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Abstract

We study a variant of online convex optimization where the player is permitted to switch decisions at
most ( times in expectation throughout ) rounds. Similar problems have been addressed in prior
work for the discrete decision set setting, and more recently in the continuous setting but only with
an adaptive adversary. In this work, we aim to fill the gap and present computationally e�cient
algorithms in the more prevalent oblivious setting, establishing a regret bound of $ ()/() for general
convex losses and e

$ ()/(2) for strongly convex losses. In addition, for stochastic i.i.d. losses, we
present a simple algorithm that performs log) switches with only a multiplicative log) factor
overhead in its regret in both the general and strongly convex settings. Finally, we complement our
algorithms with lower bounds that match our upper bounds in some of the cases we consider.

1. Introduction

We study online convex optimization with limited switching. In the classical online convex
optimization (OCO) problem, a player and an adversary engage in a )-round game, where in each
round, the player chooses a decision FC 2 , ✓ R3 , and the adversary responds with a loss function
5C : , ! R. The losses 5C are convex functions over , which is also convex and traditionally
referred to as the decision set. Each round incurs a loss of 5C (FC ) against the player, whose objective
is to minimize her cumulative loss. The performance of the player is then measured by her regret,
defined as the di�erence between her cumulative loss and that of the best fixed decision in hindsight;

)X

C=1

5C (FC ) � min
F 2,

)X

C=1

5C (F).

This theoretical framework has found diverse applications in recent years, many of which benefit
from player strategies that switch decisions sparingly. In adaptive network routing (Awerbuch and
Kleinberg, 2008) switching decisions amounts to changing packet routes, which should be kept to
a minimum as it may lead to severe networking problems (see, e.g., Feamster et al., 2014). When
investing in the stock market, transactions may be associated with fixed commission costs, and
thus trading strategies that change stock positions infrequently are of value. As another example,
Geulen et al. (2010) approach online bu�ering by devising a low switching variant of the well known
Multiplicative Weights algorithm. In addition, recent applications of OCO in online reinforcement
learning and control problems involve addressing the fact that changing policies introduces short-term
penalties, and thus could benefit from keeping the number of policy switches to a minimum (e.g.,
Cohen et al., 2018, 2019; Agarwal et al., 2019a,b; Foster and Simchowitz, 2020).

© 2021 U. Sherman & T. Koren.



S������ K����

This motivates the study of regret bounds achievable when we limit the number of decision
switches the player is allowed to perform. When the limit is applied to the expected number of
decision switches, we arrive at a variant of the standard model we shall refer to as lazy OCO. In
particular, we say that an OCO algorithm is (-lazy if the expected number of switches it performs
over ) rounds is less than (. A closely related problem where the player is charged a fixed price 2 > 0
per switch has been the focus of several works in the past, though mainly in the context of experts or
multi-armed bandit problems (Dekel et al., 2014; Geulen et al., 2010; Altschuler and Talwar, 2018).
It is not hard to see this problem, which we refer to as switching-cost OCO, is e�ectively equivalent
to lazy OCO. (We defer formal details to the full version of the paper (Sherman and Koren, 2021).)

Perhaps the most natural approach for this problem would be to divide the ) rounds into ( equally
sized time-blocks, and treat the cumulative loss of each block as a single loss function. This e�ectively
reduces the game to the standard unconstrained OCO setting with ( rounds, and a Lipschitz constant
larger by a factor of )/(. This method has been termed “blocking argument” and dates back at least
to Merhav et al. (2002) who used it to obtain an $ ()/

p
() regret bound on the prediction with expert

advice problem. It is not hard to see that this strategy also yields $ ()/
p
() regret in the general

convex setting. Recently, Chen et al. (2019) prove that this is in fact optimal against an adaptive
adversary with linear losses. However, in the oblivious adversary setting, stronger results may be
achieved owed to the power of randomization. For example, several works (Kalai and Vempala, 2005;
Geulen et al., 2010; Devroye et al., 2013) have obtained a stronger $ ()/() bound for the experts
problem by employing randomized player strategies. In the general convex setting results have been
more scarce, though the same bound has been achieved by Anava et al. (2015), who adapt the method
of Geulen et al. (2010) to the continuous online optimization setup.

In this work, we aim to further develop our understanding of lazy OCO by addressing a
number of questions that have remained open. First, the algorithm in Anava et al. (2015) relies on
complex procedures for sampling from log-concave distributions and thus does not admit a practical
implementation; further, while their result is optimal for ( = ≠(

p
)) in terms of dependence on ) , it

is not clear a priori whether an $ (
p
)) regret bound may be obtained with less switches. Moreover, to

the best of our knowledge, no results have been established in the strongly convex lazy OCO setting,
neither for adaptive adversaries nor for oblivious ones. This work aims to fill these gaps and obtain a
more coherent understanding of the lazy OCO problem.

1.1. Our contributions

We make the following contributions:

• Regret upper bounds. We present a computationally e�cient (-lazy algorithm, achieving an
$ (
p
) +
p
3)/() regret bound for general convex losses, and an e

$ (3)/(2) bound for strongly
convex losses. Compared to the algorithm of Anava et al. (2015), our scheme is substantially
simpler and more e�cient, and also features a better dependence on the dimension (3 !

p
3)

for general convex losses. More importantly, it extends to the strongly convex case where it
obtains improved regret bounds, which does not seem to be the case for their algorithm.1

• Regret lower bounds. For the general convex case, we prove an ≠()/() lower bound for the
regret of any (-lazy algorithm, matching our upper bound in this setting in terms of dependence

1. In fact, a closer look into the regret analysis of Anava et al. (2015) reveals that it does not at all exploit the convexity of
the losses: by taking a discretization of the decision set and using, e.g., the Shrinking-Dartboard algorithm of Geulen
et al. (2010), one would obtain essentially the same regret guarantee (albeit not in polynomial time).
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on ) and (. For strongly convex losses, we prove an ≠()/(4) lower bound for an oblivious
adversary, and an ≠()/() lower bound for an adaptive adversary. The result in the adaptive
setting matches up to a logarithmic factor the $ (()/() log () upper bound obtained by a
straightforward application of the blocking technique in this setting (see the full version of the
paper (Sherman and Koren, 2021) for details).

• Regret bounds for stochastic i.i.d. losses. For the special case of a stochastic i.i.d. adversary, we
present an algorithm that performs $ (log)) switches while introducing only a multiplicative
$ (log)) factor overhead in the regret bound compared to unrestricted OCO.

Table 1 lists our contributions compared to the relevant state-of-the-art bounds. Our upper bounds
are discussed in Sections 3 and 4, and the general convex lower bound in Section 5. For the lower
bounds in the strongly convex setting, see the full version of the paper (Sherman and Koren, 2021).

1.2. Key ideas and techniques

Our starting point for designing lazy algorithms in the (adversarial, oblivious) OCO setup is the
general idea present in Follow-the-Lazy-Leader (FLL) algorithm of Kalai and Vempala (2005), where
perturbations are introduced for obfuscating small changes in the player’s (unperturbed) decisions.
Then, the perturbations may be correlated in such a way that preserves the marginal distribution of
decisions, and at the same time have su�cient overlap in total variation, which allows for the player
to avoid switching altogether across several consecutive rounds. However, unlike Kalai and Vempala
(2005) who study the linear case, we are interested in the general convex and strongly convex settings,
which pose a number of additional challenges.

First, the subset of perturbed objectives cannot be fixed in advance and must be determined
per round in a dynamical fashion during execution of the algorithm. This is because the particular
perturbation that leads to the same decision being used across rounds depends on the loss sequence
in a way that mandates ad-hoc coupling between consecutive minimization objectives. Specifically,
in our algorithm it depends on the gradient of the loss evaluated at the decision from the previous
round. It is not hard to see that the linear case allows for a broader set of solutions to this task, as the
gradient of a linear loss is the same regardless of the point at which it is evaluated.

In addition, in the general non-linear convex setting, the unperturbed minimizers need to be
stabilized so that consecutive decision distributions overlap su�ciently in total variation. To that end,
a regularization component is added to obtain the desired relation between regret and the number
of decision switches. Thus, unlike Follow-the-Perturbed-Leader-type algorithms that introduce
perturbations for promoting stability, we draw our stability properties from a regularization component
while using perturbations only for inducing proximity in total variation, which in turn allows the
algorithm to resample decisions less frequently.

Finally, our regret bound for strongly convex losses makes use of two additional ideas that were
key in achieving the improved dependence on the switches parameter (. First, perhaps surprisingly,
the perturbation variance has to be increased at a rate that is in accordance with the increasing
curvature of the per round minimization objective (despite the fact that the unperturbed decision
actually becomes more and more stable with time). The second and more crucial observation is that
the regret penalty introduced by perturbations on top of the hypothetical “be-the-leader” strategy can
be bounded much more e�ciently for strongly convex losses: our analysis reveals that this penalty
depends on the distance between the deterministic, unperturbed minimizer and the perturbed random
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Table 1: (-lazy OCO bounds, omitting factors other than ( and ) . Our contribu-
tions are in boldface.

S������ A�������� L���� B���� U���� B����

Experts Oblivious
)/(

Geulen et al. (2010)
)/( a

Kalai and Vempala (2005) b

OCO

Adaptive )/
p
(

Chen et al. (2019)
)/
p
(

Chen et al. (2019)

Oblivious Z/Y Z/Y a

i.i.d.
p
)

p
Z logZ c

OCO
Strongly Convex

Adaptive Z/Y ()/() log (

Oblivious Z/Y4 (Z/Y2) logZ

i.i.d. log) log
2 Z c

a For ( = $

�p
)

�
.

b Also Geulen et al. (2010); Devroye et al. (2013); Altschuler and Talwar (2018).
c For ( � 1 + log) .

one; crucially, with strong convexity, this distance shrinks rapidly with the number of steps at a rate
that compensates for the increased perturbation variance.

1.3. Additional related work

Prior work on low switching strategies in online learning has been mostly concerned with the
switching-cost perspective. All bounds we present here pertain to algorithms with an expected
number of switches bounded by (, so that they are easily comparable. For completeness, their
equivalent original switching-cost forms can be found in the full version of the paper (Sherman and
Koren, 2021).

Experts. The experts problem with switching costs has been extensively studied, giving rise to
several algorithms such as Follow-the-Lazy-Leader (FLL) (Kalai and Vempala, 2005), Shrinking-
Dartboard (Geulen et al., 2010) and Perturbation-Random-Walk (Devroye et al., 2013), all of which
achieve $ ()/() regret known to be optimal due to a matching lower bound of Geulen et al. (2010).
Recently, Altschuler and Talwar (2018) study experts and multi-armed bandits in the setting where
the player is given a hard cap on the number of switches she is allowed (see the full version of the
paper (Sherman and Koren, 2021) for a discussion of this variant of the model); they develop a
framework converting Follow-the-Perturbed-Leader (FPL) type algorithms that work in expectation to
ones with high probability guarantees, and leverage this result to achieve an upper bound of e

$ ()/()
for ( = $ (

p
)), shown to be tight.
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Multi-armed bandits. Unlike experts, the multi-armed bandit problem has proved to exhibit a more
significant dependence on the number of switches, setting apart switching-cost regret from the standard
unconstrained setting. An $ ()/

p
() upper bound was obtained by a blocking argument (Arora et al.,

2012) applied to the EXP3 algorithm (Auer et al., 2002). A matching e≠()/p() lower bound was
proved by Dekel et al. (2014). In the case of stochastic i.i.d. losses, Cesa-Bianchi et al. (2013) present
an e

$ (
p
)) algorithm for multi-armed bandits that performs $ (log log)) switches.

Online convex optimization. To the best of our knowledge, Anava et al. (2015) establish the first
and only $ ()/() upper bound in the general convex setting with an oblivious adversary, albeit with a
computationally intensive algorithm whose running time is bounded by a high-degree polynomial in
the dimension. More recently, Chen et al. (2019) study lazy OCO in the general convex setting with
an adaptive adversary and prove a tight £()/

p
() result. Our work is thus complementary to theirs as

we study lazy OCO in the oblivious setting, where stronger upper bounds turn out to be possible.
Also relevant to our work is the paper of Jaghargh et al. (2019), who propose a Poisson process based
algorithm for both general and strongly convex losses, although their results are suboptimal compared
to those presented here.

Movement costs. Also related to lazy OCO is the study of movement costs in online learning,
where the player pays a switching cost proportional to the distance between consecutive decisions.
This variant was studied in the context of multi-armed bandits (Koren et al., 2017a,b), and is at the
core of the well known metrical-task-systems (MTS) framework in competitive analysis (Borodin
et al., 1992; Borodin and El-Yaniv, 2005). In particular, the continuous variant of MTS has been the
subject of several works both in the low dimensional setting (Bansal et al., 2015; Antoniadis and
Schewior, 2017), and in the high dimensional setting where it has been recently termed smoothed
OCO (Chen et al., 2018; Goel et al., 2019; Shi et al., 2020). MTS di�ers from lazy OCO in a number
of important ways; we refer to Blum and Burch (2000); Buchbinder et al. (2012); Andrew et al. (2013)
for an extensive discussion of the relations between competitive analysis and regret minimization.

Correlated sampling. The algorithms we present are based on a lazy sampling procedure for
sampling from maximal couplings (see Section 2.3). This procedure bears similarity to the well-known
correlated sampling problem (Broder, 1997; Kleinberg and Tardos, 2002), where two players are
given two probability distributions and are required to produce samples with minimal disagreement
probability. As the players are not allowed to communicate, this problem is crucially di�erent than
sampling from maximal couplings; see Bavarian et al. (2020) for a more elaborate discussion.

2. Preliminaries

We start by giving a precise definition of our model and describe techniques and basic tools we use.

2.1. Problem setup

We describe the setting of lazy OCO, within which we develop all results presented in the paper. In
this setting, an oblivious adversary chooses convex loss functions 5C : , ! R over a convex domain
, ✓ R3 . The game proceeds for ) rounds, where in round C the player chooses FC 2 , , su�ers loss
5C (FC ), and observes 5C as feedback. We denote by R) the player’s regret;

R) :=
)X

C=1

5C (FC ) � min
F 2,

)X

C=1

5C (F),
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and by S) the number of decision switches she performs; S) :=
P
) �1
C=1 1 {FC+1 < FC } . When it is not

clear from context, we may write R) (A) and S) (A) to make explicit which player we are referring
to. We are interested in the asymptotic behavior of the player’s regret, under the restriction she is
obligated to perform a limited number ( 2 [)] of switches in expectation; ES)  (. We say A is an
(-lazy algorithm if it satisfies that for any loss sequence ES)  ( .

2.2. Basic definitions and tools

The diameter of a set , ✓ R3 is defined as maxG,H2, kG � Hk. We denote by ¶, (G) :=
arg min

F 2, kF � Gk2 the orthogonal projection of a point G 2 R3 onto , , but usually omit the
subscript, and write¶ (G) unless the context requires to be explicit. For two probability distributions
?, @ over a sample space X, we denote by

⇡ ! (? k @) := E
G⇠?


log

?(G)
@(G)

�
,

the KL-divergence between ? and @, and write k? � @k
)+

to denote their total variation distance;

k? � @k
)+

:= max
⌫✓X

�
?(⌫) � @(⌫)

 
.

Also, a two dimensional random variable (X,Y) is a coupling of ? and @ if its marginals satisfy
X ⇠ ? and Y ⇠ @. Throughout the paper, we use freely the well known facts described next. The
total variation distance is related to the L1 norm as follows;

k? � @k
)+

=
1
2
k? � @k1 , (1)

and to the KL-divergence by Pinsker’s Inequality (e.g., Cover, 1999);

k? � @k
)+


r
1
2
⇡ ! (? k @). (2)

Finally, we denote byN(µ,æ2) the Gaussian distribution with mean µ 2 R3 and varianceæ2
� 2 R3⇥3

where æ > 0 and � is the identity matrix. For µ1,µ2 2 R3 and any æ > 0 we have that

⇡ !

⇣
N(µ1,æ

2) k N(µ2,æ
2)
⌘
=
kµ1 � µ2k2

2æ2
. (3)

2.3. Sampling from maximal couplings

Algorithm 1 presented below provides a mechanism to maximally couple consecutive decision
distributions. A similar procedure for sampling from maximal couplings can be found in the literature
in various places, see e.g., Jacob et al. (2020). The desired properties of the algorithm follow from
the two lemmas stated next. For completeness, we provide their proofs in the full version of the
paper (Sherman and Koren, 2021). Throughout the paper, within an algorithmic context, we use
the calligraphic font (P,Q, etc.) to denote computational objects that provide $ (1) oracle access to
evaluate the density and to sample from a probability distribution.

Lemma 1. Running LazySample(G,Q,P) with G ⇠ Q, we have thatP is sampled from with probability
kQ �Pk

)+
, where randomness is over choice of G and execution of the algorithm.

Lemma 2. Assume we run LazySample(G,Q,P) with G ⇠ Q, then the algorithm generates a return
value distributed according to P in expected $ (1) time.

6



L��� OCO

Algorithm 1 LazySample
1: input: G, Q, P
2: Sample I ⇠ Unif [0,Q(G)]
3: If P(G) > I, return G

4: Otherwise, repeat;
5: Sample H ⇠ P, and I

0 ⇠ Unif [0,P(H)]
6: If I0 > Q(H), return H

3. Lazy OCO

In this section, we present and analyze our lazy OCO algorithm for convex losses in the oblivious
adversarial setup. The algorithm has a regularization component and generates decisions that
are minimizers of a perturbed cumulative loss on each round. As such, it can be viewed as a
natural combination of the well known Follow-the-Perturbed-Leader (FPL) algorithm (Kalai and
Vempala, 2005) and Follow-the-Regularized-Leader (FTRL) meta-algorithm, with regularization
being intrinsic in the strongly convex case. The resulting algorithm, given in Algorithm 2, is thus
named Follow-the-Perturbed-Regularized-Lazy-Leader (FTPRLL).

The key idea is that stability introduced by regularization causes minimizers of the unperturbed
objectives to move in small steps, thereby encouraging consecutive decisions—minimizers of the
perturbed objectives—to overlap in total variation. This, combined with the lazy sampling sub-routine
Algorithm 1, produces a low switching algorithm. Importantly, we note that while in FPL the
perturbations are the source of stability, here regularization accounts for stability, and the perturbations
serve to obfuscate the shifts between consecutive decisions.

Algorithm 2 Follow-The-Perturbed-Regularized-Lazy-Leader (FTPRLL)
1: input: perturbation parameters æ1, . . . ,æ) , regularizer ' : , ! R

2: Sample ?1 ⇠ N(0,æ2)
3: F1  arg min

F 2,
�
?

T
1F + '(F)

 
4: for C = 1 to ) do

5: Play FC , Observe 5C

6: ?C+1  LazySample
�
?C � r 5C (FC ),N(�r 5C (FC ),æ2

C
),N(0,æ2

C+1)
�

7: FC+1  arg min
F 2,

�P
C

8=1 58 (F) + ?
T
C+1F + '(F)

 
8: end for

The expected number of switches performed by Algorithm 2 is governed solely by the gradient
bound ⌧ and the perturbation variance sequence æ2

1, . . . ,æ
2
)

. The lemma we state below gives the
bound in general form.

Lemma 3. Running Algorithm 2 with æ1  æ2  . . .  æ) on any sequence of ⌧-Lipschitz convex
losses 51, . . . , 5) , it is guaranteed that

ES) 
⌧

2

)X

C=1

1
æC

.

The proof of Lemma 3 shows that the way Algorithm 2 correlates the perturbations results in the
cumulative objectives ¡C frequently sharing minimizers across rounds. By Lemma 1, the lazy sampler

7
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Algorithm 1 returns the particular perturbation that leads to the same minimizer with probability that
is precisely the total variation between the two distributions it is given as arguments. Since these are
Gaussians with means o� by the current round’s gradient, it follows their total variation and thus
the switch probability is bounded by the gradient norm divided by the current round’s perturbation
standard deviation.

Proof of Lemma 3. Denote the optimization objective at time C by

¡C (F) :=
C�1X

8=1

58 (F) + ?
T
C
F + '(F), (4)

and note that we have the following relation between consecutive objectives;

¡C+1(F) = ¡C (F) + 5C (F) + (?C+1 � ?C )T
F.

Observe that whenever ?C+1 = ?C � r 5C (FC ), we have that FC = arg min
F 2, ¡C (F) is also the

(unique) minimizer of ¡C+1 over , ; Indeed, let G 2 , , and verify optimality conditions by checking

r¡C+1(FC )T (G � FC ) = r¡C (FC )T (G � FC ) + r 5C (FC )T (G � FC ) + (?C+1 � ?C )T (G � FC )
= r¡C (FC )T (G � FC )
� 0,

where the last inequality follows by optimality conditions of FC (which is the unique minimizer of ¡C
due to strong convexity). This implies that Pr(FC+1 < FC ) = Pr

�
?C+1 < ?C � r 5C (FC )

�
. Given the

above, we wish to upper bound the expected number of times ?C+1 < ?C � r 5C (FC ) occurs. To that
end, observe that by Lemma 2 we have ?C ⇠ N(0,æ2

C
), hence ?C � r 5C (FC ) ⇠ N(�r 5C (FC ),æ2

C
).

Therefore, applying Lemma 1 we obtain

Pr
�
?C+1 < ?C � r 5C (FC )

�
=

��N(�r 5C (FC ),æ2
C
) �N(0,æ2

C+1)
��
)+
 kr 5C (FC )k

2æC
.

where in the above derivation we substitute for the Gaussian KL Eq. (3) and apply Pinsker’s Inequality
Eq. (2). Now

ES) =
) �1X

C=1

Pr(FC+1 < FC ) 
) �1X

C=1

kr 5C (FC )k
2æC

 ⌧

2

)X

C=1

1
æC

,

as desired. ⌅

3.1. The general convex case

We start with the general convex case where the regret analysis is simpler. Here we introduce stability
into the algorithm by means of L2 regularization, with '(F) = 1

2¥ kF � F0k2 for some F0 2 , .
Below, we state and prove our theorem giving the guarantees of Algorithm 2 when tuned for general
convex losses.

8
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Theorem 4. When the loss functions 51, . . . , 5) are ⌧-Lipschitz and convex, running Algorithm 2
with æC = æ for all C and '(F) = 1

2¥ kF � F0k2, F0 2 , , we obtain

ER)  2¥⌧2
) + ⇡

2

2¥
+ æ
p
3⇡ and ES) 

⌧)

2æ
,

where ⇡ is the L2 diameter of , . In particular, setting æ = ⌧)/2( and ¥ = ⇡/2⌧
p
) we obtain

ES)  ( and ER) = $ (
p
) +
p
3)/().

Proof. Denote the minimization objective at time C by ¡C (defined in Eq. (4)), and set

HC+1 := arg min
F 2,

{¡C (F) + 5C (F)} . (5)

We have that

ER) = E
h )X

C=1

5C (FC ) � 5C (F⇤)
i

= E
h )X

C=1

5C (FC ) � 5C (HC+1)
i
+ E

h )X

C=1

5C (HC+1) � 5C (F⇤)
i
, (6)

where the expectation is taken over randomness of the algorithm, originating from the LazySampler
(Algorithm 1) invocations and the initial Gaussian perturbation ?1. To bound the first term in Eq. (6),
consider any perturbation ?C , and note that

¡C (F) + 5C (F) =
CX

8=1

58 (F) + ?
T
C
F + 1

2¥
kF � F0k2 ,

thus ¡C + 5C is 1/¥-strongly-convex. In addition, ¡C + 5C is minimized over , by HC+1, and ¡C is
minimized by FC over , . Therefore by a standard bound on the stability of minimizers of strongly
convex objectives (see Lemma 20 in the full version of the paper (Sherman and Koren, 2021)) we
obtain kHC+1 � FC k  2¥⌧, and then

E

"
)X

C=1

5C (FC ) � 5C (HC+1)
#
 E

"
)X

C=1

⌧ kFC � HC+1k
#
 2¥⌧2

) .

The bound on the second term of Eq. (6) is given in the next lemma.

Lemma 5. The hypothetical leaders regret is bounded as follows;

E
h )X

C=1

5C (HC+1) � 5C (F⇤)
i
 ⇡

2

2¥
+ æ
p
3⇡ .

This concludes the proof of our regret bound. To establish the switches bound we invoke Lemma 3,
and obtain ES)  ⌧

2

P
)

C=1
1
æ = ⌧)

2æ . Finally, plugging æ = ⌧)/2( and ¥ = ⇡/2⌧
p
) into the bounds

we have established, the result follows. ⌅
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The proof of Lemma 5 is a straightforward adaptation of the analysis for the linear case laid out
in Kalai and Vempala (2005), and makes use of the well known Follow-the-leader Be-the-leader
Lemma, stated next for completeness.

Lemma 6 (FTL-BTL, Kalai and Vempala, 2005). Let ⌘C be any sequence of losses, and set
F
⇤
C

:= arg min
F 2,

P
C

B=1 ⌘C (F). Then

)X

C=1

⌘C (F⇤C ) 
)X

C=1

⌘C (F⇤) ).

Proof of Lemma 5. Fix a perturbation sequence ?1, . . . , ?) , and additionally define ?0 = 0. Consider
the auxiliary loss sequence 5̃0(F) = '(F), and for C � 1, 5̃C (F) := 5C (F) + (?C � ?C�1)T

F. From
Eq. (5) it follows that

HC+1 = arg min
F 2,

(
CX

8=0

5̃8 (F)
)
,

hence the BTL Lemma (Lemma 6) we obtain (for any F
⇤);

P
)

C=0 5̃C (HC+1) 
P
)

C=0 5̃C (F⇤). Substituting
for the definition of 5̃C and rearranging we get

)X

C=1

5C (HC+1) � 5C (F⇤)  '(F⇤) � '(H1) +
)X

C=1

(?C � ?C�1)T (F⇤ � HC+1)

 ⇡
2

2¥
+

)X

C=1

(?C � ?C�1)T (F⇤ � HC+1).

Now, consider any perturbations distribution Q, such that the marginals of the ?C ’s under Q are the
same as the marginals of the ?C ’s under our actual lazy algorithm which we denote by A. Recall that
HC+1 defined by Eq. (5) depends only on randomness introduced by ?C . This implies that the HC ’s are
distributed the same under both A and Q as long as the marginals of the perturbations match. Hence

E
A

"
)X

C=1

5C (HC+1) � 5C (F⇤)
#
=

)X

C=1

E
A
[ 5C (HC+1) � 5C (F⇤)]

=
)X

C=1

E
Q
[ 5C (HC+1) � 5C (F⇤)] = E

Q

"
)X

C=1

5C (HC+1) � 5C (F⇤)
#
.

By Lemma 2, for all C it holds that ?C ⇠ N(0,æ2) when generated by our algorithm A. Therefore,
choosing Q by letting ?1 ⇠ N(0,æ2), and setting ?C = ?1 for all C � 2, we achieve the same marginals
as those induced by A. This implies

E
A

"
)X

C=1

5C (HC+1) � 5C (F⇤)
#
 ⇡

2

2¥
+ E

Q

"
)X

C=1

(?C � ?C�1)T (F⇤ � HC+1)
#

 ⇡
2

2¥
+ E

Q

"
)X

C=1

k?C � ?C�1k kF⇤ � HC+1k
#

10
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 ⇡
2

2¥
+ ⇡E

Q

"
)X

C=1

k?C � ?C�1k
#

=
⇡

2

2¥
+ æ
p
3⇡,

as desired. ⌅

3.2. The strongly convex case

In this section, we state and prove Theorem 7 providing the guarantees of Algorithm 2 for the strongly
convex setting. The performance here hinges on increasing the perturbations variance at a certain
rate, accounting for the increasing curvature in the per round minimized objective. This, along with a
careful analysis of the perturbed leaders regret, is key to achieving the quadratic gain in the guarantee.

Theorem 7. When the loss functions 51, . . . , 5) are ⌧-Lipschitz and ∏-strongly-convex, running
Algorithm 2 with æC =

p
Cæ for all C and '(F) ⌘ 0, we obtain

ER) 
2⌧2 + 23æ2

∏
(1 + log)) and ES) 

⌧

p
)

æ
.

In particular, setting æ = ⌧

p
)/( we obtain ES)  ( and ER) = e

$ (3)/(2).
Proof. Let HC+1 = arg min

F 2, {¡C (F) + 5C (F)} (where ¡C is defined in Eq. (4)), and by following
an argument similar to the general convex case we obtain

ER) 
2⌧2

∏
(1 + log)) + E

h )X

C=1

5C (HC+1) � 5C (F⇤)
i
, (7)

with the only di�erence being that ¡C + 5C is now C∏-strongly-convex. The bound on the second term
in the above equation hinges on the increasing perturbation variance, which leads to the desired
improvement when combined with strong convexity. Proceeding, we follow the same argument given
in the proof of Lemma 5 to obtain

E
h )X

C=1

5C (HC+1) � 5C (F⇤)
i
 E

Q

"
)X

C=1

(?C � ?C�1)T (F⇤ � HC+1)
#
,

where this time we define Q by ?1 ⇠ N(0,æ2), and ?C =
p
C ?1 for all C � 2. Indeed, by Lemma 2

it holds that under our actual algorithm ?C ⇠ N(0, Cæ2), and therefore the marginals match those
induced by Q. Next, we exploit the fact that ?C are zero mean in order to get rid of the non-random
part of F⇤ � HC+1. To that end, set GC+1 := arg min

F 2,
�P

C

8=1 58 (F)
 
, and note GC+1 is deterministic.

Therefore,

E

"
)X

C=1

5C (HC+1) � 5C (F⇤)
#
 E

Q

"
)X

C=1

(?C � ?C�1)T (F⇤ � HC+1)
#

=
)X

C=1

E
Q
[?C � ?C�1]T (F⇤ � GC+1) + E

Q

"
)X

C=1

(?C � ?C�1)T (GC+1 � HC+1)
#

11
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= E
Q

"
)X

C=1

(?C � ?C�1)T (GC+1 � HC+1)
#
.

Now, note that GC+1 and HC+1 minimize the same C∏-strongly-convex objective up to the additional
perturbation vector ?C , therefore by Lemma 20; kGC+1 � HC+1k  2k?C k

C∏ . Combining all of the above
we obtain

E

"
)X

C=1

5C (HC+1) � 5C (F⇤)
#
 E

Q

"
)X

C=1

(?C � ?C�1)T (GC+1 � HC+1)
#

 E
Q

"
)X

C=1

k?C � ?C�1k kGC+1 � HC+1k
#

 E
Q

"
)X

C=1

k?C � ?C�1k
2 k?C k
C∏

#

=
2
∏
E
Q

⇥
k?1k2

⇤ )X

C=1

(
p
C �
p
C � 1) 1p

C

 23æ2

∏
(1 + log)),

which concludes the proof of the regret bound. For the switches guarantee, by Lemma 3 we have that

ES) 
⌧

2æ

)X

C=1

1p
C

 ⌧

p
)

æ
,

and plugging æ = ⌧

p
)/( in the bounds we have established completes the proof up to a trivial

computation. ⌅

4. Lazy Stochastic OCO

In this section, we present a simple algorithm for the special case where the losses are drawn i.i.d. from
some distribution of convex losses F. The standard objective to be minimized here is the pseudo
regret, defined by

R) := E

"
)X

C=1

5C (FC ) � 5C (F⇤)
#
,

where F
⇤ = arg min

F 2, E [ 51(F)] and the expectation is over the loss distribution F, from which
51, . . . , 5) are sampled i.i.d. Importantly, the minimizer of the expected loss defined above stays
fixed for the duration of the game. This is in stark contrast to the situation of the general adversarial
setting, and enables significantly better bounds achieved by non uniform blocking as outlined by
Algorithm 3. Next, we state and prove Theorem 8 which summarizes the guarantees of Algorithm 3.

Theorem 8. Assume F is a distribution of ⌧-Lipschitz convex losses over a domain , of diameter
⇡. Then running Algorithm 3 with step size ¥C = ⇡/⌧

p
C guarantees S)  1 + log) and

R)  2⇡⌧

p
) (1 + log)).

12
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Algorithm 3 Lazy SGD
1: input: learning rates ¥1, . . . , ¥) > 0
2: :  0; arbitrary G1 2 ,
3: for C = 1 to ) do

4: if C = 2: then

5: :  : + 1
6: F̃:  ¶

⇣
1
C

P
C

B=1 GC

⌘
7: end if

8: Play FC = F̃: ; Observe 5C

9: GC+1  GC � ¥Cr 5C (GC )
10: end for

If we further assume losses sampled from F are ∏-strongly-convex, then running Algorithm 3 with
step size ¥C = 1/∏C guarantees S)  1 + log) and

R) 
⌧

2

∏
(1 + log))2

.

Proof. We prove for the general convex case; the arguments for the strongly convex case are similar
and thus omitted. Observe that the iterates GC maintained by the algorithm are just decision variables
of standard OGD with decreasing step ¥C = ⇡/⌧

p
C. By well known arguments (see e.g., Hazan,

2019) these obtain an any time C 2 [)] guarantee of

CX

B=1

5B (GB) � 5B (F)  2⇡⌧

p
C,

for any F 2 , . Therefore, we have for any C,

E [ 5C (F̃:) � 5C (F⇤)] 
1
2:

2:X

B=1

E [ 5C (GB) � 5C (F⇤)] =
1
2:

E

266664
2:X

B=1

5B (GB) � 5B (F⇤)
377775
 2⇡⌧

p
2:

2:
.

Now, set ): := min{2: ,) + 1} and we obtain

E

"
)X

C=1

5C (FC ) � 5C (F⇤)
#
=
blog) cX

:=0

):+1�1X

C=):

E [ 5C (F̃:) � 5C (F⇤)]  2⇡⌧

p
) (1 + log)),

which concludes the proof. ⌅

5. Lower bound for general convex losses

In this section, we establish an ≠ ()/() lower bound on the expected regret of any (-lazy algorithm
in the general convex setting. We denote by Ber? the Bernoulli distribution over {�1, 1} that takes
the value 1 w.p. ? 2 (0, 1), and by Ber 9

?
the joint distribution of 9 independent samples from Ber?.

First consider the standard unconstrained setup in the scalar case , = [�1, 1]. For ?, @ 2 (0, 1)
su�ciently close, an adversary that plays 5C (F) = 1CF, with 1C ⇠ Ber? is indistinguishable from

13
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one that draws 1C ⇠ Ber@, and an ≠(
p
)) bound may be established. In the lazy OCO setting, the

switching limit gives room for the adversary to repeat losses, e�ectively decreasing the amount of
samples revealed and thereby allowing for a larger deviation between the loss distributions while
maintaining their indistinguishability. Our next theorem provides a formal construction of this nature.
We give a proof sketch here and defer the complete version to the full version of the paper (Sherman
and Koren, 2021).

Theorem 9. For any ( 2 N, there exists a stochastic sequence of 1-Lipschitz convex losses over
, = [�1, 1], such that the expected regret of any (-lazy algorithm is ≠()/().
Proof (sketch ). Fix ) 2 N, and let A be an arbitrary (-lazy algorithm. Let ? 2 (0, 1), and we define
the F(?, () stochastic loss sequence as follows. Split the ) rounds into � := ⇠

2
(

2 sections with
ø := )/� consecutive rounds in each, where ⇠ 2 R is a universal constant that will be determined
later on. At the onset of each section 9 2 [�], draw a single sample 1 9 ⇠ Ber? and play 5C (F) = 1 9F

for all rounds C that belong to section 9 . Consider the minimizer of the expected cumulative loss of
F(?, ();

F
⇤ := arg min

F 2,
E
?

"
)X

C=1

5C (F)
#
.

Clearly, F⇤ can perform no better than the realized minimizer in hindsight, and therefore it su�ces
to prove a lower bound with respect to it. Now, set ≤ := 1

8⇠( and consider the two adversaries
defined by ?+ := (1 + ≤)/2 and ?� := (1 � ≤)/2, along with their corresponding minimizers F⇤+ and
F
⇤
�. Employing standard information theoretic arguments, we have that on any round where the

player’s decision FC and the loss 5C are independent, the regret incurred against at least one of these
adversaries will be ≠(≤);

E
?+

⇥
5C (FC ) � 5C (F⇤+)

⇤
� ≤

4
or E

?�

⇥
5C (FC ) � 5C (F⇤�)

⇤
� ≤

4
.

Importantly, since the player is allowed far fewer switches (() than there are sections (� = ⇠
2
(

2), it
follows that for most sections the player’s decision is indeed independent of the loss. Proceeding, we
consider the decomposition of the player’s regret into two terms R) = R?>B +R=46. The positive
regret term R?>B includes all rounds belonging to sections where the player did not switch. These
are precisely the rounds on which her decision is independent of the loss, and therefore by Lemma 16
a regret penalty of ≤/4 is su�ered owed to at least one of the adversaries. Recall S) denotes the
(random variable) number of switches performed, and observe

ER?>B � E

"
(� � S) )ø ≤4

2

#
�

(� � ()ø ≤4
2

=
)

64⇠(
� )

64⇠3
(

2
.

The negative regret term R=46 on the other hand, includes all other rounds belonging to sections
on which at least one decision switch was performed. The per round loss of A on these sections is
trivially bounded by �1, therefore ER=46 � �ES) ⇤ ø � �( ⇤ ø. Concluding, we obtain

ER) = E
⇥
R=46 +R?>B

⇤
� )

⇠(

✓
1
64
� 1

64⇠2
(

� 1
⇠

◆
,

and the result follows by a choice of ⇠ = 128. ⌅
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