (0, σ2

0), and H1 is the
model H(n, k, σ0, σ1).

• Sparse Component Detection Challenge (SCDC). We consider the sub-Gaussian version
of the Sparse Principal Component Analysis (SPCA) problem, using elements of a known
reduction from the PC problem (Berthet and Rigollet, 2013). The empirical variance of t
vectors X1, . . . ,Xt ∈ Rd in direction v is defined as v̂ar(v) = 1

t

∑t
i=1(v>Xi)

2. Let θ and
k be parameters, and let ζ ∈ (0, 1) be a fixed, small constant. We let D0 denote the set of
product distributions over t i.i.d. vectors X1, . . . ,Xt ∈ Rd such that for all unit vectors v we
have

Pr

[
|v̂ar(v)− 1| > 4

√
log(2/ζ)

d
+ 4

log(2/ζ)

d

]
≤ ζ. (2.1)

In other words, D0 := {P0 | Eq. (2.1) holds}, and D0 contains, e.g., isotropic distributions.

We letDk,θ1 denote the set of product distributions over t i.i.d. vectors X1, . . . ,Xt ∈ Rd such
that for all unit vectors v with at most k nonzero entries (‖v‖0 ≤ k), we have

Pr

[
(v̂ar(v)− (1 + θ)) < −2

√
θk log(2/ζ)

d
− 4

log(2/ζ)

d

]
≤ ζ. (2.2)

Similarly, Dk,θ1 := {P1 | Eq. (2.2) holds}. Then, for the SCDC problem, we define two
hypotheses to test; the inputs X1, . . . ,Xt are drawn from P such that

H0 : X1, . . . ,Xt ∼ P0 ∈ D0 vs. H1 : X1, . . . ,Xt ∼ P1 ∈ Dk,θ1 .

Our goal is to distinguish which family of distributions X1, . . . ,Xt is sampled from. The
motivation is that D0 contains N (0, Id) and D1 contains N (0, Id + θuuT) when u is a k-
sparse unit vector. Hence, this generalizes the spiked covariance model (Berthet et al., 2013;
Brennan and Bresler, 2019).

Communication Games. Throughout we use problem to refer to the detection problems above,
and we use game to refer to the analogous communication complexity problem. For PC, SRPC,
and BPC we define the games as follows for t ≥ 2 players. The players receive edge-disjoint
subgraphs of a graph G such that the union of the edges equals the whole graph. Equivalently,
the players receive n × n adjacency matrices corresponding to their subset of the edges, and they
must solve the corresponding problem on the graph defined by the sum of the adjacency matrices
(which is the adjacency matrix of the whole graph since the edge sets are disjoint). The players are
promised that G is either drawn from H0 or H1 as in the problems defined above. To succeed, the
players must determine which distribution G is drawn from with constant probability. For PPC,
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the only difference is that the players also all know the set S of possible locations for the planted
clique. For HH, the players instead receive n × n matrices with disjoint supports, where the sum
of these matrices is drawn from one of the two hypotheses. While many of these games have been
defined for the union of the graphs, we also make use of an XOR variant for the 2-player version
of the games. More precisely, Alice and Bob each receive adjacency matrices G1 and G2, which
are not necessarily disjoint in the support of their entries. Then, they must solve the corresponding
problem on the graph G1 ⊕ G2, where an edge is present in G1 ⊕ G2 if and only if it is present in
exactly one of G1 or G2. In other words, we use the XOR of the adjacency matrices. This variant
will be used for proving F2 sketching lower bounds (which will immediately imply the edge-probe
lower bounds).

Query Models. Matrices and vectors have polynomially bounded integer entries. Let vec(A)
denote the vectorization of an n× n matrix A, i.e., n2 entries listed in a fixed order.

• Edge-Probe Model. Querying position (i, j) returns Aij .

• uTMv Model. Querying with vectors u,v ∈ Rn returns uTAv over R.

• Mv Model. Querying with a vector v ∈ Rn returns Av over R.

• F2 Sketching Model. Querying with vector u ∈ Fn2

2 returns uTvec(A) over F2.

• Linear Sketching Model. Querying with vector u ∈ Rn2
returns uTvec(A) over R.

There is a relationship regarding lower bounds for the Mv model vs. lower bounds for the uTMv
or general linear sketching model. In particular, any query in the Mv can be simulated by n queries
in the linear sketching model (in fact, in the uTMv model by taking u to be the n standard basis
vectors one at a time). We often simply state lower bounds for the uTMv or linear sketching models,
but using this relationship, we obtain the entries in Table 1 for the Mv model (with the exception of
the FINDBPC problem, where we obtain a stronger lower bound in Section B).

Finding vs. Detecting. While we mostly focus on detection problems, we also consider the variant
where the algorithm should output the planted clique if there is one. We denote this by adding
Find before the problem name (e.g., for the FindBPC problem/game, the algorithm/protocol should
output the planted r × s biclique). For many of the models we study, it is straightforward to find
the clique by using only a factor of polylog(n) more queries than for detection. We describe the
upper bounds in Section 2.2, and we prove a communication lower bound for the FindBPC game
in Section B, which implies a lower bound for matrix-vector queries.

2.2. Algorithms for Detecting and Finding

We review algorithms in the query models listed above. We start with the PC problem, where
k ≥ 10 log n for simplicity. Previous work on the edge-probe model presents a simple sampling
algorithm using O((n/k)2 log2 n) queries: choose a subset B of 100(n/k) log n vertices uniformly
at random, query all pairs in B, and compute the largest clique in this induced subgraph (Rácz and
Schiffer, 2020). If there is no planted clique, then the largest induced clique has size at most 3 log n
with high probability; otherwise, there is an induced clique B′ of size at least 4 log n with high
probability. To actually find the clique, the next step is to query all neighbors of B′, which reveals
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the whole planted clique using a total of O((n/k)2 log2 n+ n log n) edge-probe queries. The same
general idea leads to algorithms for the SRPC, BPC, and PPC problems as well (for detecting and
finding).

We mention two improvements to the edge-probe algorithm in the uTMv and Mv models. For
both models, the query vectors may have bit-complexity O(log n) in each entry. In the uTMv
model, we can query all pairs inB by using onlyO((n/k)2 log n) queries, saving a log n factor (use
exponentially increasing entries to simulate O(log n) edge-probe queries with one uTMv query). In
the Mv model, we can query with an indicator vector to receive all neighbors of a vertex. Again by
using exponentially increasing entries, we can query O(log n) vertices at a time. Therefore, we can
query all pairs in B with O(n/k) queries; we can also find the planted k-clique with an additional
O(k) queries by looking at the shared neighborhood of B′.

We also note that a single query suffices when k ≥ c
√
n for a large enough constant c > 1 in

the uTMv, Mv, and general linear sketching models. We can use a single query to detect a planted
k-clique with constant probability by counting the edges (i.e., ones in the matrix). Indeed, the total
number of edges is at least 1

2

(
n
2

)
+
(
k
2

)
≥ n2/2 + c′n when there is a planted clique. Otherwise, it

is at most 1
2

(
n
2

)
+ c′′n with constant probability for some c′′ < c′, allowing us to distinguish the two

cases. In light of this, we focus on the case of k = o(
√
n) for the remainder of the paper.

2.3. Communication Complexity Preliminaries

We consider a multi-player communication model, where t ≥ 2 players communicate via a publicly
shared blackboard (i.e., all players see all messages). The total number of bits written on the black-
board is the measure of communication. This model generalizes both point-to-point and broadcast
models, and hence, our lower bounds hold for both the message passing and broadcast settings. We
let Π denote the collection of all messages written on the blackboard. Abusing notation slightly, we
use Π for both the protocol and the transcript Π ∈ {0, 1}∗ in bits. The communication cost is the
length of Π, which we denote as |Π|, in the worst case over the support of the input distribution.
In other words, we consider the randomized communication complexity (see, e.g., (Rao and Yehu-
dayoff, 2020)). At the termination of the communication protocol, one of the players must output
the answer using a function of Π with no constraints on the computation time (e.g., in the games
defined above, the player should output which of the two distributions the input has been sampled
from). We consider the success probability of randomized protocols (players have access to both
public, shared random bits and private random bits). Throughout, the exact success probability will
not be important, and we consider the randomized communication complexity of solving a problem
with constant success probability, e.g., 9/10.

We use a standard Ω(n) lower bound on the 2-player UNIQUE DISJOINTNESS game (Kalyana-
sundaram and Schintger, 1992; Razborov, 1992). Two players each have a bitstring x,y ∈ {0, 1}n.
They are promised that one of the following two cases holds: either (i) for all i ∈ [n] either xi = 0
or yi = 0 or both, or (ii) there is a unique i ∈ [n] such that xi = yi = 1 and for all i′ 6= i, either
xi = 0 or yi = 0 or both. The UNIQUE DISJOINTNESS game is to communicate and determine
which case they are in.

3. Warm-up: Lower Bound for PC in the Edge-Probe Model

We present a simple proof demonstrating the main ideas of our reduction method. We first explain
the graph decomposition, and then we use this to prove a communication lower bound for the XOR
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version of the PC game in Theorem 4. As a consequence, in Corollary 5, we provide an alternate
proof of the Rácz-Schiffer lower bound of Ω(n2/k2) edge-probe queries for the PC problem (Rácz
and Schiffer, 2020).

The key aspect of our communication lower bounds is using a graph decomposition into a set
of edge-disjoint cliques.1 By ensuring that the cliques are edge-disjoint, while covering most of the
graph, we can partition edges among the players while preserving the input distribution.

Lemma 1 (Lemma 6.6 in (Conlon et al., 2014)) Let k ≥ 2 and n be positive integers and let
f(n, k) denote the minimum number of cliques, each on at most k vertices, needed to clique partition
the complete graph Kn. If n > k, then f(n, k) = Θ

(
max

{
(n/k)2, n

})
.

Remark 2 (Number of uncovered edges) First, recall that we are interested in the case when
k = o(

√
n). In this regime, the above lemma can be strengthened to show that f(n, k) = (1 +

o(1)) n2

k(k−1) , which is essentially best possible (Conlon et al., 2014). In such a clique partition,
there are Ω(n2) edges belonging to cliques of size Ω(k). Indeed, assume there are m1 cliques
of size Ω(k) and m2 cliques of size o(k), and observe that m1 + m2 = Θ

(
(n/k)2

)
. Now if

there were only o(n2) edges belonging to cliques of size Ω(k), then the total number of edges
would be o(n2) + m2 · o(k2) ≤ o(n2) + Θ

(
(n/k)2

)
· o(k2) = o(n2), a contradiction. Thus,

m1 = Ω(n2)/Θ(k2) = Ω
(
n2/k2

)
.

Remark 3 (Size of cliques) The above lemma only guarantees cliques of size at most k. However,
by slightly changing constants, we can guarantee Θ(n2/k2) cliques of size exactly k. Indeed, by
a standard counting argument, a constant fraction of the cliques must have size at least αk for a
constant α ∈ (0, 1). Therefore, we apply lemma with k′ = k/α, and then find Θ(n2/k2) cliques of
size exactly k by restricting to the subcliques of the cliques of size k′ if necessary.

Theorem 4 Any protocol that solves the XOR version of the PC game with constant success prob-
ability must communicate at least Ω(n2/k2) bits.

Proof We reduce to the 2-player UNIQUE DISJOINTNESS game with input length ` = Θ(n2/k2).
Let Alice and Bob have inputs x,y ∈ {0, 1}`, respectively. We use x,y to build a random input
graph G as follows. First, randomly permute the vertex labels. Then, use Lemma 1 to obtain a
collection S of Θ(n2/k2) edge-disjoint cliques with k vertices; for each edge not covered by S,
choose each of them with probability 1/2 independently, call this graph G′, and give it to Alice
(see Remark 2 and Remark 3 for details about the number of uncovered edges and the clique size,
respectively). Index the subgraphs as S = {Z1, . . . , Z`}. We repeat the following process indepen-
dently for each i ∈ [`]. Alice and Bob will receive graphs Gi1 and Gi2 based on xi and yi, and these
graphs will be supported on the vertices of Zi. Color all edges of a k-clique Ki

k with four colors
uniformly at random using public randomness. Then,

• xi = 0 =⇒ add all edges in Ki
k with colors 1 or 3 to Gi1

• xi = 1 =⇒ add all edges in Ki
k with colors 1 or 2 to Gi1

• yi = 0 =⇒ add all edges in Ki
k with colors 1 or 4 to Gi2

1. More formally, a set of edge-disjoint cliques is a collection of subsets of vertices V1, . . . , V` such that for all i 6= j
the subsets Vi and Vj intersect in at most one vertex.
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• yi = 1 =⇒ add all edges in Ki
k with colors 3 or 4 to Gi2

Define G = G′ ∪
(⋃`

i=1G
i
1 ⊕Gi2

)
. We claim that if (xi, yi) 6= (1, 1) for all i ∈ [`], then G is

distributed according to H0. Each possible edge is included with probability 1/2 either because of
the random coloring or it is in G′. Indeed, for each of the three combinations (0, 0), (1, 0), (0, 1),
exactly two colors of edges end up in Gi1 ⊕ Gi2. Otherwise, if (xi, yi) = (1, 1) for some i, then all
four colors of edges appear inGi1⊕Gi2, and hence this is the planted clique. By randomly permuting
the vertices at the beginning (with public randomness), each k-clique is equally likely. A protocol
solving the XOR version of the PC game also solves UNIQUE DISJOINTNESS on ` bits and must
communicate Ω(`) = Ω(n2/k2) bits.

Let G1, G2 denote the adjacency matrices for Alice and Bob, respectively. Assume there is a
q query algorithm in the F2 sketching model that solves the PC problem with constant probability.
This can be implemented by having Alice compute her q sketches on G1 and then she sends these
q bits to Bob. Then, Bob can complete the execution of the algorithm G1 ⊕G2 locally, and hence,
solve the XOR version of the PC game. Therefore, q = Ω(n2/k2) by Theorem 4, and we get the
following.

Corollary 5 For the PC problem, Ω(n2/k2) queries in the F2 sketching model are required to
distinguish H0 and H1 with constant probability.

4. Parameter Estimation Game and Multi-player Communication

We next prove communication lower bounds that imply query lower bounds for the general linear
sketching model. While similar results have appeared before (e.g., (Bar-Yossef et al., 2004; Braver-
man et al., 2016; Weinstein and Woodruff, 2015)), we are unaware of any results that suffice for
the distributional lower bounds that we need for our reductions. The entropy of X is H(X) =
−
∑

x px log2 px. The mutual information is I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) =
I(Y ;X).

Definition 6 (Hellinger Distance) Consider two probability distributions f, g : Ω → R. The

square of the Hellinger distance between f and g is h2(f, g) := 1
2

∫
Ω

(√
f(x)−

√
g(x)

)2
dx.

We consider a version of the multi-party UNIQUE DISJOINTNESS game, where n players each
receive an m-dimensional binary vector, and they determine whether there is some coordinate such
that every player’s vector has a one in this coordinate. We also define an input distribution where
the vectors are either uniformly random, or there is a planted coordinate that is all ones.

Parameter Estimation (PE) game. Let B ∈ {0, 1} be a binary variable, and let V ∈ {0, 1}m be
a random binary vector (the distribution of V will depend on B). When B = 0, then V is the all
zeros vector. When B = 1, then there is exactly one entry of V equal to 1, and the entry is chosen
uniformly at random. We define two distributions: µ0 = Bernoulli(1/2) and Bernoulli(1).

Now suppose V = v, and the n players each obtain a vector X(i) ∈ {0, 1}m, where X(i)
j ∼ µvj .

They need to communicate with each other to determine the value of B with error probability at
most δ. We assume that m and n are comparable, i.e., m = O(nα) for some constant α > 0. To
set notation, let Z ⊂

(
X (1)

)m × (X (2)
)m × · · · × (X (n)

)m
be the set of inputs. The PE game

11
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corresponds to computing f : Z → {0, 1}, which outputs B on inputs X(1), . . . ,X(n), where
the inputs are drawn from the distribution described above (depending on B). For convenience, let
X = (X(1),X(2), . . . ,X(n)), and let Xj = (X

(1)
j , X

(2)
j , . . . , X

(n)
j ). Also, let Π ∈ {0, 1}∗ be a

randomized protocol, where Π(X) is the transcript when the players have X as inputs, and |Π(X)|
denotes its length in bits. We consider a function g : {0, 1}∗ → {0, 1}, such that when B = 0, then
g(Π(X)) = 0 with probability at least 1− δ, and when B = 1, then g(Π(X)) = 1 with probability
at least 1 − δ, where the randomness is from both the input X and the protocol Π, i.e., the players
have shared public and also private randomness. In other words, g is the estimator for the parameter
estimation problem. We provide a lower bound on the information and communication complexity
of solving the PE game, which will be the basis of several of our results.

Next, we recall a standard communication lower bound (see, e.g., (Rao and Yehudayoff, 2020)).

Proposition 7 For a protocol Π and distribution µ of inputs, maxX′∈supp(µ) |Π(X ′)| ≥ I(X; Π).

4.1. Direct Sum and Communication Lower Bound

For distributions µ0, µ1 over the same sample space, we write µ1 ≤ c · µ0 if the point-wise density
of µ0 is at most c times larger than µ1 for c > 0. For µ0, µ1 defined above, we have c = 2 and
that only a one-sided guarantee is possible (as µ1 has no mass on 0). We use the distributed strong
data processing inequality (Distributed SDPI). Let β(µ0, µ1) denote the SDPI constant, which is the
infimum over real β ≥ 0 such that I(B; Π) ≤ β · I(X; Π) where B → X → Π forms a Markov
chain. This inequality holds with β = 1, which is the data processing inequality. For our results, it
suffices to take β = 1, but for completeness, we state the stronger version of the following theorem.

Theorem 8 (Theorem 3.1 in (Braverman et al., 2016)) Suppose µ1 ≤ c · µ0 and β(µ0, µ1) = β.
Then, c′(c + 1)β · I(X; Π | B = 0) ≥ h2(Π|B=0,Π|B=1), where c′ > 0 is an absolute constant.
The same holds conditioned on B = 1 instead of B = 0.

The challenge is to lower bound the information, conditioning on the distribution when B = 0,
which is the utility of the above theorem. When the protocol is correct with constant probability, the
Hellinger distance is also a constant (via a standard connection with total variation distance), and
when β = Θ(1), then Theorem 8 provides an Ω(1) lower bound on the information. This suffices
for our purposes because we use a direct sum over many instances and only need an Ω(1) lower
bound on the information to achieve the communication lower bound. We can decompose the PE
game on m coordinates to a single coordinate, which follows from standard properties of mutual
information, such as subadditivity, since conditioned on B = 0, all X1, . . . ,Xm are independent
(see e.g. (Bar-Yossef et al., 2004; Braverman et al., 2016)).

Lemma 9 Fix the input distribution of X when B = 0. Then,

I(X; Π|B = 0) ≥
m∑
j=1

I(Xj ; Π|B = 0).

Proof By definition, I(X; Π|B = 0) = H(X|B = 0)−H(X|Π, B = 0). Observe that we have
H(X|B = 0) =

∑m
j=1H(Xj |B = 0) since given B = 0, all X1, . . . ,Xm are independent. Also,

by subadditivity, H(X|Π, B = 0) ≤
∑m

j=1H(Xj |Π, B = 0). Putting these together, we have that
I(X; Π|B = 0) ≥

∑m
j=1H(Xj |B = 0)−

∑m
j=1H(Xj |Π, B = 0) =

∑m
j=1 I(Xj ; Π|B = 0).
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Theorem 10 Assume that m = poly(n). The communication complexity of the n-player PE game
on m coordinates with error probability δ is Ω(m) assuming that δ ≤ 1/10.

Proof The single coordinate PE game is that for a specific j ∈ [m] and Vj = vj ∈ {0, 1}, each
of the n players receives an instance of the variable X(i)

j ∼ µvj for i ∈ [n]. Their task is to
communicate with each other to determine the value of Vj with error probability at most δ. Let Π
be a randomized protocol that solves the n-player PE game on m coordinates with error probability
δ. Our goal is to show that

I(Xj ; Π|B = 0) = Ω(1) for all j ∈ [m]. (4.1)

By Proposition 7 and Lemma 9, we lower bound the communication by

I(X; Π|B = 0) ≥
m∑
j=1

I(Xj ; Π|B = 0) = m · Ω(1) = Ω(m).

To show Eq. (4.1), we use Theorem 8. We consider the single coordinate PE game on coordi-
nate j. We construct a protocol Π′(Xj) to solve the single coordinate PE game. Our method is
to construct another random matrix X ′ as follows. Using public randomness, players choose a
uniformly random j′ ∈ [m], and let X ′j′ = Xj . For ` 6= j′, let X ′` be a random vector where
each entry is an independent Bernoulli(1/2) variable, sampled by each player independently
using private randomness. Since m = poly(n), the probability that any X ′` is an all ones vector
is exponentially small. Then, let Π′(Xj) = Π(X ′). By this construction, when B = Vj , we
have that Π has the same distribution as Π′(Xj). Since Π could determine the value of B with
error probability δ, Π′(Xj) can also determine the value of Vj with error δ. Thus, by Theorem 8,
I(Xj ; Π|B = 0) = I(Xj ; Π′(Xj)|Vj = 0) = Ω(1) for all j ∈ [m], where we use β = 1 and
c = 2 and that the squared Hellinger distance is Θ(1) since the success probability is a constant.

5. Planted Clique Lower Bound for Linear Sketching

Theorem 11 For k = nγ where 0 < γ < 1
2 , any protocol with Θ(k2) players that solves the PC

game with constant success probability must communicate Ω
(
n2/k2

)
bits.

Proof We reduce from the PE game (Section 4) to the PC game to get hardness of PC from
hardness of PE. Given a complete graph with n vertices, by Lemma 1, we can partition most of
the edges (or equivalently, vertex pairs) by Θ

(
n2/k2

)
cliques of size k. We consider the PE game

with
(
k
2

)
players, each having inputs with Θ

(
n2/k2

)
coordinates (i.e., each player is responsible

for one edge in each potential clique). Each Vj corresponds to a clique of size k, and the indicator
vector for its Θ(k2) edges corresponds to the binary vector Xj (using an arbitrary indexing of the
edges). The uncovered edges can be sampled with a public coin to appear with probability 1/2, and
they can be given to any player without loss of generality (see Remark 2 and Remark 3 for details
about the number of uncovered edges and the clique size, respectively). Using public randomness,
the players randomly relabel all vertices, so that the location of the planted clique is random).
By this construction, we have the PE to PC translation: B = 0 corresponds to G(n, 1/2) and

13



RASHTCHIAN WOODRUFF YE ZHU

B = 1 corresponds to G(n, 1/2, k). Hence, the Θ(k2) players can solve the PE game by detecting
the planted clique. The randomized communication complexity of the PC game is Ω

(
n2/k2

)
.

The communication lower bound of the PC game with Θ(k2) players is Ω(n2/k2). A single
query in the general linear sketching model can be simulated with O(k2 log n) bits of communica-
tion since there are Θ(k2) players. Thus, any algorithm that solves the PC problem with constant
success probability must use Ω̃(n2/k4) queries, and we get the following.

Corollary 12 Let k = nγ where 0 < γ < 1/2. Then, Ω̃(n2/k4) general linear sketching queries
are necessary to solve the PC problem with constant success probability.

6. Conclusion

Motivated by understanding statistical-computational trade-offs, we addressed a variety of related
average-case communication complexity problems. To this end, we developed a generic reduction
technique that preserves the distribution of graph problems that can be defined in terms of planted
subgraphs. Specifically, we proved new lower bounds for the planted clique problem and three vari-
ants: the bipartite version, the semi-random version, and the promise version. For the F2 sketching
model (and edge-probe model as a special case), we obtained tight bounds on the query complexity.
For the more general linear sketching model, we also proved new lower bounds for these prob-
lems, and we demonstrated a lower bound for the hidden hubs problem. Finally, we provided lower
bounds for a variant of the SPCA problem.

Looking forward, our techniques may be useful for developing a more general theory of average-
case communication complexity. Indeed, the next step could be to explore the natural analogues of
other statistical problems that have been reduced to planted clique (Berthet and Rigollet, 2013;
Brennan and Bresler, 2019, 2020; Kunisky et al., 2019). A more concrete direction is to close the
gaps in Table 1. For example, in the linear sketching model we establish that the query complexity
of the PC problem is between Ω̃(n2/k4) and Õ(n2/k2). Similarly, for the planted r × s biclique
problem (BPC), the complexity is between Ω̃(n2/(rs)2) and Õ(n2/(r2s)) when r �

√
n log n.

Another direction could be to determine a non-linear query model where an upper bound of Θ(n/k2)
can be derived when k = o(

√
n) and when the query only reveals O(log n) bits (compared to the

Mv model, which reveals O(n log n) bits).

Acknowledgments

D. Woodruff would like to thank NSF grant No. CCF-181584, Office of Naval Research (ONR)
grant N00014-18-1-256, and a Simons Investigator Award.

14



AVERAGE-CASE COMMUNICATION COMPLEXITY OF STATISTICAL PROBLEMS

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446–6531, 2017.

Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134 – 147, 2017.

Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a random
graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.

Ryan Alweiss, Chady Ben Hamida, Xiaoyu He, and Alexander Moreira. On the subgraph query
problem. Combinatorics, Probability and Computing, 30(1):1–16, 2021.

Ery Arias-Castro and Nicolas Verzelen. Community detection in dense random networks. Annals
of Statistics, 42(3):940–969, 06 2014.

K. Avrachenkov, N. Litvak, L. Ostroumova Prokhorenkova, and E. Suyargulova. Quick detection
of high-degree entities in large directed networks. In Proceedings of the 2014 IEEE International
Conference on Data Mining, ICDM ‘14, USA, 2014. IEEE Computer Society.

Afonso S Bandeira, Amelia Perry, and Alexander S Wein. Notes on computational-to-statistical
gaps: predictions using statistical physics. Portugaliae Mathematica, 75(2):159–187, 2018.

Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics ap-
proach to data stream and communication complexity. Journal of Computer and System Sciences,
68(4):702–732, 2004.

Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019.

Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal
component detection. In Conference on Learning Theory, pages 1046–1066, 2013.

Quentin Berthet, Philippe Rigollet, et al. Optimal detection of sparse principal components in high
dimension. The Annals of Statistics, 41(4):1780–1815, 2013.

A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs. Journal of Algo-
rithms, 19(2):204 – 234, 1995. ISSN 0196-6774. doi: https://doi.org/10.1006/jagm.1995.1034.
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A. Bipartite Planted Clique Detection

For the BPC problem, we first state the bipartite version of the graph decomposition lemma.

Lemma 13 Given n, r, and s, we can use dn/re · dn/se edge-disjoint bicliques to cover an n× n
complete bipartite graph. Moreover, bn/rc · bn/sc of them are of size r × s.

Proof Let a = dn/re and b = dn/se. We can partition the vertices on the left side into a sets
U1, . . . , Ua so that |U1| = · · · = |Ua−1| = r and |Ua| = n − (a − 1)r. Also we can partition
the vertices on the right side into b sets V1, . . . , Vb so that |V1| = · · · = |Vb−1| = s and |Vb| =
n− (b−1)s. The a · b bicliques formed by Ui and Vj for all i, j can cover the whole bipartite graph.

Now we can prove a lower bound using the same strategy as Theorem 11.

Theorem 14 For the BPC problem, suppose rs ≤ n. Then Ω̃(n2/(rs)2) general linear sketching
queries are required to distinguish H0 and H1 with constant probability.
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Proof We use Lemma 13 to randomly partition a complete bipartite graph. Then we consider the
PE game for rs players, where each player receives bn/rc · bn/sc = Θ(n2/(rs)) coordinates.
We reindex the edges (regardless if they exist or not) in each biclique from 1 to rs. The i-th edge
is present in the j-th biclique if and only if the value player i holds at coordinate j is one. For
the negligible amount of edges that are not covered by these bicliques (e.g., the subgraphs with
size other than r × s), we let the graph contain each of them with probability 1/2 using public
randomness. The communication lower bound of the PE game with Θ(rs) players on Θ(n2/(rs))
coordinates is Ω(n2/(rs)), which implies the same lower bound for the BPC game. A single query
in the general linear sketching model can be simulated withO(rs log n) bits of communication since
there are Θ(rs) players. Thus, any algorithm that solves the BPC problem with constant success
probability must use Ω̃(n2/(r2s2)) queries.

We also design an algorithm when r is larger than C
√
n log n (w.l.o.g. we suppose r > s) for

some constant C, to further close the gap between the upper bound and the lower bound.

Theorem 15 For the BPC problem, suppose r ≥ C
√
n log n for C > 16. Then there exists an al-

gorithm which can distinguish H0 and H1 with high probability, using Õ(n2/(r2s)) uTMv queries.

Proof The algorithm is as follows. We first randomly sample Õ(n/s) columns. If there is a planted
biclique, then with high probability at least one column that belongs to the planted column will be
sampled. We then partition the columns into groups with size r2/(16n log n) each, and compute∑

i∈S xi for each group S where xi is the sum of column i. The algorithm returns 1 (i.e., there is a
planted biclique) if there is an S such that

∑
i∈S xi ≥ n/2 · |S|+ r/4. And it returns 0 if there is no

such S. Since the sum of a group can be computed using one uTMv query, our algorithm will use
Õ(n2/(r2s)) uTMv queries in total.

We now prove that our algorithm succeeds with high probability. We consider a set S of
r2/(16n log n) columns. If S does not contain any columns in the planted biclique, by Hoeffding’s
inequality, we have Pr

(∑
i∈S xi − n/2 · |S| ≥ r/4

)
≤ exp(−2r2/42

n·|S| ) = e−2 logn = 1/n2, where
we consider

∑
i∈S xi as the sum of n|S| random variables with |S| = r2/(16n log n). Therefore,∑

i∈S xi is less than n/2 · |S|+ r/4 with probability at least 1− 1/n2.
Now consider the case that S contains at least one planted column. Let U denote the planted

biclique. Note that the expected value of xi is n/2 + r/2 for i ∈ U . Thus, applying Hoeffding’s
inequality again we have

Pr

(∣∣∣∣∣∑
i∈S

xi − n/2 · |S| − r/2 · |S ∩ U |

∣∣∣∣∣ ≤ −r/4
)
≤ exp

(
− 2r2/42

n · |S| − r · |S ∩ U |

)
≤ 1/n2.

Thus,
∑

i∈S xi will be greater than n/2 · |S|+r/2 · |S∩U |−r/4 ≥ n/2 · |S|+r/4 with probability
at least 1− 1/n2. A union bound implies that if there is not a planted clique, with high probability
the sum of each group will be smaller than n/2 · |S| + r/4 simultaneously. Otherwise with high
probability we can find a group whose sum is larger than n/2 · |S| + r/4. Thus our algorithm can
output the correct answer with high probability.

Considering lower bounds on the the query complexity in the F2 sketching model (and hence
the edge probe model), we obtain a better lower bound for the XOR version of the BPC game.
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Theorem 16 Any protocol solving the XOR version of the BPC game with constant success proba-
bility must communicate Ω(n2/(rs)) bits, and hence, Ω(n2/(rs)) queries are required to solve the
BPC problem in the F2 sketching model.

Proof We again use Lemma 13 to randomly partition a complete bipartite graph. Now we consider
the two-player UNIQUE DISJOINTNESS game with input length bn/rc · bn/sc. For each edge in
an r × s biclique we uniformly randomly assign a color among 4 colors. Then we consider the
bitstrings Alice and Bob hold, and construct graphs G1 and G2 as follows:

• If Alice has a 0, add edges with color 1 or 3 in the corresponding biclique to G1.

• If Alice has a 1, add edges with color 1 or 2 in the corresponding biclique to G1.

• If Bob has a 0, add edges with color 1 or 4 in the corresponding biclique to G2.

• If Bob has a 1, add edges with color 3 or 4 in the corresponding biclique to G2.

Finally, we construct graph G = G1 ⊕ G2, namely, an edge occurs in G if and only if it occurs
in exactly one of G1 and G2. It can be verified that if Alice and Bob both have a 1 on the same
position, G will contain the corresponding biclique. Otherwise G will randomly contain each edge
with probability 1/2. Therefore, we finish the reduction and obtain an Ω(n2/rs) lower bound.

B. Lower Bound for Finding a Planted Biclique

We consider the FindBPC game, where there may be a planted r × s biclique in an n× n bipartite
graph, and the goal is to output all vertices of the biclique if it exists. Considering the case when
r = s = k, the algorithm in Section 2.2 uses Õ(n/k) queries to solve the FindBPC problem in the
Mv model. We provide a nearly-matching lower bound, showing that Ω̃(n/k) queries are necessary.
In fact, we can use a similar strategy to obtain both a communication lower bound for the FindBPC
game and a query complexity lower bound for the FindBPC problem in the Mv model. We combine
both results in the following theorem.

Theorem 17 Let r and s be parameters that satisfy 3 log n ≤ r ≤ s ≤ n/2.

• Any r-player protocol that solves the FindBPC game with constant success probability must
communicate Ω (n) bits.

• Any algorithm that solves the FindBPC problem with constant success probability must use
Ω (n/(r log n)) queries in the Mv model.

Proof For the first part of the theorem, we reduce the FindBPC game to a “promise” variant of the
PE game defined in Section 4. We refer to this variant as FindPE, where the parameter V is always
set to one, but the players must output the index of the coordinate that is all ones (which is promised
to exist when V = 1). For consistency with the FindBPC formulation, we let r denote the number
of players and n denote the length of the vectors given to each player. We assume that r ≥ 3 log n
so that with high probability the only all ones coordinate is the planted coordinate.

First, note that the communication lower bound for the original PE game implies a lower bound
for FindPE. To see this, we show how a FindPE protocol can solve the PE game with a negligible
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increase in communication. Given a PE instance, the players run the FindPE algorithm (even in
the case of V = 0, as long as the protocol aborts if it uses more communication than it would on
a V = 1 instance). If it outputs the index of a column, the players can sample O(1) bits from this
column to determine if it is all ones or random. If the FindPE algorithm outputs anything else,
then we know that V = 0. This requires only O(1) extra bits to succeed with constant probability,
implying FindPE requires Ω(n) bits of communication.

Now we explain the connection to FindBPC. We begin by constructing a random n×n matrix.
We choose n− r rows uniformly at random, and we independently sample the entries of these rows
from Bernoulli(1/2). For the remaining r rows, we assign one row to each of the r players.
Among the n entries of the rows, we choose s − 1 at random, and set all entries to be one in each
of these chosen rows (e.g., we plant s − 1 all ones columns in the r × n submatrix). Overall, we
have defined the whole matrix except for n − s + 1 entries in each of the r rows. By using public
randomness, we can assume that the n2 − r(n− s+ 1) entries are known to all players.

We embed an instance of the r-player FindPE game in the unset entries, where each player has
an input vector of size n − s + 1. Since FindPE is a promise variant, we are guaranteed that one
of the coordinates is one in all r vectors. In particular, the full n × n matrix corresponds to the
adjacency matrix of a bipartite graph with an r× s planted biclique (e.g., r× s all ones submatrix).
Using this construction, the players can then execute a protocol for FindBPC. By doing so, they
reveal the location of the all ones coordinate from the FindPE instance. Therefore, since s ≤ n/2,
we have that n − s + 1 = Ω(n), and the players must communicate Ω(n) bits, which provides the
desired lower bound for solving the FindBPC game.

Moving on to the second part of the theorem, we can also use the same construction to prove
a lower bound on the query complexity in the Mv model. The r players build the n × n matrix in
the same way as before, and the connection to the FindPE game is also the same. The difference
is that they will now use a protocol for FindBPC that we derive from a query algorithm in the Mv
model. Recall that the inputs of the r players correspond to an r × n submatrix (and the rest of
the matrix is known to all the players). Therefore, each query in the Mv model can be simulated
by communicating O(r log n) bits because the players simply need to evaluate the matrix-vector
product on the r×n submatrix (each player handles one row). If the query algorithm uses q queries
to solve the FindBPC problem, then this gives rise to a protocol for this construction that solves
the FindBPC game (and hence the FindPE game) by communicating q · O(r log n) bits. Thus,
q = Ω(n/(r log n)) queries are needed to solve the FindBPC problem in the Mv model.

C. Semi-Random Planted Clique

For the SRPC problem, since the adversary only removes edges outside the planted clique, we
can use the existing edge-probe upper bound (Theorem 1, (Rácz and Schiffer, 2020)) to obtain the
following: suppose k ≥ (2 + ε) log n for some constant ε > 0, then there exists an algorithm which
can distinguish H0 and H1 using Õ(n2/k2) edge-probe queries (see Section 2.2; the algorithm is
the same as the standard planted clique problem). We also provide a nearly matching lower bound
for the corresponding communication game. The key observation is that we can reduce to the 2-
player UNIQUE DISJOINTNESS game (instead of k2 players) because we now have more flexibility
to remove edges that are not in the planted clique.
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Theorem 18 Let k = nγ for any γ ∈ (0, 1/2). Any 2-player protocol that solves the SRPC game
with constant success probability needs to communicate Ω(n2/k2) bits. Hence, Ω(n2/(k2 log n))
queries are required in the general linear sketching model to solve the SRPC problem.

Proof By Lemma 1, we can partition the complete graph Kn into Θ(n2/k2) edge-disjoint cliques
each with size Θ(k). Then we randomly color each edge in these cliques with red or blue with
equal probability. Now we consider the 2-player UNIQUE DISJOINTNESS game with input strings
of length Θ(n2/k2). Construct a graph G as follows: for each bit, let G contain the red edges in
the clique if Alice has a 1, and let G contain the blue edges in the clique if Bob has a 1. For those
edges outside the cliques, each of them occurs with probability 1/2. If there is at most a single 1 in
every position, thenG can be viewed as an instance underH0. If there is a unique position such that
both Alice and Bob have a 1, then G can be viewed as an instance under H1. Thus we reduce the
2-player set UNIQUE DISJOINTNESS game (Section 2.3) to our semi-random planted clique, and
therefore we get an Ω(n2/k2) lower bound for the SRPC game. For the query lower bound, we can
simulate a single linear sketch query with O(log n) bits of communication, which implies that any
algorithm succeeding with constant success probability must use Ω(n2/(k2 log n)) queries.

D. Promise Planted Clique

Recall that the PPC problem is a promise variant of the planted clique problem. Here, there is a set
S of Θ(n2/k2) possible subsets of vertices that may contain the clique. This information is known
beforehand, and the goal is determine whether the graph is random or a k-clique has been planted
in one of the subgraphs in S. We provide nearly matching upper and lower bounds.

Theorem 19 If |S| = Θ(n2/k2) for the PPC problem, then Θ̃(n2/k4) queries are sufficient and
necessary for constant success probability in the general linear sketching and uTMv models.

Proof For the lower bound, observe that the proof of Theorem 11 already uses a set S of Θ(n2/k2)
possible subsets of vertices that may contain the clique (via the graph decomposition result Lemma 1
and Remark 2). Hence, we can prove a lower bound using the Θ(k2)-player version of the PE game
as before, which requires Ω(n2/k2) bits of communication. We can simulate each linear sketching
or uTMv query withO(k2 log n) bits since there are Θ(k2) players. Thus, Ω(n2/(k4 log n)) queries
are necessary.

For the upper bound, we sketch the idea of a randomized algorithm using the knowledge of S.
First, randomly choose a subset S′ of k2

81 logn subgraphs uniformly from S. The subgraphs in S′

contain a total of m = k2

81 logn ·
(
k
2

)
= Θ(k4/ log n) edges. We let ai be 1 if the i-th edge exists and

be 0 if it does not exist. Then, if S′ does not contain the planted clique, by Hoeffding’s inequality,
we have

Pr

(
m∑
i=1

ai −m/2 ≥ k2/9

)
≤ exp(− k4

81m
) ≤ 1/n2.

If S′ contains the planted clique, we have

Pr

(
m∑
i=1

ai −
(
k

2

)
− (m−

(
k

2

)
)/2 ≤ −k2/9

)
≤ exp

(
− k4

81(m−
(
k
2

)
)

)
≤ 1/n2.
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Note that
(
k
2

)
+ (m −

(
k
2

)
)/2 − k2/9 > m/2 + k2/9. As a consequence, we can identify whether

there is a planted clique in S′ by counting the edges in S′ using one uTMv query. Repeating this
process Θ(n2/k2)/Θ(k2/ log n) = Θ̃(n2/k4) times, we have that a union bound ensures that one
of the subsets S′ ⊆ S contains the planted clique with high probability if there is one in the graph.

E. Hidden Hubs

Our techniques give an Ω(n2/k2) communication lower bound for a corresponding k2-player game,
which implies a lower bound of Ω̃(n2/k4) general linear sketching queries for the HH problem (Kan-
nan and Vempala, 2017).

Theorem 20 Suppose σ1 ≤ σ0 ≤ cσ1 for some constant c > 0. Any algorithm that solves the HH
game with constant success probability requires Ω̃(n2/k4) queries in the general linear sketching
and uTMv models.

Proof We sketch the slight modification of the proof of Theorem 11 for the HH problem (which
in turn needs a slight modification of the proof of Theorem 10). First, we let w = bn/kc, and we
randomly choose w disjoint subsets R1, . . . , Rw of k rows each (discard the remaining rows if k
does not divide n). Then, for row r in set Ri, we again randomly choose w disjoint sets of k entries
Tr1, . . . , Trw and let Uij =

⋃
r∈Ri Trj . In particular, we have that |Uij | = k2.

Now we consider a k2-player communication game that is a modified “Gaussian version” of the
PE game from Section 4, where the players have inputs of size w2 each. The modification is that
instead of binary variables, we consider the distributions µ′0 = N (0, σ2

0) and µ′1 = N (0, σ2
1), where

σ0 and σ1 are the parameters of the HH problem. In this way, we construct matrix A so that the
entries in Uij for i, j ∈ [k] are the values that the k2 players hold. For the entries not in any Uij we
generate them according to µ′0. Thus we reduce to the HH game from this k2-player communication
game. The key step of the proof of Theorem 10 provides a lower bound of Ω(1) for the information
complexity for each coordinate. We can prove the same bound, again by Theorem 8. We continue
to use β = 1, e.g., the standard data processing inequality.

The coordinates in the modified game are drawn from the distributions µ′0 and µ′1. Then, we
let f0(x) = 1√

2πσ0
exp(− x2

2σ2
0
) and f1(x) = 1√

2πσ1
exp(− x2

2σ2
1
) be the probability density function

of µ′0 and µ′1, respectively. Thus f1(x)
f0(x) = σ0

σ1
· exp(−x2

2 ( 1
σ2
1
− 1

σ2
0
)). Note that σ0

σ1
≤ c, and the

exponential term is less than 1 since σ1 ≤ σ0, and so µ′1 ≤ cµ′0. Thus, the direct sum argument
holds (Lemma 9), and we also have an Ω(1) lower bound on the information complexity for each
coordinate. Hence, the overall proof strategy implies a lower bound of Ω(w2) = Ω(n2/k2) for the
k2-player game.

For the query lower bound, we note that each general linear sketching or uTMv query can be
simulated with O(k2 log n) bits of communication as there are k2 players. Therefore, this shows
that Ω̃(n2/k4) queries are necessary to solve the HH problem.

The algorithm from (Kannan and Vempala, 2017) can be simulated in the query models that we
consider. The main idea is to randomly sample Θ̃(n/k) entries in each row. Then, using these, it is
known how to distinguish the two hypotheses from the HH problem as long as σ2

1 > 2σ2
0 . Hence,
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in the edge-probe model, we can sample the entries with Θ̃(n2/k) queries. The same upper bound
trivially holds for the linear sketching and uTMv models. In the Mv model, we can sample with
Θ̃(n/k) queries.

For the HH problem, we leave open the question of tightening the bounds. We also note that
there is a bound of Θ̃(n2/k2) in the statistical query model, depending on σ0 and σ1 (Kannan and
Vempala, 2017).

F. Sparse Principal Component Analysis

We consider the sub-Gaussian version of the SPCA problem, using elements of a known re-
duction from the PC problem (Berthet and Rigollet, 2013). The empirical variance of t vectors
X1, . . . ,Xt ∈ Rd in direction v is defined as

v̂ar(v) =
1

t

t∑
i=1

(v>Xi)
2.

Let θ and k be parameters, and let ζ ∈ (0, 1) be a fixed, small constant. We let D0 denote the
set of product distributions over t i.i.d. vectors X1, . . . ,Xt ∈ Rd such that for all unit vectors v we
have

Pr

[
|v̂ar(v)− 1| > 4

√
log(2/ζ)

d
+ 4

log(2/ζ)

d

]
≤ ζ. (F.1)

In other words, D0 := {P0 | Eq. (F.1) holds}, and D0 contains, e.g., isotropic distributions.
We let Dk,θ1 denote the set of product distributions over t i.i.d. vectors X1, . . . ,Xt ∈ Rd such

that for all unit vectors v with at most k nonzero entries (‖v‖0 ≤ k), we have

Pr

[
(v̂ar(v)− (1 + θ)) < −2

√
θk log(2/ζ)

d
− 4

log(2/ζ)

d

]
≤ ζ. (F.2)

Similarly, Dk,θ1 := {P1 | Eq. (F.2) holds}.

SCDC problem. Define two hypotheses to test; the inputs X1, . . . ,Xt are drawn from P such
that

H0 : X1, . . . ,Xt ∼ P0 ∈ D0 vs. H1 : X1, . . . ,Xt ∼ P1 ∈ Dk,θ1 .

Our goal is to distinguish between the possible family of distributions that X1,X2, . . . ,Xt is
sampled from. The motivation for this problem is that D0 contains N (0, Id) and D1 contains
N (0, Id + θuuT) when u is a k-sparse unit vector. In other words, this hypothesis testing problem
is a generalization of the spiked covariance matrix detection problem. Intuitively, θ corresponds to
the signal strength, and k corresponds to the sparsity of the unknown “high variance” direction of
the alternate hypothesis distribution. Nonetheless, many known algorithms for the spiked covari-
ance problem also hold for this more general problem (Berthet and Rigollet, 2013). We note that
reductions between planted clique and the spiked covariance version are known (Gao et al., 2017),
but we do not know how to implement these reductions efficiently in our query or communication
models. Instead, we describe a reduction for the above formulation of the problem.
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Let Gm denote the set of graphs on m vertices. With the following reduction, we obtain our
main theorem for SCDC. We provide the key details and verify that the reduction holds in our query
models, and we refer to (Berthet and Rigollet, 2013) for the full details about the distributional
relationships.

Reduction from PC (Berthet and Rigollet, 2013). For any γ ∈ (0, 1) and a fixed tolerance
δ ∈ (0, 1/3) (e.g., δ = 5%), given (d, t, k) ∈ Rγ , where

Rγ = R0 ∩ {k ≥ tγ} ∩ {t < d}

and

R0 =

{
(d, t, k) ∈ N3

+ : 15

√
k log(6ed/δ)

t
≤ 1, k ≤ d0.49

}
where 0.49 can be replaced by any constantC < 0.5, the randomized reduction bld,t,k,m,κ : G2m 7→
Rd×t is a procedure defined as follows, where m,κ are positive integers such that t ≤ m < d and
k ≤ κ ≤ m.

For a (2m)-vertex graph G = (V,E), which is an instance of PC problem with a potential
clique of size κ, we first choose m uniformly random vertices Vleft among 2m vertices, and then
choose t uniformly random vertices Vright among the remaining m vertices that are not in Vleft.
Make it a bipartite graph by restricting its edges in E ∩ {Vleft × Vright}. Then, add (d − m)
new vertices to Vleft and place an edge between every old vertex in Vright and each new vertex
in Vleft independently with probability 1/2. We relabel the left (resp. right) vertices by a random
permutation of {1, 2, . . . , d} (resp. {1, 2, . . . , t}). Let G′ = ({1, 2, . . . , d} × {1, 2, . . . , t}, E′)
denote the resulting bipartite graph, and let B denote the d × t adjacency matrix of G′. Also,
let η1, η2, . . . , ηt ∈ {−1, 1} be t i.i.d. Rademacher random variables that are independent of all
previous random variables. Define

X
(G)
i = ηi(2Bi − 1) ∈ {−1, 1}d, (F.3)

where Bi is the i-th column of B. By all above steps, we finish the reduction

bld,t,k,m,κ(G) = (X
(G)
1 ,X

(G)
2 , . . . ,X

(G)
t ) ∈ Rd×t.

Now that we have described the reduction bl, we explain how to simulate the algorithm. In the
query models, we will use the public randomness of the algorithm for this randomized reduction.
We next state a simple, yet general, result, which identifies matrix operations that can be simulated
in the query models.

Lemma 21 Let X be a matrix that is a transformation of a matrix Y after applying one or more
of the following operations:

(i) insert a row or column into Y ,

(ii) permute the rows or columns of Y , or

(iii) for field elements a, b, apply φ(y) = ay + b to all entries in a row or column of Y , replacing
each entry y with φ(y).
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Then, for any query to X in the uTMv, Mv, edge-probe, or linear sketching models, there is a
deterministic way to perform a single query to Y and simulate the original query to X .

Proof We first explain the simulation for the general linear sketching model; at the end, we mention
the differences for the other models. Say that the query algorithm wants to learn vTvec(X). Our
goal is to design a vector w such that vTvec(X) can be computed directly from wTvec(Y ).

For (i), assume X is Y after inserting a row (the column case is analogous). The idea is that
we can compute the contribution from the insertion and add this after querying Y . More precisely,
let Z be a matrix with a single non-zero row in the position of the inserted row to Y with the
same entries. Let w be the vector obtained from v by deleting the positions in v corresponding to
the inserted row. As the algorithm knows vTvec(Z), we have that wTvec(Y ) suffices to compute
vTvec(X) = wTvec(Y ) + vTvec(Z).

For (ii), we can permute the entries of v to obtain w. Precisely, we can determine the permu-
tation matrix P such that vTvec(X) = vTPvec(Y ) = (PTv)Tvec(Y ) and use the query vector
w = PTv.

Finally, for (iii), first multiply entries in v by a for each position corresponding to the modified
row or column. Let the resulting query vector be va. Then, calculate the sum z of entries in va that
overlap with the positions in the modified row or column, and add zb to the result of the va query.
Overall, by construction we have that vT

a vec(Y ) + zb = vTvec(X).
If multiple of these operations are used to transform Y into X , then we can iteratively apply

the above procedures, i.e., we can simulate any query with a single other query.
We have described the simulation for the general linear sketching model. The same strategy

works for the F2 sketching model. For the edge-probe model, note that a single entry in X depends
on only a single entry of Y even after any of the three allowed operations. In the uTMv model,
the difference for (iii) is that we can rescale rows via the left query vector (or columns via the right
query vector) by multiplying the relevant entry by a. For the Mv model, the main difference is that
when we modify a row of Y , we have to compute the contribution to Xv and add this to obtain the
correct query, similar to (iii) above. Columns in (iii) can be handled by updating the query vector.

Proposition 22 There exists a constant δ ∈ (0, 1) such that the following holds. If there is a query
algorithm A for the SCDC problem that makes q queries and has success probability 1 − δ, then
there is a query algorithm A′ for the PC problem that makes q queries and has success probability
1 − Θ(δ). This holds for algorithms in the uTMv, Mv, edge-probe, and general linear sketching
models.

Proof Let A be an algorithm for SCDC in a query model that we consider. Given an instance of
planted clique, we have a graphG. We can apply the randomized reduction to produce a d×tmatrix
bl(G) composed of columns (X

(G)
1 ,X

(G)
2 , . . . ,X

(G)
t ). We claim that we can use Lemma 21 to take

the algorithm A for SCDC and derive an algorithm A′ for the PC problem on G via the procedure
bl(G). Here, Y corresponds to the adjacency matrix ofG and X corresponds to bl(G), the SCDC
input. First, even though bl is a randomized procedure, we have used the randomness of the query
algorithm, and hence we know the transformation. The linear transformation in Eq. (F.3) is covered
by part (iii) of Lemma 21. Then, in the procedure bl(G), we are sampling vertices, permuting
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vertex labels, and adding edges connected to new vertices in the graph, which are covered by the
three parts of the lemma.

It remains to show that if A has constant success probability for SCDC, then A′ has constant
success probability for PC. We sketch this argument, since it follows from Theorem 7 and Lemma
8 in (Berthet and Rigollet, 2013). They work in a more general model, where they consider families
of statistical tests ψ = {ψd,t,k} for SCDC and tests ξ = {ξm,κ} for PC on 2m-vertex graphs. In our
models, this corresponds to the query algorithms by considering a test to be a query algorithm that
queries the matrix and then outputs a binary variable, where 0 corresponds to the null hypothesis,
and 1 corresponds to the alternate hypothesis.

To state their result, fix α ∈ [1, 2), γ ∈ (0, 1
4−α), and define a = 2γ, b = 1 − (2 − α)γ. Their

result says that for any τ > 0, there exists a constant L > 0, such that the following holds. For
(d, t, k) ∈ Rγ , there exist κ,m such that (2m)a/2 ≤ τκ ≤ (2m)b/2, a random transformation
bl = {bld,t,k,m,κ}, bld,t,k,m,κ : G2m 7→ Rd×t, and distributions P0 ∈ D0, P1 ∈ Dk,Lθα1 such
that the following holds. For shorthand, we use the notation P0(f = 1) for a test f to mean the
probability that the output is 1 when an instance is drawn from P0, i.e., the error probability of NO
instances (and analogously for P1(f = 0)). We also use ∨ to mean max. Then, their Theorem 7
says that there exists a constant δ such that for any family of tests ψ = {ψd,t,k}, we have

P⊗t0 (ψd,t,k = 1) ∨P⊗t1 (ψd,t,k = 0) ≥ P
(G)
0 (ξm,κ(G) = 1) ∨P

(G)
1 (ξm,κ(G) = 0)− δ

5
,

where

ξm,κ = ψd,t,k ◦ bld,t,k,m,κ and θα =

√
kα

t
.

Using Proposition 22, we see that if we have any query algorithm for SCDC with error proba-
bility at most δ′, then we can derive a query algorithm for PC with error probability at most δ′+δ/5.
In other words, a constant success probability query algorithm for SCDC implies one for PC with
the same query complexity. This allows us to derive the query complexity lower bounds in the
following theorem.

Theorem 23 Given any α ∈ [1, 2), γ ∈ (0, 1
4−α) and any (d, t, k) ∈ Rγ , for the SCDC problem

with input matrix X = [X1,X2, · · · ,Xt] when d = Θ(t), k = Θ(tγ) and θ = Θ

(√
kα

t

)
, any

algorithm that succeeds with constant success probability requires

• Ω̃
(

k4

t2θ4

)
queries in the general linear sketching or uTMv models,

• Ω̃
(

k4

t3θ4

)
queries in the Mv model,

• Ω(k2/θ2) queries in the edge-probe or F2 sketching models.

Proof By using the reduction above and applying Proposition 22, we can use an algorithm for
SCDC to solve the PC problem on m-vertex graphs. Translating between the parameters via the

reduction, plugging in k = Θ (tγ), κ = O
(
t
1
2
− (2−α)γ

2

)
, θ = Θ

(√
kα

t

)
and t = Θ(m) = Θ(d),

yields the following query lower bounds:
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• Using the lower bound of Ω̃(m2/κ4) queries for the PC problem in the general linear sketch-
ing and uTMv models when κ = o(

√
m) from Corollary 12, we get a query lower bound for

SCDC of

Ω̃

(
m2

κ4

)
= Ω̃

(
m2

t2−2(2−α)γ

)
= Ω̃

(
t2(2−α)γ

)
= Ω̃

(
t4γ

t2αγ

)
= Ω̃

(
k4

k2α

)
= Ω̃

(
k4

t2θ4

)
,

since m2 = Θ(t2) and tγ = Θ (k), and in the final equality, we use that t2

k2α
= Θ

(
1
θ4

)
.

• Using the lower bound of Ω̃(m/κ4) queries for the PC problem in the Mv model when
κ = o(

√
m) (direct corollary of Corollary 12), we get a query lower bound for SCDC of

Ω̃
(m
κ4

)
= Ω̃

(
mt

tκ4

)
= Ω̃

(
m2

tκ4

)
= Ω̃

(
k4

t3θ4

)
,

using the above calculations and the fact that m = Θ(t).

• Using the lower bound of Ω(m2/κ2) for the PC problem in the edge-probe and F2 sketching
models when κ = o(

√
m) from Corollary 5, we get a query lower bound for SCDC of

Ω

(
m2

κ2

)
= Ω

(
t2

κ2

)
= Ω

(
t2

t1−(2−α)γ

)
= Ω

(
t · t2γ

tαγ

)
= Ω

(
t · k2

kα

)
= Ω

(
k2

θ2

)
,

where the final equality uses that t
kα = Θ

(
1
θ2

)
.
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