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Abstract

Confidence intervals are a crucial building block in the analysis of various online learning prob-
lems. The analysis of kernel-based bandit and reinforcement learning problems utilize confidence
intervals applicable to the elements of a reproducing kernel Hilbert space (RKHS). However, the
existing confidence bounds do not appear to be tight, resulting in suboptimal regret bounds. In fact,
the existing regret bounds for several kernelized bandit algorithms (e.g., GP-UCB, GP-TS, and
their variants) may fail to even be sublinear. It is unclear whether the suboptimal regret bound is
a fundamental shortcoming of these algorithms or an artifact of the proof, and the main challenge
seems to stem from the online (sequential) nature of the observation points. We formalize the
question of online confidence intervals in the RKHS setting and overview the existing results.
Keywords: RKHS, Gaussian Processes, Confidence Intervals, Bayesian Optimization, Bandits,
Reinforcement Learning.

1. Introduction

The kernel trick provides an elegant and natural technique to extend linear models to non-linear
models with a great representation power. In the past decade, numerous works have studied bandit
and reinforcement learning problems under the assumption that the reward function conforms to a
kernel-based model (Srinivas et al., 2010; Krause and Ong, 2011; Wang and de Freitas, 2014; Nguyen
et al., 2017; Scarlett et al., 2017; Chowdhury and Gopalan, 2017; Wang et al., 2018; Kandasamy
et al., 2018; Javidi and Shekhar, 2018; Yang et al., 2020; Shekhar and Javidi, 2020; Bogunovic et al.,
2020; Zhou et al., 2020; Vakili et al., 2020, 2021; Cai and Scarlett, 2021; Zhang et al., 2021).

The analysis of online learning problems with a kernel-based model typically utilizes confidence
intervals applicable to the elements of a reproducing kernel Hilbert space (RKHS). However, the
state-of-the-art confidence intervals in this setting (Chowdhury and Gopalan, 2017) do not appear to
be tight, resulting in suboptimal regret bounds. The main challenge seems to stem from the online
(sequential) nature of the observation points, in contrast to an offline (fixed in advance) design. We
first overview the existing results, and then formalize the open problem of tight confidence intervals
for the RKHS elements under the online setting. We also discuss the consequences of these bounds
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on the regret performance. For clarity of exposition, we focus on bandit problems and the GP-UCB
algorithm (Srinivas et al., 2010; Chowdhury and Gopalan, 2017), but the problem is equally relevant
to reinforcement learning problems and other algorithms such as GP-TS.

2. Problem Setup

Consider a positive definite kernel k£ : X x & — R with respect to a finite Borel measure, where
X C R%is a compact set. Let H;, denote the RKHS corresponding to k, defined as a Hilbert
space equipped with an inner product (.,.)y, satisfying the following: k(.,x) € Hy, Vo € X,
and (f, k(.,x))n, = f(z), Vo € X,Yf € Hj, (reproducing property). The typical assumption in
kernel-based models is that the objective function f satisfies f € Hj for a known kernel k. Let
{Am ), and {¢p }20_ denote the Mercer eigenvalues and eigenfeatures of &, respectively (see, e.g.,
Kanagawa et al., 2018, Theorem 4.1). Using Mercer’s representation theorem (see, e.g., Kanagawa
et al., 2018, Theorem 4.2), an alternative representation for f € Hy, is given by

fla) = w  Az(x), (1)

where w = [wy,ws,...]T and ¢(x) = [pa(x), p2(z),...] T are the (possibly infinite-dimensional)
weight and feature vectors, and A is a (possibly infinite dimensional) diagonal matrix with A; ; = A,
if i = j. The RKHS norm of f satisfies || f||, = ||w]||s2.

Kernelized Bandits: Consider an online learning setting where a learning algorithm is allowed
to collect a sequence of noisy observations {(z;,y;)};2,, where y; = f(x;) + €; with ¢; being
well-behaved noise terms. The objective is to get as close as possible to the maximum of f. The
performance of the algorithm is measured in terms of regret, defined as the cumulative loss in the
values of the objective function at observation points, compared to a global maximum:

N
RIN) =D (f(&*) = f(x:)), )

i=1

where 2* € argmax,, f(x) is a global maximum. Under the assumption f € Hy, this setting
is often referred to as that of kernelized bandits, Gaussian process (GP) bandits, or Bayesian
optimization. The latter two terms are motivated by the algorithm design which often employs a GP
surrogate model. Throughout this paper, we make the following assumptions.

Assumption 1 The RKHS norm of f is bounded as | f||n, < B, for some B > 0. Moreover,

the noise terms are i.i.d. sub-Gaussian random variables, i.e., for some R > 0, E[exp(ne;)] <
2 p2

exp(TH), ¥ € R,Vi € N.

In online learning problems, the observation points are collected sequentially. In particular,
the observation point x; is determined after all the values {(z;, yj)}§:1 are revealed. This is in
contrast to an offline design, where the data points are fixed in advance. We next formalize this
distinction.
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Definition 1 i) In the online setting, for the sigma algebras F; = o (x1, T2, ..., Tit1,€1,€2,...,€;),
i > 1, it holds that x; and €; are F;_1 and JF; measurable, respectively. ii) In the offline setting, for
all i > 1, it holds that x; is independent of all €;, j > 1.

Surrogate GP Model: It is useful for algorithm design to employ a zero-mean surrogate GP model
f with kernel £ which provides a surrogate posterior mean (regressor) and a surrogate posterior
variance (uncertainty estimate) for the kernel-based model. Defining 11, (z) = E[ Fl@){ (2, yi) Y]
and o2(z) = E[(f(z) — pn(@))?|{(2s,y:)}y], it is well known that 1, (z) = 2, (z)yn and
o2(z) = k(z,z)—k,] (2)(N°1,+K,) "'k, (z), where k,,(x) = [k(z,z1), k(z,22), ..., k(z,2,)]",
K., is the positive definite kernel matrix [Ky); ; = k(zi, 2}), zn(z) = (AL, + K;,) "k, (2), L, is
the identity matrix of dimension n, and A > 0 is a regularization parameter.

3. Confidence Intervals Applicable to RKHS Elements

Deriving confidence intervals applicable to RKHS elements is significantly more challenging in the
online setting compared to the offline setting. In the latter case, for any fixed € X', we have with
probability at least 1 — § that | f(z) — pun(z)| < po(d)on(x), where po(d) = B + %1 /21og(3), B
and R are the parameters specified in Assumption 1, and A is the regularization parameter of the
surrogate GP model. Moreover, when f is Lipschitz (or Holder) continuous (that is true with typical
kernels; see, Shekhar and Javidi, 2020), this easily extends to a uniform guarantee: With probability
atleast 1 — , we have uniformly in z that | f (2) — pn (2)| = O((B+ % \/d log(n) +log(3))on(z)),
where the implied constants in O(.) depend on the Lipschitz (or Holder) continuity parameters.

In the online setting, strong uniform bounds are also well-known in the case of a linear model
f(x) = wxz: Abbasi-Yadkori et al. (2011) proved that, with probability 1 — §, uniformly over ,

£ () = pn ()] < pu(d)on(z), 3)

where p,(d) = B + % dlog(%) and T = maxgcy ||z||2. The crux of the proof is a
self-normalized bound for vector valued martingales S, =y ;_, €;x; (Abbasi-Yadkori et al., 2011,
Theorem 1), which yields the following confidence ellipsoid for w (Abbasi-Yadkori et al., 2011,
Theorem 2): ||w —Wy v, < Ap,(d), with probability at least 1 —4§, where V;, = AL+ "1 | @z,
This confidence ellipsoid for w can then be represented in terms of the confidence interval for f(x)
given in (3). Notice that the linear model is a special case of (1) with w = [wy, w2, ..., wg] " and
¢(x) = z being d dimensional weight and feature vectors respectively, and A = I; being the square
identity matrix of dimension d.

Chowdhury and Gopalan (2017) built on the self-normalized bound for the vector valued martin-

gales to prove the following theorem for the kernel-based models.

Theorem 2 Under Assumption 1, in the online setting, with probability at least 1 — 9, we have for
all x € X that

[/ (x) = pn(2)] < pn(d)on (), @)
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where p,(0) = B + R\/Q (Yn—1+ 1 +1og(3)), and v, = SUP(x,}n  cx log det(\2L, + K,,) is
the maximal information gain at time n, which is closely related to the effective dimension associated
with the kernel (e.g., see Srinivas et al. (2010); Valko et al. (2013)).

Our open problem is concerned with improving this confidence interval.

Open Problem. Under Assumption 1, in the online setting, consider the general problem of proving
a confidence interval of the following form uniformly in z € X:

|f(x) = pn(x)| < pr(d)on(z), with probability at least 1 — 4. 5)

What is the lowest growth rate of p,, () with n? In particular, is it possible to reduce the confidence
interval width in Theorem 2 by an O(,/7,,) factor?

4. Discussion

Following standard UCB-based bandit algorithm techniques, it can be shown that the GP-UCB
algorithm (namely, repeatedly choosing x to maximize the current upper confidence bound) attains

R(N) = O(pn(6)\/Nvn), with probability at least 1 — 4. (6)

Substituting px(8) from Theorem 2, we have R(N) = O(yy+v/N). Unfortunately, this is not
always sublinear in N, since v can grow faster than /N, e.g., in the case of the Matérn family
of kernels. Hence, the regret bound can be trivial in many cases of interest. It is unknown whether
this suboptimal regret bound is a fundamental shortcoming of GP-UCB or a result of suboptimal
confidence intervals, but the latter appears likely to be the most significant factor. The same question
can be asked about the analysis of many other bandit algorithms including GP-TS (Chowdhury and
Gopalan, 2017) and GP-EI (Nguyen et al., 2017), as well as KOVI in the reinforcement learning
setting (Yang et al., 2020).

Comparing the results under the online and offline settings, we see a stark contrast of an
O(\/7n) factor in the width of confidence intervals. We expect that the O(,/7;,) factor in the
confidence interval width in the online setting can be replaced by an O(dlog(n)) term, resulting in
an @(m ) regret bound. Roughly speaking, we are suggesting that a square root of the effective
dimension of the kernel in the regret bound can be traded off for a square root of the input dimension.

Of significant theoretical importance is a less practical algorithm SupKernelUCB (Valko et al.,
2013), which achieves an @(\/W ) regret bound for the kernelized bandit problem with a finite
action set (]X'| < 0o0). The finite action set assumption can be relaxed to compact domains using
a discretization argument contributing only an O(/d log(N)) factor to the regret bound (see, Cai
and Scarlett, 2021, Appendix A.4). This bound is tight for the cases where a lower bound on
regret is known, namely for commonly used squared exponential and Matérn kernels (Scarlett
et al., 2017; Vakili et al., 2021). In view of this discussion, the above-mentioned improvement is
information-theoretically feasible, but it remains to determine whether GP-UCB can achieve it.
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