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Abstract
We study infinite-horizon discounted two-player zero-sum Markov games, and develop a decentral-
ized algorithm that provably converges to the set of Nash equilibria under self-play. Our algorithm
is based on running an Optimistic Gradient Descent Ascent algorithm on each state to learn the
policies, with a critic that slowly learns the value of each state. To the best of our knowledge, this
is the first algorithm in this setting that is simultaneously rational (converging to the opponent’s
best response when it uses a stationary policy), convergent (converging to the set of Nash equilibria
under self-play), agnostic (no need to know the actions played by the opponent), symmetric (play-
ers taking symmetric roles in the algorithm), and enjoying a finite-time last-iterate convergence
guarantee, all of which are desirable properties of decentralized algorithms.

1. Introduction

Multi-agent reinforcement learning studies how multiple agents should interact with each other and
the environment, and has wide applications in, for example, playing board games (Silver et al.,
2017) and real-time strategy games (Vinyals et al., 2019). To model these problems, the framework
of Markov games (also called stochastic games) (Shapley, 1953) is often used, which can be seen
as a generalization of Markov Decision Processes (MDPs) from a single agent to multiple agents.
In this work, we focus on one fundamental class: two-player zero-sum Markov games.

In this setting, there are many centralized algorithms developed in a line of recent works with
near-optimal sample complexity for finding a Nash equilibrium (Wei et al., 2017; Sidford et al.,
2020; Xie et al., 2020; Bai and Jin, 2020; Zhang et al., 2020a; Liu et al., 2021). These algorithms
require a central controller that collects some global knowledge (such as the actions and the rewards
of all players) and then jointly decides the policies for all players. Centralized algorithms are usually
convergent (as defined in (Bowling and Veloso, 2001)), in the sense that the policies of the players
converge to the set of Nash equilibria.

On the other hand, there is also a surge of studies on decentralized algorithms that run inde-
pendently on each player, requiring only local information such as the player’s own action and the
corresponding reward feedback (Zhang et al., 2019; Bai et al., 2020; Tian et al., 2021; Liu et al.,
2020; Daskalakis et al., 2020). Compared to centralized ones, decentralized algorithms are usually
more versatile and can potentially run in different environments (cooperative or competitive). Many
of them enjoy the property of being rational (as defined in (Bowling and Veloso, 2001)), in the
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sense that a player’s policy converges to the best response to the opponent no matter what stationary
policy the opponent uses. However, it is also often more challenging to show the convergence to a
Nash equilibrium when the two players execute the same decentralized algorithm.

It can be seen that a rational algorithm has different benefits compared to a convergent algorithm
– the former satisfies individual player’s interests, while the latter might be better for achieving so-
cial good. Therefore, a single algorithm that possesses both properties is highly desirable. For
example, in a market where “enforcing” all traders to follow the same rule is difficult, but “recom-
mending” them to use a specific algorithm is possible, a rational and convergent algorithm would be
a good candidate — if all traders follow the recommendation, then a social equilibrium is quickly at-
tained; otherwise, those who follow the recommendation are still satisfied because they best respond
to a stationary environment.

Based on this motivation, our main contribution is to develop the first decentralized algorithm
that is simultaneously rational, last-iterate convergent (with a concrete finite-time guarantee),1 ag-
nostic, and symmetric (more details to follow in Section 1.1) for two-player zero-sum Markov
games. Our algorithm is based on Optimistic Gradient Descent/Ascent (OGDA) (Chiang et al.,
2012; Rakhlin and Sridharan, 2013) and importantly relies on a critic that slowly learns a certain
value function for each state. Following previous works on learning MDPs (Abbasi-Yadkori et al.,
2019; Agarwal et al., 2020) or Markov games (Perolat et al., 2018), we present the convergence
guarantee in terms of the number of iterations of the algorithm and the estimation error of some
gradient information (along with other problem-dependent constants), where the estimation error
can be zero in a full-information setting, or goes down to zero fast enough with additional structural
assumptions (e.g. every stationary policy pair induces an irreducible Markov chain, similar to (Auer
and Ortner, 2007)).

While the OGDA algorithm, first studied in (Popov, 1980) under a different name, has been
extensively used in recent years for learning matrix games (a special case of Markov games with one
state), to the best of our knowledge, no previous work has applied it to learning Markov games and
derived a concrete last-iterate convergence rate. Several recent works derive last-iterate convergence
of OGDA for matrix games (Hsieh et al., 2019; Liang and Stokes, 2019; Mokhtari et al., 2020;
Golowich et al., 2020; Wei et al., 2021), and our analysis is heavily inspired by the approach of (Wei
et al., 2021). However, the extension to infinite-horizon Markov games is highly non-trivial as there
is additional “instability penalty” in the system that we need to handle; see Section 4 for detailed
discussions.

1.1. Related Work

In this section, we discuss and compare related works on learning two-player zero-sum Markov
games. We refer the readers to a thorough survey by (Zhang et al., 2020b) for other topics in multi-
agent reinforcement learning.

Shapley (1953) first introduces the Markov game model and proposes an algorithm analogous
to value iteration for solving two-player zero-sum Markov games (with all parameters known).
Later, Hoffman and Karp (1966) propose a policy iteration algorithm, and Pollatschek and Avi-
Itzhak (1969) propose another policy iteration variant that works better in practice but cannot always

1. Note that while average-iterate convergence is possible (and standard) for stateless convex-concave games (e.g.
(Syrgkanis et al., 2015)), it does not work for Markov games since the problem is nonconvex-nonconcave in the
space of policies (Daskalakis et al., 2020).
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converge. With the efforts of Van Der Wal (1978) and Filar and Tolwinski (1991), a slight variant
of the (Pollatschek and Avi-Itzhak, 1969) algorithm is proposed in (Filar and Tolwinski, 1991) and
proven to converge. In such a full-information setting where all parameters are know, our algorithm
has no estimation error and can also be viewed as a new policy-iteration algorithm.

Littman (1994) initiates the study of competitive reinforcement learning under the framework
of Markov games and proposes an extension of the single-player Q-learning algorithm, called
minimax-Q, which is later proven to converge under some conditions (Szepesvári and Littman,
1999). While minimax-Q can run in a decentralized manner, it is conservative and only converges
to the minimax policy but not the best response to the opponent.

To fix this issue, the work of Bowling and Veloso (2001) argues that a desirable multi-agent
learning algorithm should have the following two properties simultaneously: rational and con-
vergent. By their definition, a rational algorithm converges to its opponent’s best response if the
opponent converges to a stationary policy,2 while a convergent algorithm converges to a Nash equi-
librium if both agents use it. They propose the WoLF (Win-or-Learn-Fast) algorithm to achieve
this goal, albeit only with empirical evidence. Subsequently, Conitzer and Sandholm (2007); Pero-
lat et al. (2018); Sayin et al. (2020) design decentralized algorithms that provably enjoy these two
properties, but only with asymptotic guarantees.

Recently, there is a surge of works that provide finite-time guarantees and characterize the tight
sample complexity for finding Nash equilibria (Perolat et al., 2015; Pérolat et al., 2016; Wei et al.,
2017; Sidford et al., 2020; Xie et al., 2020; Zhang et al., 2020a; Bai and Jin, 2020; Liu et al., 2021).
These algorithms are all essentially centralized. Below, we focus on comparisons with several recent
works that propose decentralized algorithms and provide finite-time guarantees.

Comparison with R-Max (Brafman and Tennenholtz, 2002), UCSG-online (Wei et al., 2017)
and OMNI-VI-online (Xie et al., 2020) These algorithms, like minimax-Q, converge to the min-
imax policy instead of the best response to the opponent, even when the opponent is weak (i.e., not
using its best policy). In other words, these algorithms are not rational. Another drawback of these
algorithms is that the learner has to observe the actions taken by the opponent. Our algorithm, on
the other hand, is both rational and agnostic to what the opponent plays.

Comparison with Optimistic Nash V-Learning (Bai et al., 2020; Tian et al., 2021) The Opti-
mistic Nash V-Learning algorithm handles the finite-horizon tabular case. It runs an exponential-
weight algorithm on each state, with importance-weighted loss/reward estimators. It is unclear
whether the dynamics of Optimistic Nash V-Learning leads to last iterate convergence. After train-
ing, however, Optimistic Nash V-Learning can output a near-optimal non-Markovian policy with
size linear in the training time. In contrast, our algorithm exhibits last-iterate convergence, and the
output is a simple Markovian policy.

Comparison with Smooth-FSP (Liu et al., 2020) The Smooth-FSP algorithm handles the func-
tion approximation setting. The objective function it optimizes is the original objective plus an
entropy regularization term. Because of this additional regularization, the players are only guaran-
teed to converge to some neighborhood of the minimax policy pair (with a constant radius), even
when their gradient estimation error is zero. In contrast, our algorithm converges to the true mini-
max policy pair when the gradient estimation error goes to zero.

2. It is tempting to consider an even stronger rationality notion, that is, having no regret against an arbitrary opponent.
This is, however, known to be computationally hard (Radanovic et al., 2019; Bai et al., 2020).
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Comparison with Independent PG (Daskalakis et al., 2020) Daskalakis et al. (2020) studies
independent policy gradient in the tabular case. To achieve last-iterate convergence, the two players
have to use asymmetric learning rates, and only the one with a smaller learning rate converges to
the minimax policy. In contrast, the two players of our algorithm are completely symmetric, and
they simultaneously converge to the equilibrium set.

2. Preliminaries

We consider a two-player zero-sum discounted Markov game defined by a tuple (S,A,B, σ, p, γ),
where: 1) S is a finite state space; 2) A and B are finite action spaces for Player 1 and Player
2 respectively; 3) σ is the loss (payoff) function for Player 1 (Player 2), with σ(s, a, b) ∈ [0, 1]
specifying how much Player 1 pays to Player 2 if they are at state s and select actions a and b
respectively; 4) p : S×A×B → ∆S is the transition function, with p(s′|s, a, b) being the probability
of transitioning to state s′ after actions a and b are taken by the two players respectively at state s
(∆S denotes the set of probability distributions over S); 5) and 1

2 ≤ γ < 1 is a discount factor.3

A stationary policy of Player 1 can be described by a function S → ∆A that maps each state to
an action distribution. We use xs ∈ ∆A to denote the action distribution for Player 1 on state s, and
use x = {xs}s∈S to denote the complete policy. We define ys and y = {ys}s∈S similarly for Player
2. For notational convenience, we further define zs = (xs, ys) ∈ ∆A × ∆B as the concatenated
policy of the players on state s, and let z = {zs}s∈S .

For a pair of stationary policies (x, y) and an initial state s, the expected discounted value that
the players pay/gain can be represented as

V s
x,y = E

[ ∞∑
t=1

γt−1σ(st, at, bt)

∣∣∣∣ s1 = s, at ∼ xst , bt ∼ yst , st+1 ∼ p(·|st, at, bt), ∀t ≥ 1

]
.

The minimax game value on state s is then defined as

V s
? = min

x
max
y
V s
x,y = max

y
min
x
V s
x,y.

It is known that a pair of stationary policies (x?, y?) attaining the minimax value on state s is
necessarily attaining the minimax value on all states (Filar and Vrieze, 2012), and we call such
x? a minimax policy, such y? a maximin policy, and such pair a Nash equilibrium. Further define
X s? = {xs? ∈ x? : x? is a minimax policy} and similarly Ys? = {ys? ∈ y? : y? is a maximin policy},
and denote Zs? = X s? × Ys? . It is also known that any x = {xs}s∈S with xs ∈ X s? for all s is a
minimax policy (similarly for y) (Filar and Vrieze, 2012).

For any xs, we denote its distance from X s? as dist?(x
s) = minxs?∈X s? ‖x

s
?−xs‖, where ‖v‖ for

a vector v denotes its L2 norm throughout the paper; similarly, dist?(y
s) = minys?∈Ys? ‖y

s
? − ys‖

and dist?(z
s) = minzs?∈Zs? ‖z

s
? − zs‖ =

√
dist2

?(x
s) + dist2

?(y
s).4 The projection operator for a

convex set U is defined as ΠU{v} = argminu∈U ‖u− v‖.

3. The discount factor is usually some value close to 1, so we assume that it is no less than 1
2

for simplicity. Also note
that we consider the discounted setting instead of the finite-horizon episodic setting because the former captures more
challenges of this problem (and is also the original setting considered in (Bowling and Veloso, 2001)). Indeed, in the
episodic setting where states have a layered structure, convergence can be directly shown in a layer-by-layer manner;
see (Lee et al., 2020), an early version of (Wei et al., 2021).

4. Note the slight abuse of notation here: the meaning of dist?(·) depends on its input.
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We also define the Q-function on state s under policy pair (x, y) as

Qsx,y(a, b) = σ(s, a, b) + γEs′∼p(·|s,a,b)
[
V s′
x,y

]
,

which can be compactly written as a matrix Qsx,y ∈ R|A|×|B| such that V s
x,y = xs

>
Qsx,yy

s. We write
Qs? = Qsx?,y? for any minimax/maximin policy pair (x?, y?) (which is unique even if (x?, y?) is
not). Finally, ‖Q‖ for a matrix Q is defined as maxi,j |Qi,j |.

Optimistic Gradient Descent Ascent (OGDA) As mentioned, our algorithm is based on running
an instance of the OGDA algorithm on each state with an appropriate loss/reward function. To
this end, here, following the exposition of (Wei et al., 2021) we briefly review OGDA for a matrix
game defined by a matrix Q ∈ R|A|×|B|. Specifically, OGDA maintains two sequences of action
distributions x̂1, x̂2, . . . ∈ ∆A and x1, x2, . . . ∈ ∆A for Player 1, and similarly two sequences
ŷ1, ŷ2, . . . ∈ ∆B and y1, y2, . . . ∈ ∆B for Player 2, following the updates below:

x̂t+1 = Π∆A

{
x̂t − ηQyt

}
, xt+1 = Π∆A

{
x̂t+1 − ηQyt

}
,

ŷt+1 = Π∆B

{
ŷt + ηQ>xt

}
, yt+1 = Π∆B

{
ŷt+1 + ηQ>xt

}
,

(1)

where η is some learning rate. As one can see, unlike the standard Gradient Descent Ascent al-
gorithm which simply sets (xt, yt) = (x̂t, ŷt), OGDA takes a further descent/ascent step using
the latest gradient to obtain (xt, yt), which is then used to evaluate the gradient (of the function
f(x, y) = x>Qy). Wei et al. (2021) prove that the iterate (x̂t, ŷt) (or (xt, yt)) converges to the set
of Nash equilibria of the matrix game at a linear rate, which motivates us to generalize it to Markov
games. As we show in the following sections, however, the extensions of both the algorithm and the
analysis are highly non-trivial.

We remark that while Wei et al. (2021) also analyze the last-iterate convergence of another al-
gorithm called Optimistic Multiplicative Weight Update (OMWU), which is even more commonly
used in finite-action games, they also show that the theoretical guarantees of OMWU hold under
more limited assumptions (e.g., requiring the uniqueness of the equilibrium), and its empirical per-
formance is also inferior to that of OGDA. We therefore only extend the latter to Markov games.

3. Algorithm and Main Results

A natural idea to extend OGDA to Markov games is to run the same algorithm described in Section 2
for each state s with the game matrix Q being Qsxt,yt . However, an important difference is that now
the game matrix is changing over time. Indeed, if the polices are changing rapidly for subsequent
states, the game matrix Qsxt,yt will also be changing rapidly, which makes the update on state s
highly unstable and in turn causes similar issues for previous states.

To resolve this issue, we propose to have a critic slowly learn the value function for each state.
Specifically, for each state s, the critic maintains a sequence of values V s

0 = 0, V s
1 , V

s
2 , . . .. During

iteration t, instead of using Qsxt,yt as the game matrix for state s, we use Qst defined via Qst (a, b) =

σ(s, a, b) + γEs′∼p(·|s,a,b)[V s′
t−1]. Ideally, OGDA would then take the role of an actor and compute

xst+1 and x̂st+1 using the gradient Qsty
s
t (and similarly yst+1 and ŷst+1 using the gradient Qs

>
t xst ).

Since such exact gradient information is often unknown, we only require the algorithm to come up
with estimations `st and rst such that ‖`st −Qstyst ‖ ≤ ε and ‖rst −Qs

>
t xst‖ ≤ ε for some prespecified

error ε (more discussions in Section 3.1). See updates Eq. (2)-Eq. (5) in Algorithm 1. Note that
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Algorithm 1 Optimistic Gradient Descent/Ascent for Markov Games

Parameters: γ ∈ [1
2 , 1), η ≤ 1

104

√
(1−γ)5

S , ε ∈
[
0, 1

1−γ

]
.

Parameters: a non-increasing sequence {αt}Tt=1 that goes to zero.
Initialization: ∀s ∈ S, arbitrarily initialize x̂s1 = xs1 ∈ ∆A and ŷs1 = ys1 ∈ ∆B, and set V s

0 ← 0.
for t = 1, . . . , T do

For all s, define Qst ∈ R|A|×|B| as

Qst (a, b) , σ(s, a, b) + γEs′∼p(·|s,a,b)
[
V s′
t−1

]
,

and update

x̂st+1 = Π∆A

{
x̂st − η`st

}
, (2)

xst+1 = Π∆A

{
x̂st+1 − η`st

}
, (3)

ŷst+1 = Π∆B

{
ŷst + ηrst

}
, (4)

yst+1 = Π∆B

{
ŷst+1 + ηrst

}
, (5)

V s
t = (1− αt)V s

t−1 + αtρ
s
t , (6)

where `st , r
s
t , and ρst are ε-approximations of Qsty

s
t , Qs

>
t xst , and xs

>
t Qsty

s
t respectively, such that

‖`st −Qstyst ‖ ≤ ε, ‖rst −Qs
>
t xst‖ ≤ ε, and |ρst − xs

>
t Qsty

s
t | ≤ ε.

end

similar to (Wei et al., 2021), we adopt a constant learning rate η (independent of the number of
iterations) in these updates.

At the end of each iteration t, the critic then updates the value function via V s
t = (1−αt)V s

t−1 +

αtρ
s
t , where ρst is an estimation of xs

>
t Qsty

s
t such that |ρst − xs

>
t Qsty

s
t | ≤ ε.5 To stabilize the game

matrix, we require the learning rate αt to decrease in t and go to zero. Most of our analysis is
conducted under this general condition, and the final convergence rate depends on the concrete
form of αt, which we set to αt = H+1

H+t with H = 2
1−γ inspired by (Jin et al., 2018) (there could be

a different choice leading to a better convergence though).
Our main results are the following two theorems on the last-iterate convergence of Algorithm 1.

Theorem 1 (Average duality-gap convergence) Algorithm 1 with the choice of αt = H+1
H+t where

H = 2
1−γ guarantees

1

T

T∑
t=1

max
s,x′,y′

(
V s
x̂t,y′ − V

s
x′,ŷt

)
= O

(
|S|

η(1− γ)2

√
log T

T
+

|S|
√
ε

√
η(1− γ)2

)
.

5. For simplicity, here we assume that the two players share the same estimator ρst (and thus same V st andQst ). However,
our analysis works even if they maintain different versions of ρst , as long as they are ε-close to xs

>
t Qsty

s
t with respect

to their own Qst .
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Theorem 2 (Last-iterate convergence) Algorithm 1 with the choice ofαt = H+1
H+t whereH = 2

1−γ
guarantees with ẑsT = (x̂sT , ŷ

s
T ),

1

|S|
∑
s∈S

dist2
?(ẑ

s
T ) = O

(
|S|2

η4C4(1− γ)4T
+

ε

ηC2(1− γ)3

)
,

where C > 0 is a problem-dependent constant (that always exists) satisfying: for all state s and all
policy pair z = (x, y), maxx′,y′ (xsQs?y

′s − x′sQs?ys) ≥ Cdist?(z
s).

Theorem 1 shows that the average duality-gap for each state s goes to zero when both 1/T and
ε go to zero, though it does not show the convergence of the policy. Theorem 2, on the other hand,
shows a concrete finite-time convergence rate on the distance of ẑsT from the equilibrium set, which
goes down at the rate of 1/T up to the estimation error ε. The problem-dependent constant C is
similar to the matrix game case analyzed in (Wei et al., 2021), as we will discuss in Section 4. As far
as we know, this is the first symmetric algorithm with finite-time last-iterate convergence for both
players simultaneously.

3.1. Estimation

In the full-information setting where all parameters of the Markov game are given, we can calculate
the exact value of Qsty

s
t , Qs

>
t xst , and xs

>
t Qsty

s
t , making ε = 0. In this case, our algorithm is

essentially a new policy-iteration style algorithm for solving Markov games. However, in a learning
setting where the parameters are unknown, the players need to estimate these quantities based on
any feedback from the environments. Here, we discuss how to do so when the players only observe
their current state and their loss/reward after taking an action.

Specifically, in iteration t of our algorithm and with (xt, yt) at hand, the two players interact with
each other for a sequence of L steps, following a mixed strategy with a certain amount of uniform
exploration defined via: x̃st (a) =

(
1− ε′

2

)
xst (a) + ε′

2|A| and ỹst (b) =
(

1− ε′

2

)
yst (b) + ε′

2|B| , where

ε′ = (1 − γ)ε. This generates a sequence of observations {(si, ai, σ(si, ai, bi))}Li=1 for Player 1
and similarly a sequence of observations {(si, bi, σ(si, ai, bi))}Li=1 for Player 2, where ai ∼ x̃sit ,
bi ∼ ỹsit , and si+1 ∼ p(·|si, ai, bi). Then we construct the estimators as follows:

`st (a) =

∑L
i=1 1[si = s, ai = a]

(
σ(s, a, bi) + γV

si+1

t−1

)∑L
i=1 1[si = s, ai = a]

, (7)

rst (b) =

∑L
i=1 1[si = s, bi = b]

(
σ(s, ai, b) + γV

si+1

t−1

)∑L
i=1 1[si = s, bi = b]

, (8)

ρst =

∑L
i=1 1[si = s]

(
σ(s, ai, bi) + γV

si+1

t−1

)∑L
i=1 1[si = s]

. (9)

(If any of the denominator is zero, define the corresponding estimator as zero.) To make sure
that these are accurate estimators for every state, we naturally need to ensure that every state is
visited often enough. To this end, we make the following assumption similar to (Auer and Ortner,
2007), which essentially requires that the induced Markov chain under any stationary policy pair is
irreducible.
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Assumption 1 There exists µ > 0 such that 1
µ = maxx,y maxs,s′ T

s→s′
x,y , where T s→s

′
x,y is the

expected time to reach s′ from s following the policy pair (x, y).

Under this assumption, the following theorem shows that taking L ≈ 1/ε3 is enough to ensure
the accuracy of the estimators (see Appendix H for the proof).

Theorem 3 Suppose that Assumption 1 holds and L = Ω̃
(
|A|3+|B|3
(1−γ)µε3

log2(T/δ)
)

.6 Then the es-
timators Eq. (7), Eq. (8), and Eq. (9) ensure that with probability at least 1 − δ, ‖`st − Qsty

s
t ‖,

‖rst −Qs
>
t xst‖, and |ρst − xs

>
t Qsty

s
t | are all of order O(ε) for all t.

Together with Theorem 1 and Theorem 2, given a fixed number of interactions between the
players, we can now determine optimally how many iterations we should run our algorithm (and
consequently how large we should set ε). Equivalently, we show below how many iterations or total
interactions are need to achieve a certain accuracy. (The choice of αt is the same as in Theorem 1
and Theorem 2.)

Corollary 4 If Assumption 1 holds, then running Algorithm 1 with estimators Eq. (7), Eq. (8),
Eq. (9) and L = Ω̃

(
(|A|3+|B|3)|S|6
(1−γ)13µη3ξ6

log2(T/δ)
)

for T = Ω̃
(

|S|2
η2(1−γ)4ξ2

)
iterations ensures with

probability at least 1− δ, 1
T

∑T
t=1 maxs,x′,y′(V

s
x̂t,y′
− V s

x′,ŷt
) ≤ ξ. Ignoring other dependence, this

requires Ω̃(1/ξ8) interactions in total.

Corollary 5 If Assumption 1 holds, then running Algorithm 1 with estimators Eq. (7), Eq. (8),
Eq. (9) and L = Ω̃

(
|A|3+|B|3

(1−γ)10µη3C6ξ3
log2(T/δ)

)
for T = Ω

(
|S|2

η4C4(1−γ)4ξ

)
iterations ensures with

probability at least 1 − δ, 1
|S|
∑

s∈S dist2
?(ẑ

s
T ) ≤ ξ. Ignoring other dependence, this requires

Ω̃(1/ξ4) interactions in total.

3.2. Rationality

Finally, we argue that from the perspective of a single player (take Player 1 as an example), our
algorithm is also rational, in the sense that it allows Player 1 to converge to the best response to her
opponent if Player 2 is not applying our algorithm but instead uses an arbitrary stationary policy.7

We show this single-player-perspective version in Algorithm 2, where Player 1 still follows the
updates Eq. (2), Eq. (3), and Eq. (6), while yt is fixed to a stationary policy y used by Player 2.

In fact, thanks to the agnostic nature of our algorithm, rationality is essentially an implication
of the convergence property. To see this, consider a modified two-player Markov game with the
difference being that the opponent has only a single action (call it 1) on each state, the loss function
is redefined as σ(s, a, 1) = Eb∼ys [σ(s, a, b)], and the transition kernel is redefined as p(s′|s, a, 1) =
Eb∼ys [p(s′|s, a, b)]. It is straightforward to see that following our algorithm, Player 1’s behaviors in
the original game and in the modified game are exactly the same. On the other hand, in the modified
game, since Player 2 has only one action (and thus one strategy), she can also be seen as using our

6. We use Ω̃ to hide logarithmic factors except for log(T ) and log(1/δ).
7. The rationality defined by Bowling and Veloso (2001) requires that the learner converges to the best response as long

as the opponent converges to a stationary policy. While our algorithm does handle this case, as a proof of concept,
we only consider the simpler scenario where the opponent simply uses a stationary policy.
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algorithm. Therefore, we can apply our convergent guarantees to the modified game, and since the
minimax policy in the modified game is exactly the best response in the original game, we know
that Player 1 indeed converges to the best response. We summarize these rationality guarantees in
the following theorem, with the formal proof deferred to Appendix I.

Theorem 6 Algorithm 2 with the choice of αt = H+1
H+t where H = 2

1−γ guarantees

1

T

T∑
t=1

max
s,x′

(
V s
x̂t,ys

− V s
x′,ys

)
= O

(
|S|

η(1− γ)2

√
log T

T
+

|S|
√
ε

√
η(1− γ)2

)
,

and for XBR =
{
x : V s

x,y = minx′ V
s
x′,y, ∀s ∈ S

}
and some problem-dependent constant C ′ > 0,

1

|S|
∑
s∈S
‖x̂sT −ΠXBR{x̂

s
T }‖2 = O

(
|S|2

η4C ′4(1− γ)4T
+

ε

ηC ′2(1− γ)3

)
.

4. Analysis Overview

In this section, we give an overview of how we analyze Algorithm 1 and prove Theorem 1 and
Theorem 2. We start by giving a quick review of the analysis of (Wei et al., 2021) for matrix games,
and then highlight how we overcome the challenges when generalizing it to Markov games.

Review for matrix games Recall the update in Eq. (1) for a fixed matrix Q. Wei et al. (2021)
show the following two convergence guarantees:

1. Average duality-gap convergence:

1

T

T∑
t=1

∆(ẑt) = O
(

1

η
√
T

)
(10)

where ∆(z) = maxx′,y′
(
x>Qy′ − x′>Qy

)
is the duality gap of z = (x, y).

2. Last-iterate convergence:

dist2
?(ẑt) ≤ C1dist2

?(ẑ1)
(
1 + η2C2

)−t (11)

where dist?(z) is the distance from z to the set of equilibria, C1 is a universal constant, and
C > 0 is a positive constant that depends on Q.8

The analysis of (Wei et al., 2021) starts from the following single-step inequality that follows
the standard Online Mirror Descent analysis and describes the relation between dist2

?(ẑt+1) and
dist2

?(ẑt):

dist2
?(ẑt+1) ≤ dist2

?(ẑt) + η2 ‖zt − zt−1‖2︸ ︷︷ ︸
instability penalty

−
(
‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2

)
︸ ︷︷ ︸

instability bonus

. (12)

8. This is not to be confused with the constant C in Theorem 2. We overload the notation because they indeed play the
same role in the analysis.

9
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The instability penalty term makes dist2
?(ẑt+1) larger if ‖zt − zt−1‖ is large, while the instability

bonus term makes dist2
?(ẑt+1) smaller if either ‖ẑt+1 − zt‖ or ‖zt − ẑt‖ is large. To obtain Eq. (10),

Wei et al. (2021) make the observation that the instability bonus term is lower bounded by a constant
times the squared duality gap of ẑt+1, that is, ‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2 & η2∆2(ẑt+1), and thus

dist2
?(ẑt+1) ≤ dist2

?(ẑt) + η2 ‖zt − zt−1‖2︸ ︷︷ ︸
instability penalty

− 1

2

(
‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2

)
︸ ︷︷ ︸

1
2

instability bonus

−Ω(η2∆2(ẑt+1)).

(13)

By taking η ≤ 1
8 , summing over t, canceling the penalty term with the bonus term, telescoping and

rearranging, we get
∑T

t=1 ∆2(ẑt) ≤ O(1/η2). An application of Cauchy-Schwarz inequality then
proves Eq. (10).

To further obtain Eq. (11), Wei et al. (2021) prove that there exists some problem-dependent
constant C > 0 such that for all z, ∆(z) ≥ Cdist?(z). This, when combined with Eq. (13), shows

dist2
?(ẑt+1) ≤ dist2

?(ẑt)

1 + Ω(η2C2)
+ η2‖zt − zt−1‖2 − Ω

(
‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2

)
. (14)

By upper bounding ‖zt−zt−1‖2 ≤ 2‖zt− ẑt‖2 +2‖ẑt−zt−1‖2 and rearranging, they further obtain:

dist2
?(ẑt+1) + c′ ‖ẑt+1 − zt‖2 + c′ ‖zt − ẑt‖2 ≤

dist2
?(ẑt) + c′ ‖ẑt − zt−1‖2 + c′ ‖zt−1 − ẑt−1‖2

1 + Ω(η2C2)
(15)

for some universal constant c′, which clearly indicates the linear convergence of dist2
?(ẑt) and hence

proves Eq. (11).

Overview of our proofs We are now ready to show the high-level ideas of our analysis. For
simplicity, we consider the case with ε = 0 and also assume that there is a unique equilibrium
(x?, y?) (these assumptions are removed in the formal proofs). Our analysis follows the steps below.

Step 1 (Appendix B) Similar to Eq. (12), we conduct a single-step analysis for OGDA in Markov
games (Lemma 24), which shows for all state s:

dist2
?(ẑ

s
t+1) ≤ dist2

?(ẑ
s
t ) + η2

∥∥zst − zst−1

∥∥2 −
(∥∥ẑst+1 − zst

∥∥2
+ ‖zst − ẑst ‖

2
)

+ 8η2
∥∥Qst −Qst+1

∥∥2
+ 4η ‖Qst −Qs?‖ . (16)

Comparing this with Eq. (12), we see that, importantly, since the game matrix Qst is changing over
time, we have two extra instability penalty terms: η2

∥∥Qst −Qst−1

∥∥2 and η ‖Qst −Qs?‖. Our hope is
to further upper bound these two penalty terms by something related to ‖zst − zst+1‖2, so that they
can again be canceled by the bonus term −(

∥∥ẑst+1 − zst
∥∥2

+ ‖zst − ẑst ‖
2). Indeed, in Steps 3-5, we

show that part of them can be bounded by a weighted sum of {‖zs′τ − zs
′
τ+1‖2}s′∈S,τ≤t.

10
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Step 2 (Appendix C): Lower bounding
∥∥ẑst+1 − zst

∥∥2
+ ‖zst − ẑst ‖

2. As in Eq. (13), we aim to
lower bound the instability bonus term by the duality gap. However, since the updates are based on
Qst instead ofQs?, we can only relate the bonus term to the duality gap with respect toQst . To further
relate this to the duality gap with respect to Qs?, we pay a quantity related to ‖Qst −Qs?‖. Formally,
we show in Lemma 25:∥∥ẑst+1 − zst

∥∥2
+ ‖zst − ẑst ‖

2 & Ω(η2∆2(ẑst+1))−O(η‖Qst −Qs?‖),

where ∆(zs) , maxx′s,y′s (xsQs?y
′s − x′sQs?ys) is the duality gap on state s with respect to Qs?.

9

Step 3 (Appendix D): Upper bounding
∥∥Qst+1 −Qst

∥∥2.
∥∥Qst+1 −Qst

∥∥2 is upper bounded by
γ2 maxs′(V

s′
t − V s′

t−1)2 by the definition of Qst . Furthermore, V s′
t − V s′

t−1 is a weighted sum of
{ρs′τ − ρs

′
τ−1}

t−1
τ=1 by the definition of V s′

t , and also ρs
′
τ − ρs

′
τ−1 = xs

′
τ Q

s′
τ y

s′
τ − xs

′
τ−1Q

s′
τ−1y

s′
τ−1 =

O(‖zs′τ − zs
′
τ−1‖+ ‖Qs′τ −Qs

′
τ−1‖). In sum, one can upper bound ‖Qst+1−Qst‖2 by a weighted sum

of ‖zs′τ −zs
′
τ−1‖2 and ‖Qs′τ −Qs

′
τ−1‖2. After formalizing the above relations, we obtain the following

inequality (see Lemma 28):

∥∥Qst+1 −Qst
∥∥2 ≤ max

s′

8γ2

(1− γ)3

t∑
τ=1

ατt ‖zs
′
τ − zs

′
τ−1‖2 + max

s′

2γ2

1 + γ

t∑
τ=1

ατt ‖Qs
′
τ −Qs

′
τ−1‖2 (17)

for some coefficient ατt defined in Appendix A.2. With recursive expansion, the above implies that∥∥Qst+1 −Qst
∥∥2 can be upper bounded by a weighted sum of ‖zs′τ − zs

′
τ−1‖2 for s′ ∈ S and τ ≤ t.

Step 4 (Appendix E): Upper bounding ‖Qst −Qs?‖ (Part 1). We first upper bound ‖Qst −Qs?‖
with respect to the following weighted-regret quantity

Regt , max
s

max

{
t∑

τ=1

ατt (xsτ − xs?)Qsτysτ ,
t∑

τ=1

ατt x
s
τQ

s
τ (ys? − ysτ )

}
.

To do so, we define Γt = maxs ‖Qst −Qs?‖ and show for the same coefficient ατt mentioned earlier,

V s
t =

t∑
τ=1

ατt ρ
s
τ =

t∑
τ=1

ατt x
s
τQ

s
τy
s
τ ≤

t∑
τ=1

ατt x
s
?Q

s
τy
s
τ + Regt ≤

t∑
τ=1

ατt x
s
?Q

s
?y
s
τ +

t∑
τ=1

ατt Γτ + Regt

≤
t∑

τ=1

ατt x
s
?Q

s
?y
s
? +

t∑
τ=1

ατt Γτ + Regt = V s
? +

t∑
τ=1

ατt Γτ + Regt

where the last inequality is by the fact
∑t

τ=1 α
τ
t = 1. Using the definition of Qst again, we then

have Qst+1(a, b) −Qs?(a, b) = γEs′∼p(·|s,a,b)
[
V s′
t − V s′

?

]
≤ γ(

∑t
τ=1 α

τ
t Γτ + Regt). By the same

reasoning, we can also show Qst+1(a, b) − Qs?(a, b) ≥ −γ(
∑t

τ=1 α
τ
t Γτ + Regt), and therefore we

obtain the following recursive relation (Lemma 29)

Γt+1 = max
s
‖Qst+1 −Qs?‖ ≤ γ

(
t∑

τ=1

ατt Γτ + Regt

)
. (18)

9. Similar to the notation dist?(·), we also omit writing the s dependence for the function ∆(·).
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Step 5 (Appendix E): Upper bounding ‖Qst −Qs?‖ (Part 2). In this step, we further relate Regt
to {‖zs′τ − zs

′
τ−1‖2}τ≤t,s′∈S . From a one-step regret analysis of OGDA, we have the following (for

Player 1):

(xst − xs?)Qstyst ≤
1

2η

(
dist2

?(x̂
s
t )− dist2

?(x̂
s
t+1)

)
+

4η

(1− γ)2
‖yst − yst−1‖2 + 4η‖Qst −Qst−1‖2.

Recall that Regt is defined via a weighted sum of the left-hand side above with weights ατt . There-
fore, we take the weighted sum of the above and bound

∑t
τ=1 α

τ
t (xsτ − xs?)Qsτysτ by

α1
tdist2

?(x̂
s
1)

2η
+

t∑
τ=1

ατt
2η

(
dist2

?(x̂
s
τ )− dist2

?(x̂
s
τ+1)

)
+

4η

(1− γ)2

t∑
τ=1

ατt ‖ysτ − ysτ−1‖2 + 4η
t∑

τ=1

ατt ‖Qsτ −Qsτ−1‖2

≤ 1

2η

t∑
τ=1

ατt ατ−1dist2
?(ẑ

s
τ )︸ ︷︷ ︸

term1

+
4η

(1− γ)2

t∑
τ=1

ατt ‖zsτ − zsτ−1‖2︸ ︷︷ ︸
term2

+ 4η
t∑

τ=1

ατt ‖Qsτ −Qsτ−1‖2︸ ︷︷ ︸
term3

(19)

where in the inequality we rearrange the first summation and use the fact ατt − ατ−1
t ≤ ατ−1α

τ
t

(see the formal proof in Lemma 30). Since the case for
∑t

τ=1 α
τ
t x

s
τQ

s
τ (ys? − ysτ ) is similar, by the

definition of Regt, we conclude that Regt is upper bounded by the maximum over s of the sum of
the three terms in Eq. (19). Note that, term2 is itself a weighted sum of {‖zsτ − zsτ−1‖2}τ≤t, and
term3 can also be upper bounded by a weighted sum of {‖zs′τ − zs

′
τ−1‖2}τ≤t,s′∈S as we already

showed in Step 3.

Combining all steps. Summing up Eq. (16) over all s, and based on all earlier discussions, we
have ∑

s

dist2
?(ẑ

s
t+1) ≤

∑
s

dist2
?(ẑ

s
t ) +

t∑
τ=1

∑
s

µsτατ−1dist2
?(ẑ

s
τ )︸ ︷︷ ︸

term4

+

t∑
τ=1

∑
s

νsτ‖zsτ − zsτ−1‖2︸ ︷︷ ︸
term5

− 1

2

∑
s

(∥∥ẑst+1 − zst
∥∥2

+ ‖zst − ẑst ‖
2
)

︸ ︷︷ ︸
term6

−Ω

(
η2
∑
s

∆2(ẑst+1)

)
(20)

for some weights µsτ and νsτ (a large part of the analysis is devoted to precisely calculating these
weights). Here, the −Ω

(
η2
∑

s ∆2(ẑst+1)
)

term comes from Step 2; term4 is a weighted sum of
{ατ−1dist2

?(ẑ
s′
τ )}τ≤t,s′∈S that comes from term1 in Step 5; term5 is a weighed sum of {‖zs′τ −

zs
′
τ−1‖2}τ≤t,s′∈S that comes from all other terms we discuss in Steps 3-5.

Obtaining average duality-gap bound To obtain the average duality-gap bound in Theorem 1,
we sum Eq. (20) over t, and further argue that the sum of term5 over t is smaller than the sum of
term6 over t (hence they are canceled with each other). Rearranging and telescoping leads to

η2
T∑
t=1

∑
s

∆2(ẑst+1) = O

(
T∑
t=1

t∑
τ=1

∑
s

µsτατ−1dist2
?(ẑ

s
τ )

)
= O

(
T∑
t=1

t∑
τ=1

∑
s

µsτατ−1

)
.

12
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As long as αt is decreasing and going to zero, the right-hand side above can be shown to be sub-
linear in T . Further relating maxx′,y′

(
V s
x̂t,y′
− V s

x′,ŷt

)
to ∆(ẑst ) (Lemma 32) proves Theorem 1.

Obtaining last-iterate convergence bound Following the matrix game case, there is a problem-
dependent constant C > 0 such that ∆(ẑst+1) ≥ Cdist?(ẑ

s
t+1). Similarly to how Eq. (14) is ob-

tained, we use this in Eq. (20) and arrive at

∑
s

dist2
?(ẑ

s
t+1) ≤ 1

1 + Ω(η2C2)

∑
s

dist2
?(ẑ

s
t ) +

t∑
τ=1

∑
s

µsτατ−1dist2
?(ẑ

s
τ )︸ ︷︷ ︸

term4

+
t∑

τ=1

∑
s

νsτ‖zsτ − zsτ−1‖2︸ ︷︷ ︸
term5

−Ω

(∑
s

(∥∥ẑst+1 − zst
∥∥2

+ ‖zst − ẑst ‖
2
)

︸ ︷︷ ︸
term6

)
(21)

Then ideally we would like to follow a similar argument from Eq. (14) to Eq. (15) to obtain a last-
iterate convergence guarantee. However, we face two more challenges here. First, we have an extra
term4. Fortunately, this term vanishes when t is large as long as αt decreases and converges to zero.
Second, in Eq. (14), the indices of the negative term ‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2 and the positive
term η2‖zt − zt−1‖2 are only offset by 1 so that a simple rearrangement is enough to get Eq. (15),
while in Eq. (21), the indices in term6 and term5 are far from each other. To address this issue, we
further introduce a set of weights and consider a weighted sum of Eq. (21) over t. We then show
that the weighted sum of term5 can be canceled by the weighted sum of term6. Combining the
above proves Theorem 2. Note that due to these extra terms, our last-iterate convergence rate is
only sublinear (while Eq. (11) shows a linear rate for matrix games).

5. Conclusion and Future Directions

In this work, we propose the first decentralized algorithm for two-player zero-sum Markov games
that is rational, convergent, agnostic, symmetric, and having a finite-time convergence rate guarantee
at the same time. The algorithm is based on running OGDA on each state, together with a slowly
changing critic that stabilizes the game matrix on each state.

Our work studies the most basic tabular setting, and also requires a structural assumption when
estimation is needed that sidesteps the difficulty of performing exploration over the state space.
Important future directions include relaxing either of these assumptions, that is, extending our
framework to allow function approximation and/or incorporating efficient exploration mechanisms.
Studying OGDA-based algorithms beyond the two-player zero-sum setting is also an interesting
future direction.
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Appendix A. Notations

A.1. Simplifications of the Notations

We define the following notations to simplify the proofs:

Definition 7 x̂s0 = xs0 = 0|A| (zero vector with dimension |A|), ŷs0 = ys0 = 0|B|, Qs0 = 0|A|×|B|,
`s0 = 0|A|, rs0 = 0|B|, ρs0 = 0, α0 = 1.

Besides, for a matrix Q, we define ‖Q‖ = maxi,j |Qij |. To avoid cluttered notation, a product of
the form x>Qy is usually simply written as xQy.

A.2. Auxiliary Coefficients

In this subsection, we define several coefficients that are related to the value learning rate {αt}.

Definition 8 (ατt ) For non-negative integers τ and t with τ ≤ t, define ατt = ατ
∏t
i=τ+1(1− αi).

Definition 9 (δτt ) For non-negative integers τ and t with τ ≤ t, define δτt ,
∏t
i=τ+1(1− αi).

Definition 10 (βτt ) For positive integers τ and t with τ < t, define βτt = ατ
∏t−1
i=τ (1− αi + αiγ).

Define βtt = 1.

Definition 11 (λt) For positive integers t, define λt = max
{
αt+1

αt
, 1− αt(1−γ)

2

}
.

Definition 12 (λτt ) For positive integers τ and t with τ < t, define λτt = ατ
∏t−1
i=τ λi. Define

λtt = 1.

A.3. Auxiliary Variables

In this subsection, we define several auxiliary variables to be used in the later analysis.

Definition 13 (Jst ) For every state s ∈ S, define the sequence {Jst }t=1,2,... by

Js1 = ‖zs1 − zs0‖
2 ,

Jst = (1− αt)Jst−1 + αt
∥∥zst − zst−1

∥∥2
, ∀t ≥ 2.

Furthermore, define Jt , maxs J
s
t .

Definition 14 (Ks
t ) For every state s ∈ S, define the sequence {Ks

t }t=1,2,... by

Ks
1 = ‖Qs1 −Qs0‖

2 ,

Ks
t = (1− αt)Ks

t−1 + αt
∥∥Qst −Qst−1

∥∥2
, ∀t ≥ 2.

Furthermore, define Kt , maxsK
s
t .

17



WEI LEE ZHANG LUO

Definition 15 (x̂st?, ŷ
s
t?, ẑ

s
t?) Define x̂st? = ΠX s? (x̂st ), i.e., the projection of x̂st onto the set of optimal

policy X s? on state s. Similarly, ŷst? = ΠYs? (ŷst ), and ẑst? = ΠZs? (ẑst ) = (x̂st?, ŷ
s
t?).

Definition 16 (∆s
t ) Define ∆s

t = maxx′,y′ (x̂stQ
s
?y
′s − x′sQs?ŷst ) for all t ≥ 1.

Definition 17 (Regst ) Define

Regst = max

{
t∑

τ=1

ατt (xsτ − x̂st?)Qsτysτ ,
t∑

τ=1

ατt x
s
τQ

s
τ (ŷst? − ysτ )

}
and Regt = maxs Regst .

Definition 18 (Γt) Define Γt = maxs ‖Qst −Qs?‖.

Definition 19 (θst ) Define θst = 1
16‖ẑ

s
t − zst−1‖2 + 1

16‖z
s
t−1 − ẑst−1‖2

Definition 20 (Zt) Define Zt = maxs
∑t

τ=1 α
τ
t ατ−1dist?(ẑ

s
τ ).

A.4. Assumptions on αt and Simple Facts about ατt
We require αt to satisfy the following:

• α1 = 1

• 0 < αt+1 ≤ αt ≤ 1

• αt → 0 as t→∞
Furthermore, α0 , 1. Below is an useful lemma that is used in many places:

Lemma 21 If {ht}t=0,1,2,... and {kt}t=1,2,... are non-negative sequences that satisfy ht = (1 −
αt)ht−1 + αtkt for t ≥ 1, then ht =

∑t
τ=1 α

τ
t kτ .

Proof We prove it by induction. When t = 1, since α1 = 1, h1 = k1 = α1
1k1. Assume that the

formula is correct for ht. Then

ht+1 = (1− αt+1)ht + αt+1kt+1

= (1− αt+1)
t∑

τ=1

ατt kτ + αt+1
t+1kt+1

=
t∑

τ=1

ατt+1kτ + αt+1
t+1kt+1 =

t+1∑
τ=1

ατt+1kτ .

Corollary 22 The following hold:

• V s
t =

∑t
τ=1 α

τ
t ρ
s
τ

• Jst =
∑t

τ=1 α
τ
t

∥∥zsτ − zsτ−1

∥∥2

• Ks
t =

∑t
τ=1 α

τ
t

∥∥Qsτ −Qsτ−1

∥∥2

Proof They immediately follow from Lemma 21 and the definition of Jst ,K
s
t , V

s
t .
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Appendix B. Proof for Step 1: Single-Step Inequality

Lemma 23 For any state s and t,

(xst − x̂st?)Qstyst ≤
1

2η

(
dist2

?(x̂
s
t )− dist2

?(x̂
s
t+1)− ‖x̂st+1 − xst‖2 − ‖xst − x̂st‖2

)
+

4η

(1− γ)2
‖yst − yst−1‖2 + 4η‖Qst −Qst−1‖2 + 3ε,

xstQ
s
t (ŷ

s
t? − yst ) ≤

1

2η

(
dist2

?(ŷ
s
t )− dist2

?(ŷ
s
t+1)− ‖ŷst+1 − yst ‖2 − ‖yst − ŷst ‖2

)
+

4η

(1− γ)2
‖xst − xst−1‖2 + 4η‖Qst −Qst−1‖2 + 3ε.

Proof By standard proof of OGDA (see, e.g., the proof of Lemma 1 in (Wei et al., 2021) or Lemma
1 in (Rakhlin and Sridharan, 2013)), we have

(xst − x̂st?)
> `st ≤

1

2η

(
‖x̂st − x̂st?‖

2 −
∥∥x̂st+1 − x̂st?

∥∥2 − ‖x̂st+1 − xst‖2 − ‖xst − x̂st‖2
)

+ η‖`st − `st−1‖2.

Since ‖x̂st − x̂st?‖
2 = dist2

?(x̂
s
t ) and

∥∥x̂st+1 − x̂st?
∥∥2 ≥ dist2

?(x̂
s
t+1) by the definition of dist?(·), we

further have

(xst − x̂st?)
> `st ≤

1

2η

(
dist2

?(x̂
s
t )− dist2

?(x̂
s
t+1)− ‖x̂st+1 − xst‖2 − ‖xst − x̂st‖2

)
+ η‖`st − `st−1‖2.

(22)

By the definition of `st , we have

η
∥∥`st − `st−1

∥∥2

≤ η
∥∥`st −Qstyst + (Qst −Qst−1)yst +Qst−1(yst − yst−1) +Qst−1y

s
t−1 − `st−1

∥∥2

≤ 4η ‖`st −Qstyst ‖
2 + 4η

∥∥(Qst −Qst−1)yst
∥∥2

+ 4η
∥∥Qst−1(yst − yst−1)

∥∥2
+ 4η

∥∥Qst−1y
s
t−1 − `st−1

∥∥2

≤ 4η
∥∥Qst −Qst−1

∥∥2
+

4η

(1− γ)2

∥∥yst − yst−1

∥∥2
+ 8ηε2

and

(xst − x̂st?)Qstyst ≤ (xst − x̂st?) `st + 2ε.

Combining them with Eq. (22) and the fact that ηε ≤ η
1−γ ≤

1
8 , we get the first inequality that we

want to prove. The other inequality is similar.

Lemma 24 For all t ≥ 1,

dist2
?(ẑ

s
t+1) ≤ dist2

?(ẑ
s
t )− 15θst+1 + θst + 4ηΓt + 8η2‖Qst −Qst−1‖2 + 6ηε.
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Proof Summing up the two inequalities in Lemma 23, we get

2η(xst − x̂st?)Qstyst + 2ηxstQ
s
t (ŷ

s
t? − yst )

≤ dist2
?(ẑ

s
t )− dist2

?(ẑ
s
t+1) +

4η2

(1− γ)2
‖zst − zst−1‖2 + 8η2‖Qst −Qst−1‖2 − ‖ẑst+1 − zst ‖2 − ‖zst − ẑst ‖2 + 6ηε

≤ dist2
?(ẑ

s
t )− dist2

?(ẑ
s
t+1) +

1

32
‖zst − zst−1‖2 + 8η2‖Qst −Qst−1‖2 − ‖ẑst+1 − zst ‖2 − ‖zst − ẑst ‖2 + 6ηε

≤ dist2
?(ẑ

s
t )− dist2

?(ẑ
s
t+1) +

1

16

(
‖zst − ẑst ‖2 + ‖ẑst − zst−1‖2

)
+ 8η2‖Qst −Qst−1‖2 − ‖ẑst+1 − zst ‖2 − ‖zst − ẑst ‖2 + 6ηε

= dist2
?(ẑ

s
t )− dist2

?(ẑ
s
t+1) + 8η2‖Qst −Qst−1‖2 −

15

16
‖zst − ẑst ‖2 − ‖ẑst+1 − zst ‖2 +

1

16
‖ẑst − zst−1‖2 + 6ηε

The left-hand side above, can be lower bounded by

2η(xst − x̂st?)Qstyst + 2ηxstQ
s
t (ŷ

s
t? − yst ) = 2ηxstQ

s
t ŷ
s
t? − 2ηx̂st?Q

s
ty
s
t

≥ 2ηxstQ
s
?ŷ
s
t? − 2ηx̂st?Q

s
?y
s
t − 4ηΓt

≥ −4ηΓt. (by the optimality of x̂st? and ŷst?)

Combining the inequalities and using the definition of θst finish the proof.

Appendix C. Proof for Step 2: Lower Bounding ‖ẑst+1 − zst ‖2 + ‖zst − ẑst ‖2

Lemma 25 For all t ≥ 1, we have 20θst+1 + ηΓt + 2η2ε2 ≥ η2

64

(
∆s
t+1

)2.

Proof By Eq. (2) and the optimality condition for x̂st+1, we have

(x̂st+1 − x̂st + η`st ) · (x′s − x̂st+1) ≥ 0 (23)

for any x′s ∈ ∆A. Then by the definition of `st ,

(x̂st+1 − x̂st + ηQsty
s
t ) · (x′s − x̂st+1) ≥ (x̂st+1 − x̂st + η`st ) · (x′s − x̂st+1)− 2ηε ≥ −2ηε (24)

where in the last inequality we use Eq. (23). Thus we have for any x′s ∈ ∆A,
√

2(‖x̂st+1 − xst‖+ ‖xst − x̂st‖)
≥
√

2‖x̂st+1 − x̂st‖
≥ ‖x̂st+1 − x̂st‖2

≥ (x̂st+1 − x̂st ) · (x′s − x̂st+1)

≥ η(x̂st+1 − x′s)Qstyst − 2ηε (by Eq. (24))

= η(xst − x′s)Qstyst + η(x̂st+1 − xst )Qstyst − 2ηε

≥ η(xst − x′s)Qstyst −
η‖x̂st+1 − xst‖

1− γ
− 2ηε.
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Using the fact that η
1−γ ≤

1
16 , we get

‖x̂st+1 − xst‖+ ‖xst − x̂st‖+
√

2ηε ≥ 1√
2 + 1

16

(
ηmax

x′
(xst − x′s)Qstyst

)
≥ η

2
max
x′

(xst − x′s)Qstyst .

Similarly, we have ‖ŷst+1 − yst ‖+ ‖yst − ŷst ‖+
√

2ηε ≥ η
2 maxy′ x

s
tQ

s
t (y
′s − yst ). Combining them

and using ‖z − z′‖ ≥ 1
2 ‖x− x

′‖+ 1
2 ‖y − y

′‖, we get

‖ẑst+1 − zst ‖+ ‖zst − ẑst ‖+
√

2ηε

≥ η

4

(
max
x′

(xst − x′s)Qstyst + max
y′

xstQ
s
t (y
′s − yst )

)
≥ η

4

(
max
y′

xstQ
s
ty
′s −min

x′
x′sQsty

s
t

)
=
η

4
max
y′

(
x̂st+1Q

s
?y
′s + xst (Q

s
t −Qs?)y′s + (xst − x̂st+1)Qs?y

′s
)

− η

4
min
x′

(
x′sQs?ŷ

s
t+1 + x′s(Qst −Qs?)yst + x′Qs?(y

s
t − ŷst+1)

)
≥ η

4
max
x′,y′

(
x̂st+1Q

s
?y
′s − x′sQs?ŷst+1

)
− ηΓt

2
− η

4(1− γ)

(
‖x̂st+1 − xst‖+ ‖ŷst+1 − yst ‖

)
(‖Qs?‖ ≤ 1

1−γ )

≥ η

4
∆s
t+1 −

ηΓt
2
− η

2(1− γ)
‖ẑst+1 − zst ‖ (by the definition of ∆s

t+1)

≥ η

4
∆s
t+1 −

ηΓt
2
− 1

16
‖ẑst+1 − zst ‖. (25)

Then notice that we have

20θst+1 + ηΓt + 2η2ε2

≥ 289

256
‖ẑst+1 − zst ‖2 + ‖zst − ẑst ‖2 +

η2Γ2
t

4
+ 2η2ε2

(by the definition of θst+1 and that ηΓt ≤ η
1−γ ≤ 1)

≥ 1

4

(
17

16
‖ẑst+1 − zst ‖+ ‖zst − ẑst ‖+

ηΓt
2

+
√

2ηε

)2

(Cauchy-Schwarz inequality)

≥ η2

64

(
∆s
t+1

)2
. (by Eq. (25) and notice that ∆s

t+1 ≥ 0)

Lemma 26 (Key Lemma for Average Duality-gap Bounds) For all t ≥ 1, we have

dist2
?(ẑ

s
t+1) ≤ dist2

?(ẑ
s
t )− 5θst+1 + θst −

η2

128
(∆s

t+1)2 + 5ηΓt + 8η2‖Qst −Qst−1‖2 + 7ηε.
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Proof Combining Lemma 25 with Lemma 24, we get

dist2
?(ẑ

s
t+1) ≤ dist2

?(ẑ
s
t )− 5θst+1 − 10θst+1 + θst + 4ηΓt + 8η2‖Qst −Qst−1‖2 + 6ηε

≤ dist2
?(ẑ

s
t )− 5θst+1 −

(
η2

128

(
∆s
t+1

)2 − 1

2
ηΓt − η2ε2

)
+ θst + 4ηΓt + 8η2‖Qst −Qst−1‖2 + 6ηε

≤ dist2
?(ẑ

s
t )− 5θst+1 + θst −

η2

128

(
∆s
t+1

)2
+ 5ηΓt + 8η2‖Qst −Qst−1‖2 + 7ηε.

(ηε ≤ 1)

Lemma 27 (Key Lemma for Point-wise Convergence Bounds) There exists a constant C ′ > 0
(which depends on the transition and the loss/payoff functions) such that for all t ≥ 1,

dist?(ẑ
s
t+1) + 4.5θst+1 ≤

1

1 + η2C ′2
(dist?(ẑ

s
t ) + 4.5θst ) + 5ηΓt + 8η2‖Qst −Qst−1‖2 − 3θst + 7ηε.

Proof By Theorem 5 of (Wei et al., 2021) or Lemma 3 of (Gilpin et al., 2012), we have

∆s
t+1 ≥ Cdist?(ẑ

s
t+1)

for some problem-dependent constant 0 < C ≤ 1
1−γ (C depends on {Qs?}s). Thus Theorem 26

implies

dist2
?(ẑ

s
t+1) + 5θst+1 ≤ dist2

?(ẑ
s
t ) + θst −

η2C2

128
dist2

?(ẑ
s
t+1) + 5ηΓt + 8η2‖Qst −Qst−1‖2 + 7ηε.

By defining C ′2 = C2

128 , we further get

dist2
?(ẑ

s
t+1) +

5

1 + η2C ′2
θst+1 ≤

1

1 + η2C ′2
(
dist2

?(ẑ
s
t ) + θst + 5ηΓt + 8η2‖Qst −Qst−1‖2 + 7ηε

)
≤ 1

1 + η2C ′2
(dist2

?(ẑ
s
t ) + θst ) + 5ηΓt + 8η2‖Qst −Qst−1‖2 + 7ηε.

Notice that 5
1+η2C′2 ≥ 5

1+ 1
162
× 1

128

≥ 4.5. Thus we further have

dist2
?(ẑ

s
t+1) + 4.5θst+1 ≤

1

1 + η2C ′2
(dist2

?(ẑ
s
t ) + 4.5θst ) + 5ηΓt + 8η2‖Qst −Qst−1‖2 − 3θst + 7ηε

where in the last inequality we use 1
1+η2C′2 ≤ 4.5

1+η2C′2 − 3 because η2C ′2 ≤ 1
162
× 1

128 .

Appendix D. Proof for Step 3: Bounding ‖Qs
t −Qs

t−1‖2

Lemma 28 We have for t ≥ 2 and all s ∈ S,

‖Qst −Qst−1‖2 ≤
8γ2

(1− γ)3
Jt−1 +

2γ2

1 + γ
Kt−1 +

16γ2ε2

1− γ
.
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Proof It is equivalent to prove that for all t ≥ 1,

‖Qst+1 −Qst‖2 ≤
8γ2

(1− γ)3
Jt +

2γ2

1 + γ
Kt +

16γ2ε2

1− γ
.

By definition,
Qst (a, b) = σ(s, a, b) + γEs′∼p(·|s,a,b)

[
V s′
t−1

]
,

we have

‖Qst+1 −Qst‖2 = max
a,b

(Qst+1(a, b)−Qst (a, b))2 ≤ γ2 max
s′

(
V s′
t − V s′

t−1

)2
(26)

Now it suffices to upper bound
(
V s
t − V s

t−1

)2 for any s. By Corollary 22, we have V s
t−1 =∑t−1

τ=1 α
τ
t−1ρ

s
τ . Therefore,

V s
t − V s

t−1 = αt
(
ρst − V s

t−1

)
= αt

(
ρst −

t−1∑
τ=0

ατt−1ρ
s
τ

)

= αt

(
t−1∑
τ=0

ατt−1 (ρst − ρsτ )

)
(because

∑t−1
τ=0 α

τ
t−1 = 1)

In the following calculation, we omit the superscript s for simplicity. By defining diffh , |ρh −
ρh−1|, we have

(Vt − Vt−1)2 ≤ (αt)
2

(
t−1∑
τ=0

ατt−1(ρt − ρτ )

)2

≤ (αt)
2

(
t−1∑
τ=0

ατt−1

t∑
h=τ+1

(ρh − ρh−1)

)2

≤ (αt)
2

(
t−1∑
τ=0

ατt−1

t∑
h=τ+1

diffh

)2

= (αt)
2

(
t∑

h=1

h−1∑
τ=0

ατt−1diffh

)2

≤ (αt)
2

(
t∑

h=1

δh−1
t−1 diffh

)2

. (by Lemma 35)

Then we continue:

(Vt − Vt−1)2

≤ (αt)
2

(
t∑

h=1

δh−1
t−1 diffh

)2
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≤ (αt)
2

(
t∑

h=1

δh−1
t−1

)(
t∑

h=1

δh−1
t−1 diff2

h

)
(Cauchy-Schwarz inequality)

≤

(
t∑

h=1

αhδ
h−1
t−1

)(
t∑

h=1

αhδ
h−1
t−1 diff2

h

)
(αt ≤ αh for h ≤ t)

≤
t∑

τ=1

ατt diff2
τ (note that αhδh−1

t−1 = αh
∏t−1
τ=h(1− ατ ) ≤ αh

∏t
τ=h+1(1− ατ ) = αht )

=

t∑
τ=1

ατt

(
ρt − xτQτyτ + xτ (Qτ −Qτ−1)yτ + (xτ − xτ−1)Qτ−1yτ

+ xτ−1Qτ−1(yτ − yτ−1) + xτ−1Qτ−1yτ−1 − ρt−1

)2

≤
t∑

τ=1

ατt

(
8ε2

1− γ
+

2

1 + γ
‖Qτ −Qτ−1‖2 +

8

(1− γ)3
‖xτ − xτ−1‖2 +

8

(1− γ)3
‖yτ − yτ−1‖2 +

8ε2

1− γ

)
,

where we use (a+ b+ c+ d+ e)2 ≤ 8
1−γa

2 + 2
1+γ b

2 + 8
1−γ c

2 + 8
1−γd

2 + 8
1−γ e

2 which is due to
Cauchy-Schwarz inequality. By Lemma 21 and the definitions of Jst , Ks

t , Jt, Kt in Definition 13
and Definition 14,

t∑
τ=1

ατt ‖Qsτ −Qsτ−1‖2 = Ks
t ≤ Kt,

t∑
τ=1

ατt ‖zsτ − zsτ−1‖2 ≤ Jst ≤ Jt.

Combining them with the previous upper bound for (V s
t − V s

t−1)2, we get

(V s
t − V s

t−1)2 ≤ 8

(1− γ)3
Jt +

2

1 + γ
Kt +

16ε2

1− γ

for all s. Further combining this with Eq. (26), we get

‖Qst+1 −Qst‖2 ≤
8γ2

(1− γ)3
Jt +

2γ2

1 + γ
Kt +

16γ2ε2

1− γ
.

Appendix E. Proof for Steps 4 and 5: Bounding ‖Qs
t −Qs

?‖

Lemma 29 For all t ≥ 2,

Γt ≤ γ

(
t−1∑
τ=1

ατt−1Γτ + Regt−1 + ε

)
.
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Proof We proceed with

Qst+1(a, b)

= σ(s, a, b) + γEs′∼p(·|s,a,b)
[
V s′
t

]
= σ(s, a, b) + γEs′∼p(·|s,a,b)

[
t∑

τ=1

ατt ρ
s′
τ

]
(Corollary 22)

≤ σ(s, a, b) + γEs′∼p(·|s,a,b)

[
t∑

τ=1

ατt x
s′
τ Q

s′
τ y

s′
τ + ε

]
(by the definition of ρs

′
τ and that

∑t
τ=1 α

τ
t = 1 for t ≥ 1)

≤ σ(s, a, b) + γEs′∼p(·|s,a,b)

[
t∑

τ=1

ατt x̂
s′
t?Q

s′
τ y

s′
τ + Regt + ε

]
(by the definition of Regt)

≤ σ(s, a, b) + γEs′∼p(·|s,a,b)

[
t∑

τ=1

ατt x̂
s′
t?Q

s′
? y

s′
τ +

t∑
τ=1

ατt Γτ + Regt + ε

]
(by the definition of Γτ )

≤ σ(s, a, b) + γEs′∼p(·|s,a,b)

[
t∑

τ=1

ατt x̂
s′
t?Q

s′
? y

s′
?

]
+ γ

(
t∑

τ=1

ατt Γτ + Regt + ε

)
(by definition of ys

′
? )

= σ(s, a, b) + γEs′∼p(·|s,a,b)
[
V s′
?

]
+ γ

(
t∑

τ=1

ατt Γτ + Regt + ε

)
(
∑t

τ=1 α
τ
t = 1 for t ≥ 1)

= Qs?(a, b) + γ

(
t∑

τ=1

ατt Γτ + Regt + ε

)
.

Similarly,

Qst+1(a, b) ≥ Qs?(a, b)− γ

(
t∑

τ=1

ατt Γτ + Regt + ε

)
.

They jointly imply

Γt+1 ≤ γ

(
t∑

τ=1

ατt Γτ + Regt + ε

)
.

Lemma 30 For any state s and time t ≥ 1,

Regt ≤
1

2η
Zt +

4η

(1− γ)2
Jt + 4ηKt + 3ε.
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Proof Summing the first bound in Lemma 23 over τ = 1, . . . , t with weights ατt , and dropping
negative terms −‖x̂st+1 − xst‖2 − ‖xst − x̂2

t ‖2, we get

t∑
τ=1

ατt (xsτ − x̂sτ?)Qsτysτ

≤
t∑

τ=1

ατt
2η

(
dist2

?(x̂
s
τ )− dist2

?(x̂
s
τ+1)

)
+

4η

(1− γ)2

t∑
τ=1

ατt ‖ysτ − ysτ−1‖2 + 4η
t∑

τ=1

ατt ‖Qsτ −Qsτ−1‖2 + 3ε

≤ α1
t

2η
dist2

?(x̂
s
1) +

t∑
τ=2

ατt − ατ−1
t

2η
dist?(x̂

s
τ ) +

4η

(1− γ)2

t∑
τ=1

ατt ‖ysτ − ysτ−1‖2 + 4η
t∑

τ=1

ατt ‖Qsτ −Qsτ−1‖2 + 3ε

≤ α1
t

2η
dist2

?(x̂
s
1) +

t∑
τ=2

ατt − ατ−1
t

2η
dist?(x̂

s
τ ) +

4η

(1− γ)2
Jst + 4ηKs

t + 3ε. (27)

Observe that by definition, we have for τ ≥ 2,

ατt − ατ−1
t = ατt

(
1− ατ−1(1− ατ )

ατ

)
= ατt ×

ατ − ατ−1 + ατ−1ατ
ατ

≤ ατ−1α
τ
t

where in the inequality we use ατ ≤ ατ−1. Using this in Eq. (27), we get

t∑
τ=1

ατt (xsτ − x̂sτ∗)Qsτysτ ≤
α1
t

2η
dist?(x̂

s
1) +

1

2η

t∑
τ=2

ατt ατ−1dist?(x̂
s
τ ) +

4η

(1− γ)2
Jst + 4ηKs

t + 3ε

=
1

2η

t∑
τ=1

ατt ατ−1dist?(x̂
s
τ ) +

4η

(1− γ)2
Jst + 4ηKs

t + 3ε

(recall that α0 = 1)

Using Jsn ≤ Jn,Ks
n ≤ Kn, and the definition of Zt,Regt finishes the proof.

Appendix F. Combining Lemmas to Show Last-iterate Convergence

In this section, we provide proofs for Theorem 1 and Theorem 2. To achieve so, we first prove
Lemma 31 by combining the results in Appendix D and Appendix E. Then we combine Theorem 26,
Lemma 27, and Lemma 31 to prove Theorem 1 and Theorem 2.

Lemma 31 For any s and t ≥ 1,

5ηΓt + 8η2
∥∥Qst −Qst−1

∥∥2

≤ max
s′

(
C1η

2

(1− γ)4

t−1∑
τ=1

βτt (θs
′
τ + θs

′
τ+1) + C2

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s′
τ )

)
+ 80β1

t +
80ηε

(1− γ)2
.

where C1 = 1152× 80 and C2 = 10.

26



LAST-ITERATE CONVERGENCE OF OGDA IN INFINITE-HORIZON MARKOV GAMES

Proof By Lemma 28, for all t ≥ 2,

η2‖Qst −Qst−1‖2 ≤
8η2γ2

(1− γ)3
Jt−1 +

2η2γ2

1 + γ
Kt−1 +

16η2ε2

1− γ
. (28)

By Lemma 29 and Lemma 30, for all t ≥ 2,

ηΓt ≤ γ
t−1∑
τ=1

ατt−1ηΓτ +
4η2

(1− γ)2
Jt−1 + 4η2Kt−1 +

1

2
Zt−1 + 4ηε. (29)

Now, multiply Eq. (29) with 1−γ
16 , and then add it to Eq. (28). Then we get that for t ≥ 2,

η2‖Qst −Qst−1‖2 +
1− γ

16
ηΓt

≤ γ
t−1∑
τ=1

ατt−1

(
1− γ

16
ηΓτ

)
+

(
8γ2

(1− γ)3
+

1

4(1− γ)

)
η2Jt−1+(

2γ2

1 + γ
+

1− γ
4

)
η2Kt−1 +

(1− γ)Zt−1

32
+
ηε

2

≤ γ
t−1∑
τ=1

ατt−1

(
1− γ

16
ηΓτ

)
+

9

(1− γ)3
η2Jt−1 + γη2Kt−1 +

(1− γ)Zt−1

32
+
ηε

2

(see explanation below)

≤ γ
t−1∑
τ=1

ατt−1

(
1− γ

16
ηΓτ + η2 max

s′
‖Qs′τ −Qs

′
τ−1‖2

)
+

9

(1− γ)3
η2Jt−1 +

(1− γ)Zt−1

32
+
ηε

2
,

where in the second inequality we use that 2γ2

1+γ + 1−γ
4 − γ = (1− γ)

(
1
4 −

γ
1+γ

)
≤ 0 since γ ≥ 1

2 ,

and in the last inequality, we use Ks
t−1 =

∑t−1
τ=1 α

τ
t−1‖Qsτ −Qsτ−1‖2. Define the new variable

ut = η2 max
s
‖Qst −Qst−1‖2 +

1− γ
16

ηΓt.

Then the above implies that for all t ≥ 2,

ut ≤ γ
t−1∑
τ=1

ατt−1uτ +
9

(1− γ)3
η2Jt−1 +

(1− γ)Zt−1

32
+
ηε

2
. (30)

Observe that Eq. (30) is in the form of Lemma 33 with the following choices:

gt = ut, ∀t ≥ 1,

ht =

{
ut + ηε

2 for t = 1
9η2

(1−γ)3
Jt−1 + (1−γ)

32 Zt−1 + ηε
2 for t ≥ 2

and get that for t ≥ 2,

ut ≤
9η2

(1− γ)3

t∑
τ=2

βτt Jτ−1 +
1− γ

32

t∑
τ=2

βτt Zτ−1 + β1
t u1 +

ηε

2

t∑
τ=1

βτt

≤ 9η2

(1− γ)3

t∑
τ=2

βτt Jτ−1 +
1− γ

32

t∑
τ=2

βτt Zτ−1 + (1− γ)β1
t +

ηε

1− γ
(by Lemma 38)
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because ut ≤ η2

(1−γ)2
+ 1−γ

16 ≤
1−γ

2 . Further using Lemma 34 on the first two terms on the right-hand

side, and noticing that 1
γ2
≤ 4, we further get that for t ≥ 2,

ut ≤ max
s

36η2

(1− γ)3

t−1∑
τ=1

βτt
∥∥zsτ − zsτ−1

∥∥2
+

1− γ
8

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s
τ ) + (1− γ)β1

t +
ηε

1− γ

≤ max
s

72η2

(1− γ)3

t−1∑
τ=1

βτt (‖zsτ − ẑsτ‖2 + ‖ẑsτ − zsτ−1‖2)+

1− γ
8

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s
τ ) + (1− γ)β1

t +
ηε

1− γ

≤ max
s

1152η2

(1− γ)3

t−1∑
τ=1

βτt (θsτ+1 + θsτ ) +
1− γ

8

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s
τ ) + (1− γ)β1

t +
ηε

1− γ
.

(31)

Finally, notice that according to the definition of ut, we have 5ηΓt + 8η2
∥∥Qst −Qst−1

∥∥2 ≤ 80
1−γut.

Combining Eq. (31), we finish the proof for case for t ≥ 2. The case for t = 1 is trivial since
5ηΓt + 8η2

∥∥Qst −Qst−1

∥∥2 ≤ 1 ≤ 80 = 80β1
1 .

Proof of Theorem 1. Define Cα(T ) , 1 +
∑T

t=1 αt and let Cβ be an upper bound of
∑∞

t=τ β
τ
t

for any τ . With the choice of αt specified in the theorem, we have Cα(T ) = 1 +
∑T

t=1
H+1
H+t =

O (H log T ) = O
(

log T
1−γ

)
. By Lemma 40, we have Cβ ≤ 2

1−γ + 3. Define S = |S|.
Combining Lemma 31 and Theorem 26, we get that for t ≥ 1,

η2

128
(∆s

t+1)2 ≤ dist2
?(ẑ

s
t )− dist2

?(ẑ
s
t+1)− 5θst+1 + θst

+ max
s′

(
C1η

2

(1− γ)4

t−1∑
τ=1

βτt (θs
′
τ + θs

′
τ+1) + C2

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s′
τ )

)
+ 80β1

t +
87ηε

(1− γ)2
.

Summing the above over s ∈ S and t ∈ [T − 1], and denoting Θt =
∑

s θ
s
t , we get

η2

128

T∑
t=1

∑
s

(∆s
t )

2 ≤ O(S)−
T∑
t=1

4Θt +
C1Sη

2

(1− γ)4

T∑
t=1

t−1∑
τ=1

βτt (Θτ + Θτ+1)

+O

(
S

T∑
t=1

t−1∑
τ=1

βτt ατ−1 + S

T∑
t=1

β1
t +

SηεT

(1− γ)2

)
(32)

since dist2
?(ẑ

s
τ ) = O(1) and Θ1 = O(S). Notice that the following hold

T∑
t=1

t−1∑
τ=1

βτt (Θτ + Θτ+1) ≤
T−1∑
τ=1

T∑
t=τ

βτt (Θτ + Θτ+1) ≤ 2Cβ

T∑
τ=1

Θτ ,

T∑
t=1

t−1∑
τ=1

βτt ατ−1 ≤
T∑
τ=1

T∑
t=τ

βτt ατ−1 ≤ Cβ
T∑
τ=1

ατ−1 = Cα(T )Cβ,
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and
∑T

t=1 β
1
t ≤ Cβ . Combining these three inequalities with Eq. (32), we get

T∑
t=1

∑
s

(∆s
t )

2 =
128

η2

T∑
t=1

(
−4 + 2Cβ

C1Sη
2

(1− γ)4

)
Θt +O

(
SCα(T )Cβ

η2
+

SεT

η(1− γ)2

)
= O

(
SCα(T )Cβ

η2
+

SεT

η(1− γ)2

)
.

(by our choice of η, we have 2Cβ
C1Sη2

(1−γ)4
≤ 10C1Sη2

(1−γ)5
≤ 4)

By Cauchy-Schwarz inequality, we further have

T∑
t=1

∑
s

∆s
t ≤
√
ST

(
T∑
t=1

∑
s

(∆s
t )

2

) 1
2

= O

(
S
√
Cα(T )CβT

η
+

ST
√
ε

√
η(1− γ)

)
.

Finally, by Lemma 32, we get

1

T

T∑
t=1

max
s,x′,y′

(
V s
x̂t,y′ − V

s
x′,ŷt

)
≤ 2

1− γ
1

T

T∑
t=1

max
s

∆s
t = O

(
S
√
Cα(T )Cβ

η(1− γ)
√
T

+
S
√
ε

√
η(1− γ)2

)

= O
(

S
√

log T

η(1− γ)2
√
T

+
S
√
ε

√
η(1− γ)2

)
.

Proof of Theorem 2. Combining Lemma 27 and Lemma 31, we get that for all t ≥ 1,

dist2
?(ẑ

s
t+1) + 4.5θst+1

≤ 1

1 + η2C ′2
(
dist2

?(ẑ
s
t ) + 4.5θst

)
+ max

s′

(
C1η

2

(1− γ)4

t−1∑
τ=1

βτt (θs
′
τ + θs

′
τ+1) + C2

t−1∑
τ=1

βτt ατ−1dist2
?(ẑ

s′
τ )

)
+ 80β1

t − 3θst +
87ηε

(1− γ)2
.

Summing the above inequality over s ∈ S, and denoting Lt =
∑

s dist2
?(ẑ

s
t ), Θt =

∑
s θ

s
t , we get

that for all t,

Lt+1 + 4.5Θt+1 ≤
1

1 + η2C ′2
(Lt + 4.5Θt) +

C1Sη
2

(1− γ)4

t−1∑
τ=1

βτt (Θτ + Θτ+1)+

C2S

t−1∑
τ=1

βτt ατ−1Lτ + 80Sβ1
t − 3Θt +

87Sηε

(1− γ)2
. (33)

The key idea of the following analysis is to use the negative (bonus) term −3Θt to cancel
the positive (penalty) term C1Sη2

(1−γ)4
∑t

τ=1 β
τ
t Θτ . Since the time indices do not match, we perform

smoothing over time to help. Consider the following weighted sum of Lτ + 4.5Θτ with weights
λτt+1:

t+1∑
τ=2

λτt+1(Lτ + 4.5Θτ )
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=
t∑

τ=1

λτ+1
t+1 (Lτ+1 + 4.5Θτ+1) (re-indexing)

≤
t∑

τ=1

λτt (Lτ+1 + 4.5Θτ+1) (Lemma 37)

≤ 1

1 + η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
C1Sη

2

(1− γ)4

t∑
τ=1

λτt

τ−1∑
i=1

βiτ (Θi + Θi+1)

+ C2S
t∑

τ=1

λτt

τ−1∑
i=1

βiταi−1Li + 80S
t∑

τ=1

λτt β
1
τ − 3

t∑
τ=1

λτtΘτ +
87Sηε

(1− γ)2

t∑
τ=1

λτt

≤ 1

1 + η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
C1Sη

2

(1− γ)4

t−1∑
i=1

(
t∑

τ=i

λτt β
i
τ

)
(Θi + Θi+1)

+ C2S

t−1∑
i=1

(
t∑

τ=i

λτt β
i
τ

)
αi−1Li + 80S

t∑
τ=1

λτt β
1
τ − 3

t∑
τ=1

λτtΘτ +
87Sηε

(1− γ)2

t∑
τ=1

λτt

≤ 1

1 + η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
3C1Sη

2

(1− γ)5

t−1∑
τ=1

λτt (Θτ + Θτ+1)

+
3C2S

1− γ

t−1∑
τ=1

λτt ατ−1Lτ +
240S

1− γ
λ1
t − 3

t∑
τ=1

λτtΘτ +
87Sηε

(1− γ)2

t∑
τ=1

λτt (by Lemma 36)

≤ 1

1 + η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
6C1Sη

2

(1− γ)5

t∑
τ=1

λτtΘτ

+
3C2S

1− γ

t−1∑
τ=1

λτt ατ−1Lτ +
240S

1− γ
λ1
t − 3

t∑
τ=1

λτtΘτ +
87Sηε

(1− γ)2

t∑
τ=1

λτt

≤ 1

1 + η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
3C2S

1− γ

t−1∑
τ=1

λτt ατ−1Lτ +
240S

1− γ
λ1
t +

87Sηε

(1− γ)2

t∑
τ=1

λτt

(by our choice of η, 6C1Sη2

(1−γ)5
≤ 3)

where in the second-to-last inequality we use Lemma 41: with the special choice of αt specified in
the theorem, we have λτt = αt ≤ λτ+1

t for τ ≤ t− 1.

Let t0 = min
{
τ : 3C2S

1−γ ατ ≤
η2C′2

2

}
. Then we have

t+1∑
τ=2

λτt+1(Lτ + 4.5Θτ )

≤
(

1

1 + η2C ′2
+
η2C ′2

2

) t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
3C2S

1− γ

min{t0,t}∑
τ=1

λτt ατ−1Lτ +
240S

1− γ
λ1
t +

87Sηε

(1− γ)2

t∑
τ=1

λτt

≤ 1

1 + 0.1η2C ′2

t∑
τ=3

λτt (Lτ + 4.5Θτ ) +
12C2S

2

1− γ

min{t0,t}∑
τ=1

λτt ατ−1 +
240S

1− γ
λ1
t +

87Sηε

(1− γ)2

t∑
τ=1

λτt .

(ηC ′ ≤ 2−15 according to Lemma 27, Lτ ≤ S ·maxz,z′ ‖z − z′‖2 ≤ 4S)
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Finally, we add λ1
t+1(L1 + 4.5Θ1) to both sides, and note that

λ1
t+1(L1 + 4.5Θ1) = αt+1(L1 + 4.5Θ1) ≤ αt(L1 + 4.5Θ1) ≤ αt · 22S = 22Sλ1

t ,

where the first and second equality is by Lemma 41. Then we get

t+1∑
τ=1

λτt+1(Lτ + 4.5Θτ )

≤ 1

1 + 0.1η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
12C2S

2

1− γ

min{t0,t}∑
τ=1

λτt ατ−1 +
240S

1− γ
λ1
t + 22Sλ1

t +
87Sηε

(1− γ)2

t∑
τ=1

λτt

≤ 1

1 + 0.1η2C ′2

t∑
τ=1

λτt (Lτ + 4.5Θτ ) +
274C2S

2

1− γ

min{t0,t}∑
τ=1

λτt ατ−1 +
87Sηε

(1− γ)2

t∑
τ=1

λτt .

Define

Yt ,
t∑

τ=1

λτt (Lτ + 4.5Θτ ).

Then we can further write that for t ≥ 1,

Yt+1 ≤
1

1 + 0.1η2C ′2
Yt +

274C2S
2t0

1− γ
λ

min{t0,t}
t +

87Sηε

(1− γ)2

t∑
τ=1

λτt .

(upper bounding ατ−1 by 1)

Applying Lemma 39 with c = 0.1η2C′2

1+0.1η2C′2 , gt = Yt+1, ht = 274C2S2t0
1−γ λ

min{t0,t}
t + 87Sηε

(1−γ)2
∑t

τ=1 λ
τ
t ,

we get

Yt ≤ Y1(1 + 0.1η2C ′2)−t +
2

0.1η2C ′2

(
274C2S

2t0
1− γ

+
87Sηε

(1− γ)2
sup

t′∈[1, t
2

]

t′∑
τ=1

λτt

)
(1 + 0.1η2C ′2)−

t
2

+
2

0.1η2C ′2

(
274C2S

2t0
1− γ

sup
t′∈[ t

2
,t]

λ
min{t0,t′}
t′ +

87Sηε

(1− γ)2
sup

t′∈[ t
2
,t]

t′∑
τ=1

λτt

)
. (λτt ≤ 1)

With the choice of αt = H+1
H+t where H = 2

1−γ , we have

t0 = Θ

(
6C2S

(1− γ)η2C ′2
(H + 1)

)
= Θ

(
S

(1− γ)2η2C ′2

)
sup
t′∈[1,t]

t′∑
τ=1

λτt ≤ sup
t′∈[1,t]

t′αt ≤
t(H + 1)

H + t
≤ H + 1 = O

(
1

1− γ

)
(Lemma 41)

sup
t′∈[ t

2
,t]

λ
min{t0,t′}
t′ =

{
1 if t

2 ≤ t0
α t

2
else

(Lemma 41)
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Combining them and noticing that (1 + 0.1η2C ′2)−
t
2 = O(1

t ) when t ≥ 20
η2C′2 , we get that for

t ≥ 2t0 = Θ
(

S
(1−γ)2η2C′2

)
,

Yt = O
(

S3

η4C ′4(1− γ)3
αt +

Sε

ηC ′2(1− γ)3

)
= O

(
S3

η4C ′4(1− γ)4t
+

Sε

ηC ′2(1− γ)3

)
.

Since Yt ≤ 22S + 22S(t − 1)αt ≤ O(S log t
1−γ ), the above bound also trivially holds for t ≤ 2t0.

Then noticing that Lt ≤ Yt finishes the proof.

Lemma 32 For any policy pair x, y, the duality gap on the game can be related to the duality gap
on individual states as follows:

max
s,x′,y′

(
V s
x,y′ − V s

x′,y

)
≤ 2

1− γ
max
s,x′,y′

(
xsQs?y

′s − x′sQs?ys
)
.

Proof Notice that for any policy x and state s,

max
y′

V s
x,y′ − V s

? =
∑
a,b

xs(a)y′s(b)Qsx,y′(a, b)−
∑
a,b

xs?(a)ys?(b)Q
s
?(a, b)

=
∑
a,b

xs(a)y′s(b)
(
Qsx,y′(a, b)−Qs?(a, b)

)
+
∑
a,b

(
xs(a)y′s(b)− xs?(a)ys?(b)

)
Qs?(a, b)

= γ
∑
a,b

xs(a)y′s(b)p(s′|s, a, b)
(
V s′
x,y′ − V s′

?

)
+ xsQs?y

′s − xs?Qs?ys?

≤ γmax
s′,y′

(
V s′
x,y′ − V s′

?

)
+ xsQs?y

′s − xs?Qs?ys?.

Taking max over s on two sides and rearranging, we get

max
s,y′

(
V s
x,y′ − V s

?

)
≤ 1

1− γ
max
s,y′

(
xsQs?y

′s − xs?Qs?ys?
)
≤ 1

1− γ
max
s,x′,y′

(
xsQs?y

′s − x′sQs?ys
)
.

Similarly,

max
s,x′

(
V s
? − V s

x′,y

)
≤ 1

1− γ
max
s,x′,y′

(
xsQs?y

′s − x′sQs?ys
)
.

Combining the two inequalities, we get

max
s,x′,y′

(
V s
x,y′ − V s

x′,y

)
≤ 2

1− γ
max
s,x′,y′

(
xsQs?y

′s − x′sQs?ys
)
.
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Appendix G. Auxiliary Lemmas

G.1. Interactions between the Auxiliary Coefficients

Lemma 33 Let {gt}t=1,2,..., {ht}t=1,2,... be non-negative sequences that satisfy gt ≤ γ
∑t−1

τ=1 α
τ
t−1gτ+

ht for all t ≥ 1. Then gt ≤
∑t

τ=1 β
τ
t hτ .

Proof We prove it by induction. When t = 1, the condition guarantees g1 ≤ h1 = β1
1h1. Suppose

that it holds for 1, . . . , t− 1. Then

gt ≤ γ
t−1∑
τ=1

ατt−1gτ + ht

≤ γ
t−1∑
τ=1

ατt−1

(
τ∑
i=1

βiτhi

)
+ ht

=
t−1∑
i=1

(
t−1∑
τ=i

γατt−1β
i
τ

)
hi + ht

It remains to prove that
∑t−1

τ=i γα
τ
t−1β

i
τ ≤ βit for all i ≤ t − 1. We use another induction to show

this. Fix i and t, and define the partial sum ζr =
∑r

τ=i γα
τ
t−1β

i
τ for r ∈ [i, t− 1]. Below we show

that

ζr ≤ αi
r∏
τ=i

(1− ατ + ατγ)
t−1∏

τ=r+1

(1− ατ ). (34)

Notice that the right-hand side above is βit when r = t− 1, which is exactly what we want to prove.
When r = i, ζr = γαit−1 = γαi

∏t−1
τ=i+1(1− ατ ) ≤ αi(1− αi + αiγ)

∏t−1
τ=i+1(1− ατ ) where

the inequality is because 1−αi +αiγ− γ = (1−αi)(1− γ) ≥ 0. Now assume that Eq. (34) holds
up to r for some r ≥ i. Then

ζr+1 = ζr + βir+1γα
r+1
t−1

≤ αi
r∏
τ=i

(1− ατ + ατγ)
t−1∏

τ=r+1

(1− ατ ) +

(
αi

r∏
τ=i

(1− ατ + ατγ)

)
γαr+1

t−1∏
τ=r+2

(1− ατ )

= αi

r+1∏
τ=i

(1− ατ + ατγ)
t−1∏

τ=r+2

(1− ατ ).

This finishes the induction.

Lemma 34 Let {ht}t=1,2,... and {kt}t=1,2,... be non-negative sequences that satisfy ht =
∑t

τ=1 α
τ
t kτ .

Then
∑t

τ=2 β
τ
t hτ−1 ≤ 1

γ2
∑t−1

τ=1 β
τ
t kτ .

Proof By the assumption on hτ , we have

t∑
τ=2

βτt hτ−1 ≤
t∑

τ=2

βτt

(
τ−1∑
i=1

αiτ−1ki

)
=

t−1∑
i=1

(
t∑

τ=i+1

βτt α
i
τ−1

)
ki
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It remains to prove that for i < t,
∑t

τ=i+1 β
τ
t α

i
τ−1 ≤ 1

γ2
βit , or equivalently, γ

∑t
τ=i+1 β

τ
t α

i
τ−1 ≤

1
γβ

i
t . Below we use another induction to prove this. Fix i and t, and define the partial sum ζr =

γ
∑t

τ=r β
τ
t α

i
τ−1 for r ∈ [i+ 1, t]. We will show that

ζr ≤ αi
r−1∏
τ=i+1

(1− ατ )
t−1∏
τ=r

(1− ατ + ατγ). (35)

For the base case r = t, we have

ζr = γβttα
i
t−1 = γαi

t−1∏
τ=i+1

(1− ατ ) ≤ αi
t−1∏

τ=i+1

(1− ατ ).

Suppose that Eq. (35) holds up to r for some r ≤ t. Then

ζr−1 = ζr + αir−2γβ
r−1
t

≤ αi
r−1∏
τ=i+1

(1− ατ )

t−1∏
τ=r

(1− ατ + ατγ) + αi

(
r−2∏
τ=i+1

(1− ατ )

)
γαr−1

t−1∏
τ=r−1

(1− ατ + ατγ)

≤

(
αi

r−2∏
τ=i+1

(1− ατ )

t−1∏
τ=r

(1− ατ + ατγ)

)
× (1− αr−1 + γαr−1(1− αr−1 + αr−1γ))

≤

(
αi

r−2∏
τ=i+1

(1− ατ )

t−1∏
τ=r

(1− ατ + ατγ)

)
× (1− αr−1 + αr−1γ)

= αi

r−2∏
τ=i+1

(1− ατ )

t−1∏
τ=r−1

(1− ατ + ατγ).

This finishes the induction. Applying the result with r = i+ 1, we get

ζi+1 ≤ αi
t−1∏

τ=i+1

(1− ατ + ατγ) =
βit

1− αi + αiγ
≤ βit

γ

where the last inequality is by 1− αi + αiγ − γ = (1− αi)(1− γ) ≥ 0. This finishes the proof.

Lemma 35 For 0 ≤ h ≤ t,
∑h

τ=0 α
τ
t = δht .

Proof We prove it by induction on h. When h = 0,
∑h

τ=0 α
τ
t = α0

t =
∏t
τ=1(1 − ατ ) = δht

since α0 = 1. Suppose that the formula holds for h. Then
∑h+1

τ=0 α
τ
t =

∑h
τ=0 α

τ
t + αh+1

t =∏t
τ=h+1(1−ατ )+αh+1

∏t
τ=h+2(1−ατ ) =

∏t
τ=h+2(1−ατ ) = δh+1

t , which finishes the induction.

Lemma 36 For any positive integers i, t with i ≤ t,
∑t

τ=i λ
τ
t β

i
τ ≤ 3

1−γλ
i
t.
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Proof Notice that

t∑
τ=i

λτt β
i
τ = λit +

t∑
τ=i+1

λτt β
i
τ . (36)

Below we use induction to prove

t∑
τ=r

λτt β
i
τ ≤

2

1− γ
αi

r−1∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r

λτ

for r ∈ [i+ 1, t]. When r = t,
∑t

τ=r λ
τ
t β

i
τ = λttβ

i
t = βit = αi

∏t−1
τ=i(1− ατ (1− γ)). Suppose this

holds for some r ≤ t. Then

t∑
τ=r−1

λτt β
i
τ ≤

2

1− γ
αi

r−1∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r

λτ + βir−1λ
r−1
t

≤ 2

1− γ
αi

r−1∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r

λτ +

(
αi

r−2∏
τ=i

(
1− ατ (1− γ)

))
αr−1

t−1∏
τ=r−1

λτ

≤

[
αi

r−2∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r

λτ

](
2

1− γ
(1− αr−1(1− γ)) + αr−1

)
(λr−1 ≤ 1)

=

[
αi

r−2∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r

λτ

](
2

1− γ

(
1− 1

2
αr−1(1− γ)

))

≤ 2

1− γ
αi

r−2∏
τ=i

(
1− ατ (1− γ)

) t−1∏
τ=r−1

λτ ,

(λr−1 ≥ 1− 1
2αr−1(1− γ) by the definition of λr−1)

which finishes the induction. Notice that this implies

t∑
τ=i+1

λτt β
i
τ ≤

2

1− γ
αi (1− αi(1− γ))

t−1∏
τ=i+1

λτ ≤
2

1− γ
αi

t−1∏
τ=i

λτ =
2

1− γ
λit

where the second inequality is by the definition of λi. Thus,

t∑
τ=i

λτt β
i
τ ≤

3

1− γ
λit. (37)

Lemma 37 λτ+1
t+1 ≤ λτt .
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Proof When τ < t, we have

λτ+1
t+1

λτt
=
ατ+1Πt

i=τ+1λi

ατΠt−1
i=τλi

≤ ατ+1

ατλτ
≤ 1

where in the first inequality we use λt ≤ 1 and in the second inequality we use the definition of λτ .

When τ = t, we have
λτ+1
t+1

λτt
= 1

1 = 1.

Lemma 38
∑t

τ=1 β
τ
t ≤ 2

1−γ .

Proof Below we use induction to prove that for all r = 1, 2, . . . , t− 1,

r∑
τ=1

βτt ≤
1

1− γ

t−1∏
i=r

(1− αi + αiγ).

When r = 1, the left-hand side is β1
t = α1

∏t−1
i=1(1−αi +αiγ) ≤ 1

1−γ
∏t−1
i=1(1−αi +αiγ), which

is the right-hand side.
Suppose that this holds for r, then

r+1∑
τ=1

βτt = βr+1
t +

r∑
τ=1

βτt

≤ αr+1

t−1∏
i=r+1

(1− αi + αiγ) +
1

1− γ

t−1∏
i=r

(1− αi + αiγ)

≤

(
1

1− γ

t−1∏
i=r+1

(1− αi + αiγ)

)
(αr+1(1− γ) + 1− αr(1− γ))

≤ 1

1− γ

t−1∏
i=r+1

(1− αi + αiγ) (because αr+1 ≤ αr)

which finishes the induction.
Therefore,

∑t
τ=1 β

τ
t = 1 +

∑t−1
τ=1 β

τ
t ≤ 1 + 1

1−γ ≤
2

1−γ .

Lemma 39 Let {gt}t=0,1,2,..., {ht}t=1,2,... be non-negative sequences that satisfy gt ≤ (1−c)gt−1+
ht for some c ∈ (0, 1) for all t ≥ 1. Then

gt ≤ g0(1− c)t +
maxτ∈[1,t/2] hτ

c
(1− c)

t
2 +

maxτ∈[t/2,t] hτ

c
.

Proof We first show that

gt ≤ g0(1− c)t +

t∑
τ=1

(1− c)t−τhτ .
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The case of t = 1 is clear. Suppose that this holds for gt. Then

gt+1 ≤ (1− c)

(
g0(1− c)t +

t∑
τ=1

(1− c)t−τhτ

)
+ ht+1 = g0(1− c)t+1 +

t+1∑
τ=1

(1− c)t+1−τhτ ,

which finishes the induction. Therefore,

gt ≤ g0(1− c)t +

t/2∑
τ=1

(1− c)t−τ max
τ∈[1,t/2]

hτ +
t∑

τ=t/2+1

(1− c)t−τ max
τ∈[t/2,t]

hτ

≤ g0(1− c)t +
maxτ∈[1,t/2] hτ

c
(1− c)

t
2 +

maxτ∈[t/2,t] hτ

c
.

G.2. Some Properties for the choice of αt = H+1
H+t

Lemma 40 For the choice αt = H+1
H+t with H ≥ 2

1−γ , we have
∑∞

t=τ β
τ
t ≤ H + 3.

Proof When t ≥ τ + 2,

βτt = ατ

t−1∏
i=τ

(1− αi(1− γ))

≤ ατ
t−1∏
i=τ

(
1− αi ×

2

H + 1

)
(H + 1 ≥ 2

1−γ )

= ατ

t−1∏
i=τ

(
1− 2

H + i

)
=
H + 1

H + τ
× H + τ − 2

H + τ
× H + τ − 1

H + τ + 1
× · · · × H + t− 3

H + t− 1

=
H + 1

H + τ
× (H + τ − 2)(H + τ − 1)

(H + t− 2)(H + t− 1)

=
H + 1

H + τ
(H + τ − 2)(H + τ − 1)

(
1

H + t− 2
− 1

H + t− 1

)
≤ (H + 1)(H + τ − 2)

(
1

H + t− 2
− 1

H + t− 1

)
.

Therefore,

∞∑
t=τ+2

βτt ≤ (H + 1)(H + τ − 2)× 1

H + τ
≤ H + 1,

and thus
∑∞

t=τ β
τ
t ≤ H + 3.
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Lemma 41 For the choice αt = H+1
H+t with H ≥ 2

1−γ , we have λτt = αt for τ < t.

Proof With this choice of αt,

λt = max

{
H + t

H + t+ 1
, 1− 1− γ

2
× H + 1

H + t

}
= max

{
1− 1

H + t+ 1
, 1− 1− γ

2
× H + 1

H + t

}
.

By the condition, we have 1−γ
2 ×

H+1
H+t ≥

1
H+t ≥

1
H+t+1 . Therefore, λt = H+t

H+t+1 = αt+1

αt
. Thus

for τ < t,

λτt = ατ

t−1∏
i=τ

αi+1

αi
= αt.

Appendix H. Analysis on Sample Complexity

H.1. Proof of Theorem 3

Proof As long as we can make ∣∣∣`st (a)− e>aQ
s
t ỹ
s
t

∣∣∣ ≤ ε

2|A|
(38)

hold with high probability, then
∣∣`st (a)− e>aQ

s
ty
s
t

∣∣ ≤ ∣∣`st (a)− e>aQ
s
t ỹ
s
t

∣∣+
∣∣e>aQst ỹst − e>aQ

s
ty
s
t

∣∣ ≤
ε

2|A|+
1

1−γ×
ε′

2|A| ≤
ε
|A| , which implies ‖`st−Qstyst ‖ ≤ ε. We can similarly ensure ‖rst−Qs

>
t xst‖ ≤ ε

and |ρst − xs
>
t Qsty

s
t | ≤ ε by the same way. Let Ns,a ,

∑L
i=1 1[si = s, ai = a] be the number of

times the (s, a) pair is visited. For a deterministic N , we can use Azuma-Hoeffding inequality
and know that Eq. (38) holds with probability 1 − δ if N = Ω

(
|A|2
ε2

log(1/δ)
)

. However, Ns,a is

random, so we cannot use Azuma-Hoeffding’s inequality directly. Let (b(1), s(1)), (b(2), s(2)), . . . be
a sequence of independent random variables where b(i) ∼ ỹst , s(i) ∼ p(·|s, a, b(i)), i = 1, 2, . . . and
define ˜̀st,m = 1

m

∑m
i=1(σ(s, a, b(i)) + γV s(i)

t−1 ). It is direct to see that ˜̀st,m is an unbiased estimator
of e>aQ

s
t ỹ
s
t . Then by Azuma-Hoeffding’s inequality, we have

Prob

[∣∣∣`st (a)− e>aQ
s
t ỹ
s
t

∣∣∣ ≤ O(√ log(L/δ)

Ns,a

)]

≤ Prob

[
∃m ∈ [L],

∣∣∣˜̀st,m − e>aQ
s
t ỹ
s
t

∣∣∣ ≤ O(√ log(L/δ)

m

)]

≤
L∑

m=1

Prob

[∣∣∣˜̀st,m − e>aQ
s
t ỹ
s
t

∣∣∣ ≤ O(√ log(L/δ)

m

)]
≤ δ.
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Therefore, with probability at least 1− δ, Eq. (38) holds if

Ns,a = Ω

(
|A|2

ε2
log(L/δ)

)
. (39)

Now it remains to determine L to make Eq. (39) hold with high probability. Note that by Assump-
tion 1, we know that T s

′→s
x̃t,ỹt

≤ 1
µ for any s′. Let Ts,a be the distribution of random variable which is

the number of rounds between the current state-action pair (s′, a′) and the next occurrence of (s, a)

under strategy x̃st and ỹst . The mean of this distribution is ts,a ≤ 1 + 2|A|
ε′µ ≤

3|A|
ε′µ . Then by Markov

inequality,

Prob
[

the number of rounds before reaching (s, a) ≤ 6|A|
ε′µ

]
≥ 1

2
.

Therefore, with probability at least 1 − δ
L , within Θ( |A|ε′µ log(L/δ)) rounds, we reach (s, a) state-

action at least pair once. Thus, Eq. (39) holds when L = Ω
(
|A|3
ε′µε2 log2(L/δ)

)
with probability

1 − δ. Solving L gives L = Ω̃
(

|A|3
(1−γ)µε3

log2(1/δ)
)

. The cases for rst (b) and ρst are similar.
Finally, using a union bound on all A, B, S , and all iterations, we know that with probability
1 − δ, the ε-approximations are always guaranteed if we use the estimation above and take L =

Ω̃
(
|A|3+|B|3
(1−γ)µε3

log2(T/δ)
)

.

H.2. Proof of Corollary 4

Proof From Theorem 1, we know that in order to show 1
T

∑T
t=1 maxs,x′,y′

(
V s
x̂t,y′
− V s

x′,ŷt

)
≤ ξ,

it is sufficient to show |S|
η(1−γ)2

√
log T
T ≤ ξ and |S|

√
ε√

η(1−γ)2
≤ ξ. Solving these two inequalities, we

get T = Ω
(

|S|2
η2(1−γ)4ξ2

log |S|
η(1−γ)ξ

)
and ε = O

(
η(1−γ)4ξ2

|S|2

)
. Plugging ε into L in Theorem 3 gives

the required L.

H.3. Proof of Corollary 5

Proof From Theorem 2, we know that in order to show 1
|S|
∑

s∈S dist2
?(ẑ

s
T ) ≤ ξ, it is suffi-

cient to show |S|2
η4C4(1−γ)4T

≤ ξ and ε
ηC2(1−γ)3

≤ ξ. Solving these two inequalities, we get

T = Ω
(

|S|2
η4C4(1−γ)4ξ

)
and ε = O

(
ηC2(1− γ)3ξ

)
. Plugging ε into L in Theorem 3 gives the

required L.

Appendix I. Analysis on Rationalily

In this section, we analyze the rationality of our algorithm. First, we present the full pseudocode
of Algorithm 2, which is the single-player-perspective version of Algorithm 1, and then prove that
Algorithm 2 achieves rationality.
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Algorithm 2 Single-Player-Perspective Optimistic Gradient Descent/Ascent for Markov Games

Parameter: γ ∈ [1
2 , 1), η ≤ 1

104

√
(1−γ)5

S , ε ∈
[
0, 1

1−γ

]
Parameters: a non-increasing sequence {αt}Tt=1 that goes to zero.
Initialization: arbitrarily initialize x̂s1 = xs1 ∈ ∆A for all s ∈ S.
V s

0 ← 0 for all s ∈ S.
for t = 1, . . . , T do

For all s, define Qst ∈ R|A|×|B| as

Qst (a, b) , σ(s, a, b) + γEs′∼p(·|s,a,b)
[
V s′
t−1

]
,

and update

x̂st+1 = Π∆A

{
x̂st − η`st

}
, (40)

xst+1 = Π∆A

{
x̂st+1 − η`st

}
, (41)

V s
t = (1− αt)V s

t−1 + αtρ
s
t , (42)

where `st and ρst are ε-approximations of Qsty
s and xs

>
t Qsty

s, respectively.
end

I.1. Single-Player-Perspective Version of Algorithm 1

I.2. Analysis of Algorithm 2

In this section, we prove Theorem 6, which shows the rationality of Algorithm 2. We call the
original game Game 1 and construct a two-player Markov game Game 2 with the difference be-
ing that Player 2 has only one single action (call it 1) on each state, the loss function is rede-
fined as σ(s, a, 1) = Eb∼ys [σ(s, a, b)], and the transition kernel is redefined as p(s′|s, a, 1) =
Eb∼ys [p(s′|s, a, b)]. Correspondingly, we define

Qs
t
(a, 1) = σ(s, a, 1) + γEs′∼p(·|s,a,1)

[
V s′
t−1

]
,

x̂st+1 = Π∆A {x̂
s
t − η`st} ,

xst+1 = Π∆A

{
x̂st+1 − η`st

}
,

V s
t = (1− αt)V s

t−1 + αtρ
s
t ,

where V s
0 = 0 for all s, and `st and ρst are the same as in Algorithm 2. Clearly, the sequences

{x̂t, xt}t∈[T ] and {x̂t, xt}t∈[T ] are exactly the same (assuming their initializations are the same,
that is, x̂1 = x̂1 and x1 = x1). In the following lemma, we show that `st and ρst are indeed
ε-approximation of Qs

t
(·, 1) and xs

>
t Qs

t
(a, ·), which then implies that the sequence {x̂t}t∈[T ] is

indeed the output of our Algorithm 1 for Game 2 (note that we can think of Player 2 executing
Algorithm 1 in Game 2 as well since she only has one unique strategy). Realizing that X s? for
Game 2 is exactly the set of best responses of ys, we can thus conclude that Theorem 6 is a direct
corollary of Theorem 1 and Theorem 2.

Lemma 42 For all t and s, `st and ρst are ε-approximation ofQs
t
(·, 1) and xs

>
t Qs

t
(a, ·) respectively.
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Proof We prove the result together with V s
t = V s

t , Qs
t
(·, 1) = Qsty

s for all t ∈ [T ] by induction.
When t = 1, V s

t = V s
t clearly holds. In addition, Qs1(a, ·)ys = Eb∼ys [σ(s, a, b)] = Qs

1
(a, 1).

Therefore `s1 and ρs1 are indeed ε-approximation of Qs
1
(a, ·) and xs

>
1 Qs

t
(a, ·).

Suppose that the claim holds at t. By definition and the inductive assumption, we have

Qs
t+1

(a, 1) = σ(s, a, 1) + γEs′∼p(·|s,a,1)

[
V s′
t

]
= Eb∼ys

[
σ(s, a, b) + γEs′∼p(s′|s,a,b)

[
V s′
t

]]
= Qst+1(a, ·)ys,

which also shows that `st+1 and ρst+1 are indeed ε-approximation of Qs
t+1

(·, 1) and xs
>
t+1Q

s
t
(a, ·)

(recall xst+1 = xst+1). By definition of V s
t+1, we also have V s

t+1 = (1 − αt+1)V s
t + αtρ

s
t =

(1− αt)V s
t + αtρ

s
t = V s

t+1, which finishes the induction.
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