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Abstract

Estimating the effect of a given medi-
cal treatment on individual patients in-
volves evaluating how clinical outcomes
are affected by the treatment in ques-
tion. Robust estimates of the treatment
effect for a given patient with a pre-
specified set of clinical characteristics,
are possible to obtain when there is suf-
ficient common support for these fea-
tures. Essentially, features having the
greatest common support correspond to
regions of significant overlap between
the distributions of the different treat-
ment groups. In observational datasets,
however, all possible treatment options
may not be uniformly represented, and
therefore robust estimation of their ef-
fect may only be possible for the pa-
tients in the overlapping region. In
this work, we propose a Contrastive
Variational Autoencoder (Contrastive-
VAE) to estimate where there is signifi-
cant overlap between patient distribu-
tions corresponding to different treat-
ment options. A Contrastive-VAE ex-
ploits shared information between dif-
ferent groups by modeling the shared
information as arising from a shared
set of latent variables to approximate
distributions for treatment options that
are not well represented in observational
datasets. The result is an improved esti-
mation of the distribution of the groups
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with a small number of data points. By
estimating the likelihood for each group
with annealed importance sampling, we
are able to quantitatively identify the
area of overlap between multiple treat-
ment groups and obtain an effective
confidence interval for the estimated in-
dividual treatment effect.

Keywords: Common Support; Con-
trastive Learning; Variational Autoen-
coder

1. Introduction

Data driven machine learning models are be-
ing applied with ever increasing frequency in
the clinical domain (Esteva et al., 2019). One
fundamental problem that limits their appli-
cation is that most machine learning mod-
els are trained on retro-respective, observa-
tional data (Blom et al., 2019; Mohammed
et al., 2020). This makes it difficult to
identify causal relationships, estimate treat-
ment effects, and make unbiased predictions
when the model is deployed in practice (Ag-
niel et al., 2018). Take clinical risk strat-
ification as an example. A risk score typ-
ically estimates patient risk using a set of
predefined patient characteristics; e.g., pre-
dicting death after a heart attack from pa-
tient demographics and labs available at ad-
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mission(Myers et al., 2017). Although such
models may have significant discriminatory
ability, it is not guaranteed that the chosen
patient features are causally related to the
outcome of interest. Indeed, the existence of
unappreciated confounding factors limits the
one’s ability to make causal statements from
such models. As a case in point, patients
with high risk features who receive aggres-
sive therapies may have a lower adverse event
rate than many patients with low risk fea-
tures because the administered treatments
are effective at lowering the risk of inimical
events (Ambrosino et al., 1995). However,
classifying such patients, with high risk fea-
tures, as low risk is clearly misleading be-
cause their outcome is affected by the treat-
ment decisions of their health care providers.
The risk provided by such a model is there-
fore not an unbiased prediction and may not
be appropriate for many patients.

Traditional causal inference methods on
observational data estimate such treatment
effects by reducing the selection bias via sim-
ple statistical methods like matching and
re-weighting (Rubin, 2006; Rosenbaum and
Rubin, 1983). These methods usually de-
pend on strong assumptions such as un-
confoundedness (de Luna and Johansson,
2014) and common support(Garrido et al.,
2014). Moreover, they typically can only be
applied in the setting of a binary treatment
decision (Shalit et al., 2017). Real word clini-
cal data, by contrast, are much more sophis-
ticated; e.g., these assumptions are usually
hard to meet, and patients are usually given
more than one treatment at a time. Mod-
eling such data requires more complex mod-
eling choices that must deal with class im-
balance and data scarcity, as some complex
treatment decisions may not be well repre-
sented in the dataset.

In this paper, we develop a method that
estimates both the treatment effect and the
common support of this estimate in a multi-

ple treatment group scenario. Furthermore,
the approach effectively addresses the class
imbalance and data scarcity - common prob-
lems that arise when analyzing more than
one treatment at a time. By leveraging this
knowledge, we obtain insights into the ob-
served data and develop more accurate clin-
ical risk scores that can help guide clinical
decision making.

2. Related Work

Common support is a key assumption in
treatment effect estimation models; e.g.,
convariate adjustment and propensity score
matching (Pocock et al., 2002; Dehejia and
Wahba, 2002). Although a number of strate-
gies have been developed to identify and
assess the common support assumption in
treated vs. control scenarios, simple meth-
ods such as comparing bounds of covariates
between groups (Rosenbaum et al., 2010)
might fail when the corresponding covari-
ate distributions and their overlap are com-
plex and non-linear. Other methods usually
can be viewed as a by-product of causal in-
ference models, for example, by bounding
the treatment propensity score (Li et al.,
2018), thresholding data points in match-
ing algorithms (Kallus, 2016), or comparing
individual-specific posterior distributions for
each potential outcome using Bayesian Ad-
ditive Regression Trees (Hill and Su, 2013).
Recently, Johansson et. al. proposed an in-
terpretable assessment by rephrase the prob-
lem into finding minimum volume sets sub-
ject to coverage constraints with Boolean
rule classifiers (Oberst et al., 2020).
However, all of these methods require ac-
curate modeling for each of the treatment
group, and this makes it challenging to
extend them to more than two treatment
groups. Moreover, class imbalance and data
scarcity makes it difficult to build separate
models for individual treatment groups.
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Contrastive learning algorithms provide
a way to learn relationships between two
or more data sets that share some com-
mon information (Severson et al., 2019).
A Contrastive-VAE, for example, leverages
deep neural network structures to learn non-
linear latent variables for both the shared
variation and the unique variation in dis-
tinct treatment groups within a given dataset
(Abid and Zou, 2019). Contrastive-VAE
models can therefore model multiple groups
of data simultaneously and yield improved
performance relative to individual models,
especially in situations of severe class imbal-
ance and data scarcity(Dai et al., 2019).

3. Contrastive-VAE

We propose a Contrastive-VAE to model the
distribution of multiple groups of patients
features and their outcomes. We assume
individual private latent variables exist for
each of the groups, in addition to common
latent variables that model the shared vari-
ation between the different groups. With-
out loss of generality, suppose there exist
two groups of patients who received differ-
ent treatments 7' = 0 and T' = 1 respec-
tively. Denote s € R% as the shared latent
variables between classes, and z+ € R%+
and z~ € R%- as the private latent vari-
ables for each of the two groups. The corre-
sponding generative process for the features
zt,z= € R% and outcomes y*,y~ € R, are
shown in Figure 1 (a). We can write the
generative distributions of the two classes as
follows,

( + y-l-) —
/+ /p(‘,r+7y+|372+)p(3)p(2+)d8d2+ (1)
plx”,y )=

(",y7)
/_ /P(x‘,y‘!s,z_)p(s)p(z_)dsdz_ (2)

Here, p(s) and p(z) are the prior nor-
mal distribution of the latent variables, and
p(zt,yT|s,2z%) and p(z~,y " |s,2z7) are con-
ditional distributions of the two groups given
the latent variables. These conditional dis-
tributions are modeled using a shared neural
network decoder fy, which takes the shared
latent variable and the group specific private
latent variable as input.

Figure 1 (b) shows the structure of
the Contrastive-VAE, where the optimiza-
tion object is the sum of the evidence
lower bounds (ELBO) of each group, i.e.,
L(z*,y") + L(z~,y ™), where

Lt %) > Egy,, oletls. 2D (3)
KL(gy, (slz)lp(s)) — K L(qs_, (zlzT)lIp(z7))
L") 2 Egy gy o ls.2)- (&)
K L(gp, (s|lz7)Ip(s)) — K'L(gp__ (z|27)llp(27))
The above structure can easily be extended
to more than two groups by adding ad-

ditional private latent variables z for new
groups of data.

(a)

®

(b)

Figure 1: (a) Generative model for two
treatment groups (T=0 and T=1).
(b) Structure of Contrastive-VAE
that learns the generative model.
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3.1. Estimating Distribution Overlap

The common support is defined by the distri-
butional overlap between different groups of
patients. For a given patient’s set of clinical

features x, we need to compute
= min{P(z|T = 1),

support(x P(z|T =0)}

— min / / / (2, 913, 2 )p()p(=" ) dydsdz™,

/Z/S/yp(%yls,z‘)p(s)p(z‘)dydsdz—}

()

However, direct computation of the data like-
lihood given an arbitrary generative model is
challenging because the associated integral
over the entire latent space generally does
not have a closed form solution. We therefore
used Annealed Importance Sampling (AIS)
to estimate the likelihood (Wu et al., 2016).
The idea behind AIS is to first find a distri-
bution pg(z) that we can rigorously compute,
and then define K intermediate distributions
between po(z) and pg(z) = p(z). By esti-
mating the ratio between each of the inter-
mediate distributions, the desired probabil-
ity can be obtained by multiplying the esti-
mated ratio and the initial probability:

(6)

where 7 is the ratio estimated by a Markov
Chain Monte Carlo procedure:

MZ AIS’

p1(z, 20) pa(2, 21)
po(l", ZO) pl(iﬂ’ 21)

p(x) = 7po(x)

(7)

pK(xa ZK)
Pr—1(%, 2K)

(8)

Here M is the number of independent
Markov Chains, zg is sampled from the ini-
tial prior distribution po(z), and z for 1 <
k < K are sampled from the transition ker-
nel Tr—1(zk|2K-1)-

WAIS =
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We chose the intermediate distributions to
be

1-PBk

9)

where fg,...,8x are monotonically increasing
numbers from 0 to 1.

pi(z, 2) = po(x, 2)' Popr(w, 2)P

3.2. Estimating Individual Treatment
Effects

We constructed one Contrastive-VAE to
model both the features and the outcome
because this allows us to estimate both the
treatment effect as well as the corresponding
common support for this estimate. Under
the assumption of ignorability, the individ-
ual treatment effect (ITE) can be computed
as,

ITE(z) =ElyT|o,T =1] —E[y |2,T = 0]

/ Y plyt|s, 2 )p(s, 2H ot dydsdz*
yt,s,2F

o

To estimate this conditional probability of
the outcome y given the features x, we used
Gibbs Sampling to sample y while keeping x
fixed.

p(y~|s, 27 )p(s, 2z~ |27 )dydsdz"

»S:%

(10)

3.3. Confidence Interval with Regard
to Distribution Overlap

In order to intuitively explain the effect of
overlap on the estimated ITE, we introduce
a confidence interval with regard to distribu-
tion overlap. The vanilla definition of confi-
dence interval is

— o
ITE +1.96—
<p< + 96\/5
(11)

where o is the standard deviation of the es-
timated treatment effect, which can be esti-
mated using samples from the Contrastive-
VAE. By replacing the number of samples

ITE —1.96——

P 7

=0.95
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to an effective number of samples in overlap
distribution, we get

/N min(P+(z), P~ ()

<< ITE +1.96 N T O =)

(12)

P[ITE —1.96

=0.95

where PT(x) and P~ (z) are probabilities of
the given feature x in the two groups. For
continuous variables, we convert the density
to probabilities by discretizing the feature
space so that the minimum will be a num-
ber between 0 and 1.

4. Experiments on Synthetic Data

4.1. Experimental Design

We designed a series of synthetic data exper-
iments to evaluate a Contrastive-VAE’s abil-
ity to estimate the distributional overlap as
well as the treatment effect. For these exper-
iments we construct two groups of patients.
The first group receives treatment (T=1) and
the second group does not receive the treat-
ment (T=0). We assume that patients data
represent samples from 3D Dirichlet distri-
butions. Samples of 3D Dirichlet distribu-
tions lie in a 2-simplex, a 2D triangle in
3D space, which mimics the realistic scenario
where patient data corresponds a relatively
low dimensional manifold in a high dimen-
sional space (Cayton, 2005). We also assume
that both treatment groups share some infor-
mation - which is typically true in practice.
For example, it is often of interest to assess
the effect of a given therapy on a specific pa-
tient population. Although patients in differ-
ent treatment groups receive different thera-
pies, they nonetheless have the same diag-
nosis and/or disease. To simulate this situa-
tion, we assume one of the marginal distribu-
tions to be the same for different treatment
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groups, i.e.
x* ~ Dir(af,af,05)  (13)
X"~ Diray,a5,05)  (14)

where, af = o and of + a3 +af =a] +
ay +ag . The outcomes for each group is de-
fined by 2 non-linear functions f*: X — Y
and f~ : X — ), that maps the patients
feature x € X’ to an outcome y € Y for ei-
ther received the treatment (7" = 1), or dose
not received (T = 0). We set {x",y" =
fr(xM)} and {x~,y~ = f~(x)} as the ob-
served data, while the counter-factual out-
comes y'* = f~(x1) and ¢/~ = fT(x7) were
concealed from the model and only used for
evaluation of the treatment effect.

In the first experiment, we demonstrate
the distributional overlap of the two groups
of patients can be reproduced by the
Contrastive-VAE. Ground truth probability
density was used to evaluate the density es-
timated by AIS of the trained Contrastive-
VAE. We also compared the Contrastive-
VAE to Kernel Density Estimation (KDE)
and standard VAEs that model the distribu-
tion of each group independently. The KDEs
used a Gaussian kernel and their bandwidths
were decided by a 5-fold cross validation.
Both the KDEs and standard VAEs were
trained separately for different groups of
data, while the contrastive-VAE was trained
with the two groups together. We conducted
the experiments with different levels of class
imbalance.

We did an additional experiment to show
that a Contrastive-VAE can model patients
with more than two treatment groups. This
allows us to extend the model when more
than one treatment is given to patients. For
example, if we want to compare the effect of
treatment A and B, we can find out the over-
lap of three populations, those who received
A, those who received B and those who re-
ceived nothing. Only for patients with sup-
port in all of the three populations, the es-
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timated treatment effect can be thought of
as reliable. In this experiment, we sampled
three groups of data x1, x2 and x3 from three
different Dirichlet distributions. The num-
ber of samples from each of the groups are
imbalanced to mimic the real observational
dataset. A Contrastive-VAE with three pri-
vate latent space, KDE and three indepen-
dent VAEs were compared to reconstruct the
probability distribution and the overlap of
the three groups.

In the second experiment, we trained
a Contrastive-VAE on imbalanced data to
learn the joint distribution of features x and
outcome y. We then use the trained model to
predict the counter-factual outcome for pa-
tients of the 2 groups, i.e. y'* for xT and
y'~ for x7, and the treatment effects for the
2 groups, i.e. yT —y' T and ¥~ —y~. As
the treatment effect estimation is only valid
for patients that satisfied the common sup-
port assumption, we excluded patients with
a overlap probability below a certain thresh-
old. Then the estimated treatment effects
were compared with the ground truth simu-
lated by functions f and f~.

Additionally we demonstrated the confi-
dence interval with regard to common sup-
port using samples from 1 dimensional nor-
mal distributions. We considered three dif-
ferent situations where the distribution of
the two treatment groups are partially over-
lapped, identical or apart from each other. In
each situation, we estimated the treatment
effects with a linear function using the sam-
ples and computed their confidence interval
using equation 12.

4.2. Results of Distributional Overlap
for Two Treatment Groups

Figure 2 shows the result of the first experi-
ment with a highly imbalanced training set,
1000 training points for group 1 vs. 10 points
for group 2. Probability density for the two

46

groups and their overlap are plotted on the
2D simplex, the plane where all the data

exist. It can be seen that the KDE failed

Ground Truth

KDE

2 VAEs

Contrastive VAE

A
A
A
A

Group1

Group 2

Overlap

Figure 2: Values of probability densities
plotted on the 2D simplex with
color. Group 1 and 2 refers to the 2
Dirichlet distributions in the syn-
thetic experiments.

to estimate the probability density for both
of the 2 groups. An alternate approach is
to model each of the two groups separately,
using two independent VAEs - one for each
treatment group. However, the VAE trained
on the group that contains only 10 samples
is a poor presentation of the underlying dis-
tribution for this group.

Figure 4 (a) shows the mean squared er-
ror of the overlap probability estimated by
the above three methods, in different level of
class imbalance. Contrastive-VAE gives the
significantly lower error, compared to KDE
and the standard VAEs, in all situations.
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4.3. Distributional Overlap of Three
Treatment Groups

Figure 3 shows the results of three groups
of data and their overlap. The training set
size of the three groups are 1000, 50 and 10
to mimic the class imbalance in real world
datasets. Similar to the overlap experiments
in 4.2, the KDE failed to restore the smooth
distribution in all three groups. Standard
VAEs works well when efficient training data
were provided for group 1 and 2, but did
poorly for group 3 when only 10 points were
used to training. The Contrastive-VAE was
best able to reproduce the ground truth
probability densities and their overlap.

overtap

Ground Truth

Contrastive VAE

Group 1 Group 2 Group 3 Overlap

Figure 3: Values of probability densities
plotted on the 2D simplex with
color. Group 1-3 refers to the
3 Dirichlet distributions. Train-
ing set size for each of the groups
are 1000, 50 and 10. Recon-
structions of the probability den-
sities and their overlap are com-
pared using KDE, 3 independent
VAEs and the Contrastive-VAE.
Mean squared errors are 0.66 for
KDE, 0.12 for 3 VAEs and 0.08 for
Contrastive-VAE.
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4.4. Results of Treatment effect
estimation

Figure 4 (b) - (c¢) shows the mean squared
error of the estimated treatment effect com-
pared to simulated ground truth. To see the
effect of the common support assumption,
we altered the overlap threshold that decides
which predictions are used to compute the
treatment effect. With 0 overlap probability
threshold, the common support assumption
is completely ignored and the error in the es-
timated treatment effect is the largest. When
non-zero overlap probability thresholds are
used, the treatment effect estimation is only
computed for patients who have an overlap
probability that is larger than this thresh-
old. The mean squared error decreases as
the threshold increases, thereby demonstrat-
ing that accurate estimation of the treatment
effect requires significant common support.

4.5. Simulation Results of Confidence
Interval

Figure 5 shows the simulated results of three
different feature distributions and the esti-
mated ITE as well as its confidence inter-
Figure 5 (a) - (c) show the situation
where the two groups distribution are iden-
tical, where (a) gives the ground truth dis-
tribution of the feature in two treatment
groups. The simulated outcome and train-
ing samples are shown in (b). (c) shows the
estimated ITE and 95% confidence interval
with regard to the overlap distribution. In
this case, we see an extremely small inter-
val in the region that contain training sam-
ples, as the common support assumption is
fully satisfied. (d)-(f) show a partial over-
lapping situation. Here, the interval is dra-
matically smaller in the overlap region, com-
pared to outside, which intuitively demon-
strate the importance of common support for
the ITE estimation. (g) - (i) show the other
extreme case where there’s hardly any over-

val.
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Figure 4: (a) Mean squared error of the overlap probability estimated by KDE, Contrastive-
VAE and 2 standard VAE for 2 Dirichlet distributions with different levels of class
imbalance. (b)-(c) Mean squared error of predicted treatment effect vs. overlap
probability threshold for patients who received the treatment and who did not.
All error bars represent the standard error over 10 bootstraps.

lap between the two distributions, where the
extremely large interval indicates the ITE es-
timation is barely reliable when considering
the common support assumption.

5. Experiments on Real Clinical
Data

5.1. Experimental Design

We applied our method to a real world clin-
ical data set, the Global Registry of Acute
Coronary Events (GRACE). GRACE en-
rolled over 70,000 patients from 250 hospitals
in 30 countries (Fox et al., 2014). Patients
enrolled in the GRACE registry were diag-
nosed with an acute coronary syndrome (a
constellation of signs and symptoms consis-
tent with reduced blood flow to the heart).
Patients were followed and their outcomes
and therapeutic interventions were recorded.

We chose 2 major treatments, Percu-
taneous Coronary Intervention (PCI) and
Coronary Artery Bypass Grafting (CABG),
and trained a Contrastive-VAE with three
separate private latent variables, represent-
ing each of the three groups - those who only
receive a PCI, those who only had a CABG,
and patients who received neither treatment
as the control group.

In order to estimate the effect of the treat-
ments, we consider patients that have com-
mon support in the treated and the control
groups. For example, for the treatment PCI,
we compare the distribution of the patients
who received PCI to those who did not re-
ceive either PCI or CABG, and selected pa-
tients with confidence interval of ITE that
below a threshold. Within the selected pa-
tients, we used the trained Contrastive-VAE
to estimate the treatment effect of PCI,
where the outcome of interest is death within
6 months of presentation. Those patients
with a treatment effect greater than 6% were
considered to be the effective group. A cutoff
of 6% was used because this corresponds to
the prevalence of death in the overall dataset.
The non-effective group, on the other hand,
corresponds to the patients whose estimated
treatment effect is smaller than 6%. We com-
pared patient characteristics between the ef-
fective group and the non-effective group for
different thresholds of confidence interval to
analyze the importance of the common sup-
port.
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Figure 5: Confidence interval with regard to common support for different overlap levels.
(a), (d) and (g) show the ground truth distribution of the two treatment groups.
(b), (e) and (g) show the simulated outcome. (c), (f) and (i) show the predicted
ITE and its confidence interval with regard to common support.

5.2. Treatment Effects and Common
Support

Figure 6 (a) - (b) shows the average age and
systolic blood pressure for patients in the
CABG effective and non-effective group, and
the corresponding p value that quantifies the
statistical significance of this difference. Sim-
ilarly, Figure 6 (c) shows the expected KIL-
LIP class (a metric that quantifies the ex-
tent of heart failure on clinical exam at pre-
sentation) for patients in the PCI effective
and non-effective group. As we can see from
the figures, considering the confidence inter-
val with regard to the distribution overlap
can change the group characteristics signifi-
cantly, and therefore leads to completely dif-
ferent clinical conclusions. For example, for
the CABG treatment in (a) and (b), by con-
sidering only the patients with ITE within a
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small confidence interval, one can conclude
that CABG is effective for patients with a
younger age and lower systolic blood pres-
sure (p < 0.05), however, a similar analysis
that uses all the data (i.e., a large confidence
interval) suggests that CABG does not de-
rive a benefit irrespective of age (p > 0.05).
Similarly, for the PCI treatment, conclusions
that are made without considering the extent
of the common support might be not valid
when the overlap is considered, as shown in
Figure 6 (c). When the threshold for the
confidence interval is large, one can conclude
the treatment is effective for patients with
a larger KILLIP class, but the conclusion
would be not valid if we restrict the patients
to those with smaller confidence interval for
their ITE.
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Figure 6: (a) - (b) Average age and systolic blood pressure compared between effective and
non-effective groups for treatment CABG. (c) Similar result for KILLP class in

threatment PCI.

6. Discussions

In this work, we demonstrate that both the
treatment effect and the common support
can be accurately estimated using a sin-
gle Contrastive-VAE. The key point that
makes our method different from traditional
propensity matching approaches is that we
approach the problem in a parametric way,
where we model distributions explicitly for
each of the treatment groups. The method
allows us to model multiple treatment groups
simultaneously and effectively deals with
data scarcity - a common problem in real
world datasets where patients can receive
multiple different treatments. We demon-
strate that a Contrastive-VAE can be used
to discover meaningful clinical insights, even
when data are highly imbalanced and some-
times scarce for certain treatment combina-
tions.

A Contrastive-VAE is appropriate for this
class of problems because it leverages the
shared information between different treat-
ment groups. Although patients in different
groups may be treated differently, they of-
ten share the same diagnosis, and latent fac-
tors that lead to similar observed clinical or
demo-graphical features. Having said this,
it is important to stress that the shared in-
formation is an assumption and should be
treated as a inductive-bias that arises from
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domain specific knowledge. If the two groups
do not share any common information, a
situation that is not typical of treatment
groups in observational datasets, then the
Contrastive-VAE may not yield suitable es-
timates of the common support.

In order to explain the estimated overlap
probability and makes it easier for clinical
applications, we proposed a effective confi-
dence interval with regard to overlap. The
number of sample size in the vanilla defini-
tion of confidence interval is replaced by a
effective sample size N min(P*(z), P~ (z)).
Here we use the probability, in stead of den-
sity, to make the weighting factor a num-
ber between 0 and 1.
ables, this was achieved by discretizing the
feature space and multiplying the density by
a pre-chosen volume size. However, the vol-
ume size for different data sets and distribu-
tions might be chosen differently and there-
fore makes it difficult to compare the confi-
dence interval between data sets. One possi-
ble solution is to first map the feature space
to a latent space of fixed size and asses the
common support assumption in the latent
space. In this way, the volume size will be
a fixed factor and comparison between dif-
ferent data sets will be unbiased.

For continuous vari-
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