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Abstract
The seminal result of Johnson and Lindenstrauss on random embeddings has been intensively stud-
ied in applied and theoretical computer science. Despite that vast body of literature, we still lack
of complete understanding of statistical properties of random projections; a particularly intriguing
question is: why are the theoretical bounds that far behind the empirically observed performance?

Motivated by this question, this work develops Johnson-Lindenstrauss distributions with op-
timal, data-oblivious, statistical confidence bounds. These bounds are numerically best possible,
for any given data dimension, embedding dimension, and distortion tolerance. They improve upon
prior works in terms of statistical accuracy, as well as exactly determine the no-go regimes for
data-oblivious approaches. Furthermore, the projection matrices are efficiently samplable.

The construction relies on orthogonal matrices, and the proof uses certain elegant properties of
the unit sphere. In particular, the following techniques introduced in this work are of independent
interest: a) a compact expression for the projection distortion in terms of singular eigenvalues of
the projection matrix, b) a parametrization linking the unit sphere and the Dirichlet distribution and
c) anti-concentration bounds for the Dirichlet distribution.

Besides the technical contribution, the paper presents applications and numerical evaluation
along with working implementation in Python (shared as a GitHub repository).
Keywords: Random Projections, Johnson-Lindenstrauss Lemma, Minimax Risk

1. Introduction

The seminal result of Johnson and Lindenstrauss (1984) on random embeddings is the cornerstone
tool in dimension reduction. It rigorously shows that euclidean distances are nearly preserved (low
distortion) when high-dimensional data are projected into a lower-dimensional space using a random
(appropriately sampled) matrix. What makes the random projections preferable in applications, over
other dimension reductions techniques such as the principal component analysis or the singular
value decomposition, are the speed, data-independence, and much stronger statistical guarantees
(see Menon (2007); Akselrod-Ballin et al. (2011); Vu (2016); Bandeira et al. (2017)).

The low-distortion property of random projections is very appealing and makes them popular
across many research areas. Among many applications one finds topics as diverse as functional
analysis (Johnson and Naor (2010)), combinatorics (Frankl and Maehara (1988)), signal process-
ing (Haupt and Nowak (2006)), proximity search Ailon and Chazelle (2006); Indyk and Motwani
(1998), low-rank matrix approximations (Nguyen et al. (2009); Clarkson and Woodruff (2017);
Ubaru et al. (2017)), learning theory (Arriaga and Vempala (2006)), feature hashing (Weinberger
et al. (2009)), image hashing (Lv and Wang (2008)), classification (Rahimi et al. (2007); Ghalib
et al. (2020)), regression (Maillard and Munos (2012)), face recognition (Goel et al. (2005)), text
mining (Bingham and Mannila (2001); Lin and Gunopulos (2003); Ben-David et al. (2007)), clus-
tering (Boutsidis et al. (2010); Tasoulis et al. (2014); Boutsidis et al. (2014); Makarychev et al.
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(2019); Becchetti et al. (2019)), data storage (Candes (2008); Cormode and Indyk (2016)) and pri-
vacy (Blocki et al. (2012); Kenthapadi et al. (2013)).

Our focus is on the statistical guarantees of the Distributional Johnson-Lindenstrauss Lemma.
The result states that for every data dimension m and the embedding dimension n there exists a
random matrix A of shape n × m (explicitly samplable), such that for every non-zero data input
x ∈ Rm, and relative tolerance 0 < ε < 1

2 , the euclidean norm is ε-preserved with high confidence,
provided that n is sufficiently big. Formally:

PA
[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
6 e−Ω(nε2). (1)

This work tackles the challenge of constructing random projections with the smallest possible dis-
tortion probability defined as above, given data dimension m, embedding dimension n, and distor-
tion ε.

1.1. Related Work

There have been several works on simplifying the proof and improving the provable confidence,
namely: Johnson and Lindenstrauss (1984); Frankl and Maehara (1988); Indyk and Motwani (1998);
Achlioptas (2003); Dasgupta and Gupta (2003); Matoušek (2008). The best, up to date, upper
bound for the distortion probability above is 2 exp

(
−nε2

4 ·
(
1− 2ε

3

))
Indyk and Motwani (1998);

Achlioptas (2003) achieved for scaled Gaussian or Rademacher matrices. ; in other words the expo-
nent is nearly 1

4 for small distortions ε. As for the impossibility results, we know that no distribution
with n < m/2 can achieve distortion probability smaller than exp(−O(nε2 + 1)) for some un-
specified constant ( Alon (2003); Kane et al. (2011); Jayram and Woodruff (2013)). Regarding this
hidden constant, it has been recently shown in Burr et al. (2018) that it cannot be better, for any con-
struction, than 1

4 in some restricted asymptotic regimes, namely when ε→ 0, nε2 → +∞ and when
n
m → 0. Interestingly, the evaluation experiments (see for example Venkatasubramanian and Wang
(2011); Fedoruk et al. (2018)), found theoretical guarantees far behind the observed performance.

The above discussion summarizes the state-of-art on confidence bounds, which is the subject of
this paper. However, for readers interested in a broader scope of research on random projections,
we would like to briefly discuss other lines of research. There are many works on trading the sta-
tistical accuracy for certain algorithmic properties, such as sparsity and faster sampling (Dasgupta
et al. (2010); Ailon and Liberty (2013); Kane and Nelson (2014); Cohen et al. (2018)) or specific
matrix patterns (Allen-Zhu et al. (2014); Freksen and Larsen (2020)); these properties can be some-
what improved under certain structural properties of datasets, if known in advance (Bourgain et al.
(2015)). Another trade-off is to extend the class of sampling distributions as much as possible (e.g.
sub-gaussian matrices) as done by Matoušek (2008); Boucheron et al. (2003).

We also note that for certain datasets and for some parameter regimes, it is possible to slightly
improve upon the DJL Lemma using non-random embeddings constructed combinatorically (Nel-
son et al. (2014); Larsen and Nelson (2016)); these however are more of theoretical interests, and
generally in theory and practice DJL constructions are preferred, because of their data oblivious
properties (particularly useful for streaming, distributed and parallel computing).
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2. Results

2.1. Main Result: Characterizing Best Confidence

We study the optimal error probability in (1), given as the min-max program:

δBest(m,n, ε) = inf
A∈P(Rn×m)

sup
x∈Rm

PA∼A
[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
. (2)

Since we maximize over the m-dimensional data inputs x, and minimize over all the possible sam-
pling distributions A for a projection from the dimension m to n, this gives the best possible con-
fidence bounds for the (oblivious) DJL Lemma. It may be convenient to think of this program as a
two-player game: we seek for the best projection (minimizing over the distribution of the matrix),
while the adversary controls the data and is seeking for the malicious input.

Our main contribution shows that the ideal bound above is achievable, characterizes it, and de-
velops an explicit sampler. Note that even the existence of a distribution achieving exactly (not
approximately) the best bound is not trivial, because we deal with doubled optimization including
distributions with unbounded support. As for the significance, our optimal confidence bound com-
pletes the line of research on improving the data-oblivious Distributional JL Lemma, establishing
the numerically (not asymptotically) sharp no-go result.

We explain the notation, before stating our result. By Beta(a, b) we denote the Beta distribu-
tion with shape parameters a, b; it has the cumulative distribution B(z; a, b)/B(1; a, b) where the
incomplete Beta function is defined asB(z; a, b) ,

∫ z
0 z

a−1(1−z)b−1dz ((DLMF, 8.17)). ByO(d)
we denote the set of orthogonal matrices of shape d×d and In,m denotes the matrix of shape n×m
with ones on the principal diagonal and zeros elsewhere (generalizing the identity matrix).

Theorem 1 (Best Oblivious DJL Confidence) Let 1 6 n < m be integers, and 0 < ε < 1
2 . Then

the best value in (2) is achievable and equals:

δBest(m,n, ε) = 1−max
λ

P
[
(1− ε)λ 6 Beta

(
n

2
,
m− n

2

)
6 (1 + ε)λ

]
. (3)

Furthermore, let λ be the maximizer of the right-hand side, U ∼ O(n), and V ∼ O(m) be sampled
uniformly and independently. Then

ABest = λ−1/2 · U · In,m · V T (4)

is the random matrix which achieves the best value δBest(m,n, ε).

The prior results on confidence and our formula are summarized in Table 1. The step-by-step
sampler construction is presented in Algorithm 1.

Remark 2 (Optimality under Worst vs Average Choice) We define the best confidence in terms
of a min-max problem, so that the construction is optimal under the worst choice of the input.
However, the proof actually establishes more, namely that the confidence cannot be improved even
under the average choice from the unit sphere (related to the use of Yao’s Min-Max Principle).
The uniform distribution on the sphere can be seen as the non-informative prior, perfectly suited to
model the oblivious setup (only the input scale is known).
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Author Error Upper Bound Error Lower Bound Restriction

Johnson and Lindenstrauss (1984) 2 exp(−Ω(nε2)) ?

Frankl and Maehara (1988) 2 exp
(
−nε2

9 (1 +O(ε))
)

?

Indyk and Motwani (1998); Achlioptas (2003) 2 exp
(
−nε2

4 (1 +O(ε))
)

?

Alon (2003) exp(−O(nε2 log(1
ε ))) n < m

2

Kane et al. (2011) exp(−O(nε2)) n < m
2

Jayram and Woodruff (2013) exp(−O(nε2)) n < m
2

Burr et al. (2018) exp
(
−nε2

4 (1 + o(1))
)

nε2→∞
ε, n

m
→0

this work 1−maxλ P
[
(1− ε)λ 6 Beta

(
n
2 ,

m−n
2

)
6 (1 + ε)λ

]
None

Table 1: Confidence error δBest(m,n, ε) (Distortion Probability) in DJL.

Input: Data dimension m, Embedding dimension n, Tolerance ε
Result: Best Oblivious DJL Matrix ABest

/* find the scaling factor */
λ← argmaxλP

[
(1− ε)λ 6 Beta

(
n
2 ,

m−n
2

)
6 (1 + ε)λ

]
/* sample orthogonal matrices, uniformly & independently */

V ∼ O(m), U ∼ O(n)
/* build the projection */

A← λ−
1
2UIn,mV

T

return A
Algorithm 1: Best Sampler for Oblivious DJL Lemma.

Remark 3 (Parameter regimes) Note that δBest(m,n, ε) = 0 for n > m trivially (take the identity
matrix asA); this regime is not interesting, as there is no dimension reduction. The interesting cases
n < m are fully addressed by the result; note that the optimal distribution depends on m,n, ε.

Remark 4 (Construction) The sampler is built on appropriately scaled orthogonal matrices; there
exist algorithms for efficiently sampling such matrices, see for example Stewart (1980); Genz (2000).
The scaling factor is chosen carefully as a solution to the one-dimensional numerical optimization
problem (3); since the objective derivative can be explicitly calculated and the optimal point lies
in the interval

(
0, 1

1−ε

)
, the program can be readily solved by modern data-science software, for

example using R or Python. Below in Listing 1 we demonstrate the implementation in the SciPy
library for Python1. The optimization task can be best explained and interpreted geometrically, as
visualized in Figure 1.

Remark 5 (Closed-form Approximation) We have exactly characterized best confidence. How-
ever, we mention the following, more readable and nearly sharp, convenient bounds:

min {P[B > (1 + ε)E[B]], P[B < (1− ε)E[B]]} 6 δBest(m,n, ε)

δBest(m,n, ε) 6 P[B > (1 + ε)E[B]] + P[B < (1− ε)E[B]],
(5)

1. The full implementation and all examples is available at https://github.com/maciejskorski/
confidence_optimal_random_embed
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where we denote B = Beta
(
n
2 ,

m−n
2

)
. The proof of this fact appears later, in the discussion of

applications.
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Figure 1: The maximal statistical error equals the maximal area under the beta probability density,
captured by an interval of form [λ(1− ε), λ(1 + ε)]. The beta shape is a = n

2 , b = m−n
2 .

In the picture n = 10,m = 20, the optimal value is λ ≈ 5
9 for small ε.

Listing 1: Numerically Finding Optimal Confidence and Scaler (3)
from s c i p y . o p t i m i z e import minimize
from s c i p y . s t a t s import b e t a

def o p t i m a l d j l (m, n , eps ) :
’ ’ ’ c o n f i d e n c e − o p t i n a l samp ler f o r DJL ’ ’ ’
a = n / 2
b = (m−n ) / 2
z0 = a / ( a+b )
d i s t = b e t a ( a , b )
fun = lambda z : − d i s t . c d f ( ( 1 + eps )* z )+ d i s t . c d f ( (1 − eps )* z )
b e t a i n c j a c = lambda z : d i s t . pdf ( z )
j a c = lambda z : −(1+ eps )* b e t a i n c j a c ( ( 1 + eps )* z )+(1 − eps )* b e t a i n c j a c ( (1 − eps )* z )
o u t = min imize ( fun , x0=z0 , j a c = j a c , method= ’ Newton −CG’ )
s c a l e , d e l t a = o u t . x ,1+ o u t . fun
re turn s c a l e , d e l t a

2.2. Techniques of Independent Interest

The proof of Theorem 1 builds on three elegant facts of broader interest. Below we abstract them
as independent results and discuss in more detail.

2.2.1. EXPLICIT DISTORTION WITH LATENT SINGULAR VALUES

Since the matrix product scales linearly with the input norm, the DJL Lemma reduces to the question
about measure concentration on the unit sphere. In fact we know that random sphere points tend to
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be ”hardest” (giving the worst confidence) for the DJL Lemma, as shown by an application of the
Yao (Kane et al. (2011); Burr et al. (2018)). The core of our approach is the observation that the
distortion on the random sphere point can be very conveniently expressed (as a diagonal quadratic
form) in terms of the matrix singular eigenvalues. This is formally stated below.

Theorem 6 Let X = (X1, . . . , Xm) be uniformly distributed on the unit sphere. Let A be any
n×m random matrix independent of X , where n 6 m, and λ1, . . . , λn be the eigenvalues of AAT .
Then the following holds:

‖AX‖22 ∼
n∑
k=1

λkX
2
k . (6)

Remark 7 The matrix AAT is positive semi-definite (it is the so called Grammian matrix Deza and
Laurent (1997)), so the eigenvalues λk are non-negative.

2.2.2. SPHERE SAMPLING WITH DIRICHLET DISTRIBUTION

To effectively handle calculations on the unit sphere, we develop the parametrization linking it to the
Dirichlet Distribution. This is a novelty in the context of other works that used complicated sphere
paramaterizations, formally justified by calculus on differential forms (Kane et al. (2011); Burr et al.
(2018)), and in a wider context of sphere samplers, very important to Monte Carlo methods, as it
is not addressed by extensive surveys (Roberts (2019)). In the theorem below, by Dirichlet(α) we
denote the Dirichlet distribution with the vector parameter α.

Theorem 8 Let (X1, . . . , Xm) be uniform on the unit sphere in Rm. Then:

(X2
1 , . . . , X

2
m) ∼ Dirichlet

(
1

2
1m

)
(7)

where 1m denotes the vector of m ones.

Remark 9 Let Zk = X2
k and (εk)k be independent Rademacher variables (that is ±1 with equal

probability). Then (εk
√
Zk)k is uniform on the unit sphere, as illustrated by the numerical simula-

tion shown in Figure 2.

2.2.3. ANTI-CONCENTRATION OF DIRICHLET DISTRIBUTION

The following result establishes sharp anti-concentration bounds for weighted sums of components
of Dirichlet’s distribution. This is of broader interest due to the popularity of Dirichlet distribution
in statistics; such weighted sums appear in many applications (for a detailed discussion, see for
example Provost and Cheong (2000)).

Theorem 10 LetZ = (Z1, . . . , Zm) follow the Dirichlet distribution with parameters (α1, . . . , αm).
Let W = (W1, . . . ,Wm) be a vector of any non-negative random variables independent of Z. Then
for any non-empty and strict subset I of {1 . . .m} and real numbers 0 < p < q the following holds:

min
W

P

[∑
k∈I

WkZk 6∈ [p, q]

]
= 1−max

z>0
[pz 6 Beta(a, b) 6 qz] , (8)

where a =
∑

i∈I αi and b =
∑

i 6∈I αi, and Beta(a, b) is the Beta distribution.

6
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Figure 2: Sampling the unit sphere according to Theorem 8, in m = 3 dimensions.

2.3. Applications

2.3.1. DIMENSION ESTIMATION FOR DATA SCIENCE USAGE OF RANDOM PROJECTIONS

A good practice is to conservatively estimate the dimension before compressing the data with ran-
dom projections. The DJL Lemma combined with a a union bound gives then provable guaran-
tees. Such tests are implemented in modern data-science software, for example in the popular
Scikit-learn library for Python (Pedregosa et al. (2011)). The problem with currently avail-
able bounds is that they are based on overly conservative estimates from prior works, which creates
the false impression that random projections should not be used. Our bounds give the more accurate
answer, as illustrated in Figure 3 (the best previous bounds used for comparison are from Indyk and
Motwani (1998); Achlioptas (2003)). The Python code is available in Appendix A.

2.3.2. DEPENDENCY ON FEATURE DIMENSION

Prior works have studied versions of DJL Lemma that are data-dimension independent. However,
even if we make no prior assumptions on the data structure, its dimension is known; is thus interest-
ing to see the impact of the data dimension. This impact can be seen with the help of our optimal
bounds; below in Figure 4 we show that knowing the data dimension helps improving the bound,
with considerable impact when the dimension is of moderate magnitude.

2.3.3. CLOSED-FORM UPPER BOUNDS ON CONFIDENCE

Let B = Beta
(
n
2 ,

m−n
2

)
. Instead of optimizing numerically the bound in Theorem 1, let us special-

ize λ = E[B]. This way we obtain the following convenient upper-bound

δBest(m,n, ε) 6 Pr[|B − E[B]| > εE[B]], (9)

7
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Figure 3: The minimal embedding dimension nwhich guarantees distortion ε 6 0.2 for all pairwise
distances of the given number of data points x.
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Figure 4: The minimal embedding dimension n which guarantees distortion ε 6 0.2 for all pair-
wise distances of the given number of data points x. The results are better (that is, the
embedding dimension is smaller) when the data dimension m is smaller.

which is very close to the optimal value, but does not involve optimization. The comparison of the
approximate and exact bounds is given in Figure 5.

2.3.4. LOWER BOUNDS (IMPOSSIBILITY RESULTS) ON CONFIDENCE

Again, let B = Beta
(
n
2 ,

m−n
2

)
. Then δBest(m,n, ε) = minλ Pr[B 6∈ [λ(1− ε), λ(1 + ε)]]. Further,

Pr[B 6∈ [λ(1− ε), λ(1 + ε)]] = Pr[B < (1− ε)λ] + Pr[B > (1 + ε)λ]. Considering that for any λ
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Figure 5: The minimal embedding dimension n with distortion ε 6 0.2 for all pairwise distances
of the data points: exact (Theorem 1) and approximate (Theorem 5) bounds.

it holds that either λ 6 E[B] or λ > E[B], we obtain:

δBest(m,n, ε) > min {P[B > (1 + ε)E[B]],P[B < (1− ε)E[B]]} . (10)

This lower bound implies impossibility results obtained in prior works by Kane et al. (2011) and
Burr et al. (2018) (when combined with accurate approximations for tails of the beta distribution,
such as those in (Zhang and Zhou (2020)).

Note that taking into account the previous upper bound, we prove Theorem 5.

2.3.5. USE AS BENCHMARK

The fact that our result is numerically optimal for data-oblivious setup, and also easy to explicitly
compute, makes it a perfect reference tool. When comparing the theoretical and empirical per-
formance (such as in works of Venkatasubramanian and Wang (2011); Fedoruk et al. (2018)), our
Theorem 1 now clarifies how big that gap actually is. Similarly for theoretical research, quantifying
the best possible oblivious bound serves as a reference point for non-oblivious approaches, and also
determines the range of possible improvements.

3. Proofs

3.1. Proof of Theorem 1

Define

g(m,n, ε) , 1−max
λ

P
[
Beta

(
n

2
,
m− n

2

)
∈ [λ(1− ε), λ(1 + ε)]

]
. (11)

It suffices to show that

inf
A∈P(Rn×m)

sup
x∈Rm

PA∼A
[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
= g(m,n, ε). (12)

9
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We first prove that forA = ABest sampled as described in Theorem 1, and every fixedm-dimensional
non-zero vector x the following holds:

PA
[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
= g(m,n, ε), (13)

which in turn implies that the inequality ”6” holds in (12).
We observe that the condition under the probability is homogeneous (quadratic in ‖x‖2), thus

we can restrict ‖x‖2 = 1. Now x is on the unit sphere Sm−1, and thus X = V Tx is uniformly
distributed on Sm−1, because V is orthogonal. We can write Ax = A′X where A′ = λ−

1
2 · UIm,n.

Then A′A′T = λ−1UIn,mI
T
n,mU

T = λ−1UIn,nU
T = λ−1UUT = λ−1In,n, where we used the

structure of In,m and the orthogonality of U . Now by Theorem 6 we obtain:

‖Ax‖22 ∼ λ−1
n∑
k=1

X2
k . (14)

Combining this with Theorem 8, for Z ∼ Dirichlet
(

1
21m

)
we obtain that for every non-zero x:

PA
[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
= 1− P

[
1− ε 6 λ−1

n∑
k=1

Zk 6 1 + ε

]
. (15)

By the properties of the Dirichlet distribution (Albert and Denis (2012)) we have that
∑n

k=1 Zk ∼
Beta(a, b) with a = n

2 and b = m−n
2 . Thus, by the definition of λ, we conclude that the right-side

equals g(m,m, ε).
In the second part we show that for every fixed matrix A we have:

Px∼Sm−1

[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
> g(m,n, ε), (16)

where Sm−1 denotes unit sphere in m-dimensions; this establishes the inequality ”>” in (12) (by
replacing the expectation over x with the maximum and taking the expectation over the distribution
ofA). LetX be uniform on Sm−1. Let λ1, . . . , λn be the eigenvalues ofAAT (they are deterministic
numbers). Then:

‖AX‖22 ∼
n∑
k=1

λkX
2
k . (17)

Combining this with Theorem 8, for Z ∼ Dirichlet
(

1
21m

)
we obtain:

Px∼Sm−1

[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
= 1− P

[
1− ε 6

n∑
k=1

λkZk 6 1 + ε

]

= P

[
n∑
k=1

λkZk 6∈ [1− ε, 1 + ε]

]
.

(18)

Regardless of the choice of λk, by Theorem 10 we get the lower bound:

Px∼Sm−1

[
|‖Ax‖22 − ‖x‖22| > ε‖x‖22

]
> 1−max

λ
P [λ(1− ε) 6 B 6 λ(1 + ε)] , (19)

where B = Beta
(
n
2 ,

m−n
2

)
. This completes the proof, since the expression on the right-hand side

equals g(m,n, ε).

10
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3.2. Proof of Theorem 8

The Dirichlet distribution Z = (Z1, . . . , Zm) with parameters 1
21m can be sampled as Zk =

Γk/
∑n

i=1 Γi, where Γi are independent and follow the Gamma distribution with the parameters:
shape a = 1

2 and the rate b = 1 (Albert and Denis (2012)). We next observe that Γi ∼ 1
2χ1, where

χ1 is the chi-squared distribution with 1 degree of freedom (Thom (1958)). By definition, χ1 ∼ N2

where N is the standard normal random variable. Therefore, we obtain:

Zk ∼
1
2N

2
k∑m

i=1
1
2N

2
i

=
N2
k∑m

i=1N
2
i

, Ni ∼iid Norm(0, 1). (20)

We now recall that the normalized normal vector generates the uniform measure on the sphere (see
Muller (1959); Marsaglia et al. (1972). ); more precisely if (X1, . . . , Xm) is the uniform distribution
on the sphere, then  Nk√∑m

i=1N
2
i

m

k=1

∼ (Xk)
m
k=1, (21)

and combining this with the previous equation we get

(Zk)
m
k=1 ∼ (X2

k)mk=1, (22)

so the result follows.

3.3. Proof of Theorem 6

By the SVD decomposition (see Stewart (2001)) we have A = UΣV T where U, V are orthogonal
with shapes n × n and m ×m respectively, and Σ is an n ×m diagonal (rectangular) matrix with
real values σ1, . . . , σn on the principal diagonal (recall that n 6 m). Using the orthogonality of U
and V we obtain:

‖AX‖22 = ‖UΣV TX‖22
= ‖ΣV TX‖22.

(23)

Since V is orthogonal, so is V T . Since X is uniform on the unit sphere and independent of V
and Σ, we see that V TX conditioned on the pair Σ, V is also uniform on the unit sphere and thus
distributed as X:

V TX|Σ, V ∼ X, (24)

as the sphere uniform measure is invariant under orthogonal transforms. Combining the two equa-
tions above we express the squared distance ‖AX‖2, conditioned on Σ and V , as follows:

‖AX‖22
∣∣Σ, V ∼ ‖ΣX‖22, (25)

and since the right-hand side does not depend on V , this gives:

‖AX‖22 ∼ ‖ΣX‖22 =

n∑
k=1

σ2
kX

2
k . (26)

11
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It remains to observe that

diag(σ1, . . . , σn)2 = ΣΣT , (27)

and, because V and U are orthogonal, that:

AAT = UΣΣTUT = UΣΣTU−1. (28)

Thus, we see that λk = σ2
k are eigenvalues of AAT .

3.4. Proof of Theorem 10

Let Z = (Z1, . . . , Zm) follow the Dirichlet distribution with parameters (α1, . . . , αm). Let I ⊂
{1 . . .m} and J = {1 . . .m} \ I; by the self-normalizing properties (see Albert and Denis (2012)):

1∑
i∈I Zi

(Zi)i∈I

∣∣∣∣ (Zi)i∈J ∼ Dirichlet((αi)i∈I). (29)

Since
∑m

i=1 Zi = 1, we have that
∑

i∈I Zi = 1−
∑

i∈J Zi depends only on the components (Zi)i∈J .
Therefore, from the above identity we obtain:

1∑
i∈I Zi

(Zi)i∈I

∣∣∣∣∑
i∈I

Zi ∼ Dirichlet((αi)i∈I). (30)

Further, by the proportion properties Albert and Denis (2012):

∑
i∈I

Zi ∼ Beta

(∑
i∈I

αi,
∑
i∈J

αi

)
. (31)

Let B,D be such that D ∼ Dirichlet((αi)i∈I), B ∼ Beta
(∑

i∈I αi,
∑

i∈J αi
)

and that random
variables B,D,Z,W where W = (W1, . . . ,Wm) are independent (this is possible, since Z,W are
independent). By the two equations above :

(Zi)i∈I ∼ B ·D. (32)

Now, for any deterministic scalar vector w = (wi)i∈I it holds that:∑
i∈I

wiZi ∼ B ·
∑
i∈I

wiDi. (33)

Since (Wi)i∈I is independent of B,D,Z we obtain:∑
i∈I

WiZi ∼ B ·
∑
i∈I

WiDi. (34)

Consider now any fixed numbers 0 < p < q. Denote U = 1∑
i∈I WiDi

, then:

P

[∑
i∈I

WiZi ∈ [p, q]

]
= PB,U [pU 6 B 6 qU ] . (35)

12
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Since B,U are independent, we have PB,U [pU 6 B 6 qU ] = Eu∼UPB [pu 6 B 6 qu] and thus

P

[∑
i∈I

WiZi ∈ [p, q]

]
6 max

u>0
P[pu 6 B 6 qu], (36)

with the equality when P[U = u∗] = 1 where

u∗ = argmaxuPB [pu 6 B 6 qu] . (37)

The upper bound is indeed achieved with the following choice of W :

∀i ∈ I : Wi =
1

·u∗
, (38)

because then U = 1∑
i∈I Di/u∗

= u∗, we use
∑

i∈I Di = 1. Thus, we have shown

max
W

P

[∑
i∈I

WiZi ∈ [p, q]

]
= max

u>0
P[pu 6 B 6 qu]. (39)

Since minW P
[∑

i∈IWiZi 6∈ [p, q]
]

= 1−maxW P
[∑

i∈IWiZi ∈ [p, q]
]
, the result follows.

4. Conclusion

This work constructed the confidence-optimal Distributional Johnson-Lindenstrauss distribution;
the optimal bounds and the sampler are built based on the solution of a 1-dimensional optimization
program involving the Beta distribution. With best bounds clearly established, the only way to
improve further is by non-oblivious bounds.

In our approach the critical role play the techniques for handling the distortion probability on
the unit sphere, the sphere parametrization using the Dirichlet distribution, and anticoncentration
inequalities for the Dirichlet distribution. These techniques are of independent interest.
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Appendix A.

Listing 2: Minimal Dimension Bounds for JL Lemma
import numpy as np
from scipy.optimize import bisect
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from matplotlib import pyplot as plt

def optimal_djl_dim(N,m,eps):
’’’ optimal dimension with many data points ’’’
fun = lambda n: optimal_djl(m,n,eps)[1]-2/(N*(N-1))
return bisect(fun,10,m-10)

m = 1e5
eps = 0.2
sample = np.linspace(10,1000,100)
my_dim = [optimal_djl_dim(N,m,eps) for N in sample]
plt.plot(sample,my_dim,label=’our bound’)
their_dim = [johnson_lindenstrauss_min_dim(N,eps) for N in sample]
plt.plot(sample,their_dim,label=’previous bound’)
plt.legend()
plt.show()

Listing 3: Impact of Data Dimension for JL Lemma
eps = 0.2
sample = np.linspace(10,1000,100)

my_dims = []

for m in [1e3,1e4,1e5]:
my_dim = [optimal_djl_dim(N,m,eps) for N in sample]
my_dims.append(my_dim)
plt.plot(sample,my_dim,label=’%s’%m)

plt.legend()
plt.show()

Listing 4: Sampling Sphere with Dirichlet Distribution
from matplotlib import pyplot as plt
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from mpl_toolkits.mplot3d import axes3d
from scipy import stats

def sample_dirichlet(size=1,dim=3):
w = stats.dirichlet(0.5*np.ones(dim)).rvs(size=size)
sign = np.random.choice([-1,1],size=(size,dim),p=[0.5,0.5])
return sign*w**0.5

fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, projection=’3d’)

u = np.linspace(0, 2 * np.pi, 120)
v = np.linspace(0, np.pi, 60)
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x, y, z, rstride=1, cstride=1, color=’c’, alpha = 0.3, linewidth = 0)

xi, yi, zi = sample_dirichlet(1000).T
ax.scatter(xi, yi, zi,color="k",s=3)
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