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Abstract
We give a computationally-efficient PAC active learning algorithm for d-dimensional homogeneous
halfspaces that can tolerate Massart noise (Massart and Nédélec, 2006) and Tsybakov noise (Tsy-
bakov, 2004). Specialized to the η-Massart noise setting, our algorithm achieves an information-
theoretically near-optimal label complexity of Õ

(
d

(1−2η)2 polylog(
1
ε )
)

under a wide range of unla-
beled data distributions (specifically, the family of “structured distributions” defined in Diakoniko-
las et al. (2020a)). Under the more challenging Tsybakov noise condition, we identify two subfam-
ilies of noise conditions, under which our efficient algorithm provides label complexity guarantees
strictly lower than passive learning algorithms.
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1. Introduction

Halfspaces are arguably one of the most fundamental concept classes studied in machine learning
and data analysis. Computational hardness results (Feldman et al., 2006; Guruswami and Raghaven-
dra, 2009; Daniely, 2016; Klivans and Kothari, 2014; Diakonikolas et al., 2020b) motivate the study
of learning halfspaces under more benign noise conditions, prominent examples include Massart
noise (Massart and Nédélec, 2006) and Tsybakov noise (Tsybakov, 2004). In this work, we ad-
vance the state of the art on efficient PAC active halfspace learning (Balcan et al., 2009) under
a set of structural assumptions on the unlabeled data distribution (Diakonikolas et al., 2020a), by
providing an efficient algorithm such that, with appropriate setting of its parameters:

1. Under the η-Massart noise condition, it has an information-theoretically near-optimal label com-
plexity of O

(
d

(1−2η)2
polylog(1ε )

)
. This substantially weakens existing distributional requirements

to achieve such near-optimal label complexity results (Yan and Zhang, 2017; Awasthi et al., 2015).

2. Under the (A,α)-Tsybakov noise condition withα ∈ (12 , 1], it has a label complexity Õ(d(1ε )
2−2α
2α−1 ).

Furthermore, in the special case of (B,α)-geometric Tsybakov noise condition (see full version), it
has a lower label complexity of O

(
d(1ε )

2
α
−2

)
for α ∈ (0, 1]; for certain ranges of α, our algorithm

has a better label complexity than passive learning (see e.g., Hanneke, 2014, Section 3).
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