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Abstract
In this paper, we consider variational autoencoders (VAE) via empirical Bayes estimation, referred
to as Empirical Bayes Variational Autoencoders (EBVAE), which is a general framework including
popular VAE methods as special cases. Despite the widespread use of VAE, its theoretical aspects
are less explored in the literature. Motivated by this, we establish a general theoretical framework for
analyzing the excess risk associated with EBVAE under the setting of density estimation, covering
both parametric and nonparametric cases, through the lens of M-estimation. As an application, we
analyze the excess risk of the commonly-used EBVAE with Gaussian models and highlight the
importance of covariance matrices of Gaussian encoders and decoders in obtaining a good statistical
guarantee, shedding light on the empirical observations reported in the literature.

1. Introduction

A wide variety of machine learning problems can be framed as directed probabilistic inference in
generative models (Jebara and Meila, 2006), especially when we care about modeling and efficient
sampling from complex distributions such as those over natural images and text (Yang et al., 2017;
Brock et al., 2018; van den Oord et al., 2016). Variational autoencoder (VAE) (Kingma and Welling,
2013; Rezende et al., 2014) replaces conventional instance-specific local inference with a global
inference network and therefore enables efficient training of deep generative models. In plain
language, a latent variable generative model defines a joint density p(x, z) over the data space X and
the latent space Z by specifying a prior π(z) over latent variables and a conditional density p(x|z)
of data given latent variables. Typically we aim at learning pD(x) over data space, based on a finite
number n of samples {xi}ni=1, assumed to be drawn from it. In most cases, maximizing the average
marginal log-likelihood of the data is difficult, as the marginal likelihood functions are intractable due
to the integral for marginalizing out latent variables (Kingma and Welling, 2013). VAE overcomes
this issue by introducing a family of inference distributions q(z|x) for approximating the posterior of
latent variables given the data and jointly optimizing the so-called evidence lower bound (ELBO,
Ormerod and Wand, 2010) as in the variational Bayes methods. From a coding theory perspective,
the unobserved latent variables can be interpreted as a latent representation or code (Kingma and
Welling, 2013). Therefore, the inference distribution q(z|x) can be interpreted as a probabilistic
encoder, and the conditional distribution p(x|z) of data given latent variables can be interpreted as a
probabilistic decoder.

VAE has received great success in generating complicated data, including images (Gregor et al.,
2015; Kulkarni et al., 2015), molecules (Segler et al., 2017), text (Yang et al., 2017), and predicting
the future from static images (Walker et al., 2016). However, as empirically observed in Tomczak
and Welling (2017), VAE with a standard multivariate Gaussian prior tends to underfit the data. We
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thus consider a broader class of VAE via empirical Bayes estimation. Specifically, we incorporate
hyperparameters in the prior over latent variables, and jointly optimize the prior with the encoder and
the decoder. We call this framework Empirical Bayes Variational Autoencoders (EBVAE), which
includes popular VAE variants “VampVAE” (Tomczak and Welling, 2017) and “LARSVAE” (Bauer
and Mnih, 2018) as two representative examples. In the statistical literature, density estimation (Sil-
verman, 1986; Sheather, 2004) has been an important topic in both nonparametric statistics and
parametric statistics, and its hardness in terms of minimax optimal rate of convergence has been
understood fairly well for a wide range of density functions under smoothness constraints (Stone,
1982). Despite the celebrated empirical success, little general theory has been developed to investigate
statistical properties of VAE or more broadly, EBVAE (Doersch, 2016). In this paper, we undertake
this task and focus on the theoretical front to answer: how well can EBVAE learn the target density
pD(x) under different choices of prior families, encoder families, and decoder families.

1.1. Related Work

In the original formulation of VAE, the prior is chosen to be the standard multivariate Gaussian
and the encoder is optimized over a Gaussian family (Kingma and Welling, 2013), which may lead
to poor performance when applied to complex datasets because of model misspecification. Many
approaches have been developed to increase the model capacity by either using a more flexible
encoder family (Rezende and Mohamed, 2015; Kingma et al., 2016) or choosing a more expressive
family of the priors (Chen et al., 2016; Guillemin and Pollack, 2010). Tomczak and Welling (2017)
have shown that the prior minimizing the objective function of VAE is given by the corresponding
aggregated posterior 1

n

∑n
i=1 q(z|xi) with q(z|x) being the encoder. In view of this fact, some

studies (Tomczak and Welling, 2017; Bauer and Mnih, 2018) considered prior families that aim to
approximate the aggregated posterior, which can be seen as special cases of prior parametrization
within the framework of EBVAE.

On the theoretical side, Liang (2018) studied the rates of convergence for learning generative
models using Generative Adversarial Networks (GAN, Goodfellow et al., 2014). They provided a
comprehensive statistical treatment of GAN in which the generator and discriminator are parametrized
by neural networks. Unlike GAN which aims at achieving an equilibrium between the generator and
the discriminator, EBVAE aims at maximizing a variational lower bound to the data log-likelihood
and possess an encoder-decoder type interpretation. In this work, we develop a general theoretical
framework to characterize the excess risk of EBVAE as a generative model learning approach for
density estimation covering both parametric and nonparametric cases. A most relevant work to ours
is Doersch (2016), where they analyzed the approximation error associated with the population level
objective function of VAE for one-dimensional data when Gaussian encoders and decoders are used,
they found that the approximation error will go to zero if the standard deviation (noise level) of the
data given latent variables vanishes, given that the approximation families of mean functions and
covariance functions of the Gaussian models have enough capacity. In our study, we give a excess
risk bound on the estimator arising from EBVAE with Gaussian models, which includes a term
depend on the sample size due to random fluctuations and therefore enables us to study the finite
sample performance of the EBVAE estimator (c.f. Theorem 7).

1.2. Summary of Contributions

Below is a summary of our main theoretical contributions in the paper.

2



ON EMPIRICAL BAYES VARIATIONAL AUTOENCODER: AN EXCESS RISK BOUND

1. We provide the first rigorous theoretical analysis to the excess risk of EBVAE.
Despite the empirical success of VAE, to the best of our knowledge, there is no general theory about
the statistical properties of the resulting estimator. A systematic theoretical study on VAE enables
practitioners to be aware of whether their resulting estimators are reliable and provide guidance
on how to set the best hyperparameters and approximation families in concrete situations. In this
study, we address the problem by giving a general statistical framework to analyze the excess risk
for learning densities using EBVAE. The key insight of our work comes from representing the
EBVAE estimator as an M-estimator (see for example, Chapter 5 of Vaart (1998)). Once we make
the connection, we can leverage the rich toolkit of theoretical and methodological results available
for this context. We develop novel oracle inequalities (c.f. Theorem 1) that provide general tools
to verify the statistical accuracy of estimators arising from EBVAE and give insight about which
decoder families, encoder families and prior families yield consistency.

2. As an application, we analyze the risk of estimators derived from the commonly-used EBVAE with
Gaussian encoders and decoders in Theorem 7.
The theory we established for EBVAE estimators with Gaussian models highlights the importance
of the covariance matrix of the Gaussian encoder, which is often chosen as a diagonal matrix in
practice. For example, our theory suggests that the approximation error of EBVAE with Gaussian
encoders is strictly related to the model of covariance matrices of encoders, misspecifying the
off-diagonal elements will introduce extra errors. As an implication, the covariate parameters of
Gaussian decoders, which are often chosen to be independent of the data in advance, should be
jointly optimized with other parameters. This explains the reason why Vanilla VAE models tend to
produce unrealistic, blurry samples when applied to complex datasets of natural images (Dosovitskiy
and Brox, 2016). As another implication of our theory, the limited capacity of parametric families
such as Gaussians suggests the necessity of using more complicated encoder/decoder models and
thus we follow the classic nonparametric literature by considering a broad class of nonparametric
families characterized by smoothness levels, and quantify the accompanied approximation error and
estimation error.

3. We build a uniform law with a data-dependent complexity specifically tailored to handle the
unbounded loss function associated with EBVAE.
Due to our delicate localization technique in the proof, we obtained a “fast rate” (i.e. n−1 rate in case
of parametric models) without assuming the boundedness of loss function (w.r.t. data x) as opposed
to a “slow rate” (i.e. n−1/2). This is achieved by our key localization Lemma 12 and Lemma 13.
Specifically, Lemma 12 provides a “maximal” type inequality for controlling the supreme of an
unbounded empirical process specifically constructed for dealing with the loss function involving the
Killback-Leibler divergence.This inequality captures the local fluctuation behavior of our empirical
loss function via the variance of the increments of an empirical process. Its proof involves non-trivial
applications of many empirical process techniques such as chaining and peeling. Lemma 13 provides
an upper bound to the local Rademacher complexity (Bartlett et al., 2005) associated with unbounded
functions, which enables us to deal with the unbounded loss function associated with EBVAE.

4. We take the low-dimensional structure of data space into account and illustrate that EBVAE can
benefit from the underlying submanifold structure.
Specifically, our results for EBVAE with Gaussian encoders/decoders (c.f. Theorem 7) show the
adaptiveness of EBVAE to lower-dimensional submanifold structures so that the bound does not
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suffer from the “curse of dimensionality”. This is achieved by our Lemma 17 that provides an error
bound of ReLU neural networks for approximating smooth functions with domain being close to a
dz-dimensional submanifold and Lemma 18 that gives an explicit dependence of the excess risk and
approximation error of EBVAE estimators on the variance of the data given latent variables.

1.3. Notations.

We summarize some necessary notations and definitions here. We use X ⊆ Rdx and Z ⊆ Rdz
to denote the data space and the latent space, p(x|z) to denote the decoder, q(z|x) to denote the
encoder and π(z) to denote the prior for the latent variable. To simplify the notation, we may also
use shorthands p, q, π when no ambiguity may arise. In the parametric case, we use θ ∈ Θθ, φ ∈ Θφ

and β ∈ Θβ to denote the parameters associated with the decoder family Fdd, the encoder family
Fed and the prior family Fprior respectively, and use pθ(x|z), qφ(z|x) and πβ(z) with shorthands
pθ, qφ, πβ to denote the decoder, encoder and prior in these families. We use pD(x) to denote the
target data distribution and {xi}ni=1 to denote n i.i.d. copies generated from pD(x).

For a d-dimensional Euclidean vector x, we use ‖x‖p to denote its `p norm. For a function f(x) :

Rd1 7→ Rd2 ,∇f(x) is a d2×d1 matrix, with (∇f(x))i,j = ∂fi(x)
∂xj

. DTV(p, q) = 1
2

∫
|p(x)−q(x)|dx

denotes the total variation distance and DKL(p||q) =
∫

log p(x)
q(x)p(x)dx denotes the Kullback-Leibler

(KL) divergence. We use N (µ,Σ) to denote the multivariate Gaussian distribution with mean vector
µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The symbols . and & mean the corresponding inequality
up to an n-independent constant. For multi-indexes γ = (γ1, · · · , γd) ∈ Nd0, a function f is said to
be of class Ck (k ∈ N≥0) if all partial derivative of order γ (‖γ‖1 ≤ k) exist and are continuous. We
use Cα(Ω) to denote the Hölder space on Ω with Hölder exponent α > 0 (see for example, Evans
(2010)), and we use Bα

r (Ω) to denote the closed ball in Cα(Ω) with Hölder norm ‖ · ‖Cα(Ω) being
bounded by r. We will also use the definition of Orlicz norms (see e.g. Dudley (1999)), recalled
next. For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) = exp (xα)− 1 . For
a random variable X, we define its Orlicz norm with respect to ψα as

‖X‖ψα = inf
{
λ > 0 : E

[
ψα(|X|/λ)

]
≤ 1
}
.

By standard analysis, we have for all t > 0,

P(|X| ≥ t) ≤ 2 exp
{
−
( t

‖X‖ψα

)α}
.

1.4. Organization

The rest of the paper is organized as follows. In Section 2, we give a brief description of EBVAE.
In Section 3, we develop an oracle inequality (Theorem 1); and in Section 4, we apply our oracle
inequality to parametric and nonparametric cases. The paper is concluded with a discussion in
Section 5. For the Appendix: a numerical study is included in Appendix A; the proofs of the main
results are included in Appendix B; and the proofs of technical lemmas are included in Appendix C.

2. Empirical Bayes Variational Autoencoder

Suppose we have a dataset of x samples from a distribution that can be modelled by a generative
model. Here, a generative model defines a joint distribution over the latent space Z and the data
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space X . Usually we specify a simple prior distribution π(z) over the latent variables, such as
isotropic multivariate Gaussian or uniform, and model the data distribution by complex conditional
distributions (decoders) p(x|z) ∈ Fdd, where Fdd can either be a parametric or nonparametric family.
The goal of VAE is to learn the true underlying marginal likelihood of the data pD(x) in the generative
process. Given data {xi}ni=1, we typically aim at maximizing the average marginal log-likelihood
1
n

∑n
i=1 log

∫
p(xi|z)π(z)dz. However, the optimization could be computationally infeasible due to

the potentially high dimensional integral in the objective function, so it will be convenient to resort
to VAE. Specifically, VAE overcomes this issue by introducing a family of encoders q(z|x) ∈ Fed
and jointly maximize a lower bound to the log likelihood (Kingma and Welling, 2013),

1

n

n∑
i=1

{
log

∫
p(xi|z)π(z)dz −DKL

(
q(·|xi)

∣∣∣∣∣∣∣∣ p(xi|·)π(·)∫
p(xi|z)π(z)dz

)}
,

which is equivalent to (up to constants)

1

n

n∑
i=1

{∫
log p(xi|z)q(z|xi)dz −DKL

(
q(·|xi)

∣∣∣∣π(·)
)}
.

This objective function is computationally more friendly to optimize since the highest density region
of q(z|x) may be relatively smaller compared with the space of z under the prior.

In the original setting of VAE, the prior is chosen to be simple and data-independent and the
decoder is chosen to be from a Gaussian family for continuous data, i.e, N (Gθ(z), σ

2I) with Gθ(z)
being implemented with multi-layer perceptron (fully-connected neural networks with one hidden
layer). Even though any d-dimensional distribution can be generated as a push forward measure
through the standard d-dimensional Gaussian (Devroye, 2006), we may need a highly non-regular
map to first map the fixed prior to a complicated distribution of latent variables. This may lead to
underfitting if the decoder families have low capacity. To address this issue, we increase the model
capacity by introducing hyperparameters in the prior and jointly training the prior distribution of
the latent variable over a prior family Fprior with the encoder and decoder (see Appendix A for a
numerical comparison). This lead to the EBVAE as the following optimization problem,

min
p∈Fdd,q∈Fed,π∈Fprior

1

n

n∑
i=1

[
− log

∫
p(xi|z)π(z)dz +DKL

(
q(·|xi)

∣∣∣∣∣∣ p(xi|·)π(·)∫
p(xi|z)π(z)dz

)]
.

The objective function of EBVAE can also be rewritten as n−1
∑n

i=1

(
−
∫

log p(xi|z)q(z|xi)dz +
DKL(q(·|xi) ||π(·))

)
for facilitating computation. During the learning, we can apply Monte Carlo

method to approximate the above objective function using draws sampled from q(z|x).

3. Main Theoretical Results

Despite its popularity, the theoretical aspects of EBVAE are less explored in literature. In this
section, we will study the general statistical properties of the EBVAE estimator through the lens of
M-estimation. As introduced in Section 2, we define the following loss function for a single data x,

m(p, q, π, x) = log
pD(x)∫

p(x|z)π(z)dz
+DKL

(
q(·|x)

∣∣∣∣∣∣ p(x|·)π(·)∫
p(x|z)π(z)dz

)
, (1)
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where we deliberately added the term log pD(x) which is independent of (p, q, π) to the loss function
for the sake of theoretical analysis. With this notation, the EBVAE estimator can be casted as the
following M-estimator,

(p̂, q̂, π̂) = arg min
p∈Fdd,q∈Fed,π∈Fprior

{
n−1

n∑
i=1

m(p, q, π, xi)

}
, (2)

where recall that Fdd denotes the decoder family, Fed denotes the encoder family and Fprior denotes
the prior family. In the population level, we can also define

Ψ∗ = arg min
p∈Fdd,q∈Fed,π∈Fprior

EpD(x)

[
m(p, q, π, x)

]
as the set of minimizers of the population level loss function.

The goal of this section is to study the finite sample performance of the point estimator obtained
from EBVAE, which is captured by the so-called oracle inequality (Rigollet and Hütter, 2015). We
prove a general oracle inequality for the EBVAE estimator (2) with risk function being chosen
as the population level loss function EpD(x)

[
m(p, q, π, x)

]
in the next theorem. According to the

definition of the loss function in (1), the risk function can be decomposed into two components (c.f.
Theorem 1). The first component of the risk function quantifies the difference between the target
density and the marginal density

∫
p(x|z)π(z)dz relative to the KL divergence, while the second

component quantifies the difference between the encoder and the posterior p(x|z)π(z)∫
p(x|z)π(z)dz

relative to
the KL divergence. Including the second term in the risk function brings several benefits. By writing
the objective function of EBVAE as an empirical counterpart of the risk function as in (2), we can
therefore leverage the existing theory of M-estimation to build an oracle inequality. In addition,
since the second term in the risk function is always nonnegative, the risk function evaluated at
(p̂, q̂, π̂) also acts as an upper bound to the KL divergence between the fitted marginal density and
the target distribution. On the computational side, according to Kingma and Welling (2013), the loss
function defined in (1) can be regarded as a computationally efficient surrogate to log

∫
p(x|z)π(z)dz

in the definition of maximum likelihood estimator (MLE) with error DKL

(
q(·|x)

∣∣∣∣ p(x|·)π(·)dz∫
p(x|z)π(z)dz

)
,

which is quantified by the second component of the risk function in the population level. We then
impose the following assumption for controlling the tail for the suprema of an unbounded empirical
process (Adamczak, 2008; Mendelson et al., 2007) appearing in the analysis of EBVAE.

Assumption A For a random variable X with density pD(x), there exist some positive constants
(α,D) such that∥∥∥∥∥ sup

p∈Fdd,q∈Fed
π∈Fprior

{∣∣∣∣log

∫
p(X|z)π(z)dz

pD(X)

∣∣∣∣+DKL

(
q(·|X)

∣∣∣∣∣∣ p(X|·)π(·)∫
p(X|z)π(z)dz

)}∥∥∥∥∥
ψα

≤ D.

Roughly speaking, Assumption A is a tail condition on the loss function so that the population level
loss function and its empirical counterpart can be proved to be close to each other uniformly. Similar
assumptions are commonly made in the literature (Grünwald and Mehta, 2020). Our assumption
is comparable to Grünwald and Mehta (2020) on fast rates for unbounded loss where the uniform
boundedness is only in terms of parameters, but not data X . We show in Theorem 7 that Assumption
A is applicable to commonly used encoder/decoder examples. Moreover, for parametric models
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(c.f. Section 4.1) where absolute values of logarithms of density functions pD(x), pθ(x|z), qφ(z|x)
and πβ(z) grow at most polynomially in ‖x‖2 and the parameters (θ, φ, β), if the parameter space
and latent space are bounded and the data X has bounded Orlicz norm with a suitable α > 0 (e.g.
sub-Gaussian and sub-exponential), then Assumption A holds. This requirement holds for any regular
exponential family. Note that Assumption A also holds when the quantity inside the norm is bounded.
For any (p∗, q∗, π∗) ∈ Ψ∗, consider the shifted function class,

G∗ =
{
g(x) = m(p, q, π, x)−m(p∗, q∗, π∗, x)

∣∣ p ∈ Fdd, q ∈ Fed, π ∈ Fprior}.
Define the star hull of G∗ as G∗ = {ag | a ∈ (0, 1], g ∈ G∗}. To bound the estimation error, we
need certain data-dependent estimate of the complexity of G∗, namely, the local Rademacher
complexity (Bartlett et al., 2005), defined by

Rn(δ,G
∗
) = EpD(x)Eε

[
sup

g∈G∗,‖g‖2≤δ

∣∣∣∣∣ 1

n

n∑
i=1

εig(xi)

∣∣∣∣∣
]
,

where {εi}ni=1 are n i.i.d. copies from Rademacher distribution, i.e. P (εi = 1) = P (εi = −1) = 1
2

and ‖g‖22 =
∫
X g

2(x)pD(x)dx. We are then ready to state the following theorem that provides oracle
result of EBVAE estimator.

Theorem 1 Consider the EBVAE estimator p̂, q̂ and π̂ defined in (2). Under Assumption A,
if there exist δn > 0 and (p∗, q∗, π∗) ∈ Ψ∗, such that: (1) Rn(δn, G

∗
) ≤ δ2

n/(D log
1
α n); (2)

(nδ2
n/(D

2 log
2
α n))min{α,1} ≥ log(log D

δn
), then there exist constants (c0, c1, c2) only dependent of

α, such that it holds with probability at least 1− c0 exp
{
− c1

(
nδ2
n

D2 log
2
α n

)min{α,1}}
that,

EpD(x)

[
m(p̂, q̂, π̂, x)

]
≤ inf

γ>0

{
(1 + γ) min

p∈Fdd,q∈Fed,
π∈Fprior

EpD(x)

[
m(p, q, π, x)

]
+ c2

(
1 +

1

γ

)
δ2
n

log−
1
α n

D

}
,

where we can decompose EpD(x)

[
m(p, q, π, x)

]
= DKL

(
pD(·)

∣∣∣∣∣∣ ∫ p(·|z)π(z)dz
)

+

EpD(x)

[
DKL

(
q(·|x)

∣∣∣∣∣∣ p(x|·)π(·)∫
p(x|z)π(z)dz

)]
.

Remark 2 The constant c2 has a polynomial dependence on d1/αe! =
∏d1/αe
j=1 j when α ≤ 1,

so there is a super-exponential dependence on α. The main tool for proving Theorem 1 is the
tail inequality for the suprema of an unbounded empirical process (Adamczak, 2008). One major
difficulty is that the tail bound applies only to a deterministic radius δ, as opposed to the random
radius ‖ĝ‖2 = ‖m(p̂, q̂, π̂, ·)−m(p∗, q∗, π∗, ·)‖2. This issue can be solved by using the “peeling”
argument (Wainwright, 2019), i.e., considering sets Sm = {2m−1δn ≤ ‖ĝ‖2 ≤ 2mδn} with
m = 1, · · · log(D/δn). See Appendix B.1 for further details.

The result in Theorem 1 can be used to determine a set of sufficient conditions under which the
EBVAE estimator is consistent. An estimator is called consistent if it converges to its estimand
as sample size increases, which gives a guarantee that we could get the right answer of param-
eters of interest based on the estimator for large sample sizes. The first term of the bound in
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Theorem 1 corresponds to the approximation error and tends to be small as the encoder family,
decoder family and prior family become richer. In the next section, we give instances of Fdd,
Fed and Fprior leading to zero approximation error in concrete examples. In particular, in the
usual setting where the target data distribution pD(x) can be expressed as

∫
p∗(x|z)π∗(z)dz with

p∗(x|z) ∈ Fdd and π∗(z) ∈ Fprior. The approximation error can be further upper bounded by
minq∈FedEpD(x)

[
DKL

(
q(·|x)

∣∣∣∣ p∗(x|·)π∗(·)/pD(x)
)]

, which validates the importance of choosing
a suitable encoder family. In practice, many approaches have been developed to increase the empirical
performance of VAE by using flexible encoder families, e.g. NF (Rezende and Mohamed, 2015),
IAF (Kingma et al., 2016), which outperform the Vanilla VAE. The second term of the bound in
Theorem 1 corresponds to the estimation error which tends to be small as complexities of the encoder
family, decoder family and prior family decrease. In particular, the deterministic radius δn in the
estimation error term is called the critical radius associated with G∗ (Wainwright, 2019), which is
commonly used to specify bounds on the excess risk in M-estimation problems. We will determine
δn in some representative examples under different choices of Fdd, Fed and Fprior in Section 4.
Ideally, we want to make a choice to Fdd, Fed and Fprior such that the approximation error and
estimation error are well-balanced.

4. Applications

In this section, we apply Theorem 1 to some representative examples. In each case, we will determine
the approximation error and solve the δn in Theorem 1 via bounding the local Rademacher complexity
from above by Dudley’s integral (see, for example, (8.13) of Vershynin, 2018) to obtain an explicit
excess risk bound in terms of model characteristics.

4.1. Parametric Models

In this subsection, we consider the case when Fdd, Fed and Fprior are parametric families. Recall
that to explicitly express the dependence of the encoder and decoder on the parameters, we adopt the
notation in (Kingma and Welling, 2013) to use pθ(x|z), pφ(z|x) and πβ(z) with shorthands pθ, qφ
and πβ to denote the decoder, the encoder and the prior respectively. To begin with, we impose the
following Lipschitz condition for bounding the Rademacher complexity associated with G∗, which
is a common regularity condition in M-estimation problem (Vaart, 1998).

Condition A For Fdd = {pθ(x|z) | θ ∈ Θθ ⊆ Rdθ}, Fed = {qφ(z|x) |φ ∈ Θφ ⊆ Rdφ} and
Fprior = {πβ(z) |β ∈ Θβ ⊆ Rdβ}, there exist some constants (a0, a1) such that for any θ, θ′ ∈
Θθ, φ, φ

′ ∈ Θφ, β, β
′ ∈ Θβ and x ∈ X ,

‖θ‖∞ + ‖φ‖∞ + ‖β‖∞ ≤ a0,∣∣m(pθ, qφ, πβ, x)−m(pθ′ , qφ′ , πβ′ , x)
∣∣ ≤ b(x)‖(θ, φ, β)− (θ′, φ′, β′)‖2,

with EpD(x)

[
b2(x)

]
≤ a1, where m(pθ, qφ, πβ, x) is the loss function for single data point defined in

equation (1).
We are then ready to state the following theorem that provides an oracle inequality for the EBVAE
estimators with parametric models.

Theorem 3 Consider the EBVAE estimator pθ̂, qφ̂ and πβ̂ defined in (2), and let d∗ = dθ + dφ + dβ .
If Assumption A and Condition A hold, then there exist some constants (c0, c1, c2) that only depend
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on (α, a0, a1) so that it holds with probability at least 1− c0 exp
{
− c1 (d∗ log n)min{α,1} } that,

EpD(x)

[
m(pθ̂, qφ̂, πβ̂, x)

]
≤ inf

γ>0

{
(1 + γ) min

θ∈Θθ,φ∈Θφ,β∈Θβ
EpD(x)

[
m(pθ, qφ, πβ, x)

]
+ c2

(
1 +

1

γ

)Dd∗
n

log(nd∗) log
1
α n
}
.

The estimation error (second term) of Theorem 3 scales as O(1/n) up to a logarithmic term, which
matches the minimax optimal rate of parametric density estimation (Rigollet and Hütter, 2015;
Silverman, 1986). The approximation error term of the risk bound in Theorem 3 is zero if the
model is well-specified, that is, there exist some pθ∗ ∈ Fdd, qφ∗ ∈ Fed and πβ∗ ∈ Fprior, such that
pD(x) =

∫
pθ∗(x|z)πβ∗(z)dz and qφ∗(z|x) is the posterior density with likelihood pθ∗(x|z) and

prior πβ∗(z). Moreover, enriching the prior distribution family Fprior via hyperparameters may
greatly reduce the approximation error term when Fdd and Fed have limited capacities. Conversely,
the estimation error is positively correlated with the number of parameters d∗. Suitable choices
of Fdd, Fed and Fprior should minimize the risk upper bound, i.e., the approximation error and
estimation error are balanced. In fact, Tomczak and Welling (2017) empirically shows that when the
“Vamp prior” 1

K

∑K
k=1N (µφ(uk), diag(σ2

φ(uk)) is used as the parametric family of the prior, a most
suitable choice of K is 500, either decreasing it or increasing it will result in significant deterioration
of the performance (c.f. Appendix A for some numerical results). Theorem 3 provides a theoretically
explanation to this phenomenon. When K is small, the first term (approximation error) in the risk
bound dominates and when K is large, the second term (estimation error) dominates.

It has been shown that the prior which minimizes (2) is given by the corresponding aggregated
posterior 1

n

∑n
i=1 qφ̂(z|xi) (Tomczak and Welling, 2017). The next corollary offer theoretical guar-

antees to methods that parameterize the prior for approximating the aggregated posterior (Tomczak
and Welling, 2017; Bauer and Mnih, 2018) via giving an upper bound to the total variation distance
between the target distribution and the distribution generated from a latent space model with prior
being the aggregated posterior and conditional distribution being the fitted decoder.

Corollary 4 Consider the EBVAE estimator pθ̂, qφ̂ and πβ̂ defined in (2). Let d∗ = dθ + dφ + dβ .
If Assumption A and Condition A hold, and for any z ∈ Z , ‖z‖2 ≤ a2, x ∈ X , (φ, φ′) ∈ Θφ and
(z, z′) ∈ Z , the support of z under qφ(z|x) is contained in Z , and |qφ(z|x)− qφ′(z′|x)| ≤ a3(‖φ−
φ′‖2 + ‖z − z′‖2), then for some constants (c0, c1, c2, c3) only dependent of (dz, α, a0, a1, a2, a3),
such that it holds with probability at least 1− c0 exp

{
− c1 (log n)min{α,1} } that

D2
TV

(
pD(·),

∫
Z

( 1

n

n∑
i=1

qφ̂(z|xi)
)
pθ̂(·|z)dz

)
≤ c2 min

θ∈Θθ
φ∈Θφ,β∈Θβ

EpD(x)

[
m(pθ, qφ, πβ, x)

]
+ c3

Dd∗

n
log(nd∗) log

1
α n.

Remark 5 Here we state the risk bound in terms of total variation distance since the total variation
distance is a metric satisfying the triangle inequality. Corollary 4 is proved by the triangle inequality
and the fact that the aggregated posterior is close to the fitted prior with high probability.

4.2. Gaussian Encoder and Decoder

In this subsection, we study the theoretical properties of the commonly used Gaussian encoder and
decoder (Kingma and Welling, 2013; Doersch, 2016). Same as Section 4.1, we use pθ(x|z) (pθ)

9
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and qφ(z|x) (qφ) to denote the decoder and encoder. We consider pθ(x|z) = N (Gθ1(z), σ2Idx)
and qφ(z|x) = N (µφ(x),Σφ(x)), where Gθ1(z), µφ(x) and Σφ(x) are functions parametrized
by θ1 and φ, and σ is a unknown parameter jointly trained with others. Adopting the Gaussian
encoder family for qφ(z|x) makes the optimization problem (2) in EBVAE computationally simpler.
Unfortunately, even if we assume high capacity for µφ(x) and Σφ(x), the approximation error from

EpD(x)

[
DKL

(
qφ(·|x)

∣∣∣∣∣∣ pθ(x|·)πβ(·)∫
pθ(x|z)πβ(z)dz

)]
is nonvanishing, since the posterior is not necessarily

Gaussian. However, if we assume the true data X to be generated by some low dimensional latent
variable Z, with a deterministic and invertible generative function GD(z), plus a random Gaussian
error vector with mean 0 and covariance matrix σ∗2Idx where σ∗ is small enough, i.e., using T#µ
to denote the image measure (or push-forward) of µ by T and µ ∗ ν to denote the convolution of
µ and ν, so that the model of X can be expressed as (GD#πD) ∗ N (0, σ∗2Idx), then Z becomes
nearly “deterministic” given X and the approximation error vanishes, which is consistent with the
finding in Doersch (2016). We then state the our conditions on the approximation family Fprior and
assumptions on the true model pD. For a vector-valued function f(x), we use ‖f(x)‖p to denote its
vector `p norm at input x.

Condition B The family of prior Fprior =
{
πβ(z) |β ∈ Θβ ⊆ Rdβ

}
has a compact parameter

space Θβ . In addition, there exist some constants (b2, b3) such that for any β, β′ ∈ Θβ and z ∈ Rdz ,
‖β‖2 ≤ b2, | log πβ(0)| ≤ b2, ‖∇z log πβ(z)‖2 ≤ b2 (‖z‖2 + 1) and | log πβ(z) − log πβ′(z)| ≤
b(z) ‖β − β′‖2 with ‖b(z)‖2 ≤ b2 (‖z‖b32 + 1).

Assumption B Assume the followings:
B.1: The data distribution pD = (GD#πD) ∗ N (0, σ∗2Idx) (σ1 ≤ σ∗ ≤ 1

2e), where πD(z) is a
probability density function (w.r.t. the Lebesgue measure on Rdz ) that belongs to Fprior. For a
random variable Z with probability density πD, it holds that ‖

∑dz
i=1(Zi)

2‖ψ1 ≤ b5 with some
constant b5 > 0. Moreover, ∀ z ∈ Rdz ,∇πD(z) exists and ‖∇πD(z)‖2 ≤ b5.
B.2: There exists an integer k ≥ 2, so that GD(z) : Rdz 7→ Rdx(dz ≤ dx) is a Ck map, and there
exists a Ck map QD(x) : Rdx 7→ Rdz such that ∀ z ∈ Rdz , QD ◦GD(z) = z. Also, there exist some
constants (α, b6) where 0 < α ≤ 2, such that for any 1 ≤ i ≤ dx, 1 ≤ j ≤ dz , z ∈ Rdz and x ∈ Rdx ,

it holds that
∑
|γ|≤k |DγGD,i(z)| ≤ b6(‖z‖

2
α
2 +1) and

∑
|γ|≤k |DγQD,j(x)| ≤ b6(‖x‖

2
α
2 +1), where

GD,i(z) and QD,j(x) are the elements of the ith and the jth dimension of GD(z) and QD(x), γ is a
multi-index γ = (γ1, γ2, . . . , γd) ∈ Nd0 and Dγ denotes the mixed partial derivative operator.

Remark 6 Condition B requires the priors in Fprior to behave like (mixture of) Gaussian distribu-
tions. Assumption B requires the latent variable to have a density function that is sub-Gaussian and
sufficiently smooth, and demands some regularity conditions on the map GD. It states that GD(z)
is a Ck map with a Ck inverse QD(x) and the mixed partial derivatives of GD(z) and QD(x) are
upper bounded by polynomial functions of z and x with order up to 2

α respectively. The invertibility
of GD(z) is also assumed in Doersch (2016). The assumptions on the mixed partial derivatives of
GD and QD ensure that GD and QD can be well approximated by ReLU neural networks.

Theorem 7 Choose σ1 ∈ (0, 1
2e ], and consider Fdd =

{
pθ(x|z) = N (Gθ1(z), σ2Idx) |Gθ1(z) ∈

FG, σ ∈ [σ1, 1]
}

, Fed =
{
qφ(z|x) = N (µφ(x),Σφ(x)) | (µφ(x),Σφ(x)) ∈ Fµ,Σ

}
and Fprior =

{πβ(z) |β ∈ Θβ ⊆ Rdβ}. If Condition B holds for Fprior, then there exists a choice of FG and
Fµ,Σ so that for any target distribution pD = (GD#πD) ∗ N (0, σ∗2Idx) satisfying Assumption B,
the EBVAE estimator pθ̂, qφ̂ and πβ̂ defined in (2) satisfies that there exist some constants (c, c1, c2)

10
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that only depend on (dz, dx) and (α, k, b2, b3, b5, b6) in Assumption B and Condition B, such that it
holds with probability at least 1− n−c that,

EpD(x)

[
m(pθ̂, qφ̂, πβ̂, x)

]
≤ c1 logα̃1

1

σ∗
σ∗2 + c2 log

2
α n logα̃2

1

σ1

dβ + σ1
− 2dz

k

nσ2
1

, (3)

where α̃1 = 28+10α+3α2

α2 and α̃2 = 2
α + dz

α(k−1) + dz
2 + 6. Recall that σ∗ is the standard deviation of

each component of the data X given the latent variable Z with σ∗ ∈ [σ1,
1
2e ].

Remark 8 In the decoder, we use a Gaussian distribution to approximate the posterior, so that
pD(z|x) = pD(x|z)πD(z)

pD(x) can be well approximated by a Gaussian either. When σ∗ is small, the
invertibility assumption on GD guarantees that the highest density region of pD(z|x) is concentrated
around QD(x). By applying the first order Taylor expansion of GD,j(z) at z = QD(x), we have that
pD(z|x) ∝ πD(z) exp(−

∑dx
j=1(xj − GD,j(z))2/2σ∗2) is approximately a Gaussian distribution

with mean QD(x) + ΣD(x)∇GD(z)T |z=QD(x)(x−GD(QD(x))) and covariance matrix σ∗2ΣD(x)

with ΣD(x) = (∇GD(z)T |z=QD(x)∇GD(z)|z=QD(x))
−1. FG and Fµ,Σ are realized through feed-

forward ReLU neural networks with sizes depend on σ1 in the proof of Theorem 7 to achieve the rate
in equation (3). Since the data X lie approximately on a dz-dimensional manifold, the result does
not suffer from the “the curse of dimensionality”, i.e., the dimension of X (dx) does not occur in the
exponent of the approximation error of a ReLU neural network with given size for approximating
functions of X with certain smoothness constraints, see Appendix B.3.1 for further details.

The constants (c1, c2) has an exponential dependence on dz and a polynomial dependence on dx,
scale as (c3)dz and (dx)c4 for positive constants c3, c4 independent of (n, dx, dz). The occurrence
of σ∗2 in the above theorem is from the fact that pD(z|x) is not necessarily a Gaussian distribution,
which theoretically explains the reason why VAE models tend to produce unrealistic, blurry samples
when applied to complex datasets of natural images (Dosovitskiy and Brox, 2016). In particular,
when σ1 � σ∗, regardless of the logarithmic term, the risk bound in above thorem scales as
σ∗2 + 1

nσ∗2
(dβ +σ∗−

2dz
k ), where the first term corresponds to an upper bound for the approximation

error and the second term correspond to an excess risk bound. In particular, if the noise level
σ∗ decreases with the sample size at the rate σ∗ � n−k1 , where 0 < k1 <

k
2(k+dz) , the EBVAE

estimator will be consistent relative to the KL risk function, which give theoretical guarantee to
EBVAE estimators and theoretically explains the phenomenon that Vanilla VAE still achieves good
performance for some simple dataset (e.g. MNIST dataset) even if the encoder model is misspecified
as a simple gaussian model. Here, we emphasize that we need k1 to be upper bounded since dz
can be smaller than dx and the KL divergence may diverge to infinity if the supports of the two
distributions are not the same. In addition, for fixed σ∗ and n, the above bound depends on the
number of parameters in the prior family and the smoothness of GD. When a pre-specified data
independent prior is used, we may need a highly complicated GD to first map the chosen prior to a
highly irregular distribution of latent variables, which increases the capacity demand for GD.

In practice, the covariance matrix of the encoder model Σφ(x) is often chosen to be diagonal
and characterized by a variance vector (Kingma and Welling, 2013; Tomczak and Welling, 2017).
However, Remark 8, when σ∗ converges to 0, the posterior of the latent variable converges to a
Gaussian distribution with covariance matrix σ∗2(∇GD(z)T |z=QD(x)∇GD(z)|z=QD(x))

−1, which
may not be diagonal. Misspecifying the off-diagonal elements of the covariance matrix introduces

11
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extra approximation errors and thus deteriorates the performance of the EBAVE estimator. In order
to achieve the smallest risk, we should model the full dz × dz covariance matrix instead of through
a variance vector. A natural practical choice of Σφ(x) is Σ̃φ(x)T Σ̃φ(x) + ε2Idz , where Σ̃φ(x) is
a dz × dz matrix modelled by a neural network and ε is small number to guarantee the positive
definiteness of the covariance matrix. The theory we established for EBVAE estimators with Gaussian
encoders and decoders also validates the importance of the variance parameter σ in the decoder
family, which is often chosen as a predefined weighting factor depending on the target accuracy level
for reconstructing. However, our theory suggests that misspecifying the conditional variance of the
data will lead to a large approximation error. Consequently, the variance parameter of the decoder
family should be jointly optimized instead of being prespecified. Moreover, if the decoder family is
correctly specified, i.e. the conditional distribution of data is N (Gθ∗(z), σ

∗2Idx), then the parameter
σ should be constrained by a lower bound that is close to σ∗ up to a multiplicative constant.

4.3. Nonparametric Models

The risk bound in the previous subsection demands us to consider more complicated encoder and
decoder families to reduce the approximation error. Motivated by this, we consider nonparametric
families in this subsection. We assume the data spaceX and the latent spaceZ are [0, 1]dx and [0, 1]dz

respectively. To begin with, we consider the following densities on X characterized by an undirected
graphical model (Markov network) (Koller and Friedman, 2009) with clique sizes being bounded
by p as our decoder family: F̄dd =

{
pdd(x|z) : p(x|z) ∝ exp

(∑k1
j=1 lj(xj , z)

) ∣∣ lj(xj , z) ∈
Bα
r1([0, 1]|xj |+dz), |xj | ≤ p

}
, where xj is a subvector of x = (x1, · · · , xdx) with |xj | being its

dimension. Similarly, we consider the following encoder family on Z: F̄ed =
{
q(z|x) : q(z|x) ∝

exp
(∑k2

j=1 fj(z, xj)
) ∣∣ fj(z, xj) ∈ Bα

r2([0, 1]|xj |+dz), |xj | ≤ p
}

. We then state our condition on
the approximation families and assumption on the true model pD for deriving the Lipschitzness of
the loss function in (1).

Condition C Fdd ⊆ F̄dd and Fed ⊆ F̄ed. For the family of prior Fprior =
{
πβ(z) |β ∈

Θβ

}
, Θβ is a compact set so that for any β, β′ ∈ Θβ and z ∈ Z , | log πβ(z) − log πβ′(z)| ≤

c1‖β − β′‖2 with a constant c1 and the support of πβ is contained in Z . Moreover, we have
supπβ∈Fpriorsupz∈Z | log πβ(z)| ≤ c2 with some positive constant c2.

Assumption C There exists a positive constant c such that supx∈X |log pD(x)| ≤ c.
For ease of notation, we define δn as: if dz + p < 2α, then δn = n

− α
2α+dz+p ; if dz + p = 2α, then

δn = n−
1
4
√

log n; if dz + p > 2α, then δn = n
− α

2(dz+p) .

Theorem 9 Consider the EBVAE estimator p̂, q̂ and πβ̂ defined in (2). If Condition C and Assump-
tion C hold, then for some constants (c0, c1, c2) independent of n, it holds with probability at least
1− c0 exp

(
−c1nδ

2
n

)
that

EpD(x)

[
m(p̂, q̂, πβ̂, x)

]
≤ inf

γ>0

{
(1 + γ) min

p∈Fdd,q∈Fed
πβ∈Fprior

EpD(x)

[
m(p, q, πβ, x)

]
+ c2

(
1 +

1

γ

)
δ2
n

}
.

Remark 10 If the target distribution pD(x) can be expressed as
∫
Z pD(x|z)πD(z)dz with some

pD(x|z) and πD(z), where pD(x|z) ∈ F̄dd, log πD(z) ∈ Cαr1([0, 1]dz) and πD(z) ∈ Fprior, then
by choosing (k2, r2) in F̄ed to be (k1, cr1) with some constants c and (Fdd,Fed) = (F̄dd, F̄ed), the
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approximation error term in the above risk bound is zero. Moreover, when p� dx (e.g. given the
latent variable, the component of each dimension of the data is independent of each other), the
additive structure in the encoder family and decoder family prevents the risk bound from suffering
from “the curse of dimensionality”.

5. Discussion

In this paper, we consider variational autoencoders via empirical Bayes estimation, referred to as
Empirical Bayes Variational Autoencoders (EBVAE), which is a general framework including popular
VAE methods as special cases. Theoretically, we give a general statistical framework to analyze
the convergence rate for learning densities using EBVAE. We develop novel oracle inequalities
which quantitively capture impacts of prior families, encoder families, and decoder families on
excess risks of the estimators arising from the EBVAE. The key idea in our proof comes from
representing the EBVAE estimator as an M-estimator. Once making this connection, we can leverage
the general theoretical machinery of M-estimation for obtaining a risk bound. Our theory gives
sufficient conditions under which the EBVAE estimators are consistent in both parametric cases
and nonparametric cases. In particular, we carefully analyze the estimator derived from EBVAE
with Gaussian encoders and decoders, we show that it is consistent if the conditional variance of
data given latent variables decreases with sample size under suitable rates. Our result highlights the
importance of covariance matrices of encoders and decoders in obtaining a good statistical guarantee.

The risk bound we derived for the EBVAE estimators under Gaussian models does not apply to
the case that the data is deterministic given latent variables, for the reason that the dimension of latent
variables can be smaller than the dimension of data and the KL divergence may diverge to infinity
if the supports of the two distributions are not the same. We suspect that this issue can be resolved
by stating the risk bound in terms of some adversarial losses that is insensitive to small fluctuations
compared with KL divergence (e.g. Wasserstein distance, Santambrogio, 2015); we leave this for
future work. Moreover, the proposal of encoder and decoder families that yield consistency in more
general cases without adding significant computational burden is another important topic of future
research.
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Appendix

Notations: We adopt the notations in the manuscript, and further introduce the following additional
notations for technical proof. We write a � b if a . b and a & b. a = O(b) if a � b. For a matrix
A ∈ Rm×n, we use ‖A‖F and ‖A‖op to denote its Frobenius norm and operator norm respectively.
When m = n, we use λmin(A) and λmax(A) to denote its minimal and maximal eigenvalues. Unless
otherwise specified, for a matrix A ∈ Rn×n, |A| denotes the determinant. N(G, d, ε) denotes the
ε-covering number of G under metric d. O(n, d) denotes the set of n × d matrices U such that
UTU = Id, O(d) denotes the set of d× d orthogonal matrices.

Appendix A. Numerical study

A.1. Set up

In the experiments we aim at: (1) verifying empirically whether the EBVAE outperform VAE, (2)
investigate the influence of the choice of the prior family on the performance of data generation
and (3) showing the validity of our theory. We carry out experiment using two models: “Vanilla
VAE” (Kingma and Welling, 2013) and “VampPrior” (VP) (Tomczak and Welling, 2017). The
“Vanilla VAE” model use a predefined isotropic gaussian prior. The “VampPrior” model consider
prior and amortized inference distribution

πφ,u(z) =
1

K

K∑
k=1

N(µφ(uk), diag(σ2
φ(uk))

qφ(z|x) = N(µφ(x), diag(σ2
φ(x)),

where K is the number of pseudo-inputs, and uk is a D-dimensional vector we refer to as a pseudo-
input. We then apply the two model to the dynamic MNIST dataset. In the experiments we modeled all
distributions using MLPs with two hidden layers of 300 hidden units. The dimension of the latent vari-
able is choose to be 40, and for “VampPrior” model, we chooseK = (1, 10, 100, 300, 400, 500, 600).

A.2. Results

We quantitatively evaluate the three method using the test marginal log-likelihood (LL) estimated
using the Importance Sampling (Burda et al., 2015). The LL values and the digits generated by the
two models is given in Figure 1 and Figure 2.

We can see that the supremacy of EBVAE is visible not only in LL values but in image gener-
ations as well. According to our results on the parametric rate, the estimation error includes two
terms: Approximation error and the dimension of parameters. The “Vanilla VAE” model use a
predefined prior, so dβ = 0, but the approximation error is larger than VP model, which result in
a poor performance. Also, for the VP model, when the number of pseudo-inputs is large enough,
increasing the number of pseudo-inputs will actually result in drop of the performance, which is
consistent with our bound, since when the parameter space of prior is too large, the dθ+dφ+dβ

n term
will dominate.
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Figure 1: Test LL between different models

(a) Vanilla VAE (b) VP-K=300 (c) VP-K=500

Figure 2: Digits generated by different models

Appendix B. Proof of Main Results

B.1. Main Theoretical Results

Define

Mn(p, q, π) =
1

n

n∑
i=1

m(p, q, π, xi);

M∗(p, q, π) = EpD(x)m(p, q, π, x),

where m(p, q, π, x) is defined in equation (1). We also use the notation p(x) to denote the marginal∫
p(x|z)π(z)dz and p(z|x) to denote the posterior p(x|z)π(z)∫

p(x|z)π(z)dz
when no ambiguity may arise. We
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begin the proof of Theorem 1 with the following two lemmas for controlling the supreme of an
unbounded empirical process.

Lemma 11 Suppose Assumption A holds, then there exist some constants (c1, c2) only depend on α,
such that for any p(x|z), p′(x|z) ∈ Fdd, q(z|x), q′(z|x) ∈ Fed and π(z), π′(z) ∈ Fprior,

EpD(x)

[(
log

pD(x)

p(x)

)2
]
≤ c1

(
(D log

1
α n)DKL(pD(·)||p(·)) +

D2 log
2
α n

n

)
;

EpD(x)

[
(DKL(q(·|x)||p(·|x))−DKL(q′(·|x)||p′(·|x)))2

]
≤

c2

(
(D log

1
α n)EpD(x)

[(√
DKL(q(·|x)||p(·|x))−

√
DKL(q′(·|x)||p′(·|x))

)2
]

+
D2 log

2
α n

n

)
.

Lemma 12 Under Assumption A, if there exist (p∗, q∗, π∗) ∈ Ψ∗ and δn satisfying conditions
defined in Theorem 1, then there exist some constants (c0, c1, c2) that only depend on α , such that it

holds with probability larger than 1− c0 exp

(
−c1

(
nδ2
n

D2 log
2
α n

)min{α,1}
)

that,

∀p(x|z) ∈ Fdd, q(z|x) ∈ Fed, π(z) ∈ Fprior,

|Mn(p, q, π)−Mn(p∗, q∗, π∗)−M∗(p, q, π) +M∗(p∗, q∗, π∗)|
δn + ‖m(p, q, π, ·)−m(p∗, q∗, π, ·)‖2

≤ c2δn/(D log
1
α n).

B.1.1. PROOF OF THEOREM 1

‖m(p̂, q̂, π̂, ·)−m(p∗, q∗, π∗, ·)‖22

= EpD(x)

[(
− log

p̂(x)

pD(x)
+DKL(q̂(·|x)||p̂(·|x)) + log

p∗(x)

pD(x)
−DKL(q∗(·|x)||p∗(·|x))

)2
]

≤ 4EpD(x)

[(
log

p̂(x)

pD(x)

)2
]

+ 4EpD(x)

[(
log

p∗(x)

pD(x)

)2
]

+ 2EpD(x)

[
(DKL(q̂(·|x)||p̂(·|x))−DKL(q∗(·|x)||p∗(·|x)))2

]
.

Therefore by Lemma 11 and
√
a+ b ≤

√
a +
√
b (a, b ≥ 0), there exists a constant C0 = C0(α)

such that,

‖m(p̂, q̂, π̂, ·)−m(p∗, q∗, π∗, ·)‖2

≤ C0

(
log

1
2α n
√
D

(√
M∗(p̂, q̂, π̂) +

√
min

p∈Fdd,q∈Fed,π∈Fprior
M∗(p, q, π)

)
+
D log

1
α n√
n

)
.
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Therefore by Lemma 12 and the fact that Mn(p̂, q̂, π̂) ≤Mn(p∗, q∗, π∗), under the high probability
set of Lemma 12, there exists a constant C = C(α) such that,

M∗(p̂, q̂, π̂)− min
p∈Fdd,q∈Fed,π∈Fprior

M∗(p, q, π)

= M∗(p̂, q̂, π̂)−M∗(p∗, q∗, π∗)
≤ |Mn(p̂, q̂, π̂)−Mn(p∗, q∗, π∗)−M∗(p̂, q̂, π̂) +M∗(p∗, q∗, π∗)|

≤ Cδn

(
log−

1
2α n√
D

(√
M∗(p̂, q̂, π̂) +

√
min

p∈Fdd,q∈Fed,π∈Fprior
M∗(p, q, π)

)
+

1√
n

+ δn
log−

1
α n

D

)
.

By the fact that
(

nδ2
n

D2 log
2
α n

)min{α,1}
& log(log D

δn
) and the inequalities that 2

√
ab ≤ γa +

1
γ b (a, b, γ > 0), there exist some constant (c0, c1, c2) that only depend on α such that it holds

with probability larger than 1− c0 exp

(
−c1

(
nδ2
n

D2 log
2
α n

)min{α,1}
)

that,

DKL(pD(·)||p̂(·)) + EpD(x) [DKL(q̂(·|x)||p̂(·|x))] = M∗(p̂, q̂, π̂)

≤ min
γ>0

(
(1 + γ) min

p∈Fdd,q∈Fed,π∈Fprior

(
DKL(pD(·)||p(·)) + EpD(x) [DKL(q(·|x)||p(·|x))]

)
+ c2

(
1 +

1

γ

)
δ2
n

log−
1
α n

D

)
.

B.1.2. PROOF OF LEMMA 12

For G∗ = {g(x) = m(p, q, π, x)−m(p∗, q∗, π∗, x) | p ∈ Fdd, q ∈ Fed, π ∈ Fprior}, it holds that

sup
g∈G∗
|g(x)| ≤ 2 sup

p∈Fdd,q∈Fed,π∈Fprior

(∣∣∣∣log
p(x)

pD(x)

∣∣∣∣+DKL(q(·|x)||p(·|x))

)
.

Therefore

∥∥∥∥∥ sup
g∈G∗
|g(x)|

∥∥∥∥∥
ψα

< +∞ and

∥∥∥∥∥ sup
g∈G∗

∣∣g(x)− EpD(x)g(x)
∣∣∥∥∥∥∥
ψα

< +∞. Define

Zn(δ,G∗) = sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− EpD(x)g(x)

∣∣∣∣∣ .
Since 1

n sup
g∈G∗
‖g‖2≤δ

∑n
i=1 var(g(xi)) ≤ δ2, by the tail inequality for suprema of unbounded empirical

processes (see for example, Theorem 4 and Lemma 1 of Adamczak (2008)), it holds that

P (Zn(δ,G∗) ≥ (1 + η)EpD(x)(Zn(δ,G∗)) + s2)

≤ c0(η, α) exp

(
−c1(η, α) min

{
ns4

δ2
,
nαs2α

Dα log n
,

ns2

D log
1
α n

})
.

(4)
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Using the standard symmetrization (see, for example, Proposition 4.11 of Wainwright (2019)), we
can get

EpD(x) [Zn(δ,G∗)] ≤ EpD(x)Eε

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 2n
n∑
i=1

εig(xi)

∣∣∣∣∣


= 2Rn(δ,G∗) ≤ 2Rn(δ,G
∗
),

where recall that G∗ = {ag|a ∈ (0, 1], g ∈ G∗}. Therefore by Rn(δn, G
∗
) ≤ δ2

n/(D log
1
α n), it

holds that

∀r ≥ δn, EpD(x) [Zn(r,G∗)] ≤ 2Rn(r,G
∗
)

= 2EpD(x)Eε

 sup
g∈G∗

‖ δnr g‖2≤δn

r

δn

∣∣∣∣∣ 1n
n∑
i=1

εi
δn
r
g(xi)

∣∣∣∣∣


≤ 2
r

δn
Rn(δn, G

∗
)

≤ 2
rδn

D log
1
α n

.

Define the events

A0 = {Zn(δn, G
∗) ≥ c2δ

2
n/(D log

1
α n)};

A1 = {∃g ∈ G∗, such that

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− EpD(x)g(x)]

∣∣∣∣∣ ≥ c2δn‖g‖2/(D log
1
α n)

and ‖g‖2 ≥ δn}.

Using equation (4), there exist some constants (c′0, c
′
1, c2) that only depend on α such that

P (A0) ≤ c′0 exp

−c′1
(

nδ2
n

D2 log
2
α n

)min{α,1}
 .

Define Sm =
{

2m−1δn ≤ ‖g‖2 ≤ 2mδn
}

with m = 1, · · ·M , since ‖g‖2D is upper bounded by some
constant less than infinity, we have M . log(Dδn ).

UnderA1∩Sm, it holds thatZn(2mδn) ≥ c22m−1δ2
n/(D log

1
α n). Therefore by

(
nδ2
n

D2 log
2
α n

)min{α,1}
&

log(log D
δn

), we know, for some constants (c3, c4) that only depend on α,

P (A1) =

M∑
m=1

P (A1 ∩ Sm) ≤ c3 exp

−c4

(
nδ2

n

D2 log
2
α n

)min{α,1}
 .

Moreover, under Ac0 ∩ Ac1, we have

sup
g∈G∗

∣∣ 1
n

∑n
i=1 g(xi)− EpD(x)g(x)

∣∣
δn + ‖g‖2

≤ c2δn/(D log
1
α n).

We can then get the desired conclusion.
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B.2. Parametric Models

We use pθ,β(x) to denote the marginal
∫
pθ(x|z)πβ(z)dz and pθ,β(z|x) to denote the posterior

pθ(x|z)πβ(z)∫
pθ(x|z)πβ(z)dz

. We begin the proof of Theorem 3 with the following lemma for dealing with the
unboundedness of the objective function. The Proof of Lemma 13 is based on the proof of Proposition
6.7 of Ledoux and Talagrand (1991).

Lemma 13 Consider G∗ and G∗ defined in Section 3. If

∥∥∥∥∥ sup
g∈G∗
|g(x)|

∥∥∥∥∥
ψα

≤ 2D, then there exists

ρ ≤ c0D log
1
α n and a constant c, where (c, c0) only depend on α, such that ∀δ > 0,

EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− EpD(x)g(x)

∣∣∣∣∣


≤ EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1A(xi)− EpD(x) [g(x)1A(x)]

∣∣∣∣∣
+ c

D log
1
α n

n
.

where A denotes the event

{
sup
g∈G∗
|g(x)| ≤ ρ

}
, and 1A(x) denotes the indicator function of event A.

B.2.1. PROOF OF THEOREM 3

Choose ρ ≤ c0D log
1
α n in Lemma 13 and define A =

{
sup
g∈G∗
|g(x)| ≤ ρ

}
. Define

G
∗
A =

{
gA(x) = g(x)1A(x), g(x) ∈ G∗

}
;

G∗A = {gA(x) = g(x)1A(x), g(x) ∈ G∗} ,
(5)

with G∗ and G∗ being defined in Section 3. Using standard symmetrization, we can get

EpD(x)

 sup
g∈G∗
‖g‖2≤r

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1A(xi)− EpD(x) [g(x)1A(x)]

∣∣∣∣∣
 ≤ EpD(x)Eε

 sup
gA∈G

∗
A

‖gA‖2≤r

∣∣∣∣∣ 2n
n∑
i=1

εigA(xi)

∣∣∣∣∣
 .

Define dn(gA, g
′
A) =

√
1
n

∑n
i=1(gA(xi)− g′A(xi))2, then

rn = max
gA,g

′
A∈G

∗

‖gA‖2,‖g
′
A‖2≤r

dn(gA, g
′
A) ≤ 2ρ.
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By equation (3.84) of Wainwright (2019), there exists a constant c such that,

EpD(x)r
2
n ≤ EpD(x)

 sup
gA∈G

∗
A

‖gA‖2≤r

2

n

n∑
i=1

g2
A(xi)


≤ EpD(x)

 sup
gA∈G

∗
A

‖gA‖2≤r

4

n

n∑
i=1

(
gA(xi)− EpD(x)gA(x)

)2+ 4r2

≤ c(r2 + ρRn(r,G
∗
A)).

SinceG∗A is uniformly bounded by ρ, it holds thatRn(r,G
∗
A) ≤ ρ and we only need to consider r ≤ ρ.

Therefore we can get c(r2 + ρRn(r,G
∗
A)) ≤ c0ρ

2. Moreover, for any gA ∈ G∗A and a ∈ (0, 1], there
exists a k ∈ N, such that k ε

2ρ < a ≤ (k + 1) ε
2ρ and dn((k + 1) ε

2ρgA, agA) ≤ ε
2ρρ = ε

2 . Therefore

it follows that the ε- covering number of G∗A satisfies that, N(G
∗
A, dn, ε) ≤ N(G∗A, dn,

ε
2)2ρ

ε and
logN(G

∗
A, dn, ε) ≤ logN(G∗A, dn,

ε
2) + log 2ρ

ε . Recall the definition of G∗A in equation (5), it
follows that

∀gA, g′A ∈ G∗A, dn(gA, g
′
A) =

√√√√ 1

n

n∑
i=1

(m(pθ, qφ, πβ, xi)−m(pθ′ , qφ′ , πβ′ , xi))21A(xi)

≤

√√√√ 1

n

n∑
i=1

b2(xi)‖(θ, φ, β)− (θ′, φ′, β′)‖22

=

√√√√ 1

n

n∑
i=1

b2(xi)‖(θ, φ, β)− (θ′, φ′, β′)‖2

= dn((θ, φ, β), (θ′, φ′, β′)).

W.l.o.g, we can assume ‖θ‖∞ + ‖φ‖∞ + ‖β‖∞ ≤ 1. By the fact that the ε-covering number of unit
ball in Rd is smaller than (3

ε )d, let d∗ = dθ + dφ + dβ , we have

logN(G∗A, dn,
ε

2
) ≤ logN(Θ, dn,

ε

2
) ≤ d∗ log

3
√
d∗
√

1
n

∑n
i=1 b

2(xi)

ε

 .

We next analyze the Dudley entropy integral in the following lemma.

Lemma 14 Given Condition A, there exists a constant c1 that only depend on a1 in Condition A
such that,

EpD(x)

∫ rn

0

√√√√√d∗ log

3
√

d∗

n

∑n
i=1 b

2(xi)

ε

+ log
2ρ

ε
dε


≤ c1

(
ρ
√
d∗

√
−EpD(x)

[
(
rn
2ρ

)2 logEpD(x)(
rn
2ρ

)2

]
+ EpD(x)(

rn
2ρ

)2 + EpD(x)

[
rn
√
d∗ log d∗

])
.
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Since rn ≤ 2ρ and
√
−xlogx+ x is an increasing function when x < 1, by EpD(x)r

2
n ≤ c(r2 +

ρRn(r,G
∗
A)) ≤ c0ρ

2 and Dudley inequality (see, for example, (8.13) of Vershynin (2018)), we have

Rn(r,G
∗
A) .

1√
n

(r2 + ρRn(r,G
∗
A))

1
2

√
log

ρ

r
+ log d∗

√
d∗.

Choose δn = c2

√
logn+log d∗

n d∗D log
1
α n, if Rn(δn, G

∗
A) > δ2

n/(D log
1
α n), then

Rn(δn, G
∗
A) .

1√
n
ρ

1
2Rn(δn, G

∗
A)

1
2

√
d∗(log n+ log d∗),

which means
Rn(δn, G

∗
A) .

ρd∗

n
log(nd∗).

Therefore for a large enough c2, we have Rn(δn, G
∗
) ≤ δ2

n/(D log
1
α n) and

(
nδ2
n

D2 log
2
α n

)min{α,1}
≥

log(log D
δn

), the desired conclusion then follows from Theorem 1.

B.2.2. PROOF OF COROLLARY 4

DTV

(∫
Z
pθ̂(·|z)

1

n

n∑
i=1

qφ̂(z|xi)dz, pD(·)

)

=
1

2

∫
X

∣∣∣∣∣
∫
Z
pθ̂(x|z)

1

n

n∑
i=1

qφ̂(z|xi)dz − pD(x)

∣∣∣∣∣ dx
≤ 1

2

∫
X

∣∣∣∣∣
∫
Z
pθ̂(x|z)

1

n

n∑
i=1

qφ̂(z|xi)dz −
∫
Z
pθ̂(x|z)EpD(x)qφ̂(z|x)dz

∣∣∣∣∣ dx
+

1

2

∫
X

∣∣∣∣∫
Z
pθ̂(x|z)EpD(x)qφ̂(z|x)dz −

∫
Z
pθ̂(x|z)πβ̂(z)dz

∣∣∣∣ dx
+DTV(pθ̂,β̂(·), pD(·))

≤ sup
φ,z

∣∣∣∣∣ 1n
n∑
i=1

qφ(z|xi)− EpD(x)qφ(z|x)

∣∣∣∣∣+DTV

(∫
X
qφ̂(·|x)pD(x)dx, πβ̂(·)

)
+DTV(pθ̂,β̂(·), pD(·)).

By the fact that
∫
X pθ̂,β̂(z|x)pθ̂,β̂(x)dx = πβ̂(z), it holds that

DTV

(∫
X
qφ̂(·|x)pD(x)dx, πβ̂(·)

)
=

1

2

∫
Z

∣∣∣∣∫
X
qφ̂(z|x)pD(x)dx− πβ̂(z)

∣∣∣∣ dz
≤ 1

2

∫
Z

∣∣∣∣∫
X
qφ̂(z|x)pD(x)dx−

∫
X
pθ̂,β̂(z|x)pD(x)dx

∣∣∣∣ dz
+

1

2

∫
Z

∣∣∣∣∫
X
pθ̂,β̂(z|x)pD(x)dx−

∫
X
pθ̂,β̂(z|x)pθ̂,β̂(x)dx

∣∣∣∣ dz.
(6)
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For the first term in equation (6), we can further upper bound,

1

2

∫
Z

∣∣∣∣∫
X
qφ̂(z|x)pD(x)dx−

∫
X
pθ̂,β̂(z|x)pD(x)dx

∣∣∣∣ dz
≤ 1

2

∫
X

∫
Z

∣∣∣qφ̂(z|x)− pθ̂,β̂(z|x)
∣∣∣ dzpD(x)dx

=

∫
X
DTV(qφ̂(·|x), pθ̂,β̂(·|x))pD(x)dx,

and for the second term,

1

2

∫
Z

∣∣∣∣∫
X
pθ̂,β̂(z|x)pD(x)dx−

∫
X
pθ̂,β̂(z|x)pθ̂(x)dx

∣∣∣∣ dz
≤ 1

2

∫
X

∫
Z

∣∣∣pD(x)− pθ̂,β̂(x)
∣∣∣ pθ̂,β̂(z|x)dzdx

= DTV(pD(·), pθ̂,β̂(·)).

Now we define Zn = sup
φ,z

∣∣ 1
n

∑n
i=1 qφ(z|xi)− EpD(x)qφ(z|x)

∣∣, then by ‖qφ(z|x) − qφ′(z′|x)‖ ≤

c(‖φ− φ′‖2 + ‖z − z′‖2) and the compactness of parameter space and latent space, using Dudley
inequality (see, for example, (8.13) of Vershynin (2018)) and Talagrand concentration inequality
(see, for example, 3.27 of Wainwright (2019)), we can get that it holds with probability larger than

1− exp(c log n) that Zn .
√

dφ log(dφn)
n . Then, the desired conclusion follows from Theorem 3 and

Pinsker inequality (see, for example, Theorem 2.16 of Massart (2007)).

B.3. Gaussian Encoders and Decoders

We use pθ,β(x) to denote the marginal
∫
pθ(x|z)πβ(z)dz and pθ,β(z|x) to denote the posterior

pθ(x|z)πβ(z)∫
pθ(x|z)πβ(z)dz

.

B.3.1. PROOF OF THEOREM 7

To begin with, we make the following definition.

Definition 15 FDd (L,W,U, b, V ) is defined as the set of following feedfoward ReLU neural net-
works (feedfoward neural network with ReLU activation σ(x) = max(x, 0)): 1. The information
of each layer can only come from the previous one layer. 2. U is a (L − 2)-dimensional vector,
U = (u1, · · · , uL−2). The network has d input units, D output units, L layers, ul−1 computation
units in layer l (2 ≤ l ≤ L − 1) and W weights (parameters). 2. There exists a constant V ≥ 2
such that in each layer, the absolute value of each weight unit is upper bounded by V . 3. The output
unit has the Hard Tanh hb(x) = max(−b,min(b, x)) as its activation function. In particular, we use
FDd (L,W,U, b) to denote FDd (L,W,U, b, V ) with V = +∞.

Then we consider the following ReLU neural networks: Qφ1(x) ∈ Fdzdx (L1, U1,W1, b8(log 1
σ1

)
1
2 ),

Gdφ2
(z) ∈ Fdxdzdz

(L2, U2,W2, b9(log 1
σ1

)
1
α ) and Gθ1(z), Gφ3(z) ∈ Fdxdz (L,U,W, b(log 1

σ1
)

1
α , V ),

whereGdφ2
(z) is rescaled to be a dx×dz matrix. Since there is no boundary towards the support of the
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data x and the latent variable z, we define compact sets of z and ε: Bz = [−η log
1
2

1
σ∗ , η log

1
2

1
σ∗ ]

dz

andBε = [−γ log
1
2

1
σ∗ , γ log

1
2

1
σ∗ ]

dx . And letBx = {x = GD(z)+σ∗ε | z ∈ Bz, ε ∈ Bε}. Then we
define Bz = [−η log

1
2

1
σ∗ , η log

1
2

1
σ∗ ]

dz so that QD(Bx) ⊆ Bz . Next We define following numbers
to characterize the expressivity of families of Qφ1 , Gφ3 and Gdφ2

,

ε0 := min
Qφ1

max
x∈Bx

‖Qφ1(x)−QD(x)‖2 ;

ε1 := min
Gφ3

max
z∈Bz
‖Gφ3(z)−GD(z)‖2;

ε2 := min
Gdφ2

max
z∈Bz
‖Gdφ2

(z)−∇GD(z)‖F .

(7)

Here we omit families of (Qφ1 , Gφ3 , G
d
φ2

) and the dependency of (ε0, ε1, ε2) on (η, γ, η,GD(z), QD(x))

and families of (Qφ1 , Gφ3 , G
d
φ2

) for ease of notation.

Remark 16 The decoder is using a gaussian to approximate the posterior, so we want pD(z|x) =
pD(x|z)πD(z)

pD(x) to be well approximated by a gaussian either. When σ∗ is small, the above assumptions
on GD(z) can guarantee that the space of z that are likely under pD(z|x) is z being close to QD(x).
Also, we have pD(z|x) ∝ πD(z) exp

(
− 1

2σ∗2
∑dx

j=1(xj −GjD(z))2
)

, consider the first order Taylor

expansion of GjD(z) at z = QD(x), pD(z|x) can be well approximated by a gaussian distribution
with mean QD(x) + ΣD(x)∇GD(QD(x))T (x − GD(QD(x))) and covariance matrix σ∗2ΣD(x)
with ΣD(x) = (∇GD(QD(x))T∇GD(QD(x)))−1, where ∇GD(QD(x)) = ∇GD(z)|z=QD(x).

So we can make specific choices of Σφ(x) and µφ(x),

Σφ(x) = σ̄2
(
Gdφ2

(Qφ1(x))TGdφ2
(Qφ1(x)) + σ̄2Idz

)−1
;

Σ̃φ(x)i,j = max(−b̄7,min(b̄7,
1

σ̄2
Σφ(x)i,j));

µφ(x) = Qφ1(x) + Σ̃φ(x)Gdφ2
(Qφ1(x))T (x−Gφ3(Qφ1(x))),

(8)

where Σφ(x)i,j is the (i, j) element of Σφ(x), b̄7 = b7

(
log 1

σ1

) 4
α2

with a large enough constant b7
and σ̄ ∈ [σ1, 1] is a parameter. Here we add σ̄2Idz to Σφ(x) to guarantee the positive definiteness.
For ease of notation, we use Θθ1 to denote the parameter spaces of Gθ1 , and use Θφ̃ to denote the
cartesian product of parameter spaces of Qφ1 , Gdφ2

and Gφ3 , we can then define:

Fdd =
{
pθ(x|z) = N (Gθ1(z), σ2Idx) | θ1 ∈ Θθ1 , σ ∈ [σ1, 1]

}
;

Fed =
{
qφ(z|x) = N (µφ(x),Σφ(x)) |φ = (φ1, φ2, φ3, σ̄), (φ1, φ2, φ3) ∈ Θφ̃, σ̄ ∈ [σ1, 1], b̄7 = b7

(
log

1

σ1

) 4
α2 }

.

(9)
We then state the following Lemma 17 to bound the error of ReLU neural networks for approximating
QD(x) satisfying Assumption B, whose domain is close to a dz-dimensional submanifold, the proof
of Lemma 17 is based on the proof of Theorem 1 of Yarotsky (2017).
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Lemma 17 Consider Bx, Bz , (Qφ1 , Gφ3 , G
d
φ2

) and (ε0, ε1, ε2) defined above, there exist some
constants (c0, c, c1, c2, c3) that only depend on (η, γ, η, dz, dx) and (α, k, b6) in Assumption B, such
that if we choose

b = b8 = b9 = c0, L = L1 = L2 = c log
1

σ1
, V = σ−c31 , N =

(
σ1(

log 1
σ1

) 2dz+2

α2 + dz+k
α

+ k
2

)− 1
k

;

W = c1

(
log

1

σ1

) dz
αk

+ dz
2

+2

(σ1
2)−

dz
k , W1 = c1N

dz(log
1

σ1
)2, W2 = c1

(
log

1

σ1

) dz
α(k−1)

+ dz
2

+2

(σ1)−
dz
k−1 ;

u = c2

(
log

1

σ1

) dz
αk

+ dz
2

+1

(σ1
2)−

dz
k , u1 = c2N

dz(log
1

σ1
), u2 = c2

(
log

1

σ1

) dz
α(k−1)

+ dz
2

+1

(σ1)−
dz
k−1 ;

U = (u, · · · , u︸ ︷︷ ︸
L−2

), U1 = (u1, · · · , u1︸ ︷︷ ︸
L1−2

), U2 = (u2, · · · , u2︸ ︷︷ ︸
L2−2

),

then for anyGD(z) andQD(x) satisfying Assumption B and σ∗ ≥ σ1, it holds that ε0σ∗+ ε1
σ∗2

+ ε2
σ∗ ≤ 1.

We can then state the following lemma to bound the approximation error and the excess risk of the
EBVAE estimator with Gaussian encoder/decoder.

Lemma 18 Consider Fdd, Fed defined in (9), Fprior satisfying Condition B and the EBVAE estima-
tor pθ̂, qφ̂ and πβ̂ defined in (2), suppose Assumption B is satisfied, then there exist some constants
(η, γ, η, b7, c1, c2, c3) that only depend on (dz, dx) and (α, k, b2, b3, b5, b6) in Assumption B and
Condition B, such that when ε0

σ∗ + ε1
σ∗2

+ ε2
σ∗ ≤ 1, it holds with probability at least 1− 1

nc that,

DKL(pD(·)||pθ̂,β̂(·)) + EpD(x)

[
DKL(qφ̂(·|x)||pθ̂,β̂(·|x))

]
≤ c1σ

∗2
(

log
1

σ∗

)( 28+10α+3α2

α2

)
+ c2

log
2
α n

nσ2
1

(
log

1

σ1

) 2
α
(

log n+ L log(V ‖U‖1) + log
1

σ1

)
×
(
dβ + (W1 +W2)(L1 + L2) log(‖U1‖1 + ‖U2‖1) + (W1 +W )(L1 + L) log(‖U1‖1 + ‖U‖1)

)
.

So, by lemma 17 and lemma 18 and the fact that k ≥ 2 and σ1 ≤ σ∗, one has

DKL(pD(·)||pθ̂,β̂(·)) + EpD(x)

[
DKL(qφ̂(·|x)||pθ̂,β̂(·|x))

]
≤ c1σ

∗2
(

log
1

σ∗

)α̃1

+ c2
log

2
α n

n
(dβσ

−2
1 + σ1

−(2+ 2dz
k

))

(
log

1

σ1

)α̃2

,

where α̃1 = 28+10α+3α2

α2 and α̃2 = 2
α + dz

α(k−1) + dz
2 + 6.

B.4. Nonparametric Models

We use the notation p(x) to denote the marginal
∫
p(x|z)πβ(z)dz and p(z|x) to denote the posterior

p(x|z)πβ(z)∫
p(x|z)πβ(z)dz

. We begin the proof of Theorem 9 with the following two lemmas.
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Lemma 19 When Condition C and Assumption C hold, consider m(p, q, πβ, x) defined in (1), there
exists a constant c such that ∀p(x|z), p′(x|z) ∈ Fdd, ∀q(z|x), q′(z|x) ∈ Fed and ∀πβ(z), πβ′(z) ∈
Fprior, it holds that√√√√ 1

n

n∑
i=1

m(p, q, πβ, xi)−m(p′, q′, πβ′ , xi))2

≤ c

sup
x∈X
z∈Z

| log q(z|x)− log q′(z|x)|+ sup
x∈X
z∈Z

| log p(x|z)− log p′(x|z)|+ sup
z∈Z

∣∣log πβ(z)− log πβ′(z)
∣∣ .

Lemma 20 If p(x|z) ∝ exp
(∑k1

j=1 lj(xj , z)
)

, p′(x|z) ∝ exp
(∑k1

j=1 l
′
j(xj , z)

)
and q(z|x) ∝

exp
(∑k2

j=1 fj(z, xj)
)

, q′(z|x) ∝ exp
(∑k2

j=1 f
′
j(z, xj)

)
. Then,

sup
x∈X ,z∈Z

| log q(z|x)− log q′(z|x)|+ sup
x∈X ,z∈Z

| log p(x|z)− log p′(x|z)|

≤ 2

 sup
x∈X ,z∈Z

∣∣∣∣∣∣
k2∑
j=1

fj(z, xj)−
k2∑
j=1

f ′j(z, xj)

∣∣∣∣∣∣+ sup
x∈X ,z∈Z

∣∣∣∣∣∣
k1∑
j=1

lj(xj , z)−
k1∑
j=1

l′j(xj , z)

∣∣∣∣∣∣
 .

B.4.1. PROOF OF THEOREM 9

W.l.o.g, we can assume k1 = k2 = k and r1 = r2 = 1. Consider G∗ and G∗ defined in Section 3.
By Condition C, we have

|g(x)| = |m(p, q, πβ, x)−m(p∗, q∗, πβ∗ , x)|

=

∣∣∣∣∣log
p(x)

p∗dd,β∗(x)
+DKL(q(·|x)||p(·|x))−DKL(q∗(·|x)||p∗dd,β∗(·|x))

∣∣∣∣∣
≤ 2( sup

p∈Fdd,q∈Fed
πβ∈Fprior

sup
x∈[0,1]dx

z∈[0,1]dz

(| log p(x)|+ | log q(z|x)|+ | log p(z|x)|))

≤ 2C.

Therefore G∗ is uniformly bounded by 2C.

First we consider R̂n(δ,G
∗
) = Eε[ sup

g∈G∗
‖g‖n≤δ

| 1n
∑n

i=1 εig(xi)|] and

dn(g, g′) =

√√√√ 1

n

n∑
i=1

(g(xi)− g′(xi))2.

By Corollary 14.3 of Wainwright (2019), R̂n(δ̂n, G
∗
) ≤ δ̂2

n
2C is satisfied if

64√
n

∫ δ̂n

δ̂2n
4C

√
logN(G

∗
, dn, ε)dε ≤

δ̂2
n

2C
.
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Furthermore, by the same argument of the proof of Theorem 3, one has

logN(G
∗
, dn, ε) ≤ logN(G∗, dn, ε) + log

4C

ε
.

Define set Q and G as

Q :=


k∑
j=1

lj(xj , z) | lj(xj , z) ∈ Cα1 ([0, 1]|xj |+dz), |xj | ≤ p

 ;

G :=


k∑
j=1

fj(z, xj) | fj(z, xj) ∈ Cα1 ([0, 1]|xj |+dz), |xj | ≤ p

 .

Then by Lemma 19 and Lemma 20, we have for some constant c,

N(G∗, dn, ε) ≤ cN(G, ‖.‖∞,
ε

3
) ·N(Q, ‖.‖∞,

ε

3
) ·N(Θβ, ‖.‖2,

ε

3
).

Since every Gj(xj , z) with |xj | ≤ p can be seen as a function of x′j ⊇ xj with |x′j | = p, we can

assume |xj | = p. Since logN(Bα
1 ([0, 1]p+dz), ‖.‖∞, ε) . (1

ε )
p+dz
α (see equation (5.17) of (Wain-

wright, 2019)) and
(
dx
p

)
≤ ( edxp )p, we can get

logN(G, ‖.‖∞,
ε

2
)

≤ log

((
dx
p

)
N(Bα

1 ([0, 1]p+dz), ‖.‖∞,
ε

k
)

)k
. k1+ dz+p

α (
1

ε
)
p+dz
α + kp log

edx
p
.

Similarly, we also have logN(Q, ‖.‖∞, ε2) . k1+ dz+p
α (1

ε )
p+dz
α + kp log edx

p . Then, combined with

the fact that logN(Θβ, ‖.‖2, ε) ≤ dβ log(3
ε ), we can get logN(G

∗
, dn, ε) . k1+ dz+p

α (1
ε )

p+dz
α +

kp log edx
p . Therefore, R̂n(δ̂n, G

∗
) ≤ δ̂2

n
2C is satisfied if,

1. when p+ dz < 2α

1√
n

∫ δ̂n

0

√
k1+ dz+p

α (
1

ε
)
p+dz
α + kp log

edx
p
dε . δ̂2

n.

Choose δ̂n � n
−α

2α+dz+pk
α+dz+p
2α+dz+p +

√
kp
n log edx

p .

2. when p+ dz > 2α

1√
n

∫ ∞
δ̂2n
4C

√
k1+ dz+p

α (
1

ε
)
p+dz
α dε+

1√
n
δ̂n

√
kp log

edx
p

. δ̂2
n.

Choose δ̂n � n
−α

2(dz+p)k
α+dz+p
2(dz+p) +

√
kp
n log edx

p .
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3. when p+ dz = 2α

1√
n

∫ δ̂n

δ̂2n
4C

√
k3(

1

ε
)2dε+

√
kp

n
log

edx
p

. δ̂2
n.

Choose δ̂n � n−
1
4 (log n)

1
2k

3
4 +

√
kp
n log edx

p .

Moreover, for the above choices of δ̂n, nδ̂2
n & log(log 1

δ̂n
) is satisfied. Let δn be the smallest positive

solutions to the inequalities Rn(δ
∗
n, G

∗
) ≤ δ

2
n

2C . Then if nδ
2
n . log(log 1

δn
), we have δn . δ̂n. If

nδ
2
n & log(log 1

δn
), we have with probability larger than 0, δn is smaller than the smallest positive

solution to R̂n(δ̂n, G
∗
) ≤ δ̂2

n
2C up to some constant (see for example, Proposition 14.25 of Wainwright

(2019)). Since the choice of δ̂n is independent of {xi}ni=1, we have δn . δ̂n. Then combined with
Assumption C and Theorem 1, we can get the desired conclusion.

Appendix C. Remaining Proofs

C.1. Main Theoretical Results

C.1.1. PROOF OF LEMMA 11

Firstly we state the following lemma for proving the first statement.

Lemma 21 When | log p(x)
pD(x) | ≤ C, it holds that

pD(x)

p(x)

(
log

pD(x)

p(x)

)2

≤ (2 + C)

(
pD(x)

p(x)
log

pD(x)

p(x)
− pD(x)

p(x)
+ 1

)
.

Since

∥∥∥∥∥ sup
p∈Fdd,π∈Fprior

∣∣∣log p(x)
pD(x)

∣∣∣∥∥∥∥∥
ψα

≤ D, if we choose ρ = D(log n)
1
α and define

A1 =

{
sup

p∈Fdd,π∈Fprior
| log

p(x)

pD(x)
| > ρ

}
,

then by Chebyshev’s inequality, we have P (A1) ≤ 2
n . Using 1A1(x) to denote the indicator of A1,

and Ac1 to denote the complementary set of A1, we can get

EpD(x)

[(
log

p(x)

pD(x)

)2
]

= EpD(x)

[(
log

p(x)

pD(x)

)2

1Ac1(x)

]
+ EpD(x)

[(
log

p(x)

pD(x)

)2

1A1(x)

]
.

(10)
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By Lemma 21, we can upper bound the first term of equation (10),

EpD(x)

[(
log

p(x)

pD(x)

)2

1Ac1(x)

]

= Ep(x)

[
pD(x)

p(x)

(
log

pD(x)

p(x)

)2

1Ac1(x)

]

≤ (2 + ρ)Ep(x)

[(
pD(x)

p(x)
log

pD(x)

p(x)
− pD(x)

p(x)
+ 1

)
1Ac1(x)

]
≤ (2 + ρ)DKL(pD(·)||p(·)),

and for the second term,

EpD(x)

[(
log

p(x)

pD(x)

)2

1A1(x)

]

≤ EpD(x)

[(
sup

p∈Fdd,π∈Fprior
log2 p(x)

pD(x)

)
1A1(x)

]

=

∫ +∞

0
P

(((
sup

p∈Fdd,π∈Fprior
log2 p(x)

pD(x)

)
1A1(x)

)
> t

)
dt

≤
∫ D2(logn)

2
α

0
P

(((
sup

p∈Fdd,π∈Fprior
log2 p(x)

pD(x)

)
1A1(x)

)
> 0

)
dt

+

∫ +∞

D2(logn)
2
α

P

(
sup

p∈Fdd,π∈Fprior
log2 p(x)

pD(x)
> t

)
dt

≤ 2D2 log
2
α n

n
+

∫ +∞

D2(logn)
2
α

P

(
sup

p∈Fdd,π∈Fprior

∣∣∣∣log
p(x)

pD(x)

∣∣∣∣ > √t
)
dt

≤ 2D2 log
2
α n

n
+

∫ +∞

D2(logn)
2
α

2 exp

(
−

(
t

1
2

D

)α)
dt

= 2D2 log
2
α n

n
+

4

α
D2

∫ ∞
logn

exp(−x)x
2
α
−1dx

. D2 log
2
α n

n
.

Therefore EpD(x)

[(
log pD(x)

p(x)

)2
]
≤ c1

(
(D log

1
α n)DKL(pD(·)||p(·)) + D2 log

2
α n

n

)
.

For the second statement, define A2 =

{
sup

p∈Fdd,q∈Fed,π∈Fprior
DKL(q(·|x)||p(·|x)) ≥ ρ

}
. By the
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fact that

EpD(x)

[
(DKL(q(·|x)||p(·|x))−DKL(q′(·|x)||p′(·|x)))2

]
≤ 4ρEpD(x)

[(√
DKL(q(·|x)||p(·|x))−

√
DKL(q′(·|x)||p′(·|x))

)2
1Ac2(x)

]
+ 4EpD(x)

[(
sup

p∈Fdd,q∈Fed,π∈Fprior
D2
KL(q(·|x)||p(·|x))

)
1A2(x)

]
.

We can get the desired conclusion using the same argument as the first statement.

C.2. Parametric Models

C.2.1. PROOF OF LEMMA 13

Since sup
g∈G∗
|g(x)| = sup

g∈G∗
|g(x)|, we have

∥∥∥∥∥ sup
g∈G∗
|g(x)|

∥∥∥∥∥
ψα

≤ 2D.

Choose
ρ = 8EpD(x) max

1≤i≤n
sup
g∈G∗
|g(xi)|

≤ Kα

∥∥∥∥∥max
1≤i≤n

sup
g∈G∗
|g(xi)|

∥∥∥∥∥
ψα

.

Since

∥∥∥∥∥max
1≤i≤n

sup
g∈G∗
|g(xi)|

∥∥∥∥∥
ψα

≤ Kα

∥∥∥∥∥ sup
g∈G∗
|g(x)|

∥∥∥∥∥
ψα

log
1
α n (see for example, equation (13) of

Adamczak (2008)), it holds that ρ . D log
1
α n. Define A =

{
sup
g∈G∗
|g(x)| ≤ ρ

}
, we have

EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− EpD(x)g(x)

∣∣∣∣∣


≤ EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1A(xi)− EpD(x)(g(x)1A(x))

∣∣∣∣∣


+ EpD(x)

[
sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1Ac(xi)− EpD(x)(g(x)1Ac(x))

∣∣∣∣∣
]
,

where we can further upper bounded the second term,

EpD(x)

[
sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1Ac(xi)− EpD(x)(g(x)1Ac(x))

∣∣∣∣∣
]
≤ 2EpD(x)

[
sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣
]
.
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Let τ = inf{j ≤ n : sup
g∈G∗
|
∑j

i=1 g(xi)1Ac(xi)| > t}. Under τ = j,

max
k≤n

sup
g∈G∗
|
k∑
i=1

g(xi)1Ac(xi)|

≤ t+ max
1≤i≤n

sup
g∈G∗
|g(xi)1Ac(xi)|+ max

j<k≤n
sup
g∈G∗
|

k∑
i=j+1

g(xi)1Ac(xi)|

Since {τ = j} only depend on x1, · · · , xj , we have

P (τ = j,max
k≤n

sup
g∈G∗
|
k∑
i=1

g(xi)1Ac(xi)| > 3t+ s)

≤ P (τ = j, max
1≤i≤n

sup
g∈G∗
|g(xi)1Ac(xi)| > s) + P (τ = j)P ( max

j<k≤n
sup
g∈G∗
|

k∑
i=j+1

g(xi)1Ac(xi)| > 2t)

≤ P (τ = j, max
1≤i≤n

sup
g∈G∗
|g(xi)1Ac(xi)| > s) + P (τ = j)P (max

k≤n
sup
g∈G∗
|
k∑
i=1

g(xi)1Ac(xi)| > t)

Where the last inequality is due to the fact that for any 1 ≤ j < n, sup
g∈G∗
|
∑k

i=j+1 g(xi)1Ac(xi)| ≤

2max
k≤n

sup
g∈G∗
|
∑k

i=1 g(xi)1Ac(xi)|. A summation over j = 1, · · · , n yields

P (max
k≤n

sup
g∈G∗
|
k∑
i=1

g(xi)1Ac(xi)| > 3t+ s) ≤ P ( max
1≤i≤n

sup
g∈G∗
|g(xi)1Ac(xi)| > s)

+ P 2(max
k≤n

sup
g∈G∗
|
k∑
i=1

g(xi)1Ac(xi)| > t)

So,

EpD(x) sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣
≤ 1

n
EpD(x)max

k≤n
sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣
=

4

n

∫ +∞

0
P (max

k≤n
sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣ > 4t)dt

≤ 4

n

∫ +∞

0
P 2(max

k≤n
sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣ > t)dt+
4

n

∫ +∞

0
P ( max

1≤i≤n
sup
g∈G∗
|g(xi)1Ac(xi)| > t)dt

≤ 4

n
P

(
max
k≤n

sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣ > 0

)
EpD(x)max

k≤n
sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣
+

4

n
EpD(x) max

1≤i≤n
sup
g∈G∗
|g(xi)|
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By Markov inequality,

P

(
max
k≤n

sup
g∈G∗

∣∣∣∣∣
k∑
i=1

g(xi)1Ac(xi)

∣∣∣∣∣ > 0

)

≤ P ( max
1≤i≤n

sup
g∈G∗
|g(xi)| > ρ) ≤ 1

8

EpD(x) max
1≤i≤n

sup
g∈G∗
|g(xi)| . D log

1
α n

So, we have EpD(x) sup
g∈G∗

∣∣ 1
n

∑n
i=1 g(xi)1Ac(xi)

∣∣ . D log
1
α n
n .

C.2.2. PROOF OF LEMMA 14

Since rn ≤ 2ρ and rn ≤ 2
√

d∗

n

∑n
i=1 b

2(xi),

∫ rn

0

√√√√√d∗ log

3
√

d∗

n

∑n
i=1 b

2(xi)

ε

+ log
2ρ

ε
dε

≤
∫ rn

0

√√√√√d∗ log

3
√

d∗

n

∑n
i=1 b

2(xi)

ε

+

√
log

2ρ

ε
dε

= rn

∫ 1

0

√√√√√d∗ log

3
√

d∗

n

∑n
i=1 b

2(xi)

rnε

+

√
log

2ρ

rnε
dε

≤ rn

√√√√√d∗ log

3
√

d∗

n

∑n
i=1 b

2(xi)

rn

+ rn

√
log

2ρ

rn
+ rn

(√
d∗ + 1

)∫ 1

0

√
log

1

ε
dε.

By log x ≤ 1
ex

EpD(x)

rn
√√√√

log
3
√

d∗

n

∑n
i=1 b

2(xi)

rn



= EpD(x)

rn
√√√√

log
2ρ
√
d∗

rn
+ log

3
√

1
n

∑n
i=1 b

2(xi)

2ρ



≤ EpD(x)

rn
√

log
2ρ
√
d∗

rn
+ rn

√√√√1

e

3
√

1
n

∑n
i=1 b

2(xi)

2ρ

 .
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Since b(x) ∈ L2(pD(x)), by Cauchy-Schwarz inequality, we have

EpD(x)

rn
√√√√1

e

3
√

1
n

∑n
i=1 b

2(xi)

2ρ

 .

√
EpD(x)

r2
n

ρ
,

EpD(x)

[
rn

√
log

2ρ

rn

]
≤ 2ρEpD(x)

[
rn
2ρ

√
log

2ρ

rn
+

1

2

]
.

Let
(
rn
2ρ

)2
= y(y ≤ 1), since

√
−1

2y log y + 1
2y is concave and non-decreasing when y ≤ 1, by

Jensen inequality, we have

EpD(x)

[
rn
2ρ

√
log

2ρ

rn
+

1

2

]
≤

√√√√−1

2
EpD(x)

[(
rn
2ρ

)2

logEpD(x)

(
rn
2ρ

)2
]

+
1

2
EpD(x)

(
rn
2ρ

)2

.

Combine with the fact
∫ 1

0

√
log 1

εdε is less than infinity, we can get the desired conclusion.

C.3. Gaussian Encoders and Decoders

C.3.1. PROOF OF LEMMA 17

We first state the following lemmas about error bounds for approximations with deep ReLU networks
stated in Yarotsky (2017).

Lemma 22 (Theorem 1 of Yarotsky (2017)) There is a deep feedforward ReLU network architec-
ture with depth at most c(log(1/ε) + 1), the absolute value of each weight unit at most ε−c1 and
weights and computation units at most c2ε

− d
α log(1/ε) + 1 that is capable of expressing any function

belong to Cα1 ([0, 1]d) with error ε.

Lemma 23 (Proposition 3 of Yarotsky (2017)) Given M > 0 and ε ∈ (0, 1), there is a feedfor-
ward ReLU network η with two input units that implements a function x̃ : R2 → R so that

1. For any inputs x, y, if |x| ≤M and |y| ≤M, then |x̃(x, y)− xy| ≤ ε;

2. if x = 0 or y = 0, then x̃(x, y) = 0;

3. The depth and the number of weights and computation units in η is not greater than c1 ln(1/ε)+
c2 with an absolute constant c1 and a constant c2 = c2(M).

W.l.o.g, we can assume η = η = 1 and γ = 1. Then we consider m = (m1, · · · ,md) ∈

{−N,−(N − 1) · · · , 0, 1, · · · , N}dz , zim =

√
log 1

σ∗mi

N and zm = (z1
m, · · · , zdzm ). By the Lip-

schitzness of GD(z) and QD(x), there exists a constant c1 such that for any (z, z′) ∈ Bz =[
−
√

log 1
σ∗ ,
√

log 1
σ∗

]dz
, it holds that
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‖GD(z)−GD(z′)‖2 ≤ c1‖z − z′‖2
(

log
1

σ∗

) 1
α

;

‖z − z′‖2 ≤ c1‖GD(z)−GD(z′)‖2
(

log
1

σ∗

) 2
α2

.

Then for m ∈ {−N,−(N − 1) · · · , 0, 1, · · · , N}dz , we define

φm(x) =

dx∏
i=1

ψ

 1

σ∗
√
dx log 1

σ∗ + c1

√
dz

1
2N

(
log 1

σ∗

) 1
α

+ 1
2

(xi −GD,i(zm))

 ,

where ψ(x) =


1, |x| < 1
0, 2 < |x|
2− |x|, 1 ≤ |x| ≤ 2

and xi, GD,i(zm) denote the i-th dimension of x and

GD(zm). For any z ∈ Bz , there exist a m ∈ {−N,−(N − 1) · · · , 0, 1, · · · , N}dz , such that

‖z − zm‖2 ≤

√
log 1

σ∗dz

2N
‖GD(z)−GD(zm)‖2 ≤ c1

√
dz

1

2N

(
log

1

σ∗

) 1
α

+ 1
2

.

Therefore for any x ∈ Bx = {x = GD(z) + σ∗ε | z ∈ Bz, ε ∈ Bε}, there exists zm, such that

‖x − GD(zm)‖2 ≤ c1

√
dz

1
2N

(
log 1

σ∗

) 1
α

+ 1
2 + σ∗

√
dx log 1

σ∗ . It follows that for any x ∈ Bx,
Σ
m
φm(x) ≥ 1. Moreover, by the fact that the support of φm(x) is{

x : |xi −GD,i(zm)| ≤ 2(σ∗
√
dx log

1

σ∗
+ c1

√
dz

1

2N

(
log

1

σ∗

) 1
α

+ 1
2

),∀ 1 ≤ i ≤ dx

}
.

We have Σ
m
φm(x) .

(
log 1

σ∗

) 2dz
α2 + dz

α + (σ∗N)dz
(
log 1

σ∗

) 2dz
α2 . Let

Pm,j(x) =
∑

γ:|γ|<k

DγQD,j
γ!

∣∣∣∣∣∣
x=GD(zm)

(x−GD(zm))γ ,

with the usual conventions γ! =
∏dx
i=1 γ

i, (x−GD(zm))γ =
∏dx
i=1 (xi −GD,i(zm))γk andQD,j (1 ≤

j ≤ dz) being the jth dimension of QD. Now define an approximation to QD(x) by

Q̃j(x) =
Σ
m
φm(x)Pm,j(x)

Σ
m
φm(x)

;

Q̃(x) = (Q̃1(x), · · · , Q̃dz(x)).

We have for any x ∈ Bx and 1 ≤ j ≤ dz ,

|Q̃j(x)−QD,j(x)| ≤ |Σ
m
φm(x)Pm,j(x)− Σ

m
φm(x)QD,j(x)|

.

(
log

1

σ∗

) 2dz+2

α2 + dz+k
α

+ k
2

(1 + (σ∗N)dz)(σ∗ +
1

N
)k.
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Furthermore, by the fact that x = max(x, 0) − max(−x, 0), one has for any feedforward ReLU
neural work with d input units, depth L, ‖U‖1 computation units and W weights, it can be expressed
as a feedforward ReLU neural work in which information can only come from the previous one layer
with depth L, computation units at most 2L(‖U‖1 + d) and weights at most 4W + 2L(‖U‖1 + d).
Choose

N �

(
σ1(

log 1
σ1

) 2dz+2

α2 + dz+k
α

+ k
2

)− 1
k

.

By the fact that
|x| = max(x, 0) + max(−x, 0),

max(0,min(1, x)) = max(−max(−x+ 1, 0) + 1, 0),

and when x ≥ 1, f(x) = 1
x is C∞, combined with lemma 22, lemma 23 and when x ∈ Bx,

Σ
m
φm(x) ≥ 1, we can conclude that there exist ReLU neural networks with depth O(log 1

σ1
)

and weights and computation units at most O(Ndz(log 1
σ1

)) that approximate Q1(x) with er-

ror at most
(
log 1

σ∗

) 2dz
α2 + dz+k

α
+ k

2 (1 + (σ∗N)dz)(σ∗ + 1
N )k in domain Bx. Since k ≥ 2, we

can choose W1, ‖U1‖1 � Ndz(log 1
σ1

)2, L1 � log 1
σ1

and a large enough constant b8, such
that ε0 ≤ 1

3σ
∗. Checking the proof of Lemma 22 and Lemma 23 (Theorem 1 and Proposition

3 of Yarotsky (2017)), we can choose ‖U‖1,W �
(

log 1
σ1

) dz
αk

+ dz
2

+2
(σ1

2)−
dz
k ; ‖U2‖1,W2 �(

log 1
σ1

) dz
α(k−1)

+ dz
2

+2
(σ1)−

dz
k−1 ; L,L2 � log 1

σ1
; V =

(
1
σ1

)c
with a large enough c and (b, b9) to

be large enough constants, such that ε1 ≤ 1
3σ
∗2 and ε2 ≤ 1

3σ
∗.

C.3.2. PROOF OF LEMMA 18

To begin with, we state the following lemma in Anthony and Bartlett (1999) for bounding the
covering number of ReLU Neural networks.

Lemma 24 (Theorem 12.2 of Anthony and Bartlett (1999)) Assume for all f ∈ F , ‖f‖∞ ≤M .
Denote the pseudo-dimension of F as Pdim(F), then for n ≥ Pdim(F), we have for any ε and any
X1, . . . , Xn

N
(
ε, F|X1,...,Xn

,∞
)
≤
(

2eM · n
ε · Pdim(F)

)Pdim(F)

.

By the choice of µφ(x) and Σφ(x), we have µφ(x) ≤ logc0 1
σ1

(c1‖x‖2+c2) and 0 < c3 log−c0 1
σ1
σ2

1 ≤
λmin(Σφ(x)) ≤ λmax(Σφ(x)) ≤ 1 with some constants (c0, c1, c2, c3). Also,

log pD(x) ≤ dx
2

log(
1

2πσ∗2
);

− log pD(x) =
dx
2

log(2πσ∗2)− log

∫
exp

(
−(x−GD(z))T (x−GD(z))

2σ∗2

)
πD(z)dz

≤ dx
2

log(2πσ∗2) +
‖x‖22
σ∗2

+
1

σ∗2

∫
‖GD(z)‖22πD(z)dz.

(11)

We then state the following Lemma 25 for bounding the Orlicz norm in Assumption A.
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Lemma 25 Consider Fdd and Fed defined in equation (9), given Assumption B and Condition
B, there exists a constant C0 that only depend on (α, k, b2, b3, b5, b6, dz, dx) in Assumption B and
Condition B, such that

sup
pθ∈Fdd,qφ∈Fed
πβ∈Fprior

(|log pθ,β(x)|+DKL(qφ(·|x)||pθ,β(·|x))) ≤ C0

σ2
1

(
‖x‖22 + (log

1

σ1
)

2
α

)
.

For any Gθ1(z) ∈ Fdxdz (L,U,W, b(log 1
σ1

)
1
α , V ) with U = (u1, · · · , uL−2), it can be expressed

as a fully-connected ReLU neural network with depth L, computation units ‖U‖1, and Frobenius
norm of weights in each layer at most V ‖U‖1. We use θF1 to denote the (dz + 1)u1 +

∑L−3
l=1 (ul +

1)ul+1 + dx(uL−2 + 1) dimensional weights vector of Gθ1(z) after expressed as a fully-connected
ReLU neural network, then it can only has at most W -number of nonzero elements. Consider
Bx = [−c1 log

1
α n, c1 log

1
α n]dx such that pD(x /∈ Bx) ≤ 1

n2 . Next we state a lemma about the
lipschitzness of m(pθ, πβ, qφ, x) on Bx .

Lemma 26 Consider Fdd and Fed defined in (9), given Assumption B and condition B, there
exist some constants (c0, c1) that only depend on (α, k, b2, b3, b5, b6, dz, dx) in Assumption B and
Condition B, such that for any x ∈ Bx, (pθ, pθ′) ∈ Fdd, (qφ, qφ′) ∈ Fed and (πβ, πβ′) ∈ Fprior,∣∣m(pθ, πβ, qφ, x)−m(pθ′ , πβ′ , qφ′ , x)

∣∣
≤ c2 logc3 n

1

σc41

(√
L(‖U‖1V )L−2‖θF1 − θF1

′‖2 + ‖β − β′‖2 +
∣∣ 1

σ2
− 1

σ′2
∣∣

+ (‖U‖1V )L−1(‖µφ(x)− µφ′(x)‖2 + ‖Σφ(x)− Σφ′(x)‖F )
)
.

Therefore by
Σφ(x)− Σφ′(x)

= σ̄2
(
Gdφ2

(Qφ1(x))TGdφ2
(Qφ1(x)) + σ̄2Idz

)−1

− σ̄2
(
Gdφ′2

(Qφ′1(x))TGdφ′2
(Qφ′1(x)) + σ̄′

2
Idz

)−1

+ σ̄2
(
Gdφ′2

(Qφ′1(x))TGdφ′2
(Qφ′1(x)) + σ̄′

2
Idz

)−1

− σ̄′2
(
Gdφ′2

(Qφ′1(x))TGdφ′2
(Qφ′1(x)) + σ̄′

2
Idz

)−1
.

And by the fact that

‖A−1 −A′−1‖F = ‖A′−1
A′A−1 −A′−1

AA−1‖F
= ‖A′−1

(A′ −A)A−1‖F
≤ ‖A′−1‖F ‖A′ −A‖F ‖A−1‖F .

We can get that there exists a constant c0 such that,

‖Σφ(x)− Σφ′(x)‖F .
logc0 1

σ1

σ2
1

(
‖Gdφ2

(Qφ1(x))−Gdφ′2(Qφ′1(x))‖F + |σ̄2 − (σ̄′)2|
)
.
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Moreover,

‖µφ(x)− µ′φ(x)‖2

≤ ‖Qφ1(x)−Qφ′1(x)‖2 + log
1
α n logc0

1

σ1
(‖Σφ(x)− Σφ′(x)‖F + ‖Gdφ2

(Qφ1(x))−Gdφ′2(Qφ′1(x))‖F )

+ ‖Gφ3(Qφ1(x))−Gφ′3(Qφ′1(x))‖2.

So we can obtain that under Bx, there exist some constant (c5, c6, c7) such that∣∣m(pθ, πβ, qφ, x)−m(pθ′ , πβ′ , qφ′ , x)
∣∣

≤ c5 logc6 n
1

σc71

(
‖β − β′‖2 +

√
L(‖U‖1V )L−1‖θF1 − θF1

′‖2 + (‖U‖1V )L
(
‖Qφ1(x)−Qφ′1(x)‖2

+ ‖Gφ3(Qφ1(x))−Gφ′3(Qφ′1(x))‖2 + ‖Gdφ2
(Qφ1(x))−Gdφ′2(Qφ′1(x))‖F + |σ̄2 − (σ̄′)2|

)
+

∣∣∣∣ 1

σ2
− 1

σ′2

∣∣∣∣ ).
Denote ΘF

θ1
as the parameter space of θF1 , it holds that

ΘF
θ1 ⊆

{
θF1 ∈ R(dz+1)u1+

∑L−3
l=1 (ul+1)ul+1+dx(uL−2+1) | ‖θF1 ‖0 ≤W, ‖θF1 ‖∞ ≤ V

}
.

So one has logN(ΘF
θ1
, `2, ε) .W log V L‖U‖1

ε . Recall Bx = [−c1 log
1
α n, c1 log

1
α n]dx , we have

P

 ⋃
1≤i≤n

{xi ∈ Bcx}

 ≤ 1

n2
n =

1

n
.

Moreover, by Lemma 25, for any x ∈ Bx, it holds that

sup
pθ∈Fdd,qφ∈Fed
πβ∈Fprior

|m(pθ, qφ, πβ, x)− log pD(x)| .
(log n

σ1
)

2
α

σ2
1

;

sup
g∈G∗
|g(x)| .

(log n
σ1

)
2
α

σ2
1

.

Then, by changing the set A to Bx in the proof of Lemma 13, we can get

EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− EpD(x)g(x)

∣∣∣∣∣


≤ EpD(x)

 sup
g∈G∗
‖g‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

g(xi)1Bx(xi)− EpD(x)(g(x)1Bx(x))

∣∣∣∣∣
+ C

(log n
σ1

)
2
α

nσ2
1

.
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Therefore by lemma 25, lemma 26 and lemma 24, like the proof of Theorem 3, we should choose

δn �
√(

W + dβ + Pdim(Gdφ2
(Qφ1(x))) + Pdim(Qφ1(x)) + Pdim(Gφ3(Qφ1(x)))

)
√

(log n+ L log(‖U‖1V ) + log
1

σ1
)
1

n

(log n
σ1

)
2
α

σ2
1

.

Furthermore, for the Hard Tanh function h(x) = max(−b,min(b, x)), it can be express as h(x) =
σ(−σ(−x+ b) + 2b)− b with σ(x) = max(x, 0). Then, by Theorem 6 of Bartlett et al. (2019), we
have

Pdim(Gdφ2
(Qφ1(x))) = O((W1 +W2)(L1 + L2) log(‖U1‖1 + ‖U2‖1));

Pdim(Qφ1(x)) = O(W1L1 log ‖U1‖1);

Pdim(Gφ3(Qφ1(x))) = O((W +W1)(L+ L1) log(U + ‖U1‖1)).

We then bound the approximation error in the following lemma.

Lemma 27 Consider Fdd, Fed defined in (9) and Fprior satisfying Condition B, given Assumption
B, there exist some constants (η, γ, η, b7, c) that only depend on (dz, dx) and (α, k, b2, b3, b5, b6) in
Assumption B and Condition B, such that when ε0

σ∗ + ε1
σ∗2

+ ε2
σ∗ ≤ 1,

min
pθ∈Fdd,qφ∈Fed
πβ∈Fprior

DKL(pD(·)||pθ,β(·)) + EpD(x) [DKL(qφ(·|x)||pθ,β(·|x))]

≤ cσ∗2
(

log
1

σ∗

)( 28+10α+3α2

α2

)
,

with (ε0, ε1, ε2) being defined in equation (7).

We can then get the desired conclusion using Theorem 1.

C.4. Nonparametric Models

C.4.1. PROOF OF LEMMA 19 AND LEMMA 20√√√√ 1

n

n∑
i=1

m(p, q, πβ, xi)−m(p′, q′, πβ′ , xi))2

≤ sup
x

∣∣∣∣log
p(x)

p′(x)

∣∣∣∣+ sup
x

∣∣DKL(q(·|x)||p(·|x))−DKL(q′(·|x)||p′(·|x))
∣∣ .

(12)

For the first term of equation (12), one has

p′(x)sup
z

p(x|z)πβ(z)

p′(x|z)πβ′(z)

=

∫
Z
p′(x|z)sup

z

p(x|z)πβ(z)

p′(x|z)πβ′(z)
πβ′(z)dz

≥
∫
Z
p′(x|z)

p(x|z)πβ(z)

p′(x|z)πβ′(z)
πβ′(z)dz

= p(x).
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Similarly, it holds that p
′(x)
p(x) ≤ sup

z

p′(x|z)πβ′ (z)
p(x|z)πβ(z) . Therefore when p(x)

p′(x) ≥ 1,

∣∣∣∣log
p(x)

p′(x)

∣∣∣∣ = log
p(x)

p′(x)
≤ log sup

z

p(x|z)πβ(z)

p′(x|z)πβ′(z)
≤ sup

z

∣∣log p(x|z)− log p′(x|z)
∣∣+ sup

z

∣∣log πβ(z)− log πβ′(z)
∣∣ .

Similarly, when p(x)
p′(x) ≤ 1,

∣∣∣∣log
p(x)

p′(x)

∣∣∣∣ ≤ log sup
z

p′(x|z)πβ′(z)
p(x|z)πβ(z)

≤ sup
z

∣∣log p(x|z)− log p′(x|z)
∣∣+ sup

z

∣∣log πβ(z)− log πβ′(z)
∣∣ .

For the second term of equation (12),

sup
x

∣∣DKL(q(·|x)||p(·|x))−DKL(q′(·|x)||p′(·|x))
∣∣

≤ sup
x

∣∣∣∣∫
Z

log
q(z|x)

p(z|x)
q(z|x)dz −

∫
Z

log
q(z|x)

p′(z|x)
q(z|x)dz

∣∣∣∣
+ sup

x

∣∣∣∣∫
Z

log
q(z|x)

p′(z|x)
q(z|x)dz −

∫
Z

log
q′(z|x)

p′(z|x)
q′(z|x)dz

∣∣∣∣ .
(13)

Then for the first part of equation (13),

sup
x

∣∣∣∣∫
Z

log
p′(z|x)

p(z|x)
q(z|x)dz

∣∣∣∣
≤ sup

x,z

∣∣∣∣log
p′(x|z)p′(x)

p(x|z)p(x)

∣∣∣∣+ sup
z

∣∣log πβ(z)− log πβ′(z)
∣∣

≤ 2sup
x,z

∣∣log p(x|z)− log p′(x|z)
∣∣+ 2sup

z

∣∣log πβ(z)− log πβ′(z)
∣∣ .

For the second part of equation (13),

sup
x

∣∣∣∣∫
Z

log
q(z|x)

p′(z|x)

q(z|x)

p′(z|x)
p′(z|x)dz −

∫
Z

log
q′(z|x)

p′(z|x)

q′(z|x)

p′(z|x)
p′(z|x)dz

∣∣∣∣
≤ sup

x

∫
Z

∣∣∣∣log
q(z|x)

p′(z|x)

q(z|x)

p′(z|x)
− log

q′(z|x)

p′(z|x)

q′(z|x)

p′(z|x)

∣∣∣∣ p′(z|x)dz

≤ sup
p∈Fdd,q∈Fed
πβ∈Fprior

sup
x,z

(1 + | log p(z|x)|+ | log q(z|x)|) · sup
x

∫
Z

∣∣∣∣ q(z|x)

p′(z|x)
− q′(z|x)

p′(z|x)

∣∣∣∣ p′(z|x)dz

≤ (C + 1)sup
x

∫
Z

∣∣q(z|x)− q′(z|x)
∣∣ dz.
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Then by x log x ≥ x− 1∫
Z

∣∣q(z|x)− q′(z|x)
∣∣ dz

=

∫
Z

(
q(z|x)

q′(z|x)
− 1

)
1(q(z|x) ≥ q′(z|x))q′(z|x)dz

+

∫
Z

(
q′(z|x)

q(z|x)
− 1

)
1(q′(z|x) ≥ q(z|x))q(z|x)dz

≤
∫
Z

∣∣∣∣ q(z|x)

q′(z|x)
log

q(z|x)

q′(z|x)

∣∣∣∣ q′(z|x)dz +

∫
Z

∣∣∣∣q′(z|x)

q(z|x)
log

q′(z|x)

q(z|x)

∣∣∣∣ q(z|x)dz

≤ 2sup
z

∣∣log q(z|x)− log q′(z|x)
∣∣ .

We then get the desired conclusion in Lemma 19.

For Lemma 20, since p(x|z) ∝ exp
(∑k1

j=1 lj(xj , z)
)

, then we can write log p(x|z) as
∑k1

j=1 lj(xj , z)−

C(x), withC(x) = log
∫
Z exp(

∑k1
j=1 lj(xj , z))dz. By the same argument of the proof of Lemma 19,

we have ∫
Z exp(

∑k1
j=1 lj(xj , z))dz∫

Z exp(
∑k1

j=1 l
′
j(xj , z))dz

≤ sup
z

exp(
∑k1

j=1 lj(xj , z))

exp(
∑k1

j=1 l
′
j(xj , z))∣∣∣∣∣log

∫
Z exp(

∑k1
j=1 lj(xj , z))dz∫

Z exp(
∑k1

j=1 l
′
j(xj , z))dz

∣∣∣∣∣ ≤ sup
z

∣∣∣∣∣∣
k1∑
j=1

lj(xj , z)−
k1∑
j=1

l′j(xj , z)

∣∣∣∣∣∣ .
So we have sup

x,z
| log p(x|z)− log p′(x|z)| ≤ 2sup

x,z

∣∣∣∑k1
j=1 lj(xj , z)−

∑k1
j=1 l

′
j(xj , z)

∣∣∣ . Similarly for

the case of q(z|x).

C.5. Proof of additional lemmas

C.5.1. PROOF OF LEMMA 21

Let y = pD(x)
p(x) , then y ∈ [e−C , eC ].

f(y) = (2 + C)(y log y − y + 1)− y(log y)2.

f ′(y) = (C − log y) log y.

When 1 ≤ y ≤ eC , f ′(y) > 0. When e−C ≤ y < 1, f ′(y) < 0. Since f(1) = 0, when
y ∈ [e−C , eC ]), it holds that f(y) ≥ 0.

C.5.2. PROOF OF LEMMA 25

For pθ,β(x) =
∫
pθ(x|z)πβ(z)dz, define

Aθ,β = {x : pθ,β(x) > 1}.
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Then for any x ∈ Aθ,β ,

| log pθ,β(x)| = log pθ,β(x) = log

∫
pθ(x|z)πβ(z)dz

= log

∫ (
1

2πσ2

) dx
2

exp

(
−
∑dx

j=1(xj −Gθ,j(z))2

2σ2

)
πβ(z)dz

≤ log

∫ (
1

2πσ2

) dx
2

πβ(z)dz

≤ −dx
2

log(2πσ2
1),

DKL(qφ(·|x)||pθ,β(·|x)) =

∫
log

qφ(z|x)pθ,β(x)

pθ(x|z)πβ(z)
qφ(z|x)dz

=

∫
log qφ(z|x)qφ(z|x)dz + log pθ,β(x)

−
∫

log pθ(x|z)qφ(z|x)dz −
∫

log πβ(z)qφ(z|x)dz.

For any x ∈ Acθ,β ,

| log pθ,β(x)|+DKL(qφ(·|x)||pθ,β(·|x))

= −
∫

log pθ(x|z)qφ(z|x)dz +DKL(qφ(·|x)||πβ(·))

=

∫
log qφ(z|x)qφ(z|x)dz −

∫
log pθ(x|z)qφ(z|x)dz −

∫
log πβ(z)qφ(z|x)dz,

∫
log qφ(z|x)qφ(z|x)dz = −1

2
log |Σφ(x)| − dz

2
(1 + log(2π)),

−
∫

log pθ(x|z)qφ(z|x)dz =
dx
2

log(2πσ2) +

∫ ∑dx
j=1(xj −Gθ,j(z))2

2σ2
qφ(z|x)dz

≤ dx
2

log(2π) +
1

σ2
1

dx∑
j=1

(
x2
j +

∫
G2
θ,j(z)qφ(z|x)dz

)
.

By the definition of Fdd and Fed in (9) and Condition B, there exists a constant c such that∫
‖Gθ(z)‖22qφ(z|x)dz ≤ c(log

1

σ1
)

2
α ;∣∣∣∣∫ log πβ(z)qφ(z|x)dz

∣∣∣∣ ≤ c log
1

σ1
.

Then by the fact that when σ1 ≤ 1, log 1
σ2

1
≤ 1

σ2
1

, we can get the desired conclusion.
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C.5.3. PROOF OF LEMMA 26

We begin the proof with the following lemma about the Lipschitzness of ReLU neural networks (w.r.t
the parameter).

Lemma 28 If Gθ1(z) is ReLU neural network in which the information of each layer can only come
from the previous one layer. Also, it has L layers, use Hard Tanh as the activation function for the
output and there exists a constant V ≥ 2 such that in each layer, the units ω has ‖ω‖2 ≤ V , then,
for any Gθ1(z) and Gθ′1(z),

‖Gθ1(z)−Gθ′1(z)‖2 ≤ V L−2(2 + ‖z‖2)
√

2L‖θ1 − θ′1‖2.

We then return to our proof of Lemma 26. For any x ∈ Bx,

|m(pθ, qφ, πβ, x)−m(pθ′ , qφ′ , πβ′ , x)|

≤
∣∣∣∣∫ log

pθ(x|z)
pθ′(x|z)

qφ(z|x)dz

∣∣∣∣+

∣∣∣∣∫ log pθ′(x|z)(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣
+

∣∣∣∣∫ log qφ(z|x)qφ(z|x)dz −
∫

log qφ′(z|x)qφ′(z|x)dz

∣∣∣∣
+

∣∣∣∣∫ log πβ(z)qφ(z|x)dz −
∫

log πβ′(z)qφ′(z|x)dz

∣∣∣∣ .
(14)

For the first term of equation (14), since in each layer of Gθ1(z), the weights w has ‖w‖F ≤ V ‖U‖1.
Then by Lemma 28 and the boundedness of µφ(x) and Σφ(x), we have∣∣∣∣∫ log

pθ(x|z)
pθ′(x|z)

qφ(z|x)dz

∣∣∣∣
≤
∫

1

σ2

dx∑
j=1

∣∣∣∣∣G
2
θ1,j

(z)−G2
θ′1,j

(z)

2
+ xj(Gθ′1,j(z)−Gθ1,j(z))

∣∣∣∣∣ qφ(z|x)dz

+
dx
2

∣∣∣∣log
1

σ2
− log

1

σ′2

∣∣∣∣+

∣∣∣∣ 1

σ2
− 1

σ′2

∣∣∣∣ ∫
∑dx

j=1(xj −Gθ′1,j(z))
2

2
qφ(z|x)dz

≤ 1

σ2
1

∫ (
‖Gθ1,j(z)−Gθ′1,j(z)‖2

(
1

2
‖Gθ1,j(z) +Gθ′1,j(z)‖2 + ‖x‖2

))
qφ(z|x)dz + c(log

n

σ1
)

2
α

∣∣∣∣ 1

σ2
− 1

σ′2

∣∣∣∣
.

√
L(log n

σ1
)

2
α

σ2
1

(‖U‖1V )L−2‖θ1 − θ′1‖2 + (log
n

σ1
)

2
α

∣∣∣∣ 1

σ2
− 1

σ′2

∣∣∣∣ .
For the second term of equation (14),∣∣∣∣∫ log pθ′(x|z)(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣
=

1

σ′2

∣∣∣∣∣
∫
−
∑dx

j=1(xj −Gθ′1,j(z))
2

2
(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣∣
≤ 1

σ′2

∣∣∣∣∣∣
∫
−

∑dx
j=1G

2
θ′1,j

(z)− 2xjGθ′1,j(z)

2
(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣∣∣ .
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By the fact that ‖Gθ1(z)−Gθ1(z′)‖2 ≤ (‖U‖1V )L−1‖z − z′‖2, it holds that∣∣∣∣∫ ‖Gθ′1(z)‖22(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣
≤ inf

γx∈Π(qφ(·|x),qφ′ (·|x))

∫
Rdz×Rdz

∣∣∣‖Gθ′1(z)‖22 − ‖Gθ′1(z0)‖22
∣∣∣ dγx

≤ inf
γx∈Π(qφ(·|x),qφ′ (·|x))

∫
Rdz×Rdz

‖Gθ′1(z)−Gθ′1(z0)‖2‖Gθ′1(z) +Gθ′1(z0)‖2dγx

≤ c(‖U‖1V )L−1(log
1

σ1
)

1
αW2(qφ(·|x), qφ′(·|x)),

where W2(µ0, µ1) denotes the Wasserstein-2 distance defined as (Santambrogio, 2015):

W 2
2 (µ0, µ1) := inf

Y0∼µ0;Y1∼µ1

E
(
‖Y0 − Y1‖2

)
= inf

γ∈Π(µ0,µ1)

∫
Rdz×Rdz

‖y0 − y1‖22 dγ (y0, y1) .

Similarly, we can get ∣∣∣∣∣∣
∫ dx∑

j=1

xjGθ′1(z)(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣∣∣
≤ c log

1
α n(‖U‖1V )L−1W2(qφ(·|x), qφ′(·|x)).

Therefore, ∣∣∣∣∫ log pθ′(x|z)(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣
.

(‖U‖1V )L−1

σ2
1

(log
n

σ1
)

1
αW2(qφ(·|x), qφ′(·|x)).

Furthermore, by Givens and Shortt (1984), we have

W2(qφ(·|x), qφ′(·|x)) =
∥∥µφ(x)− µφ′(x)

∥∥2

2
+ Tr

(
Σφ(x) + Σφ′(x)− 2

(
Σ

1
2
φ (x)Σφ′(x)Σ

1
2
φ (x)

) 1
2

)
=
∥∥µφ(x)− µφ′(x)

∥∥2

2
+ ‖Σ

1
2
φ (x)− Σ

1
2
φ′(x)U(x, φ, φ′)‖2F ,

where U(x, φ, φ′) = Σ
− 1

2
φ′ (x)Σ

− 1
2

φ (x)

(
Σ

1
2
φ (x)Σφ′(x)Σ

1
2
φ (x)

) 1
2

. Then let Σφ(x) = US2UT and

Σφ′(x) = V S2
1V

T be the eigenvalue decomposition of Σφ(x) and Σφ′(x), we have

U(x, φ, φ′) = US−1UTV S−1
1 V T

(
USUTV S2

1V
TUSUT

) 1
2 .

By Davis-Kahan theorem (Davis and Kahan, 1970) and the boundedness of the eigenvalues of Σφ(x),
it holds with a constant c4 that

‖I − UTV ‖F . σ−c41 ‖Σφ(x)− Σφ′(x)‖F ;

‖I − V TU‖F . σ−c41 ‖Σφ(x)− Σφ′(x)‖F .
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Then combine all these facts, we have∣∣∣∣∫ log pθ′(x|z)(qφ(z|x)− qφ′(z|x))dz

∣∣∣∣
. (‖U‖1V )L−1 logc3 n

σc41

(‖µφ(x)− µφ′(x)‖2 + ‖Σφ(x)− Σφ′(x)‖F ).

For the third term of equation (14),∣∣∣∣∫ log qφ(z|x)qφ(z|x)dz −
∫

log qφ′(z|x)qφ′(z|x)dz

∣∣∣∣
=

∣∣∣∣12 log |Σφ(x)| − 1

2
log
∣∣Σφ′(x)

∣∣∣∣∣∣
. σ−c41 ‖Σφ(x)− Σφ′(x)‖F .

For the last term of equation (14), by Condition B, we can get

| log πβ(z)− log πβ(z0)| = ∇z log πβ(cz + (1− c)z0)(z − z0)

≤ (c1(‖z‖2 + ‖z0‖2) + c2)‖z − z0‖2.

Therefore,

| log πβ(z)qφ(z|x)dz − log πβ(z)qφ′(z|x)dz| ≤ inf
γx∈Π(qφ(z|x),qφ′ (z|x))

∫
Rd×Rd

(c1(‖z‖2 + ‖z0‖2) + c2)‖z − z0‖2dγx

≤
(

2c2
2 + 4c2

1(

∫
‖z‖22qφ(z|x)dz +

∫
‖z‖22qφ′(z|x)dz

)

×

(
inf

γx∈Π(qφ(z|x),qφ′ (z|x))

∫
Rd×Rd

|z − z0|22dγx

) 1
2

.

Then use the same strategy for bounding the second term of equation (14) and the fact that
| log πβ(z)− log πβ′(z)| ≤ (c3‖z‖c52 + c4)‖β − β′‖2, we have∣∣∣∣∫ log πβ(z)qφ(z|x)dz −

∫
log πβ′(z)qφ′(z|x)dz

∣∣∣∣
.

logc3 n

σc41

(‖β − β′‖2 + ‖µφ(x)− µφ′(x)‖2 + ‖Σφ(x)− Σφ′(x)‖F ).

We can then get the desired conclusion.

C.5.4. PROOF OF LEMMA 27

Assume Q1(x), G1(z) and Gd1(z) achieve the rate ε0, ε1 and ε2, that is

max
x∈Bx

‖Q1(x)−QD(x)‖2 = ε0;

max
z∈Bz
‖G1(z)−GD(z)‖2 = ε1;

max
z∈Bz
‖Gd1(z)−∇GD(z)‖F = ε2.

(15)
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By Assumption B, we have sup‖z‖2≤r‖∇GD(z)‖F ≤ c5r
2
α+c6 and sup‖z‖2≤r‖∇QD(x)|x=GD(z)‖F ≤

c5r
4
α2 + c6. Moreover, by the fact that z = QD(GD(z)), we have Idz = ∇QD(x)|x=GD(z)∇GD(z).

Then, for a fixed z ∈ Bz , let ∇QD(x)T |x=GD(z) = U1S1V
T

1 and ∇GD(z) = U2S2V
T

2 be the
singular value decomposition of ∇QD(x)T |x=GD(z) and ∇GD(z), where U1, U2 ∈ O(dx, dz),
V1, V2 ∈ O(dz). Then it holds that S−1

2 = V T
2 V1S1U

T
1 U2. We can thus obtain that when ‖z‖2 ≤ r,

λmin(∇GD(z)T∇GD(z)) ≥ 1

a

(
1+r

8
α2

) for some constant a > 0. Given this fact, we define

Σ1(x) = (Gd1(Q1(x))TGd1(Q1(x)) + σ∗2Idz)
−1;

Σ̃1(x)i,j = max(−b̄7,min(b̄7,Σ1(x)i,j)) (1 ≤ i, j ≤ dx, b̄7 = b7(log
1

σ∗
)

4
α2 );

µ1(x) = Q1(x) + Σ̃1(x)Gd1(Q1(x))T (x−G1(Q1(x)));

ε′2 = max
x∈Bx
‖µ1(x)− (Q1(x) + Σ(x)∇GD(Q1(x))T (x−GD(Q1(x))))‖2;

ε′3 = max
x∈Bx
‖Σ1(x)−1 − Σ(x)−1‖F ,

(16)

in which Σ(x) is defined as (∇GD(Q1(x))T∇GD(Q1(x)))−1 with∇GD(Q1(x)) = ∇GD(z)|z=Q1(x).

Define
p(x|z) ∼ N

(
G1(z), σ∗2I

)
, p(x) =

∫
p(x|z)πD(z)dz;

q(z|x) ∼ N
(
µ1(x), σ∗2Σ1(x)

)
;

p(z|x) =
p(x|z)πD(z)

p(x)
.

(17)

Consider z = Q1(x) + (z0 −Q1(x))σ∗, define

q0(z0|x) ∼ N
(
Q1(x) +

µ1(x)−Q1(x)

σ∗
,Σ1(x)

)
;

p0(z0|x) = σ∗dzp
(
z = Q1(x) + (z0 −Q1(x))σ∗|x

)
.

Since DKL is invariant to affine transformations, we have

DKL(q0(·|x)||p0(·|x)) = DKL(q(·|x)||p(·|x)).

Recall thatBz = [−η log
1
2

1
σ∗ , η log

1
2

1
σ∗ ]

dz andBε = [−γ log
1
2

1
σ∗ , γ log

1
2

1
σ∗ ]

dx , then by Lemma 25

and the assumption that ‖GD(z)‖2 ≤ c3‖z‖
2
α
2 + c4, we have for sufficient large η and γ, it holds that

EpD(x)

∫
log

q0(z0|x)

p0(z0|x)
q0(z0|x)dz0

=

∫ ∫ ∫
log

q0(z0|GD(z) + εσ∗)

p0(z0|GD(z) + εσ∗)
q0(z0|GD(z) + εσ∗)dz0πD(z)p(ε)dzdε

≤
∫
Bε

∫
Bz

∫
log

q0(z0|GD(z) + εσ∗)

p0(z0|GD(z) + εσ∗)
q0(z0|GD(z) + εσ∗)dz0πD(z)p(ε)dzdε+ σ∗2.
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Define x = GD(z) + εσ∗, x = GD(z) and r = Q1(x) + (z0 −Q1(x))σ∗. Then,

p0(z0|x) = p(r|x)σ∗dz =
p(x|r)πD(r)σ∗dz

p(x)
;

πD(r) = πD(Q1(x)) + σ∗∇πD(az0)T (z0 −Q1(x)),

az0 = Q1(x) + cσ∗(z0 −Q1(x)) (c ∈ [0, 1]);

and

p(x|r) =

(
1

2πσ∗2

) dx
2

exp

(
−(x−G1(r))T (x−G1(r))

2σ∗2

)
=

(
1

2πσ∗2

) dx
2

exp

(
−(x−GD(r))T (x−GD(r))

2σ∗2

)
exp

(
−‖GD(r)−G1(r)‖22

2σ∗2

)
exp

(
−(GD(r)−G1(r))T (x−GD(r))

σ∗2

)
.

Let D = −‖GD(r)−G1(r)‖22
2σ∗2

and E = − (GD(r)−G1(r))T (x−GD(r))
σ∗2

.

GD(r) = GD(Q1(x)) +∇GD(Q1(x))(z0 −Q1(x))σ∗ +Rn(x, z0).

Since for any z ∈ Bz and ε ∈ Bε, it holds that x = GD(z) and x = x+ σ∗ε belong to Bx. Then,

‖x−GD(Q1(x))‖2 = ‖x− x+ x−GD(QD(x)) +GD(QD(x))−GD(Q1(x))‖2

. ε0

(
log

1

σ∗

) 1
α

+ σ∗
(

log
1

σ∗

) 2
α2 + 1

α
+ 1

2

. σ∗
(

log
1

σ∗

) 2
α2 + 1

α
+ 1

2

.

Define Σ(x) =
(
∇GD(Q1(x))T∇GD(Q1(x))

)−1, we have

p(x|r) =
(

(2π)dz |Σ(x)|
) 1

2 N (z0, Q1(x) +
Σ(x)

σ∗
∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x))

×
(

1

2πσ∗2

) dx
2

exp

(
−(x−GD(Q1(x)))T (x−GD(Q1(x)))

2σ∗2

)
× exp

(
(x−GD(Q1(x)))T∇GD(Q1(x))Σ(x)∇GD(Q1(x))T (x−GD(Q1(x)))

2σ∗2

)
× exp

(
(x−GD(Q1(x))− σ∗∇GD(Q1(x))(z0 −Q1(x))T

σ∗2
Rn(x, z0)

)
× exp

(
−Rn(x, z0)TRn(x, z0)

2σ∗2

)
exp(D + E),

where N (z0, Q1(x) + Σ(x)
σ∗ ∇GD(Q1(x))T (x − GD(Q1(x))),Σ(x)) is the corresponding normal
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density with variable z0, mean vectorQ1(x)+ Σ(x)
σ∗ ∇GD(Q1(x))T (x−GD(Q1(x))) and covariance

matrix Σ(x). Set

B =
(x−GD(Q1(x)))T∇GD(Q1(x))Σ(x)∇GD(Q1(x))T (x−GD(Q1(x)))

2σ∗2
;

− (x−GD(Q1(x)))T (x−GD(Q1(x)))

2σ∗2
.

C =
(x−GD(Q1(x))− σ∗∇GD(Q1(x))(z0 −Q1(x))T

σ∗2
Rn(x, z0)− Rn(x, z0)TRn(x, z0)

2σ∗2

Then,

p(x|r) =
(

(2π)dz |Σ(x)|
) 1

2 N (z0, Q1(x) +
Σ(x)

σ∗
∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x))(

1

2πσ∗2

) dx
2

exp(B) exp(C +D + E).

We then bound p(x) =
∫
p(x|r)πD(r)dr with the following lemma.

Lemma 29 Given above notations in Section C.5.4 and α1 = 4
α2 + 1

α+ 1
2 , there exist some constants

(c0, c1, c2, c3, c4), such that for any x ∈ Bx, it holds that

exp

(
−c1

(
σ∗
(

log
1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1
))

exp

(
−c2

ε1
σ∗

(
log

1

σ∗

) 1
α

+α1
)
− c0σ

∗
(

log
1

σ∗

) 1
2

+α1

≤ p(x)

σ∗dz
(

1
2πσ∗2

) dx
2 ((2π)dz |Σ(x)|)

1
2 πD(Q1(x))exp(B)

≤

exp

(
c1

(
σ∗
(

log
1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1
))

exp

(
c2
ε1
σ∗

(
log

1

σ∗

) 1
α

+α1
)

+ c0σ
∗
(

log
1

σ∗

) 1
2

+α1

.

And there exists Az0 = [−c3

(
log 1

σ∗

)α1 , c3

(
log 1

σ∗

)α1 ]dz , such that for any x ∈ Bx, it holds that∫
Ac
z0

p0(z0|x)dz0 ≤ σ∗2;∫
Ac
z0

q0(z0|x)dz0 ≤ σ∗2;∫
Ac
z0

log
q0(z0|x)

p0(z0|x)
q0(z0|x)dz0 ≤ σ∗2.

Given Lemma 29, we have

DKL(q0(·|x)||p0(·|x)) ≤
∫
Az0

(
q0(z0|x)

p0(z0|x)
− 1

)2

p0(z0|x)dz0 + 2σ∗2

=

∫
Az0

(
exp

(
log

q0(z0|x)

p0(z0|x)

)
− 1

)2

p0(z0|x)dz0 + 2σ∗2.
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Since ∣∣∣∣log
q0(z0|x)

p0(z0|x)

∣∣∣∣
≤

∣∣∣∣∣∣log
N
(
z0, Q1(x) + µ1(x)−Q1(x)

σ∗ ,Σ1(x)
)

N
(
z0, Q1(x) + Σ(x)

σ∗ ∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x)
)
∣∣∣∣∣∣

+

∣∣∣∣∣∣log
N
(
z0, Q1(x) + Σ(x)

σ∗ ∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x)
)

p0(z0|x)

∣∣∣∣∣∣ .
(18)

Then under Bx, for the first term of equation (18), by the fact that when ‖z‖2 ≤
√

log 1
σ∗ , it holds

that λmin(∇GD(z)T∇GD(z)) & (log 1
σ∗ )
− 4
α2 and λmax(∇GD(z)T∇GD(z)) .

(
log 1

σ∗

) 2
α , we can

obtain

sup
x∈Bx

|log |Σ1(x)| − log |Σ(x)|| . ε3

(
log

1

σ∗

) 4
α2

.

Recall the definition of ε′2 and ε′3 in equation (16). Combined with the fact that

sup
x∈Bx

∥∥∥∥ 1

σ∗
(µ1(x)−Q1(x)− Σ(x)∇GD(Q1(x))T (x−GD(Q1(x))))

∥∥∥∥
2

.
ε′2
σ∗
,

we can get

sup
x∈Bx
z0∈Az0

∣∣∣∣∣∣log
N
(
z0, Q1(x) + µ1(x)−Q1(x)

σ∗ ,Σ1(x)
)

N
(
z0, Q1(x) + Σ(x)

σ∗ ∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x)
)
∣∣∣∣∣∣

. ε′3

(
log

1

σ∗

)2α1

+
ε′2
σ∗

(
log

1

σ∗

)α1+ 2
α

.

For the second term of (18), since when x ∈ Bx, Q1(x) ∈ Bz , then for z0 ∈ Az0 and x ∈ Bx, we
have r = Q1(x) + σ∗(z0 −Q1(x)) ∈ Bz given large enough η. And for x ∈ Bx and r ∈ Bz, we
have

|C| =
∣∣∣∣(x−GD(Q1(x))− σ∗∇GD(Q1(x))(z0 −Q1(x))T

σ∗2
Rn(x, z0)− Rn(x, z0)TRn(x, z0)

2σ∗2

∣∣∣∣
. σ∗

(
log

1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1

;

|D| = ‖GD(r)−G1(r)‖22
2σ∗2

≤ ε21
2σ∗2

;

|E| =
∣∣∣∣(GD(r)−G1(r))T (x−GD(r))

2σ∗2

∣∣∣∣ . ε1
σ∗

(
log

1

σ∗

) 1
α

+α1

.

By the assumption that ‖∇ log πD(z)‖2 ≤ c1‖z‖2 + c2, we have for any x ∈ Bx, z0 ∈ Az0 and
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az0 = Q1(x) + cσ∗(z0 −Q1(x)) (c ∈ [0, 1]), it holds that

‖∇πD(az0)‖2
πD(Q1(x))

.

√
log

1

σ∗
.

Then combined with Lemma 29, and the fact that x exp(x) ≤ ex when x ≤ 1. We can get that for
any z0 ∈ Az0 and x ∈ Bx,∣∣∣∣∣∣log

N
(
z0, Q1(x) + Σ(x)

σ∗ ∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x)
)

p0(z0|x)

∣∣∣∣∣∣
. σ∗

(
log

1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1

+
ε1
σ∗

(
log

1

σ∗

) 1
α

+α1

.

So finally, we have

DKL(q0(·|x)||p0(·|x)) . σ∗2
(

log
1

σ∗

) 4
α

+6α1

+
ε21
σ∗2

(
log

1

σ∗

) 2
α

+2α1

+
ε′22
σ∗2

(
log

1

σ∗

) 4
α

+2α1

+ ε20

(
log

1

σ∗

) 4
α

+4α1

+ ε′
2
3

(
log

1

σ∗

)4α1

.

Also, by Assumption C, we can choose a large enough b7 such that

b̄7 = b7(log
1

σ1
)

4
α2 ≥ max

1≤i,j≤dz
sup
x∈Bx

|Σ(x)i,j | ,

with Σ(x) =
(
∇GD (Q1(x))T ∇GD (Q1(x))

)−1
. So by the definition of µ1(x) and Σ1(x) in

eqaution (16), we have,

ε′2 . ε1

(
log

1

σ∗

) 2
α2

+ σ∗ε2

(
log

1

σ∗

) 10
α2 + 3

α
+ 1

2

;

ε′3 . ε2

(
log

1

σ∗

) 1
α

+ σ∗2.

We then bound DKL(pD(·)||p(·)) with the following lemma.

Lemma 30 Given Assumption B and Condition B, there exists a constant c, such that

DKL(pD(·)||p(·)) ≤ c
(
ε21
σ∗2

(log
1

σ∗
)

4
α2 +1+ 2

α + σ∗2
)
,

where p(x) is defined in equation (17).

We can then get the desired conclusion.
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C.5.5. PROOF FOR LEMMA 28

We first consider the case that the activation function of the output is an identity function. when
L = 2,

G2
θ(z) = w1z + b1.

Then we have
‖G2

θ1(z)‖2 ≤ ‖b1‖2 + ‖w1‖2‖z‖2 ≤ V (1 + ‖z‖2);

‖G2
θ1(z)−G2

θ′1
(z)‖2 ≤ ‖b1 − b′1‖2 + ‖w1z − w′1z‖2

≤ (2 + ‖z‖2)(‖w1 − w′1‖2 + ‖b1 − b′1‖2)).

If it’s hold for k-depth ReLU neural network that,

‖Gkθ1(z)‖2 ≤ V k−1(1 + ‖z‖2) +

k−2∑
j=1

V j ;

‖Gkθ1(z)−Gkθ′1(z)‖2 ≤ V k−2(2 + ‖z‖2)

k−1∑
j=1

(‖wj − w′j‖2 + ‖bj − b′j‖2).

Then,
‖Gk+1

θ1
(z)‖2 ≤ ‖wk+1σ(Gkθ1(z))‖2 + ‖bk+1‖2

≤ ‖bk+1‖2 + ‖wk+1‖F

V k−1(1 + ‖z‖2) +

k−2∑
j=1

V j


≤ V k(1 + ‖z‖2) +

k−1∑
j=1

V j

≤ V k(2 + ‖z‖2);

‖Gk+1
θ1

(z)−Gk+1
θ′1

(z)‖2

≤ ‖wk+1σ(Gkθ1(z))− w′k+1σ(Gkθ′1
(z))‖2 + ‖bk+1 − b′k+1‖2

≤ ‖wk+1 − w′k+1‖F ‖Gkθ1(z)‖2 + ‖bk+1 − b′k+1‖2

+ ‖w′k+1‖F

V k−2(2 + ‖z‖2)

k−1∑
j=1

(‖wj − w′j‖2 + ‖bj − b′j‖2)


≤ V k−1(2 + ‖z‖2)

k∑
j=1

(‖wj − w′j‖2 + ‖bj − b′j‖2)

≤ V k−1(2 + ‖z‖2)
√

2k‖θ − θ′‖2.

Furthermore, by the fact that for h(x) = max(−b1,min(b1, x)), it holds that

|h(x)| ≤ |x|;
|h(x)− h(x′)| ≤ |x− x′|,

the desired conclusion also holds for the case that the activation function of the output is h(x).
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C.5.6. PROOF OF LEMMA 29

Set r = Q1(x) + σ∗(z0 −Q1(x)) then

p(x) =

∫
p(x|z = r)πD(z = r)dr

= σ∗dz
∫
p(x|r)(πD(Q1(x)) + σ∗∇πD(az0)T (z0 −Q1(x)))dz0.

By the assumptions on πD(z) and the fact that ‖x − GD(Q1(x))‖2 . σ∗
(
log 1

σ∗

) 2
α2 + 1

α
+ 1

2 , there
exist some constants (c0, c1) such that for any x ∈ Bx,

1

πD(Q1(x))
≤ exp(c0 log

1

σ∗
);

1

exp(B)
≤ exp

(
c1

(
log

1

σ∗

) 4
α2 +1+ 2

α

)
,

where recall that

B =
(x−GD(Q1(x)))T∇GD(Q1(x))Σ(x)∇GD(Q1(x))T (x−GD(Q1(x)))

2σ∗2

− (x−GD(Q1(x)))T (x−GD(Q1(x)))

2σ∗2
.

Let

B1
z =

[
−c2

(
log

1

σ∗

) 2
α2 + 1

α
+ 1

2

, c2

(
log

1

σ∗

) 2
α2 + 1

α
+ 1

2

]dz
;

A1
z0 =

[
−c3

(
log

1

σ∗

)α1

, c3

(
log

1

σ∗

)α1
]dz

;

A2
z0 =

{
z0 | r = Q1(x) + σ∗(z0 −Q1(x)) ∈ B1

z

}
.

For sufficiently large c2, we have ∀x ∈ Bx,∫
(B1
z)c
p(x|z = r)πD(z = r)dr

≤
(

1

2πσ∗2

) dx
2

σ∗dzπD(z ∈ (B1
z )c) exp

(
dz log

1

σ∗

)
≤ σ∗2

(
1

2πσ∗2

) dx
2

σ∗dzπD(Q1(X)) exp(B).

Under z0 ∈ A1,c
z0

⋂
A2
z0 , for any x ∈ Bx, we have

GD(r) = GD(Q1(x)) +∇GD(bz0)(z0 −Q1(x))σ∗,

bz0 = Q1(x) + cσ∗(z0 −Q1(x)) c ∈ [0, 1].
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So there exists a constant a, such that

(z0 −Q1(x))T∇GD(bz0)T∇GD(bz0)(z0 −Q1(x)) ≥ a
(

log
1

σ∗

)− 4
α2

‖z0 −Q1(x)‖22.

Then, by the fact that

(x−G1(r))T (x−G1(r))

=(x−GD(Q1(x))−∇GD(bz0)(z0 −Q1(x))σ∗ + (GD(r)−G1(r)))T

(x−GD(Q1(x))−∇GD(bz0)(z0 −Q1(x))σ∗ + (GD(r)−G1(r)).

We have for large enough A1
z0 , there exists a constant c4 such that for any x ∈ Bx,

σ∗dz
∫
A1,c

z0

⋂
A2
z0

p(x|r)π(r)dz0

≤ sup
A1,c

z0

⋂
A2
z0

p(x|r = Q1(x) + σ∗(z0 −Q1(x)))

≤ c4σ
∗2σ∗dz

(
1

2πσ∗2

) dx
2

πD(Q1(x)) exp(B).

Then, we only need to bound

σ∗dz
∫
A1
z0

p(x|r)(π(Q1(x)) + σ∗∇π(az0)T (z0 −Q1(x)))dz0.

We first bound

σ∗dz
∫
A1
z0

p(x|r)σ∗∇π(az0)T (z0 −Q1(x))dz0.

By the assumption that ‖∇ log πD(z)‖2 ≤ c1‖z‖2 + c2, we have for any x ∈ Bx, z0 ∈ A1
z0 and

az0 = Q1(x) + cσ∗(z0 −Q1(x)) (c ∈ [0, 1]),

‖∇πD(az0)‖2
πD(Q1(x))

= ‖∇ log πD(az0)‖2 exp(log πD(az0)− log πD(Q1(x)))

.

√
log

1

σ∗
.

And using the fact that

p(x|z = r) =
(

(2π)dz |Σ(x)|
) 1

2 N (z0, Q1(x) +
Σ(x)

σ∗
∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x))(

1

2πσ∗2

) dx
2

exp(B) exp(C +D + E),
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with

C =
(x−GD(Q1(x))− σ∗∇GD(Q1(x))(z0 −Q1(x))T

σ∗2
Rn(x, z0)− Rn(x, z0)TRn(x, z0)

2σ∗2
;

D = −‖GD(r)−G1(r)‖22
2σ∗2

;

E = −(GD(r)−G1(r))T (x−GD(r))

σ∗2
.

We could then obtain,∫
A1
z0

p(x|r)
∥∥z0 −Q1(x)

∥∥
2
dz0

.
(

(2π)dz |Σ(x)|
) 1

2

(
1

2πσ∗2

) dx
2

exp(B) exp

(
c1

(
σ∗
(

log
1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1
))

× exp

(
c2
ε1
σ∗

(
log

1

σ∗

) 1
α

+α1
)(

log
1

σ∗

)α1

.

Then we have,

−σ∗
(

log
1

σ∗

) 1
2

+α1

.
σ∗dz

∫
A1
z0
p(x|r)σ∗∇πD(az0)T (z0 −Q1(x))dz0

((2π)dz |Σ(x)|)
1
2
(

1
2πσ∗2

) dx
2 exp(B)σ∗dzπD(Q1(x))

. σ∗
(

log
1

σ∗

) 1
2

+α1

.

Next we bound

σ∗dz
∫
A1
z0

p(x|r)πD(Q1(x))dz0.

Since for sufficient large A1
z0 , we have∫

A1
z0

N (Q1(x) +
Σ(x)

σ∗
∇GD(Q1(x))T (x−GD(Q1(x))),Σ(x)) ≥ 1− σ∗2.

We could then obtain

exp

(
−c1

(
σ∗
(

log
1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1
))

exp

(
−c2

ε1
σ∗

(
log

1

σ∗

) 1
α

+α1
)

(1− σ∗2)

.
σ∗dz

∫
A1
z0
p(x|r)πD(Q1(x))dz0

((2π)dz |Σ(x)|)
1
2
(

1
2πσ∗2

) dx
2 exp(B)σ∗dzπD(Q1(x))

. exp

(
c1

(
σ∗
(

log
1

σ∗

) 2
α

+3α1

+ ε0

(
log

1

σ∗

) 2
α

+2α1
))

exp

(
c2
ε1
σ∗

(
log

1

σ∗

) 1
α

+α1
)
.
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Then by the fact that

σ∗dz
∫
A1
z0

p(x|r)(πD(Q1(x)) + σ∗∇πD(az0)T (z0 −Q1(x)))dz0

≤ p(x) ≤ σ∗dz
∫
A1
z0

p(x|r)(πD(Q1(x)) + σ∗∇πD(az0)T (z0 −Q1(x)))dz0

+

∫
B
c
z

p(x|z = r)πD(z = r)dr + σ∗dz
∫
A1,c

z0

⋂
A2
z0

p(x|r)πD(r)dz0.

We could then get the conclusion of the first part of the lemma. For the second part of the lemma,
since ∫

Ac
z0

p0(z0|x)dz0 =

∫
Ac
z0
p(x|z = r)πD(z = r)dz0∫
p(x|z = r)πD(z = r)dz0

,

we can get the desired conclusion using the same strategy of the proof of the first part of the lemma.

C.5.7. PROOF OF LEMMA 30

Since

log pD(x) ≤ dx
2

log(
1

2πσ∗2
);

− log p(x) =
dx
2

log(2πσ∗2)− log

∫
exp

(
−(x−G1(z))T (x−G1(z))

2σ∗2

)
πD(z)dz

≤ dx
2

log(2πσ∗2) +
‖x‖22
σ∗2

+
1

σ∗2

∫
‖G1(z)‖22πD(z)dz,

(19)

where the last inequality is due to Jensen inequality. So for Bz = [−η(log 1
σ∗ )

1
2 , η(log 1

σ∗ )
1
2 ]dz ,

Bε = [−γ(log 1
σ∗ )

1
2 , γ(log 1

σ∗ )
1
2 ]dx and Bx = {GD(z) + σ∗ε, z ∈ Bz, ε ∈ Bε}, if η and γ are large

enough, by the assumption that ε1 ≤ σ∗2, we have

∫
Bcx

log
pD(x)

p(x)
pD(x)− pD(x) + p(x)dx ≤ σ∗2.

Also, there exists a constant c such that when x ∈ Bx, it holds that

pD(x) & exp

(
−c log

1

σ∗

)
;

p(x) & exp

(
−c log

1

σ∗

)
.
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We then consider a compact set of ε and z: B̃ε = [−c̄1(log 1
σ∗ )

1
2 , c̄1(log 1

σ∗ )
1
2 ]dx and B̃z =

[−c̄2(log 1
2)

1
α , c̄2(log 1

σ∗ )
1
2 ]dz with B̃z ⊂ Bz . we can obtain

DKL(pD(·)||p(·))

=

∫ (
log

pD(x)

p(x)

pD(x)

p(x)
− pD(x)

p(x)
+ 1

)
p(x)dx

≤
∫
B̃z
⋂
B̃ε
⋂
Bx

(
pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
− 1

)2

πD(z)p(ε)dzdε

+

∫
B̃z
⋂
B̃cε
⋂
Bx

(
log

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
− pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
+ 1

)
πD(z)p(ε)dzdε

+

∫
B̃cz
⋂
Bx

(
log

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
− pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
+ 1

)
πD(z)p(ε)dzdε

+ σ∗2.
(20)

Where we also reserve the notation Bx to be the set {(z, ε) |x = G1(z) + σ1ε ∈ Bx}.

For the second and third part of equation (20), by (1) ε is gaussian noise with mean 0 and iden-
tity covariance; (2) for Z ∼ πD(z), max

1≤j≤dz
‖Zj‖ψ2 is bounded; (3) when x ∈ Bx, pD(x) &

exp
(
−c log 1

σ∗

)
and p(x) & exp

(
−c log 1

σ∗

)
. we can get that when (c̄1, c̄2) are large enough, the

second and third part of equation (20) can be upper bounded by σ∗2.

For the first part of equation (20), since

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)

=

∫
exp

(
− (G1(z)+σ∗ε−GD(z′))T (G1(z)+σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz′∫

exp
(
− (G1(z)+σ∗ε−G1(z′))T (G1(z)+σ∗ε−G1(z′))

2σ∗2

)
πD(z′)dz′

.

We first consider the numerator, define

Bσ∗(z, c̄3) =

[
z − c̄3σ

∗
(

log
1

σ∗

) 2
α2 + 1

2

1dz , z + c̄3σ
∗
(

log
1

σ∗

) 2
α2 + 1

2

1dz

]
.

Therefore by the fact that under Bz , ‖GD(z) − GD(z′)‖22 ≥ a
(
log 1

σ∗

) 4
α2 ‖z − z′‖22, ‖G1(z) −

GD(z)‖2 ≤ ε1 and (a− b)2 ≥ 1
2a

2 − b2, we can get

∫
Bσ∗ (z,c̄3)c

⋂
Bz

exp

(
−(G1(z) + σ∗ε−GD(z′))T (G1(z) + σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz′

≤ exp

(
ε21
σ∗2
−
(
dz

4
c̄2

3a− dxc̄2
1

)
log

1

σ∗

)
.
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Also, ∫
B
c
z

exp

(
−(G1(z) + σ∗ε−GD(z′))T (G1(z) + σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz′

≤ πD(B
c
z).

Then, by the fact that when x ∈ Bx, p(x) & exp
(
−c log 1

σ∗

)
, we can choose a large enough c̄3 and

η, such that(∫
Bσ∗ (z,c̄3)c

⋂
Bz

exp

(
−(G1(z) + σ∗ε−GD(z′))T (G1(z) + σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz′

+

∫
B
c
z

exp

(
−(G1(z) + σ∗ε−GD(z′))T (G1(z) + σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz

)
exp

(
c log

1

σ∗

)
≤ σ∗.

So we have

pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)

≤

∫
Bσ∗ (z,c3) exp

(
− (G1(z)+σ∗ε−GD(z′))T (G1(z)+σ∗ε−GD(z′))

2σ∗2

)
πD(z′)dz′∫

exp
(
− (G1(z)+σ∗ε−G1(z′))T (G1(z)+σ∗ε−G1(z′))

2σ∗2

)
πD(z′)dz′

+ σ∗

≤ sup
z′∈Bσ∗ (z,c3)

exp
(
− (G1(z)+σ∗ε−GD(z′))T (G1(z)+σ∗ε−GD(z′))

2σ∗2

)
exp

(
− (G1(z)+σ∗ε−G1(z′))T (G1(z)+σ∗ε−G1(z′))

2σ∗2

) + σ∗

≤ exp

(
ε21

2σ∗2
+
ε1
σ∗

(
c̄1

√
dx(log

1

σ∗
)

1
2 + c̄3

√
dz(log

1

σ∗
)

2
α2 + 1

2
+ 1
α + ε1

))
+ σ∗.

Therefore we can get

log
pD(G1(z) + σ∗ε)

p(G1(z) + σ∗ε)
. σ∗ +

ε1
σ∗

(log
1

σ∗
)

2
α2 + 1

2
+ 1
α .

Similarly,

log
p(G1(z) + σ∗ε)

pD(G1(z) + σ∗ε)
. σ∗ +

ε1
σ∗

(log
1

σ∗
)

2
α2 + 1

2
+ 1
α .

So we can bound the first part of equation (20) by O
(
ε21
σ2 (log 1

σ∗ )
4
α2 + 2

α
+1 + σ∗2

)
. We can then get

the desired conclusion by combining all those facts.
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