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Abstract
We study reinforcement learning (RL) with linear function approximation where the underlying
transition probability kernel of the Markov decision process (MDP) is a linear mixture model (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021) and the learning agent has access to either an in-
tegration or a sampling oracle of the individual basis kernels. For the fixed-horizon episodic setting
with inhomogeneous transition kernels, we propose a new, computationally efficient algorithm that
uses the basis kernels to approximate value functions. We show that the new algorithm, which we
call UCRL-VTR+, attains an Õ(dH

√
T ) regret where d is the number of basis kernels, H is the

length of the episode and T is the number of interactions with the MDP. We also prove a matching
lower bound Ω(dH

√
T ) for this setting, which shows that UCRL-VTR+ is minimax optimal up

to logarithmic factors. At the core of our results are (1) a weighted least squares estimator for the
unknown transitional probability; and (2) a new Bernstein-type concentration inequality for self-
normalized vector-valued martingales with bounded increments. Together, these new tools enable
tight control of the Bellman error and lead to a nearly minimax regret. To the best of our knowledge,
this is the first computationally efficient, nearly minimax optimal algorithm with an integration or
a sampling oracle for RL with linear function approximation.
Keywords: Reinforcement learning, stochastic linear bandits, concentration inequality

1. Introduction

Improving the sample efficiency of reinforcement learning (RL) algorithms has been a central re-
search question in the RL community. When there are finitely many states and actions and the value
function is represented using “tables”, the case known as “tabular RL”, a number of breakthroughs
during the past decade led to a thorough understanding of the limits of sample efficiency of RL. In
particular, algorithms with nearly minimax optimal sample complexity have been discovered for the
planning setting where a generative model is available (Azar et al., 2013; Sidford et al., 2018; Agar-
wal et al., 2020). Significant further work then led to nearly minimax optimal algorithms1 for the
more challenging online learning setting, where the results cover a wide variety of objectives, rang-
ing from episodic Markov Decision Processes (MDPs) (Azar et al., 2017; Zanette and Brunskill,
2019; Zhang et al., 2020), through discounted MDPs (Lattimore and Hutter, 2012; Zhang et al.,

1. In this paper, we say an algorithm is nearly minimax optimal if this algorithm attains a regret/sample complexity that
matches the minimax lower bound up to logarithmic factors.
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2021b; He et al., 2020) to infinite horizon MDPs with the average reward criterion (Zhang and Ji,
2019; Tossou et al., 2019).

A classical approach to deal with such large MDPs is to assume access to a function approxima-
tion technique that allows for a compact, or compressed representation of various objects of interest,
such as policies or value functions (Sutton and Barto, 1998). Recently, there is a growing body of
work in understanding the interplay between reinforcement learning and function approximation.
When a generative model is available, Yang and Wang (2019) proposed a computationally efficient,
nearly minimax optimal RL algorithm that works with such linear function approximation for a
special case when the learner has access to a polynomially sized set of “anchor state-action pairs”.
Lattimore et al. (2020) proposed an optimal-design based RL algorithm without the anchor state-
action pairs assumption. However, for online RL where no generative model is accessible, as of
today a gap between the upper bounds (Yang and Wang, 2020; Jin et al., 2020; Wang et al., 2020c;
Modi et al., 2020; Zanette et al., 2020a,b; Jia et al., 2020; Ayoub et al., 2020) and the lower bounds
(Du et al., 2019; Zhou et al., 2021) still exist, with or without the anchor state-action assumption.
Therefore, a natural question arises:

Does there exist a computationally efficient, nearly minimax optimal RL algorithm with linear
function approximation?

In this paper, we answer this question affirmatively for the special class of linear mixture MDPs,
where the transition probability kernel is a linear mixture of a number of basis kernels (Modi et al.,
2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021). Following ideas developed for the
tabular case (e.g., Azar et al. 2013) we replace the conservative Hoeffding-type confidence bounds
used in UCRL-VTR of Ayoub et al. (2020) with a Bernstein-type confidence bound that is based on
a new, Bernstein-type variant of the standard self-normalized concentration inequality of Abbasi-
Yadkori et al. (2011). In detail, our contributions are listed as follows.

• We propose a Bernstein-type self-normalized concentration inequality for vector-valued martin-
gales, which improves the dominating term of the analog inequality of Abbasi-Yadkori et al.
(2011) from R

√
d to σ

√
d+R, where R and σ2 are the magnitude and the variance of the noise

respectively, and d is the dimension of the vectors involved. Our concentration inequality is a
non-trivial extension of the Bernstein inequality from the scalar case to the vector case.

• With the Bernstein-type tail inequality, we consider a linear bandit problem as a “warm-up”
example, whose noise at round t is R-bounded and of σ2t -variance. Note that bandits can be seen
as a special instance of episodic RL where the length of the episode equals one. We propose
a new algorithm called Weighted OFUL, which adapts a new linear regression scheme called

weighted ridge regression. We prove that Weighted OFUL enjoys an Õ(R
√
dT + d

√∑T
t=1 σ

2
t )

regret, which strictly improves the regret Õ(Rd
√
T ) obtained for the OFUL algorithm by Abbasi-

Yadkori et al. (2011).

• We further apply the new tail inequality to the design and analysis of online RL algorithms for
the aforementioned linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021).
In the episodic setting, we propose a new algorithm, UCRL-VTR+, which can be seen as an
extension of UCRL-VTR studied by Jia et al. (2020); Ayoub et al. (2020). The key idea of
UCRL-VTR+ is to utilize weighted ridge regression and a new estimator for the variance of the
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value function. We show that UCRL-VTR+ attains an Õ(dH
√
T +
√
dH3
√
T + d2H3 + d3H2)

regret, where T is the number of interactions with the MDP and H is the episode length. We also
prove a nearly matching lower bound Ω(dH

√
T ) on the regret. When d ≥ H and T ≥ d4H2 +

d3H3, our UCRL-VTR+ algorithm achieves an Õ(dH
√
T ) regret, which matches our proved

lower bound. Thus, our results imply that our algorithm is minimax optimal up to logarithmic
factors in the high-dimensional large-sample regime.

To the best of our knowledge, ignoring logarithmic factors, our proposed UCRL-VTR+ is the first
minimax optimal online RL algorithm with linear function approximation using the common case
of a constant-dimension feature mapping. UCRL-VTR+ is also computationally efficient with an
access to a sampling or an integration oracle. The closest to our result is that of Zanette et al. (2020b)
who proved their ELEANOR algorithm enjoys a regret of at most Õ(

∑H
h=1 dh

√
K), where dh is the

dimension of the feature mapping at the h-th stage andK is the number of episodes. ELEANOR can
be shown to be nearly optimal for the special case when d1 =

∑H
h=2 dh, but is not optimal when

d1 = · · · = dH = d. Furthermore, as noted by the authors, ELEANOR is not computationally
efficient.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a
vector x ∈ Rd and matrix Σ ∈ Rd×d, a positive semi-definite matrix, we denote by ‖x‖2 the
vector’s Euclidean norm and define ‖x‖Σ =

√
x>Σx. For x,y ∈ Rd, let x � y be the Hadamard

(componentwise) product of x and y. For two positive sequences {an} and {bn} with n = 1, 2, . . . ,
we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for
all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn
holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1{·} to
denote the indicator function. For a, b ∈ R satisfying a ≤ b, we use [x][a,b] to denote the function
x ·1{a ≤ x ≤ b}+ a ·1{x < a}+ b ·1{x > b}, which truncates its argument to the [a, b] interval.

2. Related Work

The purpose of this section is to review prior works that are most relevant to our contributions.
Linear Bandits Linear bandits can be seen as the simplest version of RL with linear function ap-
proximation, where the episode length (i.e., planning horizon) H = 1. There is a huge body of
literature on linear bandit problems (Auer, 2002; Chu et al., 2011; Li et al., 2010, 2019; Dani et al.,
2008; Abbasi-Yadkori et al., 2011). Most of the linear bandit algorithms can be divided into two
categories: algorithms for k-armed linear bandits, and algorithms for infinite-armed linear bandits.
For the k-armed case, Auer (2002) proposed a SupLinRel algorithm, which makes use of the eigen-
value decomposition and enjoys an O(log3/2(kT )

√
dT ) regret2 . Li et al. (2010); Chu et al. (2011)

proposed a SupLinUCB algorithm using the regularized least-squares estimator, which enjoys the
same regret guarantees. Li et al. (2019) proposed a VCL-SupLinUCB algorithm with a refined
confidence set design which enjoys an improved O(

√
log(T ) log(k)dT ) regret, which matches the

lower bound up to a logarithmic factor. For the infinite-armed case, Dani et al. (2008) proposed
an algorithm with a confidence ball, which enjoys O(d

√
T log3 T ) regret. Abbasi-Yadkori et al.

(2011) improved the regret to O(d
√
T log2 T ) with a new self-normalized concentration inequality

2. We omit the poly(log log(kT )) factors for the simplicity of comparison.
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for vector-valued martingales. Li et al. (2021) further improved the regret to O(d
√
T log T ), which

matches the lower bound up to a logarithmic factor. However, previous works only focus on the
case where the reward noise is sub-Gaussian. In this paper, we show that if the reward noise is
restricted to a smaller class of distributions with bounded magnitude and variance, a better regret
bound can be obtained. The main motivation to consider this problem is that linear bandits with
bounded reward and variance can be seen as a special RL with linear function approximation when
the episode length H = 1. Thus, this result immediately sheds light on the challenges involved in
achieving minimax optimal regret for general RL with linear function approximation.
Reinforcement Learning with Linear Function Approximation Recent years have witnessed a
flurry of activity on RL with linear function approximation (e.g., Jiang et al., 2017; Yang and Wang,
2019, 2020; Jin et al., 2020; Wang et al., 2020c; Modi et al., 2020; Dann et al., 2018; Du et al., 2019;
Sun et al., 2019; Zanette et al., 2020a,b; Cai et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Weisz
et al., 2021; Zhou et al., 2021; He et al., 2021). These results can be generally grouped into four cat-
egories based on their assumptions on the underlying MDP. The first category of work uses the low
Bellman-rank assumption (Jiang et al., 2017) which assumes that the Bellman error “matrix” where
“rows” are index by a test function and columns are indexed by a distribution generating function
from the set of test functions assumes a low-rank factorization. Representative work includes Jiang
et al. (2017); Dann et al. (2018); Sun et al. (2019). The second category of work considers the linear
MDP assumption (Yang and Wang, 2019; Jin et al., 2020) which assumes taht both the transition
probability function and reward function are parameterized as a linear function of a given feature
mapping over state-action pairs. Representative work includes Yang and Wang (2019); Jin et al.
(2020); Wang et al. (2020c); Du et al. (2019); Zanette et al. (2020a); Wang et al. (2020b); He et al.
(2021). The third category of work focuses on the low inherent Bellman error assumption (Zanette
et al., 2020b), which assumes the Bellman backup can be parameterized as a linear function up to
some misspecification error. Zanette et al. (2020b) proposed an ELEANOR algorithm with a regret
Õ(
∑H

h=1 dh
√
K), where dh is the dimension of the feature mapping at the h-th stage within the

episodes and K is the number of episodes. They also proved a lower bound Ω(
∑H

h=1 dh
√
K) un-

der the sub-Gaussian norm assumption of the rewards and transitions but only for the special case
when d1 =

∑H
h=2 dh. It can be seen that in this special case, their upper bound matches their lower

bound up to logarithmic factors, and thus their algorithm is statistically near optimal. However, in
the general case when d1 = · · · = dH = d, there still exists a gap of H between their upper and
lower bounds. Furthermore, as noted by the authors, the ELEANOR algorithm is not computation-
ally efficient. The last category considers linear mixture MDPs (a.k.a., linear kernel MDPs) (Modi
et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021), which assumes that the transition
probability function is parameterized as a linear function of a given feature mapping over state-
action-next-state triples. Representative work includes Yang and Wang (2020); Modi et al. (2020);
Jia et al. (2020); Ayoub et al. (2020); Cai et al. (2020); Zhou et al. (2021); He et al. (2021) (of these,
Yang and Wang (2020) considers a special case, but their results extend to the linear mixture case
seamlessly). Our work also considers linear mixture MDPs.
Bernstein Bonuses for Tabular MDPs There is a series of work proposing algorithms with nearly
minimax optimal sample complexity or regret for the tabular MDP under different settings, includ-
ing average-reward, discounted, and episodic MDPs (Azar et al., 2013, 2017; Zanette and Brunskill,
2019; Zhang and Ji, 2019; Simchowitz and Jamieson, 2019; Zhang et al., 2020; He et al., 2020;
Zhang et al., 2021a). The key idea at the heart of these works is the usage of the law of total vari-
ance to obtain tighter bounds on the expected sum of the variances for the estimated value function.
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These works have designed tighter confidence sets or upper confidence bounds by replacing the
Hoeffding-type exploration bonuses with Bernstein-type exploration bonuses, and obtained more
accurate estimates of the optimal value function, a technique pioneered by Lattimore and Hutter
(2012). Our work shows how this idea extends to algorithms with linear function approximation.
To the best of our knowledge, our work is the first work using Bernstein bonus and law of total
variance to achieve nearly minimax optimal regret for RL with linear function approximation.

3. Preliminaries

We consider RL with linear function approximation for episodic MDPs. In the following, we will
introduce the necessary background and definitions. For further background, the reader is advised
to consult, e.g., Puterman (2014).

Inhomogeneous, episodic MDP We denote an inhomogeneous, episodic MDP by a tuple M =
(S,A, H, {rh}Hh=1, {Ph}Hh=1), where S is the state space, A is the action space, H is the length
of the episode, rh : S × A → [0, 1] is the deterministic reward function, and Ph is the transition
probability function at stage h so that for s, s′ ∈ S, a ∈ A, Ph(s′|s, a) is the probability of arriving
at stage h + 1 at state s′ provided that the state at stage h is s and action a is chosen at this stage.
For the sake of simplicity, we restrict ourselves to countable state and finite action spaces. A policy
π = {πh}Hh=1 is a collection of H functions, where each of them maps a state s to an action a. For
(s, a) ∈ S ×A, we define the action-values Qπh(s, a) and (state) values V π

h (s) as follows:

Qπh(s, a) = Eπ,h,s,a
[ H∑
h′=h

rh(sh′ , ah′)

]
, V π

h (s) = Qπh(s, πh(s)), V π
H+1(s) = 0.

In the definition of Qπh, Eπ,h,s,a means an expectation over the probability measure over state-
action pairs of length H − h + 1 that is induced by the interconnection of policy π and the MDP
M when initializing the process to start at stage h with the pair (s, a). In particular, the prob-
ability of sequence (sh, ah, sh+1, ah+1, . . . , sH , aH) under this sequence is 1(sh = s)1(ah =
a)Ph(sh+1|sh, ah)1πh+1(sh+1)=ah+1

. . .PH−1(sH |sH−1, aH−1)1πH(sH)=aH . The optimal value func-
tion V ∗h (·) and the optimal action-value function Q∗h(·, ·) are defined by V ∗h (s) = supπ V

π
h (s) and

Q∗h(s, a) = supπ Q
π
h(s, a), respectively. For any function V : S → R, we introduce the shorthands

[PhV ](s, a) = Es′∼Ph(·|s,a)V (s′), [VhV ](s, a) = [PhV 2](s, a)− ([PhV ](s, a))2,

where V 2 stands for the function whose value at s is V 2(s). Using this notation, the Bellman
equations for policy π and the Bellman optimality equation can be written as

Qπh(s, a) = rh(s, a) + [PhV π
h+1](s, a), Q∗h(s, a) = rh(s, a) + [PhV ∗h+1](s, a).

Note that both hold simultaneously for all (s, a) ∈ S ×A and h ∈ [H].
In the online learning setting, a learning agent who does not know the kernels {Ph}h but, for

the sake of simplicity, knows the rewards {rh}h, aims to learn to take good actions by interacting
with the environment. For each k ≥ 1, at the beginning of the k-th episode, the environment
picks the initial state sk1 and the agent chooses a policy πk to be followed in this episode. As
the agent follows the policy through the episode, it observes the sequence of states {skh}h with
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skh+1 ∼ Ph(·|skh, πk(skh)). The goal is to design a learning algorithm that constructs the sequence
{πk}k based on past information so that the K-episode regret,

Regret(M,K) =

K∑
k=1

[
V ∗1 (sk1)− V πk

1 (sk1)
]

is kept small. In this paper, we focus on proving high probability bounds on the regret Regret(M,K),
as well as lower bounds in expectation.
Linear Mixture MDPs We consider a special class of MDPs called linear mixture MDPs (a.k.a.,
linear kernel MDPs), where the transition probability kernel is a linear mixture of a number of basis
kernels. This class has been considered by a number of previous authors (Jia et al., 2020; Ayoub
et al., 2020; Zhou et al., 2021) and is defined as follows: Firstly, let φ(s′|s, a) : S × A × S → Rd
be a feature mapping satisfying that for any bounded function V : S → [0, 1] and any tuple (s, a) ∈
S ×A, we have

‖φV (s, a)‖2 ≤ 1,where φV (s, a) =
∑
s′∈S

φ(s′|s, a)V (s′) . (1)

We define episodic linear mixture MDPs as follows:

Definition 1 (Jia et al. 2020; Ayoub et al. 2020) M = (S,A, H, {rh}Hh=1, {Ph}Hh=1) is called an
inhomogeneous, episodic B-bounded linear mixture MDP if there exist vectors θh ∈ Rd with
‖θh‖2 ≤ B and φ(·|·, ·) satisfying (1), such that Ph(s′|s, a) = 〈φ(s′|s, a),θh〉 for any state-action-
next-state triplet (s, a, s′) ∈ S ×A× S and stage h.

Note that in the learning problem, the vectors introduced in the above definition are initially un-
known to the learning agent. In the rest of this paper, we assume that the learning agent is given
access to φ and the unknown episodic linear mixture MDP is parameterized by Θ∗ = {θ∗h}Hh=1. We
denote this MDP by MΘ∗ .

4. Challenges and New Technical Tools

To motivate our approach, we start this section with a recap of previous work addressing online
learning in episodic linear mixture MDPs. This allows us to argue for how this work falls short of
achieving minimax optimal regret and motivates us to develop new theoretical tools to achieve that.

4.1. Barriers to Minimax Optimality in RL with Linear Function Approximation

To understand the key technical challenges that underly achieving minimax optimality in RL with
linear function approximation, we first look into the UCRL with “value-targeted regression” (UCRL-
VTR) method of Jia et al. (2020) (for a longer exposition, with refined results see Ayoub et al.
(2020)) for episodic linear mixture MDPs. The key idea of UCRL-VTR is using a model-based
supervised learning framework to learn the underlying unknown parameter vector θ∗h of linear mix-
ture MDP, and use the learned parameter vector θk,h to build an optimistic estimator Qk,h(·, ·) for
the optimal action-value function Q∗(·, ·). In detail, for any stage h of the k-th episode, the follow-
ing equation holds: For value functions Vk = {Vk,h}h constructed based on data received before
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episode k and the state action pair (skh, a
k
h) visited in stage h of episode k,

[PhVk,h+1](s
k
h, a

k
h) =

〈∑
s′

φ(s′|skh, akh)Vk,h+1(s
′),θ∗h

〉
=
〈
φVk,h+1

(skh, a
k
h),θ∗h

〉
,

where the first equation holds due to the definition of linear mixture MDPs (cf. Definition 1), the
second equation holds due to the definition of φVk,h+1

(·, ·) in (1). As it turns out, taking actions that
maximize the value shown above with appropriately constructed value functions Vk is sufficient
for minimizing regret. Therefore, learning the underlying θ∗h can be regarded as solving a “linear
bandit” problem (Part V, Lattimore and Szepesvári, 2020), where the context is φVk,h+1

(skh, a
k
h) ∈

Rd, and the noise is Vk,h+1(s
k
h+1)−[PhVk,h+1](s

k
h, a

k
h). Previous work (Jia et al., 2020; Ayoub et al.,

2020) proposed an estimator θk,h as the minimizer to the following regularized linear regression
problem:

θk,h = argmin
θ∈Rd

λ‖θ‖22 +

k−1∑
j=1

[〈
φVj,h+1

(sjh, a
j
h),θ

〉
− Vj,h+1(s

j
h+1)

]2
. (2)

By using the standard self-normalized concentration inequality for vector-valued martingales of
Abbasi-Yadkori et al. (2011), one can show then that, with high probability, θ∗h lies in the ellipsoid

Ck,h =

{
θ :
∥∥∥Σ1/2

k,h (θ − θk,h)
∥∥∥
2
≤ βk

}
which is centered at θk,h, with shape parameter Σk,h = λI+

∑k−1
j=1 φVj,h+1

(sjh, a
j
h)φVj,h+1

(sjh, a
j
h)>

and where βk is the radius chosen to be proportional to the magnitude of the value function Vk,h+1(·),
which eventually gives βk = Õ(

√
dH). It follows that if we define

Qk,h(·, ·) =

[
rh(·, ·) + max

θ∈Ck,h

〈
θ,φVk,h+1

(·, ·)
〉]

[0,H]

,

then, with high probability, Qk,1(·, ·) is an overestimate of Q∗1(·, ·), and the summation of “subopti-
mality gaps” can be bounded by

∑K
k=1

∑H
h=1 βk‖Σ

−1/2
k,h φVk,h+1

(·, ·)‖2. This leads to the Õ(dH3/2
√
T )

regret by further applying the elliptical potential lemma from linear bandits (Abbasi-Yadkori et al.,
2011).

However, we note that the above reasoning has a number of shortcomings. First, it chooses the
confidence radius βk proportional to the magnitude of the value function Vk,h+1(·) rather than its
variance [VhVk,h+1](·, ·). This is known to be too conservative: Tabular RL is a special case of
linear mixture MDPs and here it is known by the law of total variance (Lattimore and Hutter, 2012;
Azar et al., 2013) that the variance of the value function is smaller than its magnitude by a factor√
H . This inspires us to derive a Bernstein-type self-normalized concentration bound for vector-

valued martingales which is sensitive to the variance of the martingale terms. Second, even if we
were able to build such a tighter concentration bound, we still need to carefully design an algorithm
because the variances of the value functions {VhVk,h+1(s

k
h, a

k
h)}h at different stages of the episodes

are non-uniform: We face a so-called heteroscedastic linear bandit problem. Naively choosing a
uniform upper bound for all the variances {[VhVk,h+1](s

k
h, a

k
h)}h yields no improvement compared

with previous results. To address this challenge, we will need to build variance estimates and use
these in a weighted least-squares estimator to achieve a better aggregation of the heteroscedastic
data.
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4.2. A Bernstein Self-normalized Concentration Inequality for Vector-valued Martingales

One of the key results of this paper is the following Bernstein self-normalized concentration in-
equality:

Theorem 2 (Bernstein inequality for vector-valued martingales) Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1
be a stochastic process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix
R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 let yt = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1− δ we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1
t

≤ βt, ‖µt − µ∗‖Zt ≤ βt +
√
λ‖µ∗‖2, (3)

where for t ≥ 1, µt = Z−1t bt, Zt = λI +
∑t

i=1 xix
>
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) .

Proof The proof adapts the proof technique of Dani et al. (2008); for details see Appendix B.1.

Theorem 2 can be viewed as a non-trivial extension of the Bernstein concentration inequality
from scalar-valued martingales to self-normalized vector-valued martingales. It is a strengthened
version of self-normalized tail inequality for vector-valued martingales when the magnitude and the
variance of the noise are bounded. Abbasi-Yadkori et al. (2011) considered the setting where ηt
is R-sub-Gaussian and showed that (3) holds when βt = R

√
d log((1 + tL2/λ)/δ) = Õ(R

√
d),

while our result improves this to βt = Õ(σ
√
d+R). A more detailed comparison between Theorem

2 and previous results is given in Appendix A.1.

4.3. Weighted Ridge Regression and Heteroscedastic Linear Bandits

In this subsection we consider the problem of linear bandits where the learner is given at the end
of each round an upper bound on the (conditional) variance of the noise in the responses as input.
This abstract problem is studied to work out the tools needed to handle the heteroscedasticity of the
noise that arises in the linear mixture MDPs in a cleaner setting. In more details, let {Dt}∞t=1 be a
fixed sequence of decision sets. The agent selects an action at ∈ Dt and then observes the reward
rt = 〈µ∗,at〉 + εt, where µ∗ ∈ Rd is a vector unknown to the agent and εt is a random noise
satisfying the following properties almost surely:

∀t, |εt| ≤ R, E[εt|a1:t, ε1:t−1] = 0, E[ε2t |a1:t, ε1:t−1] ≤ σ2t , ‖at‖2 ≤ A. (4)

As noted above, the learner gets to observe σt together with rt after each choice it makes. We
assume that σt is (a1:t, ε1:t−1)-measurable. The goal of the agent is to minimize its pseudo-regret,
defined as follows:

Regret(T ) =
T∑
t=1

〈a∗t ,µ∗〉 −
T∑
t=1

〈at,µ∗〉, where a∗t = argmax
a∈Dt

〈a,µ∗〉.

8
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Our problem setup is similar to the setting studied by Kirschner and Krause (2018), where it is not
the variance, but the sub-Gaussianity parameter that the learner observes at the end of the rounds.
The learner’s goal is then to make use of this information to achieve a smaller regret as a function
of the sum of squared variances (a “second-order bound”). This is also related to the Gaussian side-
observation setting and partial monitoring with feedback graphs considered in Wu et al. (2015).

To make use of the variance information, we propose Weighted OFUL, which is an extension of
the “Optimism in the Face of Uncertainty for Linear bandits” algorithm (OFUL) of Abbasi-Yadkori
et al. (2011). The algorithm’s pseudocode is shown in Algorithm 1.

Algorithm 1 Weighted OFUL
Require: Regularization parameter λ > 0, and B, an upper bound on the `2-norm of µ∗

1: A0 ← λI, c0 ← 0, µ̂0 ← A−10 c0, β̂0 = 0, C0 ← {µ : ‖µ− µ̂0‖A0 ≤ β̂0 +
√
λB}

2: for t = 1, . . . , T do
3: Observe Dt
4: Let (at, µ̃t)← argmaxa∈Dt,µ∈Ct−1

〈a,µ〉
5: Select at and observe (rt, σt), set σ̄t based on σt, set radius β̂t as defined in (6)
6: At ← At−1 + ata

>
t /σ̄

2
t , ct ← ct−1 + rtat/σ̄

2
t , µ̂t ← A−1t ct, Ct ← {µ : ‖µ − µ̂t‖At ≤

β̂t +
√
λB}

7: end for

In round t, Weighted OFUL selects the estimate µ̂t of the unknown µ∗ as the minimizer to the
following weighted ridge regression problem:

µ̂t ← argmin
µ∈Rd

λ‖µ‖22 +
t∑
i=1

[〈µ,ai〉 − ri]2/σ̄2i , (5)

where σ̄i is a selected upper bound of σi. The closed-form solution to (5) is in Line 6 of Algorithm
1. The term “weighted” refers to the normalization constant σ̄i used in (5). The estimator in (5) is
closely related to the best linear unbiased estimator (BLUE) (Henderson, 1975). In particular, in the
language of linear regression, with λ = 0 and when σ̄2t is the variance of rt, with a fixed design,
µ̂t is known to be the lowest variance estimator of µ∗ in the class of linear unbiased estimators.
Note that both Lattimore et al. (2015) and Kirschner and Krause (2018) used a similar weighted
ridge-regression estimator for their respective problem settings.

By adapting the new Bernstein-type self-normalized concentration inequality in Theorem 2, we
obtain the following bound on the regret of Weighted OFUL:

Theorem 3 Suppose that for all t ≥ 1 and all a ∈ Dt, 〈a,µ∗〉 ∈ [−1, 1], ‖µ∗‖2 ≤ B. Set
σ̄t = max{R/

√
d, σt}, λ = 1/B2 and

β̂0 = 0, β̂t = 8
√
d log(1 + tA2/([σ̄tmin]2dλ)) log(4t2/δ) + 4R/σ̄tmin · log(4t2/δ), t ≥ 1 . (6)

where σ̄tmin = min1≤i≤t σ̄i. Then, with probability at least 1 − δ, the regret of Weighted OFUL for
the first T rounds is bounded as follows:

Regret(T ) = Õ

(
R
√
dT + d

√√√√ T∑
t=1

σ2t

)
. (7)

9
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Proof See Appendix B.2.

Remark 4 Comparing (7) of Theorem 3 with the regret bound Regret(T ) = Õ(Rd
√
T ) achieved

by OFUL in Abbasi-Yadkori et al. (2011), it can be seen that the regret of Weighted OFUL is strictly
better than that of OFUL since σt ≤ R.

5. Optimal Exploration for Episodic Linear Mixture MDPs

In this section, equipped with the new technical tools discussed in Section 4, we propose a new
algorithm UCRL-VTR+ for episodic linear mixture MDPs (see Definition 1). We also prove its
near minimax optimality by providing matching upper and lower bounds.

5.1. The Proposed Algorithm

Algorithm 2 UCRL-VTR+ for Episodic Linear Mixture MDPs
Require: Regularization parameter λ, an upper bound B of the `2-norm of θ∗h

1: For h ∈ [H], set Σ̂1,h, Σ̃1,h ← λI, b̂1,h, b̃1,h ← 0, θ̂1,h, θ̃1,h ← 0, V1,H+1(·)← 0
2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Qk,h(·, ·) ←

[
rh(·, ·) +

〈
θ̂k,h,φVk,h+1

(·, ·)
〉

+ β̂k

∥∥∥Σ̂−1/2k,h φVk,h+1
(·, ·)

∥∥∥
2

]
[0,H]

, where β̂k
is defined in (14)

5: πkh(·)← argmaxa∈AQk,h(·, a)
6: Vk,h(·)← maxa∈AQk,h(·, a)
7: end for
8: Receive sk1
9: for h = 1, . . . ,H do

10: Take action akh ← πkh(skh), receive skh+1 ∼ Ph(·|skh, akh)

11: Set [V̄k,hVk,h+1](s
k
h, a

k
h) as in (13) and Ek,h as in (15)

12: σ̄k,h ←
√

max
{
H2/d, [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

}
{Variance upper bound}

13: Σ̂k+1,h ← Σ̂k,h + σ̄−2k,hφVk,h+1
(skh, a

k
h)φVk,h+1

(skh, a
k
h)> {“Covariance”, 1st moment}

14: b̂k+1,h ← b̂k,h + σ̄−2k,hφVk,h+1
(skh, a

k
h)Vk,h+1(s

k
h+1) {Response, 1st moment}

15: Σ̃k+1,h ← Σ̃k,h + φV 2
k,h+1

(skh, a
k
h)φV 2

k,h+1
(skh, a

k
h) {“Covariance”, 2nd moment}

16: b̃k+1,h ← b̃k,h + φV 2
k,h+1

(skh, a
k
h)V 2

k,h+1(s
k
h+1) {Response, 2nd moment}

17: θ̂k+1,h ← Σ̂−1k+1,hb̂k+1,h, θ̃k+1,h ← Σ̃−1k+1,hb̃k+1,h {1st and 2nd moment parameters}
18: end for
19: end for

At a high level, UCRL-VTR+ is an improved version of the UCRL-VTR algorithm by Jia et al.
(2020) and refined and generalized by Ayoub et al. (2020). UCRL-VTR+, shares the basic structure
of UCRL-VTR, which constructs the optimistic estimate of the optimal action-value function at k-th

10
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episode and h-th stage as follows, following the optimism in the face of uncertainty principle:

Qk,h(·, ·) =

[
rh(·, ·) + max

θ∈Ĉk,h

〈
θ,φVk,h+1

(·, ·)
〉]

[0,H]

. (8)

where the confidence set Ĉk,h constructed is an ellipsoid in the parameter space, centered at the
parameter vector θ̂k,h and shape given by the “covariance” matrix Σ̂k,h and having a radius of β̂k:

Ĉk,h =

{
θ :
∥∥∥Σ̂1/2

k,h (θ − θ̂k,h)
∥∥∥
2
≤ β̂k

}
, (9)

Given the choice of Ĉk,h, it is not hard to see that the update in Line 4 is equivalent to (8). Given
{Qk,h}h, in each episode k, at h-th stage, UCRL-VTR+ executes actions that are greedy with
respect to Qk,h (Line 5).

Weighted Ridge Regression and Optimistic Estimates of Value Functions The key novelty of
UCRL-VTR+ is the use of the covariance matrix Σ̂k,h (Line 13) and the parameter vector θ̂k,h
(Line 17) based on weighted ridge regression (cf. Section 4) to learn the underlying θ∗h. To under-
stand the mechanism behind UCRL-VTR+, recall the discussion in Section 4.1: Vk,h+1(s

k
h+1) and

φVk,h+1
(skh, a

k
h) can be seen as the stochastic reward and context of a linear bandits problem. Then,

letting σ2k,h = [VhVk,h+1](s
k
h, a

k
h) be the variance of the value function, the analysis in Section 4

suggests that one should use a weighted ridge regression estimator, such as

θ̂k,h = argmin
θ∈Rd

λ‖θ‖22 +

k−1∑
j=1

[〈
φVj,h+1

(sjh, a
j
h),θ

〉
− Vj,h+1(s

j
h+1)

]2
/σ̄2j,h, (10)

where σ̄j,h is an appropriate upper bound on σj,h. We propose to set

σ̄k,h =
√

max
{
H2/d, [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

}
,

where [V̄k,hVk,h+1](s
k
h, a

k
h) is a scalar-valued empirical estimate for the variance of the value func-

tion Vk,h+1 under the transition probability Ph(·|sk, ak), and Ek,h is an offset term that is used to
guarantee that [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h upper bounds σ2k,h with high probability. The detailed

specifications of these are deferred later. Moreover, by construction, we have σ̄k,h ≥ H/
√
d. Our

construction of σ̄k,h shares a similar spirit as the variance estimator used in empirical Bernstein
inequalities (Audibert et al., 2009; Maurer and Pontil, 2009), which proved to be pivotal to achieve
nearly minimax optimal sample complexity/regret in tabular MDPs (Azar et al., 2013, 2017; Zanette
and Brunskill, 2019; He et al., 2020).

Several nontrivial questions remain to be resolved. First, we need to specify how to calculate
the empirical variance [V̄k,hVk,h+1](s

k
h, a

k
h). Second, in order to ensure Qk,h(·, ·) is an overestimate

of Q∗h(·, ·), we need to choose an appropriate β̂k such that Ĉk,h contains θ∗h with high probability.
Third, we need to select Ek,h to guarantee that [V̄k,hVk,h+1](s

k
h, a

k
h) +Ek,h upper bounds σ2k,h with

high probability.

11
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Variance Estimator To address the first question, we recall that by definition, we have

[VhVk,h+1](s
k
h, a

k
h) = [PhV 2

k,h+1](s
k
h, a

k
h)−

(
[PhVk,h+1](s

k
h, a

k
h)
)2

=
〈
φV 2

k,h+1
(skh, a

k
h),θ∗h

〉
−
[〈
φVk,h+1

(skh, a
k
h),θ∗h

〉]2
, (11)

where the second equality holds due to the definition of linear mixture MDPs. By (11) we conclude
that the expectation of V 2

k,h+1(s
k
h+1) over the next state, skh+1, is a linear function ofφV 2

k,h+1
(skh, a

k
h).

Therefore, we use 〈φVk,h+1
(skh, a

k
h), θ̃k,h〉 to estimate this term, where θ̃k,h is the solution to the

following ridge regression problem:

θ̃k,h = argmin
θ∈Rd

λ‖θ‖22 +
k−1∑
j=1

[〈
φV 2

j,h+1
(sjh, a

j
h),θ

〉
− V 2

j,h+1(s
j
h+1)

]2
. (12)

The closed-form solution to (12) is in Line 17. In addition, we use 〈φVk,h+1
(skh, a

k
h), θ̂k,h〉 to esti-

mate the second term in (11). Meanwhile, since [PhV 2
k,h+1](s

k
h, a

k
h) ∈ [0, H2] and [PhVk,h+1](s

k
h, a

k
h) ∈

[0, H] hold, we add clipping to control the range of our variance estimator, which gives the final ex-
pression of [V̄k,hVk,h+1](s

k
h, a

k
h):

[V̄k,hVk,h+1](s
k
h, a

k
h) =

[〈
φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
[〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉]2
[0,H]

. (13)

More discussions about the algorithm design are in Appendix C.1. Meanwhile, UCRL-VTR+ is
computationally efficient for some specific family of φ(·|·, ·) given access to an integration oracle.
Detailed discussions are in Appendix C.2.

Confidence Set To address the choice of β̂k andEk,h, we need the following key technical lemma:

Lemma 5 Let Ĉk,h be defined in (9) and set β̂k as

β̂k = 8
√
d log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB . (14)

Then, with probability at least 1− 3δ, we have that simultaneously for all k ∈ [K] and h ∈ [H],

θ∗h ∈ Ĉk,h, |[V̄k,hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)| ≤ Ek,h,

where Ek,h is defined as follows:

Ek,h = min
{
H2, 2Hβ̌k

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

}
+ min

{
H2, β̃k

∥∥∥Σ̃−1/2k,h φV 2
k,h+1

(skh, a
k
h)
∥∥∥
2

}
,

(15)

with

β̌k = 8d
√

log(1 + k/λ) log(4k2H/δ) + 4
√
d log(4k2H/δ) +

√
λB,

β̃k = 8
√
dH4 log(1 + kH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB.

12
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Proof See Appendix D.1.

Lemma 5 shows that with high probability, for all stages h and episodes k, θ∗h lies in the
confidence set centered at its estimate θ̂k,h, and the error between the estimated variance and
the true variance is bounded by the offset term Ek,h. Equipped with Lemma 5, we can verify
the following facts: First, since θ∗h ∈ Ĉk,h, it can be easily verified that

〈
θ̂k,h,φVk,h+1

(·, ·)
〉

+

β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(·, ·)
∥∥
2
≥
〈
θ∗h,φVk,h+1

(·, ·)
〉

= [PhVk,h+1](·, ·), which shows that our con-
structed Qk,h(·, ·) in Line 4 is indeed an overestimate of Q∗h(·, ·). Second, recalling the definition
of σ̄k,h defined in Line 12, since

∣∣[V̄k,hVk,h+1](s
k
h, a

k
h) − [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h, we have

σ̄2k,h ≥ [V̄k,hVk,h+1](s
k
h, a

k
h) + Ek,h ≥ [VhVk,h+1](s

k
h, a

k
h), which shows that σ̄k,h is indeed an

overestimate of the true variance [VhVk,h+1](s
k
h, a

k
h).

5.2. Regret Upper Bound

Now we present the regret upper bound of UCRL-VTR+.

Theorem 6 Set λ = 1/B2. Then, with probability at least 1 − 5δ, the regret of UCRL-VTR+ on
MDP MΘ∗ is upper bounded as follows:

Regret
(
MΘ∗ ,K

)
= Õ

(√
d2H2 + dH3

√
T + d2H3 + d3H2

)
, T = KH. (16)

Proof [Sketch] The detailed proof is given in Appendix D.2. By Lemma 5, it suffices to prove the
result on the event E when the conclusions of this lemma hold. Hence, in what follows assume
that this event holds. By using the standard regret decomposition and using the definition of the
confidence sets {Ĉk,h}k,h, we can show that the total regret is bounded by the summation of the
bonus terms,

∑K
k=1

∑H
h=1 β̂k

∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥
2
, which, by the Cauchy-Schwarz inequality,

can be further bounded by β̂K
√
dH

∑K
k=1

∑H
h=1 σ̄

2
k,h. Finally, by the definition of σ̄2k,h we have

σ̄2k,h ≤ H2/d+Ek,h+ [V̄k,hVk,h+1](s
k
h, a

k
h) ≤ H2/d+ 2Ek,h+ [VhVk,h+1](s

k
h, a

k
h). Therefore the

summation of σ̄2k,h can be bounded as

K∑
k=1

H∑
h=1

σ̄2k,h ≤ H3K/d+ 2
K∑
k=1

H∑
h=1

Ek,h +

K∑
k=1

H∑
h=1

[VhVk,h+1](s
k
h, a

k
h)

= Õ(HT +H2T/d+ dH3
√
T ), (17)

where the equality holds since by the law of total variance (Lattimore and Hutter, 2012; Azar
et al., 2013),

∑K
k=1

∑H
h=1[VhVk,h+1](s

k
h, a

k
h) = Õ(HT ), and

∑K
k=1

∑H
h=1Ek,h = Õ(dH3

√
T +

d1.5H2.5
√
T ) by the elliptical potential lemma.

Remark 7 When d ≥ H and T ≥ d4H2+d3H3, the regret in (16) can be simplified to Õ(dH
√
T ).

Compared with the regret Õ(dH3/2
√
T ) of UCRL-VTR in Jia et al. (2020); Ayoub et al. (2020)3,

the regret of UCRL-VTR+ is improved by a factor of
√
H .

3. Jia et al. (2020); Ayoub et al. (2020) report a regret of order Õ(dH
√
T ). However, these works considered the time-

homogeneous case where P1 = · · · = PH . In particular, in the time-homogeneous setting parameters are shared
between the stages of an episode, and this reduces the regret. When UCRL-VTR is modified for the inhomogenous
case, the regret picks up an additional

√
H factor. Similar observation has also been made by Jin et al. (2018).
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5.3. Lower Bound

In this subsection, we present a lower bound for episodic linear mixture MDPs, which shows the
optimality of UCRL-VTR+.

Theorem 8 LetB > 1 and supposeK ≥ max{(d−1)2H/2, (d−1)/(32H(B−1))}, d ≥ 4,H ≥
3. Then for any algorithm there exists an episodic, B-bounded linear mixture MDP parameterized
by Θ = (θ1, . . . ,θH) such that the expected regret is lower bounded as follows:

EΘRegret
(
MΘ,K

)
≥ Ω

(
dH
√
T
)
,

where T = KH and EΘ denotes the expectation over the probability distribution generated by the
interconnection of the algorithm and the MDP.

Proof [Sketch] We construct a hard-to-learn MDP instance M . The detailed construction and proof
are given in Appendix E.1 and E.2. We show that learning the optimal policy of such an MDP is no
harder than minimizing the regret on H linear bandit problems, where the payoff for the first H/2
bandits is Ω(H)Z. Here Z is a Bernoulli random variable with mean equal to Θ(1/H). Utilizing
existing lower bound results for linear bandits (Lattimore and Szepesvári, 2020) yields our result.

Remark 9 Theorem 8 shows that for any algorithm running on episodic linear mixture MDPs,
its regret is lower bounded by Ω(dH

√
T ). The lower bound together with the upper bound of

UCRL-VTR+ in Theorem 6 shows that UCRL-VTR+ is minimax optimal up to logarithmic factors.

6. Conclusion and Future Work

In this paper, we proposed a new Bernstein-type concentration inequality for self-normalized vector-
valued martingales, which was shown to tighten existing confidence sets for linear bandits when the
reward noise has low variance σ2t and is almost surely uniformly bounded by a constantR > 0. This
also allowed us to derive a bandit algorithm for the stochastic linear bandit problem with changing
actions sets. The proposed algorithm uses weighted least-squares estimates and achieves a second-

order regret bound of order Õ(R
√
dT + d

√∑T
t=1 σ

2
t ), which is a significant improvement on the

dimension dependence in the low-noise regime. Based on the new tail inequality, we propose a
new, computationally efficient algorithm, UCRL-VTR+ for episodic MDPs with an Õ(dH

√
T +√

dH3
√
T + d2H3 + d3H2) regret.

We would like to point out that our current regret bound is nearly minimax optimal only for the
“large dimension” and “large sample” cases. In particular, UCRL-VTR+ is nearly minimax optimal
only when d ≥ H and T ≥ d4H2 + d3H3. It remains to be seen whether the range-restrictions on
the dimension and the sample size can be loosened or altogether eliminated.
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Appendix A. Additional Discussions in Section 4

A.1. Comparison between Theorem 2 and previous results

It is worth to compare Theorem 2 with a few Hoeffding-Azuma-type results proved in prior work
(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011). In par-
ticular, Dani et al. (2008) considered the setting where ηt is R-bounded and showed that for large
enough t, the following holds with probability at least 1− δ:

‖µt − µ∗‖Zt ≤ Rmax{
√

128d log(tL2) log(t2/δ), 8/3 · log(t2/δ)}.

Rusmevichientong and Tsitsiklis (2010) considered a more general setting than Dani et al. (2008)
where ηt isR-sub-Gaussian and showed that (3) holds when βt = 2κ2R

√
log t

√
d log t+ log(t2/δ),

where κ =
√

3 + 2 log(L2/λ+ d). Abbasi-Yadkori et al. (2011) considered the same setting as
Rusmevichientong and Tsitsiklis (2010) where ηt is R-sub-Gaussian and showed that (3) holds
when βt = R

√
d log((1 + tL2/λ)/δ), which improves the bound of Rusmevichientong and Tsit-

siklis (2010) in terms of logarithmic factors. By selecting proper λ, all these results yield an
‖µt − µ∗‖Zt = Õ(R

√
d) bound. As a comparison, with the choice λ = σ2d/‖µ∗‖22, our result

gives

‖µt − µ∗‖Zt = Õ(σ
√
d+R). (18)

Note that for any random variable, its standard deviation is always upper bounded by its magnitude
or sub-Gaussian norm, therefore our result strictly improves the mentioned previous results. This
improvement is due to the fact that here we consider a subclass of sub-Gaussian noise variables
which allows us to derive a tighter upper bound. Indeed, Exercise 20.1 in the book of Lattimore
and Szepesvári (2020) shows that the previous inequalities are tight in the worst-case for R-sub-
Gaussian noise.

Even more closely related are results by Lattimore et al. (2015); Kirschner and Krause (2018)
and Faury et al. (2020). In all these papers the strategy is to use a weighted ridge regression estima-
tor, which we will also make use of in the next section. In particular, Lattimore et al. (2015) study
the special case of Bernoulli payoffs. For this special case, with our notation, they show a result
implying that with high probability ‖µt − µ∗‖Zt = Õ(σ

√
d). The lack of the scale term R is due

to that Bernoulli’s are single-parameter: The variance and the mean control each other, which the
proof exploits. As such, this result does not lead in a straightforward way to ours, where the scale
and variance are independently controlled. A similar comment applies to the result of Kirschner
and Krause (2018) who considered the case when the noise in the responses are sub-Gaussian.

For the case of R = 1, L = 1 and E[η2t |Gt] ≤ σ2t , the recent work of Faury et al. (2020) also
proposed a Bernstein-type concentration inequality (cf. Theorem 1 in their paper) and showed that
this gives rise to better results in the context of logistic bandits. Their result can be extended to
arbitrary R and L (see Appendix A.2), which gives that with high probability,

‖µt − µ∗‖Zt = Õ
(
σ
√
d+

√
d‖µ∗‖2RL

)
, (19)

where the second term in (19) has a polynomial dependence on d, ‖µ∗‖2, R, L, whereas in (18) the
second term is only a function of R. This is a significant difference. In particular, in the linear
mixture MDP setting, we have σ = Õ(

√
H), ‖µ∗‖2 = O(B), R = O(H) and L = O(H).

Plugging these into both bounds, we see that our new result gives Õ(
√
dH + H), while (19) gives
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the worse bound Õ(
√
dH +

√
dBH). As it will be clear from the further details of our derivations

given in Section 5, as a result of the above difference, their bound would not result in a minimax
optimal bound on the regret in our setting.

A.2. Derivation of the Bound in (19)

In this subsection, we derive the bound in (19) by the concentration inequality proved in Faury et al.
(2020). The following proposition is a restatement of Theorem 1 in Faury et al. (2020).

Proposition 10 (Theorem 1, Faury et al. 2020) Let {Gt}∞t=1 be a filtration, where xt ∈ Rd is Gt-
measurable and ηt ∈ R is Gt+1-measurable. Suppose ηt,xt satisfy that

|ηt| ≤ 1, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2t , ‖xt‖2 ≤ 1,

Let Ht = λI +
∑t

i=1 σ
2
t xix

>
i . Then for any 0 < δ < 1, λ > 0, with probability at least 1 − δ we

have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
H−1

t

≤
√
λ

2
+

2√
λ

log

(
det(Ht)

1/2λ−d/2

δ

)
+

2d log 2√
λ

. (20)

In the following, we first extend the above bound to the general case, where |ηt| ≤ R,E[η2t |Gt] ≤
σ2, ‖xt‖2 ≤ L. In specific, we have

|ηt/R| ≤ 1, E[ηt/R|Gt] = 0, E[η2t /R
2|Gt] ≤ σ2/R2, ‖xt/L‖2 ≤ 1,

Therefore, by Proposition 10, let

H̄t = λI +
t∑
i=1

σ2xix
>
i /(R

2L2),

the following holds with probability at least 1− δ,

∀t > 0,

∥∥∥∥H̄−1/2t

t∑
i=1

xiηi/(RL)

∥∥∥∥
2

≤
√
λ

2
+

2√
λ

log

(
det(H̄t)

1/2λ−d/2
)

+
2d log 2 + 2 log(1/δ)√

λ

≤
√
λ

2
+

d√
λ

log(1 + tσ2/λ) +
2d log 2 + 2 log(1/δ)√

λ
, (21)

where the second inequality holds since det(H̄t) ≤ ‖H̄t‖d2 ≤ (λ + tσ2)d. Set λ ← λσ2/(R2L2),
then (21) becomes

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1
t

≤ σ
(
σ
√
λ

2RL
+
dRL

σ
√
λ

log(1 + tR2L2/λ) +
2d log 2 + 2 log(1/δ)

σ
√
λ

RL

)
,

(22)

Now we are going to bound ‖µt − µ∗‖Zt by (22). By the definition of µt, we have

µt = Z−1t bt = Z−1t

t∑
i=1

xi(x
>
i µ
∗ + ηi) = µ∗ − λZ−1t µ

∗ + Z−1t

t∑
i=1

xiηi,
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then ‖µt − µ∗‖Zt can be bounded as

‖µt − µ∗‖Zt =

∥∥∥∥Z−1/2t

t∑
i=1

xiηi + λZ
−1/2
t µ∗

∥∥∥∥
2

≤
∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1
t

+
√
λ‖µ∗‖2, (23)

where the first equality holds due to triangle inequality and Zt � λI. Next, substituting (22) into
(23) yields

‖µt − µ∗‖Zt ≤
σ2
√
λ

2RL
+
dRL√
λ

log(1 + tR2L2/λ) +
2d log 2 + 2 log(1/δ)√

λ
RL+

√
λ‖µ∗‖2.

Finally, set λ = Θ̃(dR2L2/(σ2 + RL‖µ∗‖2)) to minimize the above upper bound, we have ‖µt −
µ∗‖Zt ≤ Õ(σ

√
d+

√
dRL‖µ∗‖2).

Appendix B. Proofs of Theorems in Section 4

B.1. Proof of Theorem 2

We follow the proof in Dani et al. (2008) with a refined analysis. Let us start with recalling two well
known results that we will need:

Lemma 11 (Freedman 1975) Let M,v > 0 be fixed constants. Let {xi}ni=1 be a stochastic
process,{Gi}i be a filtration so that so that for all i ∈ [n] xi is Gi-measurable, while almost surely
E[xi|Gi−1] = 0, |xi| ≤M and

n∑
i=1

E(x2i |Gi) ≤ v .

Then, for any δ > 0, with probability at least 1− δ,

n∑
i=1

xi ≤
√

2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma 12 (Lemma 11, Abbasi-Yadkori et al. 2011) For any λ > 0 and sequence {xt}Tt=1 ⊂
Rd for t ∈ {0, 1, . . . , T}, define Zt = λI +

∑t
i=1 xix

>
i . Then, provided that ‖xt‖2 ≤ L holds for

all t ∈ [T ], we have

T∑
t=1

min{1, ‖xt‖2Z−1
t−1
} ≤ 2d log

dλ+ TL2

dλ
.

Recall that for t ≥ 0, Zt = λI+
∑t

i=1 xix
>
i . Since Zt = Zt−1 +xtx

>
t , by the matrix inversion

lemma

Z−1t = Z−1t−1 −
Z−1t−1xtx

>
t Z−1t−1

1 + w2
t

. (24)
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We need the following definitions:

d0 = 0, Z0 = 0, dt =

t∑
i=1

xiηi, Zt = ‖dt‖Z−1
t
, wt = ‖xt‖Z−1

t−1
, Et = 1{0 ≤ s ≤ t, Zs ≤ βs} ,

(25)

where t ≥ 1 and we define β0 = 0. Recalling that xt is Gt-measurable and ηt is Gt+1-measurable,
we find that dt, Zt and Et are Gt+1-measurable while wt is Gt measurable. We now prove the
following result:

Lemma 13 Let di, wi, Ei be as defined in (25). Then, with probability at least 1− δ/2, simultane-
ously for all t ≥ 1 it holds that

t∑
i=1

2ηix
>
i Z−1i−1di−1

1 + w2
i

Ei−1 ≤ 3β2t /4.

Proof We have∣∣∣∣2x>i Z−1i−1di−1

1 + w2
i

Ei−1
∣∣∣∣ ≤ 2‖xi‖Z−1

i−1
[‖di−1‖Z−1

i−1
Ei−1]

1 + w2
i

≤ 2wiβi−1
1 + w2

i

≤ min{1, 2wi}βi−1, (26)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due
to the definition of Ei−1, the last inequality holds by algebra. For simplicity, let `i denote

`i =
2ηix

>
i Z−1i−1di−1

1 + w2
i

Ei−1. (27)

We are preparing to apply Freedman’s inequality from Lemma 11 to {`i}i and {Gi}i. First note that
E[`i|Gi] = 0. Meanwhile, by (26), the inequalities

|`i| ≤ Rβi−1 min{1, 2wi} ≤ Rβi−1 ≤ Rβt (28)

almost surely hold (the last inequality follows since {βi}i is increasing). We also have

t∑
i=1

E[`2i |Gi] ≤ σ2
t∑
i=1

(
2x>i Z−1i−1di−1

1 + w2
i

Ei−1
)2

≤ σ2
t∑
i=1

[min{1, 2wi}βi−1]2

≤ 4σ2β2t

t∑
i=1

min{1, w2
i }

≤ 8σ2β2t d log(1 + tL2/(dλ)), (29)

where the first inequality holds since E[η2i |Gi] ≤ σ2, the second inequality holds due to (26), the
third inequality holds again since {βi}i is increasing, the last inequality holds due to Lemma 12.
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Therefore, by (28) and (29), using Lemma 11, we know that for any t, with probability at least
1− δ/(4t2), we have

t∑
i=1

`i ≤
√

16σ2β2t d log(1 + tL2/(dλ)) log(4t2/δ) + 2/3 ·Rβt log(4t2/δ)

≤ β2t
4

+ 16σ2d log(1 + tL2/(dλ)) log(4t2/δ) +
β2t
4

+ 4R2 log2(4t2/δ)

≤ β2t /2 +
1

4

(
8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ)

)2
= 3β2t /4, (30)

where the first inequality holds due to Lemma 11, the second inequality holds due to 2
√
|ab| ≤

|a|+ |b|, the last equality holds due to the definition of βt. Taking union bound for (30) from t = 1
to∞ and using the fact that

∑∞
t=1 t

−2 < 2 finishes the proof.

We also need the following lemma.

Lemma 14 Let wi be as defined in (25). Then, with probability at least 1 − δ/2, simultaneously
for all t ≥ 1 it holds that

t∑
i=1

η2iw
2
i

1 + w2
i

≤ β2t /4.

Proof We are preparing to apply Freedman’s inequality (Lemma 11) to {`i}i and {Gi}i where now

`i =
η2iw

2
i

1 + w2
i

− E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]. (31)

Clearly, for any i, we have E[`i|Gi] = 0 almost surely (a.s.). We further have that a.s.

t∑
i=1

E[`2i |Gi] ≤
t∑
i=1

E
[

η4iw
4
i

(1 + w2
i )

2

∣∣∣∣Gi]

≤ R2
t∑
i=1

E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]

≤ R2σ2
t∑
i=1

w2
i

1 + w2
i

≤ 2R2σ2d log(1 + tL2/(dλ)), (32)

where the first inequality holds due to the fact E(X − EX)2 ≤ EX2, the second inequality holds
since |ηt| ≤ R a.s., the third inequality holds since E[η2i |Gi] ≤ σ2 a.s. and wi is Gi-measurable, the
fourth inequality holds due to the fact w2

i /(1 + w2
i ) ≤ min{1, w2

i } and Lemma 12. Furthermore,
by the fact that |ηi| ≤ R a.s., we have

|`i| ≤
∣∣∣∣ η2iw2

i

1 + w2
i

∣∣∣∣+

∣∣∣∣E[ η2iw
2
i

1 + w2
i

∣∣∣∣Gi]∣∣∣∣ ≤ 2R2 a.s. (33)
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Therefore, by (32) and (33), using Lemma 11, we know that for any t, with probability at least
1− δ/(4t2), we have that a.s.,

t∑
i=1

η2iw
2
i

1 + w2
i

≤
t∑
i=1

E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]+
√

4R2σ2d log(1 + tL2/(dλ)) log(4t2/δ) + 4/3 ·R2 log(4t2/δ)

≤ σ2
t∑
i=1

w2
i

1 + w2
i

+ 2Rσ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 2R2 log(4t2/δ)

≤ 2σ2d log(1 + tL2/(dλ)) + 2Rσ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 2R2 log(4t2/δ)

≤ 1/4 ·
(
8σ
√
d
√

log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ)
)2

= β2t /4, (34)

where the first inequality holds due to Lemma 11, the second inequality holds due to E[η2i |Gi] ≤ σ2,
the third inequality holds due to the fact w2

i /(1 + w2
i ) ≤ min{1, w2

i } and Lemma 12, the last
inequality holds due to the definition of βt. Taking union bound for (34) from t = 1 to∞ and using
the fact that

∑∞
t=1 t

−2 < 2 finishes the proof.

With this, we are ready to prove Theorem 2.
Proof [Proof of Theorem 2] We first give a crude upper bound on Zt. We have

Z2
t = (dt−1 + xtηt)

>Z−1t (dt−1 + xtηt)

= d>t−1Z
−1
t dt−1 + 2ηtx

>
t Z−1t dt−1 + η2t x

>
t Z−1t xt

≤ Z2
t−1 + 2ηtx

>
t Z−1t dt−1︸ ︷︷ ︸
I1

+ η2t x
>
t Z−1t xt︸ ︷︷ ︸
I2

,

where the inequality holds since Zt � Zt−1. For term I1, from the matrix inversion lemma (cf.
(24)), we have

I1 = 2ηt

(
x>t Z−1t−1dt−1 −

x>t Z−1t−1xtx
>
t Z−1t−1dt−1

1 + w2
t

)
= 2ηt

(
x>t Z−1t−1dt−1 −

w2
tx
>
t Z−1t−1dt−1

1 + w2
t

)
=

2ηtx
>
t Z−1t−1dt−1

1 + w2
t

.

For term I2, again from the matrix inversion lemma (cf. (24)), we have

I2 = η2t

(
x>t Z−1t−1x

>
t −

x>t Z−1t−1xtx
>
t Z−1t−1xt

1 + w2
t

)
= η2t

(
w2
t −

w4
t

1 + w2
t

)
=

η2tw
2
t

1 + w2
t

.

Therefore, we have

Z2
t ≤

t∑
i=1

2ηix
>
i Z−1i−1di−1

1 + w2
i

+

t∑
i=1

η2iw
2
i

1 + w2
i

. (35)

24



NEARLY MINIMAX OPTIMAL REINFORCEMENT LEARNING FOR LINEAR MIXTURE MDPS

Consider now the event E where the conclusions of Lemma 13 and Lemma 14 hold. We claim that
on this event for any i ≥ 0, Zi ≤ βi. We prove this by induction on i. Let the said event hold. The
base case of i = 0 holds since β0 = 0 = Z0, by definition. Now fix some t ≥ 1 and assume that for
all 0 ≤ i < t, we have Zi ≤ βi. This implies that E1 = E2 = · · · = Et−1 = 1. Then by (35), we
have

Z2
t ≤

t∑
i=1

2ηix
>
i Z−1i−1di−1

1 + w2
i

+

t∑
i=1

η2iw
2
i

1 + w2
i

=

t∑
i=1

2ηix
>
i Z−1i−1di−1

1 + w2
i

Ei−1 +

t∑
i=1

η2iw
2
i

1 + w2
i

. (36)

Since on the event E the conclusions of Lemma 13 and Lemma 14 hold, we have

t∑
i=1

2ηix
>
i Z−1i−1di−1

1 + w2
i

Ei−1 ≤ 3β2t /4,

t∑
i=1

η2iw
2
i

1 + w2
i

≤ β2t /4. (37)

Therefore, substituting (37) into (36), we have Zt ≤ βt, which ends the induction. Taking the union
bound, the events in Lemma 13 and Lemma 14 hold with probability at least 1 − δ, which implies
that with probability at least 1− δ, for any t, Zt ≤ βt.

Finally, we bound ‖µt − µ∗‖Zt as follows. First,

µt = Z−1t bt = Z−1t

t∑
i=1

xi(x
>
i µ
∗ + ηi) = µ∗ − λZ−1t µ

∗ + Z−1t dt .

Then, on E we have

‖µt − µ∗‖Zt =
∥∥dt − λµ∗∥∥Z−1

t
≤ Zt +

√
λ‖µ∗‖2 ≤ βt +

√
λ‖µ∗‖2, (38)

where the first inequality holds due to triangle inequality and Zt � λI, while the last one holds
since we have shown that on E , Zt ≤ βt for all t ≥ 0, thus finishing the proof.

B.2. Proof of Theorem 3

Proof [Proof of Theorem 3] By the assumption on εt, we know that

|εt/σ̄t| ≤ R/σ̄tmin, E[εt|a1:t, ε1:t−1] = 0, E[(εt/σ̄t)
2|a1:t, ε1:t−1] ≤ 1, ‖at/σ̄t‖2 ≤ A/σ̄tmin,

Then, taking Gt = σ(a1:t, ε1:t−1), using that σt is Gt-measurable, we can apply Theorem 2 to
(xt, ηt) = (at/σt, εt/σt) to get that with probability at least 1− δ,

∀t ≥ 1,
∥∥µ̂t − µ∗∥∥At

≤ β̂t +
√
λ‖µ∗‖2 ≤ β̂t +

√
λB, (39)

where β̂t = 8
√
d log(1 + tA2/([σ̄tmin]2dλ)) log(4t2/δ) + 4R/σ̄tmin · log(4t2/δ). Thus, in the re-

mainder of the proof, we will assume that the event E when (39) is true holds and proceed to bound
the regret on this event.

Note that on E , µ∗ ∈ Ct. Recall that µ̃t is the optimistic parameter choice of the algorithm (cf.
Line 4 in Algorithm 1). Then, using the standard argument for linear bandits, the pseudo-regret for
round t is bounded by

〈a∗t ,µ∗〉 − 〈at,µ∗〉 ≤ 〈at, µ̃t〉 − 〈at,µ∗〉 = 〈at, µ̃t − µ̂t−1〉+ 〈at, µ̂t−1 − µ∗〉, (40)
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where the inequality holds due to the choice µ̃t. To further bound (40), we have

〈at, µ̃t − µ̂t−1〉+ 〈at, µ̂t−1 − µ∗〉
≤ ‖at‖A−1

t−1
(‖µ̃t − µ̂t−1‖At−1 + ‖µ∗ − µ̂t−1‖At−1)

≤ 2(β̂t−1 +
√
λB)‖at‖A−1

t−1
, (41)

where the first inequality holds due to Cauchy-Schwarz inequality, the second one holds since
µ̃t,µ

∗ ∈ Ct−1. Meanwhile, we have 0 ≤ 〈a∗t ,µ∗〉 − 〈at,µ∗〉 ≤ 2. Thus, substituting (41) into
(40) and summing up (40) for t = 1, . . . , T , we have

Regret(T ) =
T∑
t=1

[
〈a∗t ,µ∗〉 − 〈at,µ∗〉

]
≤ 2

T∑
t=1

min
{

1, σ̄t(β̂t−1 +
√
λB)‖at/σ̄t‖A−1

t−1

}
. (42)

To further bound the right-hand side above, we decompose the set [T ] into a union of two disjoint
subsets [T ] = I1 ∪ I2, where

I1 =
{
t ∈ [T ] : ‖at/σ̄t‖A−1

t−1
≥ 1
}
, I2 = [T ] \ I1. (43)

Then the following upper bound of |I1| holds:

|I1| ≤
∑
t∈I1

min
{

1, ‖at/σ̄t‖2A−1
t−1

}
≤

T∑
t=1

min
{

1, ‖at/σ̄t‖2A−1
t−1

}
≤ 2d log(1 + TA2/(dλ[σ̄Tmin]2)),

(44)

where the first inequality holds since ‖at/σ̄t‖A−1
t−1
≥ 1 for t ∈ I1, the third inequality holds due to

Lemma 12 together with the fact ‖at/σ̄t‖2 ≤ A/σ̄Tmin. Therefore, by (42),

Regret(T )/2 =∑
t∈I1

min
{

1, σ̄t(β̂t−1 +
√
λB)‖at/σ̄t‖A−1

t−1

}
+
∑
t∈I2

min
{

1, σ̄t(β̂t−1 +
√
λB)‖at/σ̄t‖A−1

t−1

}
≤
[∑
t∈I1

1

]
+
∑
t∈I2

(β̂t−1 +
√
λB)σ̄t‖at/σ̄t‖A−1

t−1

= |I1|+
∑
t∈I2

(β̂t−1 +
√
λB)σ̄t min

{
1, ‖at/σ̄t‖A−1

t−1

}

≤ 2d log(1 + TA2/(dλ[σ̄Tmin]2)) +
T∑
t=1

(β̂t−1 +
√
λB)σ̄t min

{
1, ‖at/σ̄t‖A−1

t−1

}
, (45)

where the first inequality holds since for any x real, min{1, x} ≤ 1 and also min{1, x} ≤ x, the
second inequality holds since ‖at/σ̄t‖A−1

t−1
≤ 1 for t ∈ I2 and the last one holds due to (44).

Finally, to further bound (45), notice that

T∑
t=1

(β̂t−1 +
√
λB)σ̄t min

{
1, ‖at/σ̄t‖A−1

t−1

}
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≤

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2t

√√√√ T∑
t=1

min
{

1, ‖at/σ̄t‖2A−1
t−1

}

≤

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2t

√
2d log(1 + TA2/(dλ[σ̄Tmin]2)), (46)

where the first inequality holds due to Cauchy-Schwarz inequality, the second one holds due to
Lemma 12 and the the fact that ‖at/σt‖2 ≤ A/σ̄Tmin. Substituting (46) into (45), we have

Regret(T ) ≤ 2
√

2d log(1 + TA2/(dλ[σ̄Tmin]2))

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2t

+ 4d log
(
1 + TA2/(dλ[σ̄Tmin]2)

)
, (47)

Next, since σ̄t = max{R/
√
d, σt}, then we have σ̄tmin ≥ R/

√
d. Therefore, with λ = 1/B2, we

have

log(1 + TA2/(dλ[σ̄Tmin]2)) ≤ log(1 + TB2A2/R2) = Õ(1), (48)

and

β̂t +
√
λB = 8

√
d log(1 + tA2/([σ̄tmin]2dλ)) log(4t2/δ) + 4R/σ̄tmin · log(4t2/δ) +

√
λB

≤ 8
√
d log(1 + TB2A2/R2) log(4T 2/δ) + 4

√
d log(4T 2/δ) + 1

= Õ(
√
d). (49)

Substituting (48) and (49) into (47), we have our second result.

Regret(T ) = Õ

(
d

√√√√ T∑
t=1

σ̄2t

)
= Õ

(
d

√√√√ T∑
t=1

(R2/d+ σ2t )

)
= Õ

(
R
√
dT + d

√√√√ T∑
t=1

σ2t

)
,

where the second equality holds since σ̄2t = max{R2/d, σ2t } ≤ R2/d+σ2t , the third equality holds
since

√
|x|+ |y| ≤

√
|x|+

√
|y|.

Appendix C. Additional Discussions on UCRL-VTR+

C.1. UCRL-VTR+ with single estimation sequence

Currently UCRL-VTR+ uses two estimate sequences θ̌k,h and θ̃k,h to estimate the first-order mo-
ment

〈
φVk,h+1

(skh, a
k
h),θ∗h

〉
and second-order moment

〈
φV 2

k,h+1
(skh, a

k
h),θ∗h

〉
separately. We would

like to point out that it is possible to use only one sequence to estimate both. Such an estimator
can be constructed as a weighted ridge regression estimator based on both φVk,h+1

(skh, a
k
h)’s and

φV 2
k,h+1

(skh, a
k
h), and the corresponding responses Vk,h+1(s

k
h+1) and V 2

k,h+1(s
k
h+1). However, since

second-order moments generally have larger variance than the first-order moments, we need to use
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different weights for the square loss evaluated at
{
φVk,h+1

(skh, a
k
h), Vk,h+1(s

k
h+1)

}
k,h

and{
φV 2

k,h+1
(skh, a

k
h), V 2

k,h+1(s
k
h+1)

}
k,h

. Also, by merging the data, even with using perfect weighting,
we would expect to win at best a (small) constant factor on the regret since the effect of not merging
the data can be seen as not worse than throwing away “half of the data”. As a result, for the sake of
simplicity, we chose to use two estimate sequences instead of one in our algorithm.

C.2. Computational Efficiency of UCRL-VTR+

Similar to UCRL-VTR (Ayoub et al., 2020), the computational complexity of UCRL-VTR+ de-
pends on the specific family of feature mapping φ(·|·, ·). As an example, let us consider a special
class of linear mixture MDPs studied by Yang and Wang (2020); Zhou et al. (2021). In this setting,
φ(s′|s, a) = ψ(s′)�µ(s, a), ψ(·) : S → Rd and µ(·, ·) : S ×A → Rd are two features maps and
� denotes componentwise product. Recall that, by assumption, the action space A is finite.

We now argue that UCRL-VTR+ is computationally efficient for this class of MDPs as long as
we have access to an integration oracle O underlying the basis kernels. In particular, the assump-
tion is that

∑
s′ ψ(s′)V (s′) can be evaluated at the cost of evaluating V at p(d) states with some

polynomial p. Now, for 1 ≤ h ≤ H , θ ∈ Rd and Σ ∈ Rd×d let

Qh,θ,Σ(·, ·) =
[
rh(·, ·) + 〈θ,µ(·, ·)〉+ ‖Σµ(·, ·)‖2

]
[0,H]

.

It is easy to verify that for any k, h,Qk,h = Qh,θk,h,Σk,h
where θk,h = θ̂k,h�[

∑
s′ ψ(s′)Vk,h+1(s

′)]

and the (i, j)-th entry of Σk,h is β̂k(Σ̂
−1/2
k,h )i,j [

∑
s′ ψj(s

′)Vk,h+1(s
′)]. Now notice that θk,H = 0,

Σk,H = 0. Thus, for 1 ≤ h ≤ H − 1, assuming that θk,h+1 and Σk,h+1 have been calculated, eval-
uating Vk,h+1 at any state s ∈ S costs O(d2|A|) arithmetic operations. Now, calculating θk,h and
Σk,h costsO(d2) arithmetic operations given access θ̂k,h and Σ̂

−1/2
k,h , in addition to p(d) evaluations

of Vk,h+1. Since each evaluation of Vk,h+1 takes O(d2|A|) operations, as established, calculating
θk,h and Σk,h cost a total of O(p(d)d2|A|) operations. From this, it is clear that calculating the H
actions to be taken in episode k takes a total ofO(p(d)d2|A|H) operations (Line 10). It also follows
that calculating either φVk,h+1

or φV 2
k,h+1

at any state-action pair costs O(p(d)d2|A|) operations.

To calculate the quantities appearing in Lines 11–17, first φVk,h+1
(skh, a

k
h) and φV 2

k,h+1
(skh, a

k
h)

(h ∈ [H]) are evaluated at the cost ofO(p(d)d2|A|H). It is then clear that the rest of the calculation
costs at most O(d3H): the most expensive step is to obtain Σ̂

−1/2
k,h (the cost could be reduced to

O(d2H) by using the matrix inversion lemma and organizing the calculation of Qk,h slightly differ-
ently). It follows that the total computational complexity of UCRL-VTR+ is O(poly(d)|A|HK) =
O(poly(d)|A|T ). For many other MDP models, UCRL-VTR+ can still be computationally effi-
cient. Please refer to Ayoub et al. (2020) for a detailed discussion.

Appendix D. Proof of Upper Bound Results in Section 5

Let P be the distribution over (S×A)N induced by the interconnection of UCRL-VTR+ (treated as a
nonstationary, history dependent policy) and the episodic MDPM . Further, let E be the correspond-
ing expectation operator. Note that the only source of randomness are the stochastic transitions in
the MDP, hence, all random variables can be defined over the sample space Ω = (S × A)N. Thus,
we work with the probability space given by the triplet (Ω,F ,P), where F is the product σ-algebra
generated by the discrete σ-algebras underlying S and A, respectively.
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For 1 ≤ k ≤ K, 1 ≤ h ≤ H , let Fk,h be the σ-algebra generated by the random variables
representing the state-action pairs up to and including those that appear stage h of episode k. That
is, Fk,h is generated by

s11, a
1
1, . . . , s

1
h, a

1
h, . . . , s

1
H , a

1
H ,

s21, a
2
1, . . . , s

2
h, a

2
h, . . . , s

2
H , a

2
H ,

...

sk1, a
k
1, . . . , s

k
h, a

k
h .

Note that, by construction,

V̄k,hVk,h+1(s
k
h, a

k
h), Ek,h, σ̄k,h, Σ̂k+1,h, Σ̃k+1,h,

areFk,h-measurable, b̂k+1,h, b̃k+1,h, θ̂k+1,h, θ̃k+1,h areFk,h+1-measurable, andQk,h, Vk,h, πkh, φVk,h+1

are Fk−1,H measurable. Note also that Qk,h, Vk,h, πkh, φVk,h+1
are not Fk−1,h measurable: The get

their values only after episode k − 1 is over, due to their “backwards” construction.

D.1. Proof of Lemma 5

The main idea of the proof is to use a (crude) two-step, “peeling” device. Let Čk,h, C̃k,h denote the
following confidence sets:

Čk,h =

{
θ :
∥∥∥Σ̂1/2

k,h (θ − θ̂k,h)
∥∥∥
2
≤ β̌k

}
,

C̃k,h =

{
θ :
∥∥∥Σ̃1/2

k,h (θ − θ̃k,h)
∥∥∥
2
≤ β̃k

}
.

Note that Ĉk,h ⊂ Čk,h: The “leading term” in the definition of β̌k is larger than that in β̂k by a factor
of
√
d. The idea of our proof is to show that θ∗h is included in Čk,h ∩ C̃k,h with high probability

(for this, a standard self-normalized tail inequality suffices) and then use that when this holds, the
weights used in constructing θ̂k,h are sufficiently precise to “balance” the noise term, which allows
to reduce β̌k by the extra

√
d factor without significantly increasing the probability of the bad event

when θ∗h 6∈ Ĉk,h.
We start with the following lemma.

Lemma 15 Let Vk,h+1, θ̂k,h, Σ̂k,h, θ̃k,h, Σ̃k,h be defined in Algorithm 2, then we have∣∣VhVk,h+1(s
k
h, a

k
h)− V̄k,hVk,h+1(s

k
h, a

k
h)
∣∣

≤ min
{
H2,

∥∥∥Σ̃−1/2k,h φV 2
k,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2

}
+ min

{
H2, 2H

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2

}
.

Proof We have∣∣[V̄k,hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣
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=
∣∣∣[〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
〈
φV 2

k,h+1
(skh, a

k
h),θ∗h

〉
+
(〈
φVk,h+1

(skh, a
k
h),θ∗h

〉)2 − [〈φVk,h+1
(skh, a

k
h), θ̂k,h

〉]2
[0,H]

∣∣∣
≤
∣∣[〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
〈
φV 2

k,h+1
(skh, a

k
h),θ∗h

〉∣∣︸ ︷︷ ︸
I1

+
∣∣∣(〈φVk,h+1

(skh, a
k
h),θ∗h

〉)2 − [〈φVk,h+1
(skh, a

k
h), θ̂k,h

〉]2
[0,H]

∣∣∣︸ ︷︷ ︸
I2

,

where the inequality holds due to the triangle inequality. We bound I1 first. We have I1 ≤ H2 since
both terms in I1 belong to the interval [0, H2]. Furthermore,

I1 ≤
∣∣∣〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉
−
〈
φV 2

k,h+1
(skh, a

k
h),θ∗h

〉∣∣∣
=
∣∣∣〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h − θ∗h

〉∣∣∣
≤
∥∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2
,

where the first inequality holds since 〈φV 2
k,h+1

(skh, a
k
h),θ∗h〉 ∈ [0, H2] and the second inequality

holds due to the Cauchy-Schwarz inequality. Thus, we have

I1 ≤ min
{
H2,

∥∥∥Σ̃−1/2k,h φV 2
k,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2

}
. (50)

For the term I2, since both terms in I2 belong to the interval [0, H2], we have I2 ≤ H2. Meanwhile,

I2 =
∣∣∣〈φVk,h+1

(skh, a
k
h),θ∗h

〉
+
[〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉]
[0,H]

∣∣∣
·
∣∣∣〈φVk,h+1

(skh, a
k
h),θ∗h

〉
−
[〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉]
[0,H]

∣∣∣
≤ 2H

∣∣∣〈φVk,h+1
(skh, a

k
h),θ∗h

〉
−
〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉∣∣∣
= 2H

∣∣∣〈φVk,h+1
(skh, a

k
h),θ∗h − θ̂k,h

〉∣∣∣
≤ 2H

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2
, (51)

where the first inequality holds since both terms in this line are less than H and the fact〈
φVk,h+1

(skh, a
k
h),θ∗h

〉
∈ [0, H], the second inequality holds due to the Cauchy-Schwarz inequality.

Thus, we have

I2 ≤ min
{
H2, 2H

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2

}
. (52)

Combining (50) and (52) gives the desired result.

Proof [Proof of Lemma 5] Fix h ∈ [H]. We first show that with probability at least 1 − δ/H ,
for all k, θ∗h ∈ Čk,h. To show this, we apply Theorem 2. Let xi = σ̄−1i,hφVi,h+1

(sih, a
i
h) and

ηi = σ̄−1i,hVi,h+1(s
i
h+1) − σ̄

−1
i,h 〈φVi,h+1

(si,h, ai,h),θ∗h〉, Gi = Fi,h, µ∗ = θ∗h, yi = 〈µ∗,xi〉 + ηi,
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Zi = λI +
∑i

i′=1 xi′x
>
i′ , bi =

∑i
i′=1 xi′yi′ and µi = Z−1i bi. Then it can be verified that yi =

σ̄−1i,hVi,h+1(s
i
h+1) and µi = θ̂i+1,h. Moreover, almost surely,

‖xi‖2 ≤ σ̄−1i,hH ≤
√
d, |ηi| ≤ σ̄−1i,hH ≤

√
d, E[ηi|Gi] = 0, E[η2i |Gi] ≤ d ,

where we used that Vi,h+1 takes values in [0, H] and that ‖φVi,h+1
(s, a)‖2 ≤ H by (1). Since we

also have that xi is Gi measurable and ηi is Gi+1 measurable, by Theorem 2, we obtain that with
probability at least 1− δ/H , for all k ≤ K,∥∥θ∗h − θ̂k,h∥∥Σ̂k,h

≤ 8d
√

log(1 + k/λ) log(4k2H/δ) + 4
√
d log(4k2H/δ) +

√
λB = β̌k, (53)

implying that with probability 1− δ/H , for any k ≤ K, θ∗h ∈ Čk,h.
An argument, which is analogous to the one just used (except that now the range of the “noise”

matches the range of “squared values” and is thus bounded by H2, rather than being bounded by√
d) gives that with probability at least 1− δ/H , for any k ≤ K we have∥∥θ∗h − θ̃k,h∥∥Σ̃k,h

≤ 8
√
dH4 log(1 + kH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB = β̃k,

(54)

which implies that with the said probability, θ∗h ∈ C̃k,h.
We now show that θ∗h ∈ Ĉk,h with high probability. We again apply Theorem 2. Let xi =

σ̄−1i,hφVi,h+1
(sih, a

i
h) and

ηi = σ̄−1i,h 1{θ
∗
h ∈ Či,h ∩ C̃i,h}

[
Vi,h+1(s

i
h+1)− 〈φVi,h+1

(sih, a
i
h),θ∗h〉

]
,

Gi = Fi,h, µ∗ = θ∗h. Clearly E[ηi|Gi] = 0, |ηi| ≤ σ̄−1i,hH ≤
√
d since |Vi,h+1(·)| ≤ H and

σ̄i,h ≥ H/
√
d, ‖xi‖2 ≤ σ̄−1i,hH ≤

√
d. Furthermore, owning to that 1{θ∗h ∈ Či,h ∩ C̃i,h} is Gi-

measurable, it holds that

E[η2i |Gi] = σ̄−2i,h 1{θ
∗
h ∈ Či,h ∩ C̃i,h}[VhVi,h+1](s

i
h, a

i
h)

≤ σ̄−2i,h 1{θ
∗
h ∈ Či,h ∩ C̃i,h}

[
[V̄i,hVi,h+1](s

i
h, a

i
h)

+ min
{
H2,

∥∥∥Σ̃−1/2i,h φV 2
i,h+1

(sih, a
i
h)
∥∥∥
2

∥∥∥Σ̃1/2
i,h

(
θ̃i,h − θ∗h

)∥∥∥
2

}
+ min

{
H2, 2H

∥∥∥Σ̂−1/2i,h φVi,h+1
(sih, a

i
h)
∥∥∥
2

∥∥∥Σ̂1/2
i,h

(
θ̂i,h − θ∗h

)∥∥∥
2

}]
≤ σ̄−2i,h

[
[V̄i,hVi,h+1](s

i
h, a

i
h) + min

{
H2, β̃i

∥∥∥Σ̃−1/2i,h φV 2
i,h+1

(sih, a
i
h)
∥∥∥
2

}
+ min

{
H2, 2Hβ̌i

∥∥∥Σ̂−1/2i,h φVi,h+1
(sih, a

i
h)
∥∥∥
2

}]
= 1,

where the first inequality holds due to Lemma 15, the second inequality holds due to the indicator
function, the last equality holds due to the definition of σ̄i,h. Now, let yi = 〈µ∗,xi〉 + ηi, Zi =
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λI +
∑i

i′=1 xi′x
>
i′ , bi =

∑i
i′=1 xi′yi′ and µi = Z−1i bi. Then, by Theorem 2, with probability at

least 1− δ/H , ∀k ≤ K,

‖µk − µ∗‖Zi ≤ 8
√
d log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB = β̂k, (55)

where the equality uses the definition of β̂k. Let E ′ be the event when θ∗h ∈ ∩k≤K Čk,h ∩ C̃k,h and
(55) hold. By the union bound, P(E ′) ≥ 1− 3δ/H .

We now show that θ∗h ∈ Ĉk,h holds on E ′. For this note that on E ′, for all k ≤ K, µk = θ̂k+1,h

for any k ≤ K. Indeed, on this event, for any i ≤ K,

yi = σ̄−1i,h
(
〈θ∗h,φVi,h+1

(sih, a
i
h)〉+ 1{θ∗h ∈ Či,h ∩ C̃i,h}

[
Vi,h+1(s

i
h+1)− 〈φVi,h+1

(sih, a
i
h),θ∗〉

])
= σ̄−1i,hVi,h+1(s

i
h+1),

which does imply the claim. Therefore, by the definition of Ĉk,h and since on E ′ (55) holds, we get
that on E ′, the relation θ∗h ∈ Ĉk,h also holds. Finally, taking union bound over h and substituting
(53) and (54) into Lemma 15 shows that with probability at least 1− 3δ,

θ∗h ∈ ∩k,hĈk,h ∩ C̃k,h (56)

To finish our proof, it is thus sufficient to show that on the event when (56) holds, it also holds
that ∣∣[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h.

However, this is immediate from Lemma 15 and the definition of Ek,h.

D.2. Proof of Theorem 6

In this subsection we prove Theorem 6. The proof is broken down into a number of lemmas.
However, first we need the Azuma-Hoeffding inequality:

Lemma 16 (Azuma-Hoeffding inequality, Azuma 1967) Let M > 0 be a constant. Let {xi}ni=1

be a martingale difference sequence with respect to a filtration {Gi}i (E[xi|Gi] = 0 a.s. and xi is
Gi+1-measurable) such that for all i ∈ [n], |xi| ≤M holds almost surely. Then, for any 0 < δ < 1,
with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

For the remainder of this subsection, let E denote the event when the conclusion of Lemma 5 holds.
Then Lemma 5 suggests P(E) ≥ 1− 3δ. We introduce another two events E1 and E2:

E1 =

{
∀h′ ∈ [H],

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
≤ 4H

√
2T log(H/δ)

}
,
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E2 =

{ K∑
k=1

H∑
h=1

[VhV πk

h+1](s
k
h, a

k
h) ≤ 3(HT +H3 log(1/δ))

}
.

Then we have P(E1) ≥ 1 − δ and P(E2) ≥ 1 − δ. The first one holds since [Ph(Vk,h+1 −
V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1−V πk

h+1](s
k
h+1) forms a martingale difference sequence and |[Ph(Vk,h+1−

V πk

h+1)](s
k
h, a

k
h)−[Vk,h+1−V πk

h+1](s
k
h+1)| ≤ 4H . Applying the Azuma-Hoeffding inequality (Lemma

16), we find that with probability at least 1− δ, simultaneously for all h′ ∈ [H], we have

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
≤ 4H

√
2T log(H/δ), (57)

which implies P(E1) ≥ 1− δ. That P(E2) ≥ 1− δ holds is due to the following lemma:

Lemma 17 (Total variance lemma, Lemma C.5, Jin et al. 2018) With probability at least 1− δ,
we have

K∑
k=1

H∑
h=1

[VhV πk

h+1](s
k
h, a

k
h) ≤ 3(HT +H3 log(1/δ)).

Remark 18 Maillard et al. (2014); Zanette and Brunskill (2019) considered a setting where the
variance of the optimal value function V ∗ is bounded by some quantity Q∗. Under this setting, to
bound the summation of variances of value functions, we can also obtain a tighter bound based on
Q∗ instead of H and T , as shown in Lemma 17.

We now prove the following three lemmas based on E , E1, E2.

Lemma 19 Let Qk,h, Vk,h be defined in Algorithm 2. Then, on the event E , for any s, a, k, h we
have that Q∗h(s, a) ≤ Qk,h(s, a), V ∗h (s) ≤ Vk,h(s).

Proof Since E holds, we have for any k ∈ [K] and h ∈ [H], θ∗h ∈ Ĉk,h. We prove the statement by
induction. The statement holds for h = H + 1 since Qk,H+1(·, ·) = 0 = Q∗H+1(·, ·). Assume the
statement holds for h + 1. That is, Qk,h+1(·, ·) ≥ Q∗h+1(·, ·), Vk,h+1(·) ≥ V ∗h+1(·). Given s, a, if
Qk,h(s, a) ≥ H , then Qk,h(s, a) ≥ H ≥ Q∗h(s, a). Otherwise, we have

Qk,h(s, a)−Q∗h(s, a)

= 〈φVk,h+1
(s, a), θ̂k,h〉+ β̂k

∥∥∥Σ̂−1/2k,h φVk,h+1
(s, a)

∥∥∥
2
− 〈φVk,h+1

(s, a),θ∗h〉

+ PhVk,h+1(s, a)− PhV ∗h+1(s, a)

≥ β̂k
∥∥∥Σ̂−1/2k,h φVk,h+1

(s, a)
∥∥∥
2
−
∥∥∥Σ̂1/2

k,h (θ̂k,h − θ∗h)
∥∥∥
2

∥∥∥Σ̂−1/2k,h φVk,h+1
(s, a)

∥∥∥
2

+ PhVk,h+1(s, a)− PhV ∗h+1(s, a)

≥ PhVk,h+1(s, a)− PhV ∗h+1(s, a)

≥ 0,

where the first inequality holds due to Cauchy-Schwarz, the second inequality holds by the assump-
tion that θ∗h ∈ Ĉk,h, the third inequality holds by the induction assumption and because Ph is a
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monotone operator with respect to the partial ordering of functions. Therefore, for all s, a, we have
Qk,h(s, a) ≥ Q∗h(s, a), which implies Vk,h(s) ≥ V ∗h (s), finishing the inductive step and thus the
proof.

Lemma 20 Let Vk,h, σ̄k,h be defined in Algorithm 2. Then, on the event E ∩ E1, we have

K∑
k=1

[
Vk,1(s

k
1)− V πk

1 (sk1)
]
≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2Hd log(1 +K/λ) + 4H
√

2T log(H/δ),

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h) ≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2dH3 log(1 +K/λ) + 4H2
√

2T log(H/δ).

Proof Assume that E ∩ E1 holds. We have

Vk,h(skh)− V πk

h (skh) ≤ 〈θ̂k,h,φVk,h+1
(skh, a

k
h)〉 − [PhV πk

h+1](s
k
h, a

k
h) + β̂k

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

≤
∥∥∥Σ̂1/2

k,h (θ̂k,h − θ∗h)
∥∥∥
2

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

+ [PhVk,h+1](s
k
h, a

k
h)− [PhV πk

h+1](s
k
h, a

k
h) + β̂k

∥∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥∥
2

≤ [PhVk,h+1](s
k
h, a

k
h)− [PhV πk

h+1](s
k
h, a

k
h) + 2β̂k

∥∥∥Σ̂1/2
k,hφVk,h+1

(skh, a
k
h)
∥∥∥
2
,

(58)

where the first inequality holds due to the definition of Vk,h and the Bellman equation for V πk

h , the
second inequality holds due to Cauchy-Schwarz inequality and because we are in a linear MDP, the
third inequality holds by the fact that on E , θ∗h ∈ Ĉk,h. Meanwhile, since Vk,h(skh)−V πk

h (skh) ≤ H ,
we also have

Vk,h(skh)− V πk

h (skh)

≤ min
{
H, 2β̂k

∥∥∥Σ̂1/2
k,hφVk,h+1

(skh, a
k
h)
∥∥∥
2

+ [PhVk,h+1](s
k
h, a

k
h)− [PhV πk

h+1](s
k
h, a

k
h)
}

≤ min
{
H, 2β̂k

∥∥∥Σ̂1/2
k,hφVk,h+1

(skh, a
k
h)
∥∥∥
2

}
+ [PhVk,h+1](s

k
h, a

k
h)− [PhV πk

h+1](s
k
h, a

k
h)

≤ 2β̂kσ̄k,h min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥
2

}
+ [PhVk,h+1](s

k
h, a

k
h)− [PhV πk

h+1](s
k
h, a

k
h),

(59)

where the second inequality holds since the optimal value function dominates the value function
of any policy, and thus on E , by Lemma 19, Vk,h+1(·) ≥ V πk

h+1(·), the third inequality holds since
2β̂kσ̄k,h ≥

√
d ·H/

√
d ≥ H . By (59) we have

Vk,h(skh)− V πk

h (skh)− [Vk,h+1(s
k
h+1)− V πk

h+1(s
k
h+1)] (60)

≤ 2β̂kσ̄k,h min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥
2

}
+ Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1). (61)
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Summing up these inequalities for k ∈ [K] and h = h′, . . . ,H ,

K∑
k=1

[
Vk,h′(sk,h′)− V πk

h′ (sk,h′)
]

≤ 2

K∑
k=1

H∑
h=h′

β̂kσ̄k,h min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥
2

}
+

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
≤ 2

K∑
k=1

H∑
h=1

β̂kσ̄k,h min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥
2

}
︸ ︷︷ ︸

I1

+4H
√

2T log(H/δ), (62)

where the first inequality holds by a telescoping argument and since Vk,H+1(·) = V πk

h+1(·) = 0, the
second inequality holds due to E1. To further bound I1, we have

I1 ≤

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h

√√√√ K∑
k=1

H∑
h=1

β̂2k min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥2
2

}

≤ β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥2
2

}

≤ β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2Hd log(1 +K/λ), (63)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds since
β̂k ≤ β̂K , the third inequality holds due to Lemma 12 with the fact that ‖φVk,h+1

(skh, a
k
h)/σ̄k,h‖2 ≤

‖φVk,h+1
(skh, a

k
h)‖2 ·

√
d/H ≤

√
d. Substituting (63) into (62) gives

K∑
k=1

[
Vk,h′(sk,h′)− V πk

h′ (sk,h′)
]
≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2Hd log(1 +K/λ) + 4H
√

2T log(H/δ) .

(64)

Choosing h′ = 1 here we get the first inequality that was to be proven. To get the second inequality,
note that

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

=
K∑
k=1

H∑
h=2

[Vk,h − V πk

h ](skh)
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+
K∑
k=1

H∑
h=1

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2dH3 log(1 +KH/(dλ)) + 4H2
√

2T log(H/δ),

where to get the last inequality we sum up (64) for h′ = 2, . . . ,H , and use the inequality that defines
E1, which is followed by loosening the resulting bound.

The next lemma is concerned with bounding
∑K

k=1

∑H
h=1 σ̄

2
k,h on E ∩ E2:

Lemma 21 Let Vk,h, σ̄k,h be defined in Algorithm 2. Then, on the event E ∩ E2, we have

K∑
k=1

H∑
h=1

σ̄2k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H
K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃K
√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√

2dH log(1 +K/λ).

Proof Assume that E ∩ E2 holds. Since we are on E , by Lemma 19, for all k, h, Vk,h(·) ≥ V ∗h (·) ≥
V πk

h (·). Now, we calculate

K∑
k=1

H∑
h=1

σ̄2k,h

≤
K∑
k=1

H∑
h=1

[
H2/d+ [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

]
= H2T/d+

K∑
k=1

H∑
h=1

[
[VhVk,h+1](s

k
h, a

k
h)− [VhV πk

h+1](s
k
h, a

k
h)
]

︸ ︷︷ ︸
I1

+ 2
K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2

+
K∑
k=1

H∑
h=1

[VhV πk

h+1](s
k
h, a

k
h)︸ ︷︷ ︸

I3

+
K∑
k=1

H∑
h=1

[
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)− Ek,h

]
︸ ︷︷ ︸

I4

,

(65)

where the first inequality holds due to the definition of σ̄k,h. To bound I1, we have

I1 ≤
K∑
k=1

H∑
h=1

[PhV 2
k,h+1](s

k
h, a

k
h)− [Ph(V πk

h+1)
2](skh, a

k
h)

≤ 2H

K∑
k=1

H∑
h=1

[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h),
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where the first inequality holds since V πk

h+1(·) ≤ V ∗h+1(·) ≤ Vk,h+1(·), the second inequality holds
since V πk

h+1(·), Vk,h+1(·) ≤ H . To bound I2, we have

I2 ≤ 2

K∑
k=1

H∑
h=1

β̃k min
{

1,
∥∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥∥
2

}
+ 4H

K∑
k=1

H∑
h=1

β̌kσ̄k,h min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥
2

}

≤ 2β̃K
√
T

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥∥2
2

}

+ 7β̌KH
2
√
T

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥∥2
2

}
≤ 2β̃K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√

2dH log(1 +K/λ),

where the first inequality holds since β̃k ≥ H2 and β̌kσ̄k,h ≥
√
d · H/

√
d = H , the second

inequality holds due to Cauchy-Schwarz inequality, β̃k ≤ β̃K , β̌k ≤ β̌K , and the following bound
on σ̄k,h due to the definitions of σ̄k,h, [V̄k,hVk,h+1](s

k
h, a

k
h) and Ek,h:

σ̄2k,h = max
{
H2/d, [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

}
≤ max

{
H2/d,H2 + 2H2

}
= 3H2 .

Finally, the third inequality holds due to Lemma 12 together with the facts that
∥∥φV 2

k,h+1
(skh, a

k
h)
∥∥
2
≤

H2 and
∥∥φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
≤
∥∥φVk,h+1

(skh, a
k
h)
∥∥
2
·
√
d/H ≤

√
d. To bound I3, since E2

holds, we have

I3 ≤ 3(HT +H3 log(1/δ)).

Finally, due to Lemma 5, we have I4 ≤ 0. Substituting I1, I2, I3, I4 into (65) ends our proof.

With all above lemmas, we are ready to prove Theorem 6.
Proof [Proof of Theorem 6] By construction, taking a union bound, we have with probability 1−5δ
that E ∩ E1 ∩ E2 holds. In the remainder of the proof, assume that we are on this event. Thus, we
can also use the conclusions of Lemmas 19, 20 and 21. We bound the regret as

Regret(Mθ∗ ,K) ≤
K∑
k=1

[
Vk,1(s

k
1)− V πk

1 (sk1)
]

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2Hd log(1 +KH/(dλ)) + 4H
√

2T log(H/δ)

= Õ

(√
dH
√
d

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h +H
√
T

)
, (66)
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where the first inequality holds due to Lemma 19, the second inequality holds due to Lemma 20,
the equality holds since when λ = 1/B2,

β̂K = 8
√
d log(1 +K/λ) log(4K2H/δ) + 4

√
d log(4K2H/δ) +

√
λB = Θ̃(

√
d).

It remains to bound
∑K

k=1

∑H
h=1 σ̄

2
k,h. For this we have

K∑
k=1

H∑
h=1

σ̄2k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H
K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃K
√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√

2dH log(1 +K/λ)

≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H

·
(

2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2k,h
√

2dH3 log(1 +K/λ) + 4H2
√

2T log(H/δ)

)
+ 2β̃K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√

2dH log(1 +K/λ)

= Õ

(√√√√ K∑
k=1

H∑
h=1

σ̄2k,h

√
d2H5 +H2T/d+ TH +

√
Td1.5H2.5 +

√
TH3

)
. (67)

where the first inequality holds due to Lemma 21, the second inequality holds due to Lemma 20,
the last equality holds due to the fact that β̂K = Õ(

√
d), λ = 1/B2,

β̌K = 8d
√

log(1 +K/λ) log(4k2H/δ) + 4
√
d log(4k2H/δ) +

√
λB = Θ̃(d),

β̃K = 8
√
dH4 log(1 +KH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB = Θ̃(

√
dH2).

Therefore, by the fact that x ≤ a
√
x+ b implies x ≤ c(a2 + b) with some c > 0, (67) yields that

K∑
k=1

H∑
h=1

σ̄2k,h ≤ Õ
(
d2H5 +H2T/d+ TH +

√
Td1.5H2.5 +

√
TH3

)
= Õ

(
d2H5 + d4H3 + TH +H2T/d

)
, (68)

where the equality holds since
√
Td1.5H2.5 ≤ (TH2/d + d4H3)/2 and

√
TH3 ≤ (H2T/d +

H4d)/2. Substituting (68) into (66), we have

Regret
(
MΘ∗ ,K

)
= Õ

(√
d2H2 + dH3

√
T + d2H3 + d3H2

)
,

finishing the proof.

Remark 22 To derive our upper bound of regret, we actually only need a weaker assumption
on reward functions rh such that for any policy π, we have 0 ≤

∑H
h=1 rh(sh, ah) ≤ H , where

ah = πh(sh), sh+1 ∼ P(·|sh, ah). Therefore, under the assumption 0 ≤
∑H

h=1 rh(sh, ah) ≤ 1
studied in Dann and Brunskill (2015); Jiang and Agarwal (2018); Wang et al. (2020a); Zhang
et al. (2021a), by simply rescaling all parameters in Algorithm 2 by a factor of 1/H , UCRL-VTR+

achieves the regret Õ(
√
d2 + dH

√
T + d2H2 + d3H). Zhang et al. (2021a) has shown that in the

tabular, homogeneous case with this normalization the regret is Õ(
√
|S||A|K+|S|2|A|), regardless

of the value of H . It remains an interesting open question whether this can be also achieved in
homogeneous linear mixture MDPs.
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Appendix E. Proof of Lower Bound Results in Section 5

E.1. Overview of the Lower Bound Construction

x1 ...

· · ·

x2

1− δ − 〈µh,a1〉

δ+

〈µh,a1〉
· · ·

... · · · ...

· · ·

1− δ − 〈µh,a1〉

δ+

〈µh,a1〉

xH

· · ·

1

... xH+1

1

1− δ − 〈µh,a1〉

δ+

〈µh,a1〉

xH+2

Figure 1: The transition kernel Ph of the class of hard-to-learn linear mixture MDPs. The kernel
Ph is parameterized by µh ∈ {−∆,∆}d−1 for some small ∆, δ = 1/H and the actions
are from a ∈ {+1,−1}d−1. The learner knows this structure, but does not know µ =
(µ1, . . . ,µH).

To prove the lower bound, we construct a hard instance M(S,A, H, {rh}, {Ph}) based on the
hard-to-learn MDPs introduced in Zhou et al. (2021). The transitions for stage h of the MDP are
shown in Figure 1. The state space S consists of states x1, . . . xH+2, where xH+1 and xH+2 are
absorbing states. There are 2d−1 actions and A = {−1, 1}d−1. Regardless of the stage h ∈ [H],
no transition incurs a reward except transitions originating at xH+2, which, as a result, can be
regarded as the goal state. Under Ph, the transition structure is as follows: As noted before, xH+1

and xH+2 are absorbing regardless of the action taken. If the state is xi with i ≤ H , under action
a ∈ {−1, 1}d−1, the next state is either xH+2 or xi+1, with respective probabilities δ+ 〈µh,a〉 and
1 − (δ + 〈µh,a〉), where δ = 1/H and µh ∈ {−∆,∆}d−1 with ∆ =

√
δ/K/(4

√
2) so that the

probabilities are well-defined.
This is an inhomogeneous, linear mixture MDP. In particular, Ph(s′|s,a) = 〈φ(s′|s,a),θh〉,

with

φ(s′|s,a) =


(α(1− δ),−βa>)>, s = xh, s

′ = xh+1, h ∈ [H] ;

(αδ, βa>)>, s = xh, s
′ = xH+2, h ∈ [H] ;

(α,0>)>, s ∈ {xH+1, xH+2}, s′ = s ;

0, otherwise .

,

θh = (1/α,µ>h /β)>, h ∈ [H],

where α =
√

1/(1 + ∆(d− 1)), β =
√

∆/(1 + ∆(d− 1)). It can be verified that φ(·|·, ·) and
{θh} satisfy the requirements of aB-bounded linear mixture MDPs. In particular, (1) holds. Indeed,
if we let V : S → [0, 1] be any bounded function then for s = xH+1 or s = xH+2, φV (s,a) =
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∑
s′ φ(s′|s,a)V (s′) = (αV (s),0>)> and hence ||φV (s,a)||2 ≤ 1, while for s = xh with h ∈ [H],

we have

||φV (s,a)||22 = α2(V (xH+2)δ + V (xh+1)(1− δ))2 + β2(V (xH+2)− V (xh+1))
2||a||22

≤ α2 + (d− 1)β2

= 1. (69)

Meanwhile, since K ≥ (d− 1)/(32H(B − 1)), we have

‖θh‖22 =
1

α2
+
‖µh‖22
β2

= (1 + ∆(d− 1))2 = (1 +
√
δ/K/4

√
2 · (d− 1))2 ≤ B2.

The initial state in each episode k is sk,1 = x1. Note that if the agent transitions to xH+2 it remains
there until the end of the episode. Due to the special structure of the MDP, at any stage h ∈ [H],
either the state is xH+2 or it is xh. Further, state xh can only be reached one way, through states
x1, x2, . . . , xh−1. As such, knowing the current state is equivalent to knowing the history from
the beginning of the episode and hence policies that simply decide at the beginning of the episode
what actions to take upon reaching a state are as powerful as those that can use the “within episode”
history.

Now, clearly, since the only rewarding transitions are those from xH+2, the optimal strategy in
stage h when in state xh is to take action argmaxa∈A〈µh,a〉. Intuitively, the learning problem is
not harder than minimizing the regret on H linear bandit problems with a shared action set A =
{−1,+1}d−1 and where the payoff on bandit h ≤ H/2 of taking action a ∈ A is Ω(H)Z, where Z
is drawn from a Bernoulli with parameter δ + 〈µh,a〉. Some calculation shows that the reverse is
also true: Thanks to the choice of δ, (1− δ)H/2 ≈ const, hence there is sufficiently high probability
of reaching all stages including stageH/2, even under the optimal policy. Hence, the MDP learning
problem is not easier than solving the first Ω(H/2) bandit problems. Choosing ∆ = Θ(

√
δ/K),

for K large enough, (d − 1)∆ ≤ δ so the probabilities are well defined. Furthermore, on each of
the bandit, the regret is at least Ω(dH

√
Kδ). Since there are Ω(H/2) bandit problems, plugging in

the choice of δ, we find that the total regret is Ω(dH
√
KH) and the result follows by noting that

T = KH .

Remark 23 Our lower bound analysis can be adapted to prove a lower bound for linear MDPs pro-
posed in (Yang and Wang, 2019; Jin et al., 2020). In specific, based on our constructed linear mix-
ture MDPM in the proof sketch of Theorem 8, we can construct a linear MDP M̄(S,A, H, {r̄h}, {P̄h})
as follows. For each stage h ∈ [H], the transition probability kernel P̄h and the reward function r̄h
are defined as P̄h(s′|s,a) = 〈φ(s,a),µh(s′)〉 and r̄h(s,a) = 〈φ(s,a), ξh〉, where φ(s, a),µ(s′) ∈
Rd+1 are two feature mappings, and ξh ∈ Rd+1 is a parameter vector. Here, we chooseφ(s,a),µh(s′), ξh ∈
Rd+1 as follows:

φ(s,a) =

{
(α, βa>, 0)>, s = xh, h ∈ [H + 1];

(0,0>, 1)>, s = xH+2.
,

µh(s′) =


((1− δ)/α,−µ>h /β, 0)>, s′ = xh+1;

(δ/α,µ>h /β, 1)>, s′ = xH+2;

0, otherwise,

40



NEARLY MINIMAX OPTIMAL REINFORCEMENT LEARNING FOR LINEAR MIXTURE MDPS

and ξh = (0>, 1)>. It can be verified that max{‖ξh‖2, ‖µh(S)‖2} ≤
√
d+ 1, and ‖φ(s,a)‖2 ≤ 1

for any (s, a) ∈ S × A. In addition, for any h ∈ [H], we have Ph(s′|s, a) = P̄h(s′|s, a) and
rh(s, a) = r̄h(s, a) when s = xh or xH+2. Since at stage h, s can be either xh or xH+2, we
can show that the constructed linear MDP M̄ has the same transition probability as the the linear
mixture MDP M , which suggests the same lower bound Ω(dH

√
T ) in Theorem 8 also holds for

linear MDP.

E.2. Proof of Theorem 8

We select δ = 1/H as suggested in Appendix E.1. For brevity, with a slight abuse of notation,
we will use Mµ to denote the MDP described in Appendix E.1 corresponding to the parameters
µ = (µ1, . . . ,µH). We will use Eµ denote the expectation underlying the distribution generated
from the interconnection of a policy and MDP Mµ; since the policy is not denoted, we tacitly
assume that the identity of the policy will always be clear from the context. We will similarly use
Pµ to denote the corresponding probability measure.

We start with a lemma that will be the basis of our argument that shows that the regret in our
MDP can be lower bounded by the regret of H/2 bandit instances:

Lemma 24 Suppose H ≥ 3 and 3(d− 1)∆ ≤ δ. Fix µ ∈ ({−∆,∆}d−1)H . Fix a possibly history
dependent policy π and define āπh = Eµ[ah | sh = xh, s1 = x1]: the expected action taken by the
policy when it visits state xh in stage h provided that the initial state is x1. Then, letting V ∗ (V π)
be the optimal value function (the value function of policy π, respectively), we have

V ∗1 (x1)− V π
1 (x1) ≥

H

10

H/2∑
h=1

(
max
a∈A
〈µh,a〉 − 〈µh, āπh)〉

)
.

Proof Fix µ. Since µ is fixed, we drop the subindex from P and E. Since A = {+1,−1}d−1 and
µh ∈ {−∆,∆}d−1, we have (d − 1)∆ = maxa∈A〈µh,a〉. Recall the definition of the value of
policy π in state x1:

V π
1 (x1) = E

[ H∑
h=1

rh(sh, ah)

∣∣∣∣s1 = x1, ah ∼ πh(·|s1, a1, . . . , sh−1, ah−1, sh)

]
. (70)

Note that by the definition of our MDPs, only xH+2 satisfies that rh(xH+2,a) = 1, all other rewards
are zero. Also, once entered, the process does not leave xH+2. Therefore,

V π
1 (x1) =

H−1∑
h=1

(H − h)P(Nh|s1 = x1). (71)

where Nh is the event of visiting state xh in stage h and then entering xH+2:

Nh = {sh+1 = xH+2, sh = xh} . (72)

By the law of total probability, the Markov property and the definition of Mµ,

P(sh+1 = xH+2|sh = xh, s1 = x1)
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=
∑
a∈A

P(sh+1 = xH+2|sh = xh, ah = a)P(ah = a|sh = xh, s1 = x1)

=
∑
a∈A

(δ + 〈µh,a〉)P(ah = a|sh = xh, s1 = x1)

= δ + 〈µh, āπh〉 ,

where the last equality used that by definition, āπh =
∑
a∈A P(ah = a|sh = xh, s1 = x1)a. It also

follows that P(sh+1 = xh+1|sh = xh, s1 = x1) = 1− (δ + 〈µh, āπh〉). Hence,

P(Nh) = (δ + 〈µh, āπh〉)
h−1∏
j=1

(1− δ − 〈µj , āπj 〉) . (73)

Defining ah = 〈µh, āπh〉, we get that

V π
1 (x1) =

H∑
h=1

(H − h)(ah + δ)
h−1∏
j=1

(1− aj − δ) .

Working backwards, it is not hard to see that the optimal policy must take at stage the action
that maximizes 〈µh,a〉. Since maxa∈A〈µh,a〉 = (d− 1)∆, we get

V ∗1 (x1) =
H∑
h=1

(H − h)(1− (d− 1)∆− δ)h−1((d− 1)∆ + δ).

For i ∈ [H], introduce

Si =
H∑
h=i

(H − h)
h−1∏
j=i

(1− aj − δ)(ah + δ), Ti =
H∑
h=i

(H − h)(1− (d− 1)∆− δ)h−i((d− 1)∆ + δ).

Then V ∗1 (x1)− V π
1 (x1) = T1 − S1. To lower bound T1 − S1, first note that

Si = (H − i)(ai + δ) + Si+1(1− ai − δ), Ti = (H − i)((d− 1)∆ + δ) + Ti+1(1− (d− 1)∆− δ),

which gives that

Ti − Si = (H − i− Ti+1)((d− 1)∆− ai) + (1− ai − δ)(Ti+1 − Si+1). (74)

Therefore by induction, we get that

T1 − S1 =

H−1∑
h=1

((d− 1)∆− ah)(H − h− Th+1)

h−1∏
j=1

(1− aj − δ). (75)

To further bound (75), first we note that Th can be written as the following closed-form expression:

Th =
(1− (d− 1)∆− δ)H−h − 1

(d− 1)∆ + δ
+H − h+ 1− (1− (d− 1)∆− δ)H−h,
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Hence, for any h ≤ H/2,

H − h− Th+1 =
1− (1− (d− 1)∆− δ)H−h

(d− 1)∆ + δ
+ (1− (d− 1)∆− δ)H−h

≥ 1− (1− (d− 1)∆− δ)H/2

(d− 1)∆ + δ
≥ H/3, (76)

where the last inequality holds since 3(d− 1)∆ ≤ δ = 1/H and H ≥ 3. Furthermore we have

h−1∏
j=1

(1− aj − δ) ≥ (1− 4δ/3)H ≥ 1/3, (77)

where the first inequality holds since aj ≤ (d − 1)∆, 3(d − 1)∆ ≤ δ, the second one holds since
δ = 1/H and H ≥ 3. Therefore, substituting (76) and (77) into (75), we have

V ∗1 (x1)− V π
1 (x1) = T1 − S1 ≥

H

10
·
H/2∑
h=1

((d− 1)∆− ah),

which finishes the proof.

We also need a lower bound on the regret on linear bandits with the hypercube action set A =
{−1, 1}d−1, Bernoulli bandits with linear mean payoff. While the proof technique used is standard
(cf. Lattimore and Szepesvári 2020), we give the full proof as the “scaling” of the reward parameters
is nonstandard:

Lemma 25 Fix a positive real 0 < δ ≤ 1/3, and positive integers K, d and assume that K ≥
d2/(2δ). Let ∆ =

√
δ/K/(4

√
2) and consider the linear bandit problems Lµ parameterized with

a parameter vector µ ∈ {−∆,∆}d and action set A = {−1, 1}d so that the reward distribution
for taking action a ∈ A is a Bernoulli distribution B(δ + 〈µ∗,a〉). Then for any bandit algorithm
B, there exists a µ∗ ∈ {−∆,∆}d such that the expected pseudo-regret of B over first K steps on
bandit Lµ∗ is lower bounded as follows:

Eµ∗Regret(K) ≥ d
√
Kδ

8
√

2
.

Note that the expectation is with respect to a distribution that depends both on B and µ∗, but since
B is fixed, this dependence is hidden.
Proof Let ak ∈ A = {−1, 1}d denote the action chosen in round k. Then for any µ ∈ {−∆,∆}d,
the expected pseudo regret EµRegret(K) corresponding to µ satisfies

EµRegret(K) =
K∑
k=1

Eµ(max
a∈A
〈µ,a〉 − 〈µ,ak〉)

= ∆
K∑
k=1

d∑
j=1

Eµ 1{sgn([µ]j) 6= sgn([ak]j)}
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= ∆

d∑
j=1

K∑
k=1

Eµ 1{sgn([µ]j) 6= sgn([ak]j)}︸ ︷︷ ︸
Nj(µ)

, (78)

where for a vector x, we use [x]j to denote its jth entry. Let µj ∈ {−∆,∆}d denote the vector
which differs from µ at its jth coordinate only. Then, we have

2
∑
µ

EµRegret(K) = ∆
∑
µ

d∑
j=1

(EµNj(µ) + EµjNj(µ
j))

= ∆
∑
µ

d∑
j=1

(K + EµNj(µ)− EµjNj(µ))

≥ ∆
∑
µ

d∑
j=1

(K −
√

1/2K
√

KL(Pµ,Pµj )), (79)

where the inequality holds due to Nj(µ) ∈ [0,K] and Pinsker’s inequality (Exercise 14.4 and Eq.
14.12, Lattimore and Szepesvári 2020), Pµ denotes the joint distribution over the all possible reward
sequences (r1, . . . , rK) ∈ {0, 1}K of lengthK, induced by the interconnection of the algorithm and
the bandit parameterized by µ. By the chain rule of relative entropy, KL(Pµ,Pµj ) can be further
decomposed as (cf. Exercise 14.11 of Lattimore and Szepesvári 2020),

KL(Pµ,Pµj ) =

K∑
k=1

Eµ[KL(Pµ(rk|r1:k−1),Pµj (rk|r1:k−1))]

=
K∑
k=1

Eµ[KL(B(δ + 〈ak,µ〉), (B(δ + 〈ak,µj〉))]

≤
K∑
k=1

Eµ
[

2〈µ− µj ,ak〉2

〈µ,ak〉+ δ

]
≤ 16K∆2

δ
, (80)

where the second equality holds since the round k reward’s distribution is the Bernoulli distribution
B(δ + 〈ak,µ〉) in the environment parameterized by µ, the first inequality holds since for any
two Bernoulli distribution B(a) and B(b), we have KL(B(a), B(b)) ≤ 2(a − b)2/a when a ≤
1/2, a+b ≤ 1, the second inequality holds sinceµ only differs fromµj at j-th coordinate, 〈µ,ak〉 ≥
−d∆ ≥ −δ/2. It can be verified that these requirements hold when δ ≤ 1/3, d∆ ≤ δ/2. Therefore,
substituting (80) into (79), we have

2
∑
µ

EµRegret(K) ≥
∑
µ

∆d(K −
√

2K3/2∆/
√
δ) =

∑
µ

d
√
Kδ

4
√

2
,

where the equality holds since ∆ =
√
δ/K/(4

√
2). Selecting µ∗ which maximizes EµRegret(K)

finishes the proof.
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With this, we are ready to prove Theorem 8.
Proof [Proof of Theorem 8] We can verify that the selection of K, d,H, δ satisfy the requirement
of Lemma 24 and Lemma 25. Let πk denote the possibly nonstationary policy that is executed in
episode k given the history up to the beginning of the episode. Then, by Lemma 24, we have

EµRegret
(
Mµ,K

)
= Eµ

[ K∑
k=1

[V ∗1 (x1)− V πk

1 (x1)]

]

≥ H

10

H/2∑
h=1

Eµ
[ K∑
k=1

(
max
a∈A
〈µh,a〉 − 〈µh, āπkh 〉

)]
︸ ︷︷ ︸

Ih(µ,π)

. (81)

Let µ−h = (µ1, . . . ,µh−1,µh+1, . . . ,µH). Now, every MDP policy π gives rise to a bandit al-
gorithm Bπ,h,µ−h for the linear bandit Lµh

of Lemma 25. This bandit algorithm is such that the
distribution of action it plays in round k matches the distribution of action played by π in stage
h of episode k conditioned on the event that skh = xh, i.e., Pµ,π(akh = ·|skh = xh) with the tacit
assumption that the first state in every episode is x1.

As the notation suggests, the bandit algorithm depends on µ−h. In particular, to play in round
k, the bandit algorithm feeds π with data from the MDP kernels up until the beginning of episode
k: For i 6= h, this can be done by just following Pi since the parameters of these kernels is known
to Bπ,h,µ−h . When i = h, since Ph is not available to the bandit algorithm, every time it is on stage
h, if the state is xh, it feeds the action obtained from π to Lµ and if the reward is 1, it feeds π with
the next state xH+2, otherwise it feeds it with next state xh+1. When i = h and the state is not xh, it
can only be xH+2, in which case the next state fed to π is xH+2 regardless of the action it takes. At
the beginning of episode k, to ensure that state xh is “reached”, π is fed with the states x1, x2, . . . ,
xh. Then, π is queried for its action, which is the action that the bandit plays in round k. Clearly,
by this construction, the distribution of action played in round k by Bπ,h,µ−h matches the target.

Denoting by BanditRegret(Bπ,h,µ−h ,µh) the regret of this bandit algorithm on Lµ, by our con-
struction, Ih(µ, π) = BanditRegret(Bπ,h,µ−h ,µh) for all h ∈ [H/2]. Hence,

sup
µ

EµRegret
(
Mµ,K

)
≥ sup

µ

H

10

H/2∑
h=1

BanditRegret(Bπ,h,µ−h ,µh)

≥ sup
µ

H

10

H/2∑
h=1

inf
µ̃−h

BanditRegret(Bπ,h,µ̃−h ,µh)

=
H

10

H/2∑
h=1

sup
µh

inf
µ̃−h

BanditRegret(Bπ,h,µ̃−h ,µh)

≥ H2

20

(d− 1)
√
Kδ

8
√

2
,

where the last inequality follows by Lemma 25. The result follows by plugging in δ = 1/H and
T = KH .
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