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Abstract

The increasingly widespread use of af-
fordable, yet often less reliable medi-
cal data and diagnostic tools poses a
new challenge for the field of Computer-
Aided Diagnosis: how can we combine
multiple sources of information with
varying levels of precision and uncer-
tainty to provide an informative diag-
nosis estimate with confidence bounds?
Motivated by a concrete application in
lateral flow antibody testing, we devise
a Stochastic Expectation-Maximization
algorithm that allows the principled inte-
gration of heterogeneous and potentially
unreliable data types. Our Bayesian for-
malism is essential in (a) flexibly combin-
ing these heterogeneous data sources and
their corresponding levels of uncertainty,
(b) quantifying the degree of confidence
associated with a given diagnostic, and
(c) dealing with the missing values that
typically plague medical data. We quan-
tify the potential of this approach on
simulated data, and showcase its practi-
cality by deploying it on a real COVID-
19 immunity study.

Keywords: Bayesian Networks;
Computer-Aided Diagnostics; Afford-
able Healthcare; COVID-19;

1. Introduction and Related Work

Current medical diagnoses are most often
based on the combination of several data in-
puts by medical experts, typically including
(i) clinical history, interviews, and physical
exams, (ii) laboratory tests, (iii) electrophys-
iological signals, and medical images. Ad-
vances in the machine learning (ML) commu-
nity have highlighted the potential of ML to
contribute to the field of Computer-Aided Di-
agnosis (CAD), for which we distinguish two
main classes of methods.
Single modality analysis. Most recent
efforts in the ML community have focused
on analysing a single medical data source —
called a “modality”. For instance, the parsing
of electronic health records (EHR) for clinical
history, patients’ interviews, and physical ex-
ams has shown huge potential for the diagno-
sis of a broad range of diseases, from coronary
artery disease to rheumatoid arthritis Harrell
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et al. (1984); Kurt et al. (2008); Carroll et al.
(2011); Hippisley-Cox and Coupland (2013);
Rahimian et al. (2018). ML algorithms have
been developed to process various types of lab-
oratory results, from urine steroid profiles to
gene expression data Huang and Wu (2018);
Wilkes et al. (2018); Demirci et al. (2016);
Agrahari et al. (2018). Others have shown suc-
cess in automatically processing and classify-
ing medical signals such as electrocardiograms
(ECG) Acharya et al. (2017); Kiranyaz et al.
(2016); Rad et al. (2017); Pławiak (2018),
or electroencephalograms (EEG) Richhariya
and Tanveer (2018). Finally, a large body of
work has focused on medical imaging analysis
across multiple tasks, such as automatic ex-
traction of diagnostic features Thomaz et al.
(2017); Bar et al. (2018), segmentation of
anatomical structures Moeskops et al. (2016);
Li et al. (2015); Shelhamer et al. (2017); Mil-
letari et al. (2016); Dolz et al. (2018); Christ
et al. (1919), or direct diagnosis through im-
age classification Anthimopoulos et al. (2016);
Miki et al. (2017).

While these works achieve record-breaking
diagnostic accuracy, they often rely on su-
pervised learning approaches – requiring the
diagnosis ground-truth to be available dur-
ing training – and on the acquisition of large
datasets. Furthermore, they focus solely on a
single type of data input (EEGs, scans, etc.) –
often acquired by clinicians using specialized,
highly accurate equipment – and do not har-
vest the potentially rich and complementary
sources of information provided by alternative
medical modalities. By contrast, the develop-
ment of at-home diagnostic tests (lateral flow
assays, questionnaire data for disease screen-
ing, mobile health apps, etc.) paves the way
for more accessible healthcare, which could
be significantly improved by establishing a
method to combine these often noisy data
sources. Given the uncertainty exhibited by
these new inputs, it also becomes indispens-

able to pair the provision of a diagnosis with
a notion of a confidence interval.
Multiple modality integration. Interest-
ingly, diagnosis studies fusing different data
sources seemed more prominent in the first
years of CAD. Bayesian networks Neal (1993)
– or belief networks – have been used as a
crucial decision tool for automatic diagnosis.
Such networks provide a medically-grounded
and interpretable statistical framework that
integrates the probabilities of contracting the
disease given a patient’s clinical history, and
the probability of developing symptoms or
observing positive test results in the presence
or absence of the disease. The advantages of
these Bayesian networks are that they are (a)
fully unsupervised and do not require ground-
truth information, and (b) able to provide
meaningful results even in low sample regimes.
Bayesian networks have thus been imple-

mented in a variety of contexts to integrate
clinical data and laboratory results, and diag-
nose conditions ranging from pyloric stenosis
to acute appendicitis Alvarez et al. (2006);
Gevaert et al. (2006); González-López et al.
(2016); Sangamuang et al. (2018). They have
also been used to combine clinical data with
medical images, and subsequently applied to
assess venous thromboembolism Kline et al.
(1984), community-acquired pneumonia Aron-
sky and Haug (1998), or to predict tumors
Wang et al. (1999); Sneha and Agrawal (2013).
As early as 1994, full integration of clinical
data, laboratory results and imaging features
was performed to diagnose gallbladder disease
Haddawy et al. (1994).

However, contrary to our proposed setting,
the uncertainty that these Bayesian networks
integrate is typically known and controlled.
The medical conditions that they study are
well characterized by a set of specific ques-
tions and physiological exams (e.g. projectile
vomiting, potassium levels and ultrasounds
in the case of Pyloric stenosis). Not only do
these inputs provide a very strong signal for
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the diagnosis, but the uncertainty arising from
the different modalities can often be reliably
informed by a test manufacturer, extensive
medical research or prior ML studies. The
uncertainty of a diagnostic method, however,
is not always well specified: whether it be
(i) a physician’s assessment of the symptoms
associated with a novel or rare disease, (ii)
predictions of an ML algorithm whose accu-
racy has not been fully characterized outside
of a curated research environment or refer-
ence datasets, or (iii) biological tests whose
sensitivity still has to be determined.
Multiple noisy modality integration: a
COVID-19 case study. To motivate this
paper and further understand the limitations
of previous approaches, let us consider a par-
ticular use case: COVID-19 antibody test-
ing. Lateral flow immunoassay (LFA) anti-
body tests for COVID-19 are one of the most
manageable, affordable and easily deployable
options to allow at-home testing for large pop-
ulation and provide assessments of our past
exposure and immunity. Yet, studies have
shown that the sensitivity of these tests re-
mains highly variable and highly contingent
on the time of testing. The successful de-
ployment of LFAs thus depends on their aug-
mentation with additional data inputs, such
as user-specific risk factors and self-reported
symptoms. The provision of confidence scores
is essential to flag potential false negative or
positive tests (requiring re-testing) and to as-
sess local prevalence levels – both pivotal for
researchers and policymakers in the context
of a pandemic.
Contributions and outline. This applica-
tions paper is geared towards the practical
integration of noisy sources of information
for CAD. Our contribution is two-fold. From
a methods perspective, we account for the
variability of the inputs by devising a two-
level Bayesian hierarchical model. In con-
trast to existing Bayesian methods for CAD,
our model is deeper, and trained using a

Stochastic Expectation Maximization (EM)
algorithm Celeux et al. (1995, 2001); Nielsen
et al. (2000). The Stochastic EM overcomes
the limitations of its non-stochastic counter-
part Celeux et al. (1995), that is (a) its sen-
sitivity to the starting position, (b) its po-
tentially slow convergence rate, and (c) its
possible convergence to a saddle position in-
stead of a local maximum. From an applica-
tions perspective, we gear this algorithm to
enhance at-home LFA testing. In particular,
we wish to (a) quantify the benefit of multi-
modal data integration when the diagnostics
are uncertain, and (b) show how our method
can benefit medical experts or researchers in
real life. We also provide a way to incorporate
incomplete data entries in training — which
typically plague self-reported data. Section 3
presents the Bayesian model for multimodal
integration and the Stochastic EM algorithm
that performs principled and scalable infer-
ence. Section 5 presents extensive tests of
our model on simulated datasets. Section 6
details the results obtained on the Covid-19
dataset and the impact of our method for
affordable and reliable at-home test kits.

2. Covid-19 Dataset
By way of clarifying the challenges that our
algorithm proposes to overcome, we present
here the COVID Clearance Remote Recov-
ery & Antibody Monitoring Platform study 1,
which motivated our approach. The purpose
of this study is to track the evolution of the
immunity of a cohort of participants in the
UK with various COVID-19 exposure risks.
This paper focuses on a subset of 261 partici-
pants, for whom we have both questionnaire
information and LFA test results.
Home-testing Immunoassay Data. Par-
ticipants are issued packs of home-testing
kits with written instructions. These kits
identify Immunoglobulin M (IgM) and/or Im-
munoglobulin G (IgG) specific to SARS-CoV2

1. COV-CLEAR, www.cov-clear.com
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in blood samples. Pictures and typical exam-
ples of LFA test results are provided in the
supplementary materials. Participants self-
report a positive result if IgM and/or IgG
are detected by the test in addition to a posi-
tive control band. The COV-CLEAR study
aims to address questions relating to (a) the
quantification of the robustness of the anti-
body response, and (b) the durability of this
response. However, while scalable and afford-
able, LFA tests suffer from vastly varying
levels of sensitivity — with a sensitivity as
low as 70% on asymptomatic individuals.
Clinical Data: Questionnaire. Addition-
ally, participants are asked to answer a ques-
tionnaire, ideally before knowing the result
of their LFA test. The form consists of ques-
tions related to K = 14 exhibited symptoms
(fever, cough, runny nose, etc.) and M = 2
subject-specific risk factors (household size
and proportion of members with a suspected
or confirmed history of COVID-19). The em-
pirical distributions of the symptoms and the
risk factors in this cohort are provided in the
supplementary materials.

3. Multimodal Data Integration

In this section, we describe our principled
integration of noisy diagnostic test results,
with additional clinical data such as symptom
data and subject-specific risk factors. Our ap-
proach applies to general heterogeneous med-
ical data where the outputs are binary. The
latter could be either self-reported answers to
questionnaires, clinician-reported physiologi-
cal exams, outputs of a diagnostic based on
an image, abnormalities of laboratory results,
etc., making this a widespread and general
setting. Thus, while we apply this method to
antibody testing, it could be relevant to any
medical diagnostic with binary inputs.
Denote D the true state of an individual

(healthy/sick), T the outcome of the noisy di-
agnostic test (positive/negative), S the symp-
tomaticity (symptomatic/asymptomatic), X

the symptoms and Y the risks factors. The
underlying assumption is that given a true
diagnosis state D, the symptoms X and the
diagnostic test outcome T are independent.
In other words, the probability of the diagnos-
tic test being a false negative P[T = 0|D = 1]
is independent of the symptoms of a truly
infected individual P[X|D = 1]. Similarly,
given a state D, the test outcome T and the
exhibited symptoms X are independent of the
risk factors Y . We define:

• P(D = 1|Y ) = πβ(Y ) the probability of being
ill given risk factors Y ,

• P[(T = 1|D = 1) = x the sensitivity of the
diagnostic test,

• P[T = 0|D = 0] = 1− y the specificity of the
diagnostic test, i.e. y = P[T = 1|D = 0],

• P(S = 1|D = 0) = p0 the probability of being
symptomatic whilst not having been infected
by that specific disease (the symptoms could
be due to another illness),

• P(S = 1|D = 1) = p1 the probability of
having been symptomatic upon infection,

• P(Xk = 1|S = 1, D = 0) = s0k the prob-
ability of exhibiting symptom k when not
infected,

• P(Xk = 1|S = 1, D = 1) = s1k the probabil-
ity of exhibiting symptom k upon infection.

In the above, the diagnostic test may be
any medical test (e.g. LFA antibody tests,
or output of a medical imaging classification
algorithm). We have here split our binary
variables into two classes according to their
variability: (a) the test T , for which we have
provisional estimates for the sensitivity and
specificity (given by the manufacturer) but
which we are still uncertain, and (b) the symp-
toms X, which carry additional uncertainty
in that neither of them is extremely specific
to COVID-19 nor is their prevalence amongst
COVID cohorts very well established; Values
for (x, y), p0, p1, s0, s1 or β may be published,
but challenged by complementary research or
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field experience, or may be completely un-
available. We thus need to account for these
inputs’ variability and for the relative impor-
tance of different risk factors β. We propose
using a hierarchical Bayesian network (see
Fig. 9) that is consequently deeper than the
ones traditionally implemented in the CAD
literature Alvarez et al. (2006); Gevaert et al.
(2006); Sakai et al. (2007); González-López
et al. (2016); Sangamuang et al. (2018).

The uncertainty in the test sensitivity x and
specificity 1− y are expressed through Beta
priors on x and y with parameters (αx, βx)
and (αy, βy), see Fig. 9. Similarly, the uncer-
tainty in the probabilities of symptomaticity
and of the different symptoms are expressed
via Beta priors with respective parameters
(αp0 , βp0), (αp1 , βp1), {(αs0k , βs0k), (αs1k , βs1k)}k,
see Fig. 9. When published estimates exist
for x, y, p0, p1, s0 and s1 (e.g. as provided by
the LFA test manufacturer), we match the
moments of the Beta priors with those of the
published distributions. If this information
is unavailable, we use the non-informative
Beta prior with parameters (0.5, 0.5). In
the COVID-19 example, we implement a
non-informative prior for the probabilities
of symptomaticity and symptoms, as the
etiology of the disease remains unknown.
These priors are then updated during learning
as we aggregate the information from the
observed and imputed variables.
Lastly, we model the probability πβ(Y ) of

contracting the disease with a logistic regres-
sion on the M risk factors Y . In the case of
the COVID-19 dataset, these include county
data, profession, size of household, etc. The
coefficients β = {βm}m weight the relative
importance of each factor Ym, m = 1...M .
We express our uncertainty on the possible
impact of a given factor m by introducing a
Gaussian prior: β ∼ N(0, σ2β), see Fig. 9.
4. Inference via Stochastic EM
At the subject level, we seek to compute the
posterior distribution of the true diagnosis

Di, informed by the integration of the ob-
served variables Ti, Si, Xi, Yi. This posterior
yields an estimated diagnosis, together with a
credible interval that expresses the confidence
associated with our prediction. In the case of
COVID-19, this provides individual estimates
of each citizen’s immunity, which may inform
their social behavior as lockdown is eased.
At the global level, we wish to learn (i) the dis-
tributions of the sensitivity x and specificity y
of the diagnostic test; (ii) the distributions of
the probabilities p0, p1 of being symptomatic,
and s0, s1 of exhibiting specific symptoms,
within a population of interest; and (iii) the
distribution of the impact β of the risk factors
for contracting the disease. In the context of
the COVID-19 pandemic, such aggregated
figures are pivotal to understanding the dy-
namics of the disease and to implementing
appropriate crisis policy.

Since the true diagnoses are hidden vari-
ables, the Expectation-Maximization algo-
rithm Dempster et al. (1977) is an appealing
method to perform inference in our Bayesian
model; hence to achieve the aforementioned
objectives. However, the EM algorithm re-
quires the computation of an expectation over
the posterior of the hidden variables, which
may be intractable depending on the proba-
bility distributions defined in the model. To
allow for flexibility in terms of model’s de-
sign within our multimodal data integration
framework, we opt for the Stochastic EM al-
gorithm (StEM) Celeux and Diebolt (1988).
StEM effectively estimates the conditional
expectation in the EM using the “Stochas-
tic Imputation Principle", approximating the
expectation by sampling once from the un-
derlying distribution. This method allows us
to carry out inference with priors that are
not necessarily the Beta distributions imple-
mented in our experiments — thus providing
additional flexibility in modelling real data.
StEM is also more robust, being less depen-
dent on the parameters’ initialization than
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sources, to estimate the true diagnosis D. The index k = 1...K represents symptom k, while
m = 1...M represents risk factor m. The shaded cells represent observed variables or known
hyper-parameters. The dashed lines represent switches.

EM – a definite advantage given our uncer-
tain framework. Finally, StEM shows better
asymptotic behavior: unlike the EM, StEM al-
ways leads to maximization of a complete data
log-likelihood in the M-step Nielsen (2000).

4.1. Stochastic E-step at iteration
(j + 1)

Starting iteration j + 1, the current esti-
mates of the model’s parameters are θ(j). The
stochastic E-step computes the posterior dis-
tribution P(Di|Ti, Si, Xi, Yi, θ

(j)) of the hid-
den variable Di. We then sample a diagnosis
D̂i from this posterior.

Proposition 1 The odds of the posterior of
the hidden variable Di at iteration (j + 1)
writes:

P(Di = 1|Ti, Si, Xi, Yi, θ
(j))

P(Di = 0|Ti, Si, Xi, Yi, θ(j))

=
x(j)

Ti
(1− x(j))(1−Ti)s(j)1

SiXi
(1− s(j)1 )Si(1−Xi)

y(j)
Ti(1− y(j))(1−Ti)s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)

× π(Yi, β
(j))× pSi

1 (1− p1)(1−Si)

(1− π(Yi, β(j)))× pSi
0 (1− p0)(1−Si)

.

(1)

4.2. M-step at iteration (j + 1)

The following proposition shows the updates
in the model’s parameters at iteration (j+ 1),
performed in the M-step.

Proposition 2
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The parameters updates write:

x(j+1) =

∑n
i=1 TiD̂i + αx − 1∑n

i=1 D̂i + (αx + βx)− 2

y(j+1) =

∑n
i=1 Ti(1− D̂i) + αy − 1∑n

i=1(1− D̂i) + (αy + βy)− 2

p
(j+1)
0 =

∑n
i=1(1− D̂i)Si + αp0 − 1∑n

i=1(1− D̂i) + (αp0 + βp0)− 2

p
(j+1)
1 =

∑n
i=1 D̂iSi + αp1 − 1∑n

i=1 D̂i + (αp1 + βp1)− 2

s
(j+1)
0 =

∑
i:Si=1(1− D̂i)Xi + αs0 − 1∑n

i:Si=1(1− D̂i) + (αs0 + βs0)− 2

s
(j+1)
1 =

∑
i:Si=1 D̂iXi + αs1 − 1∑n

i=1,s.t. Si=1 D̂i + (αs1 + βs1)− 2

β(j+1) = argminβ
n∑
i=1

||D̂i − g(Yiβ)||2

2σ2
+
||β||2

2σ2β
,

where the minimization on β is performed
through Newton-Raphson descent.

Algorithm Complexity. Our algorithm
only relies on simple sequential updates of
the distribution parameters, as highlighted
in Prop. 3 and 4. Denoting by L the num-
ber of such parameters, and N the number
of samples, the updates for X and T only
involve matrix multiplications of the form
D̂TX, while those for β involve matrix multi-
plications of size O(M2N) — yielding a com-
plexity of O(LN). Prior updates rely solely
on element-wise operations on the log-odds,
with O(N) complexity. Denoting as B the
maximum number of steps, the complexity is
O(BLN), thus linear in N .

5. Validation on Synthetic Data
Since our approach is unsupervised, we begin
by validating it on synthetic datasets where
the ground truth is known and controlled —
allowing us to characterize the performance of
the algorithm, and to showcase the strength
of combining multiple noisy modalities.

We assume the same generative model as
in Fig. 9 and generate synthetic data for
various pairs of values of sensitivity and speci-
ficity ranging from 60% to 99% . In each
case, we simulate N = 100 tuples of variables
((Yi, Xi, Ti)

n
i=1, for n ∈ {100, 200, 500, 1000}

participants. We also vary the noise level
σ ∈ {0.1, 0.5, 1.0} for the prior on D in Fig.
9. To mimic our COVID data, we simulate
K = 14 symptoms andM = 2 risk factors, for
which we randomly select the parameters2.
Improving upon the sole test T . Fig. 10
(A) and (B) show the Stochastic EM’s raw
accuracy and accuracy improvement over the
sole test result T . Note that this difference is
always positive, highlighting that our method
only improves upon single diagnostic inputs —
even when one input is more reliable than any
of the others. As expected, the most substan-
tial improvements upon T are observed when
the test specificity and/or sensitivity are low.
For instance, for sensitivity and specificity of
70%, our method provides an 86.6± (2.5)%
accuracy for the diagnosis – or equivalently,
a 16% gain over T . We further quantify the
algorithm’s performance in Table 1 of the sup-
plementary materials, for values of the speci-
ficity close to those observed on the field.
Benchmarking against other models.
We now benchmark our algorithm against
other approaches:

• Vanilla Classifier: using both the context
Y and symptoms X as inputs, we fit a lo-
gistic regression to the test labels T . We
choose the regularization parameter using
10-fold cross-validation, and compute con-
fidence intervals for the log-probability of
(D|X,T ) by bootstrapping.

• Data-Agnostic EM : we implement a deter-
ministic version of EM, providing uninfor-
mative priors for the parameter (thereby
reflecting our absence of knowledge of the

2. All of these parameters are provided with the code
in the supplementary materials.
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Figure 2: Performance of the SEM algorithm for n=300 samples, σ = 0.5, and varying
levels of specificity and sensitivity. (A) Raw accuracy of the labels imputed via StEM. (B)
Difference in accuracy between the StEM imputed diagnostics and the observed test T .

truth), which are not updated — i.e, an
"uninformed” equivalent of the belief net-
works found in the literature.

• Data-Informed EM : similar to the Data-
Agnostic EM, but choosing the priors
(which then remain fixed) based on the
empirical data.
The results are shown in Fig. 3(C), and

in the supplementary materials. We high-
light the superiority of our deeper and more
adaptive hierarchical model, yielding improve-
ments (for a reasonable tuple of specificity and
sensitivity of 80%) of up to 4% over the Data-
Informed EM, 8% over the Data-Agnostic one,
and 9% over the Vanilla classifier.
Assessing the robustness of the Stochas-
tic EM. For a fixed specificity 80%, Figure
3 shows the accuracy of StEM for different
values of σ (A) or as the number of samples
increases (B). These axes of variation seem to
have little impact on the performance, provid-
ing evidence for the algorithm’s robustness,
especially with respect to low-sample size.
Convergence. Finally, we examine the dis-
tribution of the relative difference between
recovered coefficients and ground truth (ex-
pressed as a percentage of the ground-truth

value). The plots, provided in the supple-
mentary materials, show deviations that are
within a few percentages of the true value of
the coefficients – thus highlighting the ability
of the model to converge to the ground-truth
parameters, and making it relevant from a
medical perspective to characterize the dis-
ease’s etiology.

6. Results on Real Data
We turn to the real dataset of n = 261 par-
ticipants described in Section 2. The purpose
of this section is to show how our algorithm
can be practically applied to process heteroge-
neous data types and inform participants and
researchers alike. At the individual level, we
provide each user with (a) the confirmation
of the diagnostic, and (b) confidence intervals
associated with the uncertainty to shed more
light on the uncertainty associated with the
diagnostic. At the global level, we provide
policymakers with (c) aggregated analysis of
the herd immunity, and associated measures
of uncertainty. For the purpose of clarity, we
showcase here a few figures and properties.
We defer to the appendix the discussion of
the pre-processing and the potential sources
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of bias (and how to correct for them) of this
particular dataset.

At the subject-level. We present two ex-
amples, where our algorithm either confirms
or invalidates the result of the test – thereby
allowing for the potential flagging of false
negatives (Fig. 3D-E). The second example
showcases an instance where the question-
naire and the test disagree. Subject 253 is
a user that registers a negative test, while
exhibiting a wide number of known COVID
symptoms (dry cough, shortness of breath,
fever), but took the test less than 10 days af-
ter his illness (when antibody levels are often
just starting to increase). While the posterior
does not reclassify the subjects’ diagnosis, the
confidence interval associated with the pre-
diction of immunity reflects the uncertainty
associated with this case, and flags it as a
potential false negative. Similar plots on ad-
ditional symptoms (which can be non-binary)
are provided in the supplementary materials

and an interactive dashboard showcasing the
algorithm and the effect of the different symp-
toms can be found at the following link3 —
potentially allowing users to further inform
and trust their antibody test results.
At the global level. This framework paves
the way for principled inference for the disease
and the population of interest. One could in-
deed use these probabilities in order to gauge
the risk associated to a given community, or to
inform testing policies. The posterior distribu-
tions of the model’s parameters also shed light
on the actual accuracy of the LFA tests on our
population. Our results provide information
regarding the most prevalent symptoms for
COVID-19 (Fig. 3F,G). For instance, among
symptomatic participants, the probability of
exhibiting fever is higher for infected subjects
(see Fig. 3 (B)) while cough with sputum does
not seem to be associated with COVID-19,

3. https://homecovidtests.shinyapps.io/
COVID-app/
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being probably the sign of another infection.
Dealing with missing data. Finally, one of
the strengths of the Bayesian formalism lies in
its ability to impute missing information and
leverage strength from partially observable
inputs — a crucial element for self-reported
data, and the derivations for which, in our
case, can be found in the appendix.
7. Conclusion
This applications paper provides a statistical
framework for the integration of noisy diag-
nostic test results, self-reported symptoms,
and demographic variables. Compared to pre-
vious approaches, our work is more amenable
to the handling of the different inputs’ uncer-
tainty. While we have focused here on binary
symptoms, this adaptive Bayesian framework,
together with the flexibility provided by the
Stochastic EM algorithm, pave the way for
the integration of other continuous-valued in-
puts (index of the severity of the disease, pain,
etc. — see appendix). The robustness of the
Stochastic EM is crucial in ensuring the re-
liability of the parameters given the medical
stakes, while allowing diagnoses even in the
presence of incomplete data.
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Appendix A. COVID-19 Datasets

This section provides additional details on the
COV-CLEAR dataset 4. Figure 4 shows the
sampling distributions of selected symptoms
and risk factors in the population of interest
– grouped by the result of the lateral flow
immunoassay (LFA) test. Figure 5 illustrates
the LFA test results as observed by a given
subject. Participants self-report a positive
result if IgM and/or IgG are detected by the
test. The marker “C" stands for “Control".
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Figure 4: (A-C) Distributions of selected
symptoms in the COV-CLEAR dataset. (D)
Distribution of household size, a COVID-19
risk factor, in the COV-CLEAR dataset. (E)
Distribution of symptomatic subjects in the
COV-CLEAR dataset. In each plot, the dis-
tributions are grouped with respect to the
result of the LFA test: T = 0 for a negative
test, and T = 1 for a positive test.

Appendix B. Additional Plots on
Real Data

At the subject level. Fig. 6 presents four
examples, where our algorithm either vali-
dates or invalidates the result of the test —
thereby allowing for the potential flagging of
false negatives or negatives.

The first example (Fig. 6 A) is a user that
registers a positive test, together with a sig-
nificant number of symptoms and risk factors.

4. www.cov-clear.com

Figure 5: Left: Example of test result. Right:
Illustrations of a subset of possible test re-
sults.

The second user (Fig. 6 B) registers a negative
test, while being asymptomatic and with a
limited number of risk factors. In both cases,
we expect our model to confirm the result of
the test, and provide a narrower confidence
interval as per the probability of immunity —
as confirmed by Fig. 6.
The third and fourth examples showcase

instances where the our diagnostic posterior
and the test disagree. Subject 108 is a user
that registers a negative test, while exhibiting
a wide number of known COVID symptoms
(dry cough, shortness of breath, fever), but
took the test less than 10 days after his illness.
Similarly, subject 92 exhibited less symptoms
(in particular, no shortness of breath), but
lives in a household of three, where all the
other members have also fallen sick. While the
posteriors reclassify the subjects’ diagnosis in
each case, the confidence interval associated
with the prediction of immunity reflect the
uncertainty that is associated with these cases,
and flag them as potential false negatives.
At the global level: LFA sensitivity and
specificity. The posterior distributions of
the model’s parameters shed light on the ac-
tual accuracy of the LFA tests on our popu-
lation. Fig. 7 compares the posteriors of the
sensitivity and specificity to the priors built
from values reported by manufacturers, for:
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(A) Subject 19: Positive
questionnaire confirms positive test

(B) Subject 20: Negative
questionnaire confirms negative test

(C) Subject 253: Positive
questionnaire infirms negative test

(D) Subject 7: Positive
questionnaire infirms negative test

Diagnosis given 
questionnaire

Diagnosis given 
questionnaire

Diagnosis given 
questionnaire

Diagnosis given 
questionnaire

Diagnosis given 
questionnaire and test

Diagnosis given 
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Figure 6: Posterior diagnosis distributions on four selected subjects. In each panel (A-D):
the left plot represents the posterior of the diagnosis, given the symptoms and risk factors
data reported in the questionnaire, while the right plot is the posterior of the diagnosis, given
the symptoms, risk factors, and reported result of the diagnostic test. The red dot represents
the expectation of the corresponding distribution.
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Figure 7: Posteriors of sensitivity and speci-
ficity compared to their priors, for three
regimes: (A) Asymptomatic, (B) LFA test
taken 2-10 days after first symptoms, (C) LFA
test taken 11-20 days after first symptoms.

(A) asymptomatic subjects, (B) symptomatic
subjects who took the test between 2 to 10
days after their first symptoms, and (C) symp-
tomatic subjects who took the test between
11 to 20 days after their first symptoms. We
observe that the StEM has updated the prior
distributions of sensitivity and specificity, the
most significant update being observed for
the asymptomatic subjects.
At the global level: COVID-19 symp-
toms in the population of interest. Fur-
thermore, our results provide information re-
garding the most prevalent symptoms for
COVID-19. The posterior probability of
exhibiting specific symptoms, among symp-
tomatic subjects with positive or negative
predicted diagnostic is shown on Fig. 8. We
emphasize that these probability distributions
are relevant to our population of n = 117
healthcare workers, and may vary for studies
considering another population.

Appendix C. Application: a
COVID-19 immunity
study

Preprocessing the data. The prevalence
estimates were obtained as the seven-day
rolling average of the participants countries,
as provided in the Facebook CMU symptoms
dataset5. Non binary symptoms. The
data from the COV-CLEAR also has — on

5. https://www.symptomchallenge.org/
about-the-data
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Figure 8: Posterior distributions of the prob-
ability of exhibiting selected symptoms, for
a symptomatic subject. The probability of
exhibiting each symptom (A-F) is plotted for
symptomatic subjects with estimated nega-
tive (D = 0) or positive (D = 1) diagnosis.

top of the binary symptoms for which we
provided the updates in the main paper —
severity index scales — which we choose to
model using dirichlet-multinomial conjugate
pairs.
Towards extending the results of this
study. The population that we are study-
ing in the COV-CLEAR dataset is subject to
selection bias: these consist in a population
of healthcare workers, and the rate of symp-
tomatic vs asymptomatic people might not be
reflective of the one in the general population
(there might be more asymptomatic people if
this population is younger, etc.). In order to
provide potentially more reflective probability
of immunity, we make use of the Facebook-
CMU dataset, which provides us with more
reflective estimates of the case of influenza
({D = 0, S = 1} vs covid {D = 1, S = 1}.

Appendix D. Stochastic
Expectation-
Maximization

This section presents the derivation of the
Stochastic Expectation-Maximization (StEM)
algorithm, specifically the proofs of Proposi-
tions 4.1 and 4.2 of the main paper. For
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the convenience of the reader, we recall the
Bayesian model of interest.

D.1. Bayesian generative model

Denote D the true diagnosis of an individual
(healthy/sick), T the outcome of the noisy di-
agnostic test (positive/negative), S the symp-
tomaticity (symptomatic/asymptomatic), X
the symptoms exhibited and Y the subject-
specific risks factors. The underlying assump-
tion is that given a true diagnosis D, the
symptoms X and the diagnostic test outcome
T are independent. In other words, the prob-
ability of the diagnostic test being a false
negative P[T = 0|D = 1] is independent of
the symptoms of a truly infected individual
P[X|D = 1]. Similarly, given a diagnosis D,
the test outcome T and the exhibited symp-
toms X are independent of the risk factors Y .
We define:

• P(D = 1|Y ) = πβ(Y ) the probability
of contracting the disease given risk
factors Y ,

• P[(T = 1|D = 1) = x the sensitivity of
the diagnostic test,

• P[T = 0|D = 0] = 1− y the specificity
of the diagnostic test, i.e. y = P[T =
1|D = 0],

• P(S = 1|D = 0) = p0 the probability
of being symptomatic when whilst not
having been infected by that specific
disease (the symptoms could be due to
another illness for instance),

• P(S = 1|D = 1) = p1 the probabil-
ity of having been symptomatic upon
infection,

• P(Xk = 1|S = 1, D = 0) = s0k the
probability of exhibiting symptom k
when not infected,

• P(Xk = 1|S = 1, D = 1) = s1k the
probability of exhibiting symptom k
upon infection.

The uncertainty in the test sensitivity and
specificity is expressed by putting a prior on x
and y, which will be updated during training:

P[T = 1|D = 1] = x ∼ B(αx, βx),

P[T = 1|D = 0] = y ∼ B(αy, βy).
(2)

The uncertainty on the symptomaticity, as
well as on the appearance of specific symp-
toms for infected and healthy individuals is
expressed with a prior on s0 and s1, and up-
dating it when we aggregate more informa-
tion:

P[S = 1|D = 0] = p0 ∼ B(αp0 , βp0),

P[S = 1|D = 1] = p1 ∼ B(αp1 , βp1).

P[X = 1|D = 0] = s0 ∼ B(αs0 , βs0),

P[X = 1|D = 1] = s1 ∼ B(αs1 , βs1).

(3)

Lastly, we model the probability for an
individual to contract the disease depending
on their risk factors, by modeling the logodds:

log

(
π(Y )

1− π(Y )

)
= Y β+ε where: ε ∼ N(0, σ2),

(4)
where the parameters β weight the impor-
tance of the different components of the risk
factors Y (county data, profession, size of
household) in contracting the disease. We
express our uncertainty on whether a given
factor has an impact by putting a prior on β:

β ∼ N(0, σ2β). (5)
In this model:

•

ζ =
(
αx, βx, αy, βy, αp0 , βp0 , αp1 , βp1 ,

{αs0k , βs0k}k, {αs1k , βs1k}k, {σβm}m
)

are hyper-parameters, considered fixed
and known,

• θ =
(
x, y, p0, p1, {s0k, s1k}k, {βm}m

)
are

the parameters,

• D is a hidden random variable,
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• Y, S,X, T are the observed variables.

For simplicity of notations, we write O =
(S,X, T ) some of the observed variables. The
Bayesian model is represented in plate nota-
tions in Figure 9.
Our objective is two-fold. At the patient

level, we compute the posterior distribution
of the true diagnosis Di, informed by the
integration of the observed variables Oi. This
distribution gives us an estimate of the true
diagnosis, through Maximum a Posteriori, as
well as a credible interval that expresses our
confidence in this diagnosis. At the global
level, we learn the posterior distributions of
the parameters x, y, i.e. the sensitivity and
specificity of the test - to be compared to the
values given by the providers. We also learn
the posterior distributions of the parameters
s0, s1, i.e. the probability of symptoms with
or without the disease - to be compared to the
values given by the medical specialists and the
CDC. We also learn the posterior distribution
of the parameter β, which weights the impact
of each risk factor for contracting the disease.

To fulfil this objective, we perform inference
in the Bayesian model described in Figure 9
and in the main paper. Since D are hidden
variables, we proceed with the Expectation-
Maximization (EM) algorithm, specifically its
stochastic version.

D.2. Stochastic Expectation
Maximization

We seek the Maximum a Posteriori (MAP)
of the parameters θ. Given the parameters’
estimates, we can compute the posterior distri-
butions of the diagnosiss Di’s. The stochastic
EM algorithm allows computing jointly the
posterior distribution of the parameters and
the hidden variablesDi’s, through an iterative
procedure described below.

We want to maximise the posterior distri-
bution of the parameters θ:

P(θ|O1, ...On, Y1, ..., Yn)

=
P(O1, ..., On|θ, Y1, ..., Yn)× P(θ)

P(O1, ..., On|Y1, ..., Yn)

∝P(θ)×Πn
i=1P(Oi|θ, Yi)

(6)

which translates into maximizing the expres-
sion:

` =
n∑
i=1

logP(Oi|θ, Yi) + logP(θ)

=
n∑
i=1

log
∑
di=0,1

P(Oi, Di = di|θ, Yi) + logP(θ)

=

n∑
i=1

log
∑
di=0,1

P(Oi, Di = di|θ, Yi)
P(Di = di|Oi, θ̃, Yi)
P(Di = di|Oi, θ̃, Yi)

+ logP(θ)

≥
n∑
i=1

∑
di=0,1

P(Di = di|Oi, θ̃, Yi) log
P(Oi, Di = di|θ, Yi)
P(Di = di|Oi, θ̃, Yi)

+ logP(θ)

=

n∑
i=1

EDi|Oi,θ̃,Yi

[
log

P(Oi, Di = di|θ, Yi)
P(Di = di|Oi, θ̃, Yi)

]
+ logP(θ)

(7)
In the above computations, the lower bound

is obtained using Jensen inequality. It repre-
sents a tangent lower bound of the posterior
distribution: θ → `(θ) at the given set of
parameters θ̃. On the last line, the expec-
tation is taken for Di distributed according
to P(Di|Oi, θ̃, Yi). Following the literature on
the stochastic EM algorithm, we compute this
expectation by replacing it with its Monte-
Carlo estimate, sampling one D̂i according to
P(Di|Oi, θ̃, Yi). For simplicity of notation, we
denote:

wi = P(Di = di|Oi, θ̃, Yi).
The approximate lower bound of the poste-

rior of the parameters writes, after sampling:

` ≥
n∑
i=1

log
P(Oi, Di = D̂i|θ, Yi)

wi
+ logP(θ),

(8)
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Figure 9: Hierarchial bayesian network integrating the accuracy uncertainty on the data
sources, to estimate the true diagnosis D. The index k = 1...K represents symptom k, while
m = 1...M represents risk factor m. The shaded cells represent observed variables or known
hyper-parameters. The dashed lines represent switches.

and we only need to maximize the following
functionM in its parameters θ:

θ →M(θ) =
n∑
i=1

logP(Oi, Di = D̂i|θ, Yi)

+ logP(θ).

Since Di = D̂i is now fixed, we further
decompose the right-hand side of the above

inequality.

M(θ) =
n∑
i=1

logP(Ti, Si, Xi, Di = D̂i|θ, Yi) + logP(θ)

=

n∑
i=1

logP(Ti, Si, Xi|Di = D̂i, θ, Yi)

+

n∑
i=1

logP(Di = D̂i|θ, Yi) + logP(θ)

=

n∑
i=1

logP(Ti|Di = D̂i, θ, Yi)

+ logP(Si, Xi|Di = D̂i, θ, Yi)

+
n∑
i=1

logP(Di = D̂i|θ, Yi) + logP(θ)

=
n∑
i=1

logP(Ti|Di = D̂i, θ, Yi)

+ logP(Si, Xi|Di = D̂i, θ, Yi)

+
n∑
i=1

logP(Di = D̂i|θ, Yi) + logP(θ)

=
n∑
i=1

logP(Ti|Di = D̂i, θ, Yi)

+ logP(Xi|Si, Di = D̂i, θ, Yi)

+ logP(Si|Di = D̂i, θ, Yi)

+

n∑
i=1

logP(Di = D̂i|θ, Yi) + logP(θ)

(9)
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using the conditional independence of (Si, Xi)
and Ti given Di. Using the dependency struc-
ture of the variables relying on the Bayesian
network from Figure 9, we get:

M(θ) =
n∑
i=1

logP(Ti|Di = D̂i, x, y)

+
n∑
i=1

logP(Xi|Si, Di = D̂i, s0, s1)

+ logP(Si|Di = D̂i, p0, p1)

+

n∑
i=1

logP(Di = D̂i|β, Yi)

+ logP(x, y) + logP(p0, p1)

+ logP(s0, s1) + logP(β)

(10)
As a result, we find the maximum a poste-

riori of x, y, s0, s1 and β separately, by maxi-
mizing respectively:

M(x, y) =

n∑
i=1

logP(Ti|Di = D̂i, x, y)

+ logP(x, y),

M(p0, p1) =
n∑
i=1

logP(Si|Di = D̂i, p0, p1)

+ logP(p0, p1)

M(s0, s1) =
n∑
i=1

logP(Xi|Si, Di = D̂i, s0, s1)

+ logP(s0, s1),

M(β) =

n∑
i=1

logP(Di = D̂i|β, Yi) + logP(β).

(11)
To summarize, at iteration (j + 1) of the

stochastic EM algorithm:

• Stochastic E-step: For each patient i:

– Compute the posterior distribution
of their diagnosis P(Di|Oi, θ̃, Yi),

– Sample D̂i from the posterior.

• M-step: Maximize the approximate
lower-bound of the parameters’ posteri-

ors in θ = (x, y, p0, p1, s0, s1, β) by max-
imizing M(x, y),M(p0, p1),M(s0, s1)
and M(β). This updates the parameters
to:

θ(j+1) = (x(j+1), y(j+1), p
(j+1)
0 , p

(j+1)
1 ,

s
(j+1)
0 , s

(j+1)
1 , β(j+1)).

until convergence in θ = (x, y, p0, p1, s0, s1, β).
At each iteration, this algorithm maximises a
(stochastic approximation) of a tangent lower-
bound of the posterior distribution of the pa-
rameters. Therefore, each iteration increases
the posterior distribution of the parameters.

D.3. Auxiliary computation: joint
log-likelihood

As an auxiliary computation, we provide the
formula for the joint log-likelihood under our
model, which we will use in the E- and M-
steps.

The joint log-likelihood writes:
P(O,D, θ|Y )

=P(T, S,X,D, x, y, p0, p1, s0, s1, β|Y )

=P(T, S,X, x, y, p0, p1, s0, s1|D,β, Y )× P(D,β|Y )

=P(T, S,X, x, y, p0, p1, s0, s1|D)

× P(D|Y, β)× P(β|Y )

(12)
Using the conditional independence of (S,X)
and T given D, we write:
P(O,D, θ|Y )

= P(T, x, y|D)× P(S,X, p0, p1, s0, s1|D)

× P(D|Y, β)× P(β|Y )

= P(T, x, y|D)× P(X, s0, s1|S, p0, p1, D)

× P(S, p0, p1|D)× P(D|Y, β)× P(β|Y )

= P(T, x, y|D)× P(X, s0, s1|S,D)

× P(S, p0, p1|D)× P(D|Y, β)× P(β|Y )

(13)

D.3.1. Auxiliary computations using
the generative model

We separately compute the probabilities in
the above formula, using the probability dis-
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tributions provided by the generative model.
We get, for the term involving the immunoas-
say test T :
P(T, x, y|D)

= P(T |D,x, y)× P(x, y|D)

= P(T |D,x, y)× P(x)× P(y)

= xTD(1− x)(1−T )DyT (1−D)(1− y)(1−T )(1−D)

×B(αx, βx)−1xαx−1(1− x)βx−1

×B(αy, βy)
−1yαy−1(1− y)βy−1.

(14)
For the term involving the symptoms X, we
get:
P(X, s0, s1|S,D)

= P(X|S,D, s0, s1)× P(s0, s1|D)

= P(X|S,D, s0, s1)× P(s0)× P(s1)

= p
(1−S)X
0 p

(1−S)(1−X)
1

× sS(1−D)X
0 (1− s0)S(1−D)(1−X)

× sSDX1 (1− s1)SD(1−X)

×B(αs0 , βs0)−1s
αs0−1
0 (1− s0)βs0−1

×B(αs1 , βs1)−1s
αs1−1
1 (1− s1)βs1−1

= δS=0,X=0

+ δS=1 × s(1−D)X
0 (1− s0)(1−D)(1−X)

× sDX1 (1− s1)D(1−X)

×B(αs0 , βs0)−1s
αs0−1
0 (1− s0)βs0−1

×B(αs1 , βs1)−1s
αs1−1
1 (1− s1)βs1−1

(15)
For the term involving the symptomatic vari-
able S, we get:
A = P(S, p0, p1|D)

= P(S|p0, p1, D)× P(p0)× P(p1)

= p
(1−D)S
0 (1− p0)(1−D)(1−S)

× pDS1 (1− p1)D(1−S)

×B(αp0 , βp0)−1p
αp0−1
0 (1− p0)βp0−1

×B(αp1 , βp1)−1p
αp1−1
1 (1− p1)βp1−1.

(16)
For the terms involving the diagnosis D and
the parameter β of the logistic regression, we

get:
P(D|Y, β) = π(Y, β)D(1− π(Y, β))1−D

P(β) = n(β;σ2β),

(17)
where we use the notations:

• π(Y, β) = g(Y β) with g the sigmoid func-
tion from the logistic regression,

• n(β;σ2β) the probability density function
of the Gaussian N (0, σ2β).

D.3.2. Final formula for the joint
log-likelihood

We plug the expressions of the probabilities
in the joint log-likelihood, and get:
P(O,D, θ|Y )

= P(T, x, y|D)× P(X, s0, s1|S,D)× P(S, p0, p1|D)

××P(D|Y, β)× P(β|Y )

∝ xTD(1− x)(1−T )DyT (1−D)(1− y)(1−T )(1−D)

× xαx−1(1− x)βx−1yαy−1(1− y)βy−1

× p(1−S)X0 p
(1−S)(1−X)
1 s

S(1−D)X
0 (1− s0)S(1−D)(1−X)

× sSDX1 (1− s1)SD(1−X)

× sαs0−1
0 (1− s0)βs0−1s

αs1−1
1 (1− s1)βs1−1

× p(1−D)S
0 (1− p0)(1−D)(1−S) × pDS1 (1− p1)D(1−S)

× pαp0−1
0 (1− p0)βp0−1p

αp1−1
1 (1− p1)βp1−1

× π(Y, β)D(1− π(Y, β))1−D × n(β;σ2β),

(18)
where we omit the normalizing constants from
the beta distributions.

D.4. Stochastic E-step: Compute
posterior of the hidden variables
Di

In the stochastic E-step, we aim to sample D̂i

from the posterior distribution of the hidden
variable Di. Given the current estimate θ(j)

of the parameters, we compute the posterior
of the diagnosis Di for each patient i:
P(Di|Oi, θ(j), Yi) ∝ P(Di, Oi, θ

(j)|Yi), (19)
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where we plug the expression of the joint log-
likelihood from Equation 44.

Omitting the coefficients that are shared in
both formulae for the probability below, we
have:
P(Di = 1|Oi, θ(j), Yi)

∝ x(j)Ti(1− x(j))(1−Ti)

× s(j)1

SiXi
(1− s(j)1 )Si(1−Xi) × π(Yi, β

(j))

××pSi
1 (1− p1)(1−Si)

P(Di = 0|Oi, θ(j), Yi)

∝ y(j)Ti(1− y(j))(1−Ti)

× s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)

× (1− π(Yi, β
(j)))× pS0 (1− p0)(1−Si),

(20)
by identification in the expression of the joint
log-likehood from Equation 44.

This shows the proposition:

Proposition 3 The odds of the posterior of
the hidden variable Di at iteration (j + 1)
writes:
P(Di = 1|Ti, Si, Xi, Yi, θ

(j))

P(Di = 0|Ti, Si, Xi, Yi, θ(j))

=
x(j)

Ti
(1− x(j))(1−Ti)

y(j)
Ti(1− y(j))(1−Ti)

.

× s
(j)
1

SiXi
(1− s(j)1 )Si(1−Xi)

×s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)×

× π(Yi, β
(j))× pSi

1 (1− p1)(1−Si)

(1− π(Yi, β(j)))× pSi
0 (1− p0)(1−Si)

(21)

Following the methodology of the stochastic
EM algorithm, we sample from this posterior
to obtain D̂i.

D.5. M-step: Update model’s
parameters

In the M-step, we update the parameters of
the generative model by maximising the lower-
bound of their posterior distribution. We up-

date each set of parameters separately, using
the expressions in Equation 42.

D.5.1. Update Sensitivity and
Specificity

Given D̂i’s, we update x, y by maximising:

M(x, y) =

n∑
i=1

logP(Ti|Di = D̂i, x, y)+logP(x, y).

(22)

We recognise in this expression the log-
arithm of the probability distribution of a
product of beta distributions in x and in y,
omitting the normalisation constants:
Πn
i=1P(Ti|Di = D̂i, x, y)

= Πn
i=1

(
xTiD̂i(1− x)(1−Ti)D̂i × yTi(1−D̂i)(1− y)(1−Ti)(1−D̂i)

)
P(x, y)

= xαx−1(1− x)βx−1 × yαy−1(1− y)βy−1,

(23)
such that M(x, y) writes:

M(x, y) = log
[
Bx
( n∑
i=1

TiD̂i + αx,
n∑
i=1

(1− Ti)D̂i + βx

)]
+ log

[
By
( n∑
i=1

Ti(1− D̂i)

+ αy,
n∑
i=1

(1− Ti)(1− D̂i) + βy

)]
.

(24)

The updated sensitivity and specificity,
x(j+1), y(j+1), maximize M(x, y). They are
the modes of the beta distributions:

x(j+1) = argmax
x
Bx
( n∑
i=1

TiD̂i + αx,

n∑
i=1

(1− Ti)D̂i + βx

)
y(j+1) = argmax

y
By
( n∑
i=1

Ti(1− D̂i) + αy,

n∑
i=1

(1− Ti)(1− D̂i) + βy

)
.

(25)
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If αx, βx > 1 and αy, βy > 1, the expression
for the modes are:
x(j+1) =

∑n
i=1 TiD̂i + αx − 1∑n

i=1 TiD̂i + αx +
∑n

i=1(1− Ti)D̂i + βx − 2

=

∑n
i=1 TiD̂i + αx − 1∑n

i=1 D̂i + (αx + βx)− 2

y(j+1) =

∑n
i=1 Ti(1− D̂i) + αy − 1∑n

i=1 Ti(1− D̂i) + αy +
∑n

i=1(1− Ti)(1− D̂i) + βy − 2

=

∑n
i=1 Ti(1− D̂i) + αy − 1∑n

i=1(1− D̂i) + (αy + βy)− 2
.

(26)

We can have the case βx, βy < 1 if the
sensitivity or the specificity are very close
to 1. In this case, we update the parameters
using the expectation of the Beta distribution,
instead of the mode.

D.5.2. Update Probabilities of being
symptomatic

Given the D̂i’s, we update p0, p1 by maximiz-
ing:

M(p0, s1) =
n∑
i=1

logP(Si|Di = D̂i, p0, p1)

+ logP(p0, p1).

We recognize in this expression the log-
arithm of the probability distribution of a
product of beta distributions in p0 and in p1,
omitting the normalization constants :

A = Πn
i=1P(Si|Di = D̂i, p0, p1)

= Πn
i=1

(
p
(1−D̂i)Si

0 (1− p0)(1−D̂i)(1−Si)

× pD̂iSi
1 (1− p1)D̂i(1−Si)

)
P(p0, p1) = p

αp0−1
0 (1− p0)βp0−1

× pαp1−1
1 (1− p1)βp1−1

(27)

such that M(p0, p1) writes:

M(p0, p1) = log
[
Bp0
( n∑
i=1

(1− D̂i)Si + αp0 ,

n∑
i=1

(1− D̂i)(1− Si) + βp0

)]
+ log

[
Bp1
( n∑
i=1

D̂iSi + αp1 ,

n∑
i=1

D̂i(1− Si) + βp1

)]
.

(28)

The updated probabilities of being symp-
tomatic, in absence or presence of the disease,
p
(j+1)
0 , p

(j+1)
1 , maximize M(p0, p1). They are

the modes of the beta distributions:

p
(j+1)
0 = argmax

x
Bx
( n∑
i=1

(1− D̂i)Si + αp0 ,

n∑
i=1

(1− D̂i)(1− Si) + βp0

)
p
(j+1)
1 = argmax

y
By
( n∑
i=1

D̂iSi + αp1 ,

n∑
i=1

D̂i(1− Si) + βp1

)
.

(29)

If αp0 , βp0 > 1 and αp1 , βp1 > 1, the expres-
sion for the modes are:
p0

(j+1) =

∑n
i=1(1− D̂i)Si + αp0 − 1∑n

i=1(1− D̂i)Si + αp0 +
∑n

i=1(1− D̂i)(1− Si) + βp0 − 2

=

∑n
i=1(1− D̂i)Si + αp0 − 1∑n

i=1(1− D̂i) + (αp0 + βp0)− 2

p1
(j+1) =

∑n
i=1 D̂iSi + αp1 − 1∑n

i=1 D̂iSi + αp1 +
∑n

i=1 D̂i(1− Si) + βp1 − 2

=

∑n
i=1 D̂iSi + αp1 − 1∑n

i=1 D̂i + (αp1 + βp1)− 2
.

(30)

We can have the case βp0 , βp1 < 1 if the
sensitivity or the specificity are very close
to 1. In this case, we update the parameters
using the expectation of the Beta distribution,
instead of the mode.

75



Bayesian Heterogeneous Data Integration for Medical Diagnoses

D.5.3. Update Symptoms Probabilities

Given D̂i’s, we update s0, s1 by maximizing:

M(s0, s1) =
n∑
i=1

logP(Xi|Si, Di = D̂i, s0, s1)

+ logP(s0, s1), . (31)

We recognize in this expression the log-
arithm of the probability distribution of a
product of beta distributions in s0 and in s1,
omitting the normalization constants:
Πn
i=1P(Xi|Si, Di = D̂i, s0, s1)

= Πn
i=1

(
δSi=0,Xi=0 + δSi=1 × s(1−D̂i)Xi

0

× (1− s0)(1−D̂i)(1−Xi)sD̂iXi
1 (1− s1)D̂i(1−Xi)

)
= Πn

i=1,s.t. Si=1

(
s
(1−D̂i)Xi

0 (1− s0)(1−D̂i)(1−Xi)

× sD̂iXi
1 (1− s1)D̂i(1−Xi)

)
(32)

and:

P(s0, s1) = s
αs0−1
0 (1− s0)βs0−1

× sαs1−1
1 (1− s1)βs1−1

such that M(s0, s1) writes:
A = M(s0, s1)

= log
[
Bs0
( n∑
i=1,s.t. Si=1

(1− D̂i)Xi + αs0 ,

n∑
i=1,s.t. Si=1

(1− D̂i)(1−Xi) + βs0

)]
+ log

[
Bs1
( n∑
i=1,s.t. Si=1

D̂iXi + αs1 ,

n∑
i=1,s.t. Si=1

D̂i(1−Xi) + βs1

)]
.

(33)

The updated probabilities of exhibiting
symptoms, in absence or presence of the dis-
ease, s(j+1)

0 , s
(j+1)
1 , maximizeM(s0, s1). They

are the modes of the beta distributions:

s
(j+1)
0 = argmax

x
Bx
( n∑
i=1,s.t. Si=1

(1− D̂i)Xi + αs0 ,

n∑
i=1,s.t. Si=1

(1− D̂i)(1−Xi) + βs0

)
s
(j+1)
1 = argmax

y
By
( n∑
i=1,s.t. Si=1

D̂iXi + αs1 ,

n∑
i=1,s.t. Si=1

D̂i(1−Xi) + βs1

)
.

(34)
If αs0 , βs0 > 1 and αs1 , βs1 > 1, the expres-

sion for the modes are:
s0

(j+1) =

∑n
i=1,s.t. Si=1(1− D̂i)Xi + αs0 − 1∑n

i=1,s.t. Si=1(1− D̂i)Xi + αs0 +
∑n

i=1,s.t. Si=1(1− D̂i)(1−Xi) + βs0 − 2

=

∑n
i=1,s.t. Si=1(1− D̂i)Xi + αs0 − 1∑n

i=1,s.t. Si=1(1− D̂i) + (αs0 + βs0)− 2

s1
(j+1) =

∑n
i=1,s.t. Si=1 D̂iX + αs1 − 1∑n

i=1,s.t. Si=1 D̂iXi + αs1 +
∑n

i=1,s.t. Si=1 D̂i(1−Xi) + βs1 − 2

=

∑n
i=1,s.t. Si=1 D̂iXi + αs1 − 1∑n

i=1,s.t. Si=1 D̂i + (αs1 + βs1)− 2
.

(35)
We can have the case βs0 , βs1 < 1 if the

probabilities of symptoms are very close to
1. In this case, we update the parameters
using the expectation of the Beta distribution,
instead of the mode.

D.5.4. Update coefficients of the
risk factors β

Given the D̂i’s, we update β by maximizing:

M(β) =
n∑
i=1

logP(Di = D̂i|β, Yi) + logP(β)

= −
n∑
i=1

||D̂i − g(Yiβ)||2

2σ2
− ||β||

2

2σ2β
(36)

where we omit the normalization constant of
the Gaussian distributions. We recognize the
loss function of the logistic regression, that
we optimize using stochastic gradient descent,
with update rule:

β ← β−γ
[∑

i

(g(Yiβ)−D̂i)Yi+
||β||2

2σ2β

]
(37)

This gives the update in β.
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D.5.5. Summary of the updates

This proposition summarizes the parameters
updates.

Proposition 4 The parameters updates
write:

x(j+1) =

∑n
i=1 TiD̂i + αx − 1∑n

i=1 D̂i + (αx + βx)− 2
,

y(j+1) =

∑n
i=1 Ti(1− D̂i) + αy − 1∑n

i=1(1− D̂i) + (αy + βy)− 2

p
(j+1)
0 =

∑n
i=1(1− D̂i)Si + αp0 − 1∑n

i=1(1− D̂i) + (αp0 + βp0)− 2
,

p
(j+1)
1 =

∑n
i=1 D̂iSi + αp1 − 1∑n

i=1 D̂i + (αp1 + βp1)− 2

s
(j+1)
0 =

∑n
i=1,s.t. Si=1(1− D̂i)Xi + αs0 − 1∑n

i=1,s.t. Si=1(1− D̂i) + (αs0 + βs0)− 2
,

s
(j+1)
1 =

∑n
i=1,s.t. Si=1 D̂iXi + αs1 − 1∑n

i=1,s.t. Si=1 D̂i + (αs1 + βs1)− 2

β(j+1) = argminβ
n∑
i=1

||D̂i − g(Yiβ)||2

2σ2
+
||β||2

2σ2β
,

(38)
where the minimization on β is performed
through stochastic gradient descent.

Appendix E. Stochastic EM with
missing T : truncated
Bayesian network

We apply the stochastic EM algorithm in the
Bayesian model truncated at T . In this model:

•

ζ =
(
αp0 , βp0 , αp1 , βp1 , {αs0k , βs0k}k,

{αs1k , βs1k}k, {σβm}m
)

are hyper-parameters, considered fixed
and known,

• θ =
(
p0, p1, {s0k, s1k}k, {βm}m

)
are the

parameters,

• D is a hidden random variable,

• Y, S,X are the observed variables.

We now writ: O = (S,X).
We still wish to maximize the expression:

` =
n∑
i=1

EDi|Oi,θ̃,Yi

[
log

P(Oi, Di = di|θ, Yi)
P(Di = di|Oi, θ̃, Yi)

]
+ logP(θ),

(39)
under our new notations stated above. The
approximate lower bound of the posterior of
the parameters still writes, after sampling one
D̂i according to P(Di|Oi, θ̃, Yi):

` ≥
n∑
i=1

log
P(Oi, Di = D̂i|θ, Yi)

wi
+ logP(θ),

(40)
using the notation: wi = P(Di|Oi, θ̃, Yi).
Again, we only need to maximize the following
functionM in its parameters θ:

θ →M(θ) =
n∑
i=1

logP(Oi, Di = D̂i|θ, Yi)

+ logP(θ).

Since Di = D̂i is now fixed, we further
decompose the right-hand side of the above
inequality.

M(θ) =
n∑
i=1

logP(Si, Xi, Di = D̂i|θ, Yi) + logP(θ)

= M(p0, p1) +M(s0, s1) +M(β)

(41)
where:

M(p0, p1) =

n∑
i=1

logP(Si|Di = D̂i, p0, p1)

+ logP(p0, p1)

M(s0, s1) =
n∑
i=1

logP(Xi|Si, Di = D̂i, s0, s1)

+ logP(s0, s1),

M(β) =

n∑
i=1

logP(Di = D̂i|β, Yi) + logP(β).

(42)
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are the same functions as in the case with
observed Ti. The only difference is that D̂i

is sampled from P (Di|Oi, θ̃, Yi) where Oi =
(Si, Xi) does not contain Ti.

E.1. Auxiliary computation:
log-likelihood in truncated
Bayesian model

The joint log-likelihood in the truncated
Bayesian model writes:
P(O,D, θ|Y )

= P(S,X,D, x, y, p0, p1, s0, s1, β|Y )

= P(S,X, x, y, p0, p1, s0, s1|D)

× P(D|Y, β)× P(β|Y )

= P(X, s0, s1|S,D)× P(S, p0, p1|D)

× P(D|Y, β)× P(β|Y ),

(43)

which gives the same result as in the
non-truncated case, but without the term
P(T, x, y|D). We use the computations from
subsection D.3.1 to get the final expression
of the loglikelihood: We plug the expressions
of the probabilities in the joint log-likelihood,
and get:
P(O,D, θ|Y )

∝ p(1−S)X0 p
(1−S)(1−X)
1 s

S(1−D)X
0

× (1− s0)S(1−D)(1−X)sSDX1 (1− s1)SD(1−X)

× sαs0−1
0 (1− s0)βs0−1s

αs1−1
1 (1− s1)βs1−1

× p(1−D)S
0 (1− p0)(1−D)(1−S)

× pDS1 (1− p1)D(1−S)

× pαp0−1
0 (1− p0)βp0−1p

αp1−1
1 (1− p1)βp1−1

× π(Y, β)D(1− π(Y, β))1−D × n(β;σ2β),

(44)
where we omit the normalizing constants from
the beta distributions.

E.2. Stochastic E-step in the
truncated model: Compute
posterior of the hidden variables
Di

In the stochastic E-step, we aim to sample D̂i

from the posterior distribution of the hidden
variable Di. Given the current estimate θ(j)

of the parameters, we compute the posterior
of the diagnosis Di for each patient i:

P(Di|Oi, θ(j), Yi) = P(Di|Si, Xi, θ
(j), Yi)

∝ P(Di, Si, Xi, θ
(j)|Yi),

where we plug the expression of the joint log-
likelihood of the truncated model.

Omitting the coefficients that are shared in
both formulae for the probability below, we
have:
P(Di = 1|Oi, θ(j), Yi)

∝ s(j)1

SiXi
(1− s(j)1 )Si(1−Xi) × π(Yi, β

(j))

× pSi
1 (1− p1)(1−Si)

P(Di = 0|Oi, θ(j), Yi)

∝ s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)

× (1− π(Yi, β
(j)))× pS0 (1− p0)(1−Si),

(45)
by identification.

Appendix F. Stochastic EM with
missing T : Missing
and hidden variables

We derive the Stochastic EM algorithm in
the full Bayesian model, taking into account
the missing variables Ti’s (missing for i =
r+ 1...n) and hidden variables Di’s. We want
to maximize the posterior distribution of the
parameters θ:
P(θ|O1, ...Or, O

M
r+1, ..., O

M
n , Y1, ..., Yn)

=
P(O1, ..., Or, O

M
r+1, ..., O

M
n |θ, Y1, ..., Yn)× P(θ)

P(O1, ..., Or, OMr+1, ..., O
M
n |Y1, ..., Yn)

∝ Πr
i=1P(Oi|θ, Yi)×Πn

i=r+1P(OMi |θ, Yi)× P(θ)

(46)
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where we write Oi = (Si, Xi, Ti) when Ti is
available and OMi = (Si, Xi) when Ti is miss-
ing.

This translates into maximizing the expres-
sion:
` =

r∑
i=1

logP(Oi|θ, Yi) +
n∑

i=r+1

logP(OMi |θ, Yi)

+ logP(θ)

≥
r∑
i=1

EDi|Oi,θ̃,Yi

[
log

P(Oi, Di = di|θ, Yi)
P(Di = di|Oi, θ̃, Yi)

]
+

n∑
i=r+1

EDi,Ti|OM
i ,θ̃,Yi

[
log

P(OMi , Di = di, Ti = ti|θ, Yi)
P(Di = di, Ti = ti|OMi , θ̃, Yi)

]
+ logP(θ),

(47)
where we use Jensen inequality to
compute the tangent lower-bounds
of `D =

∑r
i=1 logP(Oi|θ, Yi) and

`T,D =
∑n

i=r+1 logP(OMi |θ, Yi) indepen-
dently. This is still a valid lower-bound of `
at θ̃ as the sum of the tangent-lower bounds
is a tangent-lower bound of the sum.

After sampling, we need to maximize the
following function of θ:

θ →MMIS(θ) =

r∑
i=1

logP(Oi, D̂i = di|θ, Yi)

+

n∑
i=r+1

logP(OMi , D̂i = di, T̂i = ti|θ, Yi)

+ logP(θ)

=M(θ, n = r)

+
n∑

i=r+1

logP(OMi , D̂i = di, T̂i = ti|θ, Yi)

(48)
whereM(θ, n = r) is the cost function in the
case without missing T .

We compute the second term of the lower-
bound, which we denoteMNEW :
MNEW (θ)

=
n∑

i=r+1

logP(OMi , D̂i = di, T̂i = ti|θ, Yi)

=

n∑
i=r+1

logP(Si, Xi, D̂i = di, T̂i = ti|θ, Yi)

=
n∑

i=r+1

logP(Ti = T̂i|Di = D̂i, θ, Yi)

+ logP(Xi|Si, Di = D̂i, θ, Yi)

+ logP(Si|Di = D̂i, θ, Yi)

+

n∑
i=1

logP(Di = D̂i|θ, Yi)

(49)
which is M(θ, n = (n − r + 1), Ti → T̂i).
Therefore: mathcalMMIS(θ) isM(⊆) where
the missing Ti’s have been replaced by theirs
imputed value.
We proceed with the Stochastic EM algo-

rithm as follows:

• M-step: Compute the tangent-lower
bound, which amounts to:

– for i = 1, ..., r: sample D̂i from
P(Di|Oi, θ̃, Yi),

– for i = r + 1, ..., n: sample D̂i, T̂i
from P(Di, Ti|OMi , θ̃, Yi),

• E-step: Maximize the lower-bound in θ.

F.1. M-step

For i = 1, ..., r, sampling D̂i is performed
as usual. We focus on sampling D̂i, T̂i from
P(Di, Ti|OMi , θ̃, Yi).

We compute the posterior of interest:
P(Di, Ti|OMi , θ̃, Yi) ∝ P(Di, Ti, O

M
i , |θ̃, Yi)

(50)
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We get:
P(Di = 0, Ti = 0|OMi , θ̃, Yi)

∝ (1− y(j))× s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)

× (1− π(Yi, β
(j)))× pS0 (1− p0)(1−Si)

P(Di = 0, Ti = 1|OMi , θ̃, Yi)

∝ y(j) × s(j)0

SiXi
(1− s(j)0 )Si(1−Xi)

× (1− π(Yi, β
(j)))× pS0 (1− p0)(1−Si)

P(Di = 1, Ti = 0|OMi , θ̃, Yi)

∝ (1− x(j))× s(j)1

SiXi
(1− s(j)1 )Si(1−Xi)

× π(Yi, β
(j))× pSi

1 (1− p1)(1−Si)

P(Di = 1, Ti = 1|OMi , θ̃, Yi)

∝ x(j) × s(j)1

SiXi
(1− s(j)1 )Si(1−Xi)

× π(Yi, β
(j))× pSi

1 (1− p1)(1−Si).

(51)

These allow to sample (D̂i, T̂i) according
to the posterior, for i = r + 1, .., n.

F.2. E-step

The update are the same, except that the
missing Tis are replaced by their imputed
values.

F.3. Enhancement

In addition, we can consider that we have a
different prior on the imputed Ti’s. Therefore,
we create a new class of sensivitivy/specificity
pair, designed for the imputed Ti. The priors
are initialized as non-information Beta distri-
bution with parameters (2, 2), and updated
at training time.

Appendix G. Additional Plots for
Validation on
Synthetic Data

This section provides additional details on the
validation of the StEM algorithm on synthetic
data.

Improvement upon T . Table 1 shows the
improvement in the diagnosis’ accuracy pro-
vided by our method against the sole test
T , and highlights the potential strength of
harvesting multiple noisy sources of informa-
tion. The values that we have chosen here for
the sensitivity are reflective of the ones that
have been reported for the LFA test in the
COV-CLEAR study.
Benchmarks. We complete here our
discussion of the improvement that our
method brings upon Computer-Aided Diag-
nosis (CAD) standard methods. Fig. 10 com-
pares — for various pairs of sensitivity and
specificity. — the diagnosis accuracies of the
Stochastic EM algorithm (StEM) and two
variants of the EM algorithm: one variant
where the parameters’ priors are agnostic,
or uninformative; and another variant where
these priors are computed from the available
data, as described in Section 5. This figure
demonstrates that learning the parameters’
posterior distributions while estimating the
diagnosis yields higher prediction accuracy.
Convergence. Fig. 11 shows the distribu-
tion of the relative difference between recov-
ered coefficients and ground truth (as a per-
centage of the ground truth value), showing
deviations that are within a few percentages
of the true value of the coefficients — thus
highlighting the ability of the model to con-
verge to the ground truth parameters.

Fig. 12 shows the average number of conver-
gence steps for different values of sensitivity,
specificity and sample sizes. Interestingly,
we note that for high values of the sensitiv-
ity/specificity, the rate of convergence is much
faster. To illustrate the complexity of the al-
gorithm, we also display in Fig. 13 the time
required per iteration as a function of the
number of samples.
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Sensitivity Specificity
Real-life Value 70 80 93 99

Asymptomatic 70 16.2 ±3.9 12.8 ±4.0 8.42 ±3.2 5.64 ±3.2

2-10 days 80 12.3 ±3.2 9.27 ±3.1 4.82±2.9 97.0 ±2.3

11-20 days 93 8.5 ±2.6 6.4 ±2.5 2.3 ±2.1 0.03 ±1.4

21+ days 99.0 8.7 ±2.7 5.7 ±2.0 2.0 ±1.4 0.01 ±0.0

Table 1: Gain in accuracy (mean and standard deviation) when using StEM over the sole
test
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Figure 10: Performance of the StEM algorithm compared to benchmark versions of the EM
for n=300 samples, σ = 0.5, and varying levels of specificity and sensitivity. (A) Gain in
accuracy with respect to the Data-Agnostic EM described in Section 5. (B) Gain in accuracy
with respect to the Data-Informed EM described in Section 5.
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symptom 0 if healthy

Probability of 
symptom 0 if sick

Coefficient of 
risk factor 2

(D) (E) Sensitivity 1 - Specificity

  .9 .93.6 .7 .75 .8 .85  .95 .87 .97 .99  .9 .93.6 .7 .75 .8 .85  .95 .87 .97 .99   .9 .93.6 .7 .75 .8 .85  .95 .87 .97 .99

  .9   .93.6  .95 .87 .97 .99

Sensitivity Sensitivity Sensitivity

Sensitivity Sensitivity
.7 .75 .8 .85   .9   .93.6  .95 .87 .97 .99.7 .75 .8 .85

-.2

.2

0.0

-.6

.8

0.0 0.0

0.0 0.0

-.4

.5

-.6

.6

-.6

.6

Figure 11: Relative difference between estimated parameters and their ground truth, for
n = 300, σ = 0.5 and different values of sensitivity (simulated data).
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Figure 12: Number of steps until convergence for σ = 0.5 and different values of sensitivity,
specificity and sample sizes (simulated data).
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Figure 13: Time (s) per iteration, as the num-
ber of samples increases.
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