
Proceedings of Machine Learning Research 136:114–125, 2020 Machine Learning for Health (ML4H) 2020

Parkinsonian Chinese Speech Analysis towards Automatic
Classification of Parkinson’s Disease

Hao Fang fangh18@mails.tsinghua.edu.cn

Chen Gong gongc16@mails.tsinghua.edu.cn

Chen Zhang zhangchen2020@tsinghua.edu.cn

Yanan Sui ysui@tsinghua.edu.cn

Luming Li lilm@tsinghua.edu.cn

National Engineering Laboratory for Neuromodulation, Tsinghua University

Editors: Emily Alsentzer⊗, Matthew B. A. McDermott⊗, Fabian Falck, Suproteem K. Sarkar,

Subhrajit Roy‡, Stephanie L. Hyland‡

Abstract

Speech disorders often occur at the
early stage of Parkinson’s disease (PD).
The speech impairments could be indi-
cators of the disorder for early diagno-
sis, while motor symptoms are not ob-
vious. In this study, we constructed a
new speech corpus of Mandarin Chinese
and addressed classification of patients
with PD. We implemented classical ma-
chine learning methods with ranking al-
gorithms for feature selection, convolu-
tional and recurrent deep networks, and
an end to end system. Our classifi-
cation accuracy significantly surpassed
state-of-the-art studies. The result sug-
gests that free talk has stronger clas-
sification power than standard speech
tasks, which could help the design of fu-
ture speech tasks for efficient early diag-
nosis of the disease. Based on existing
classification methods and our natural
speech study, the automatic detection
of PD from daily conversation could be
accessible to the majority of the clinical
population.

Keywords: Speech Disorder, Parkin-
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1. Introduction

Parkinson’s disease (PD) is the second most
common neurodegenerative disease in the
world. The affected population keeps in-
creasing as we expect an aging society.
Dorsey et al. (2007) estimated that by 2030,
over eight million people will suffer from PD,
while about half of them speaking Chinese.
Vaiciukynas et al. (2017) showed that in-
tervention therapy in the early stage of PD
could effectively alleviate the disease progres-
sion. Early diagnosis thus is crucial to lead
to early medical treatments. However, it
is still difficult to make early detection of
patients with PD when their motor symp-
toms are not obvious. Speech disorders are
common symptoms of PD. About 75%-95%
of PD patients show speech impairments,
such as mono-tone, mono-loudness, slurred
speech, and loss of volume. These symptoms
frequently occur at the onset of PD, long
before the appearance of significant motor
signs (Pawlukowska et al., 2018). Therefore,
speech deficits could be treated as potential
indicators for early diagnosis of the majority
of the clinical population (Rusz et al., 2011).

In this study, We aimed to assess the
speech disorder and separate the clinical
group from the healthy deploying various
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machine learning methods. We built a cor-
pus of Chinese speech tasks, including one
specific task of Chinese poem (structured
sentences) reading. We implemented clas-
sical machine learning methods with rank-
ing algorithms for feature selection, convolu-
tional and recurrent deep networks, and an
ene to end system. We investigated acous-
tic characteristics that could distinguish the
speech disorders of patients with PD from
healthy participants. The performances of
our methods surpassed the state-of-the-art
results. Our results suggested that both
classical machine learning methods with fea-
ture selection and advanced deep learning
tools could effectively capture Parkinsonian
speech characteristics. This work presented
the first study on classifying PD patients
from healthy subjects using Chinese speech
signals to the best of our knowledge.

We further explored possible ways to op-
timize speech tasks towards better classifi-
cation/diagnosis. Our free talk based image
description task yielded better classification
accuracy comparing to standard tasks, which
is consistent with the physician’s experience
and has been proved in Goberman et al.
(2010). Our methods could be directly ap-
plied to clinical evaluations and potentially
utilized for detecting patients with PD from
daily speech. This assistive diagnostic sys-
tem would be accessible to everyone when
integrated into mobile applications.

2. Related Work

Previous studies showed the possibility of
classification of patients with PD from their
speech signals. The speech samples col-
lected in these studies included sustained
vowels, diadochokinetic (DDK), words, and
sentences. Some studies achieved relatively
good classification results from sustained
vowels (Xu et al., 2018; Sakar et al., 2019;
Gunduz, 2019), mainly the vowel /a/. DDK,

words, and sentences contained more vari-
eties in pitch and rhythm compared to sus-
tained vowels, comprehensively presenting
more information about the speech disorders.
Classifications of the PD group were reported
from words and/or sentence tasks in dif-
ferent languages, including Hebrew (Haupt-
man et al., 2019), French (Jeancolas et al.,
2019), Spanish (López et al., 2019), Ger-
man (Orozco-Arroyave et al., 2016a), Czech
(Orozco-Arroyave et al., 2016a), and Lithua-
nian (Vaiciukynas et al., 2017).

As features, time-frequency representa-
tions of acoustic signals are frequently used
in machine learning studies for human
speech. With the advantage of approximat-
ing the human auditory system’s response
(Logan et al., 2000), Mel-Frequency Cep-
stral Coefficients (MFCCs) are one of the
most commonly used features in these stud-
ies (Benba et al., 2015; Xu et al., 2018; Jean-
colas et al., 2019; Gaballah et al., 2019).

Both classical machine learning and deep
learning methods had been introduced in the
classification of PD patients’ speech. The
Support Vector Machine (SVM) was widely
selected and frequently performed well (Gar-
cia et al., 2018; Arias-Vergara et al., 2018).
Some studies also chose k nearest neighbor
(KNN) and random forest (RF) to classify
PD speech (Sakar et al., 2013; Zhang, 2017;
Polat, 2019). In recent years, many studies
chose deep learning methods, especially Con-
volutional Neural Network (CNN), as clas-
sifier (Vásquez-Correa et al., 2017; Correa
et al., 2018; Gunduz, 2019).

However, publicly available speech
datasets and classification studies of pa-
tients with PD in Chinese are not found.
Some people discussed the intonation con-
trast of PD patients speaking Mandarin
Chinese (Liu et al., 2019) and Cantonese
(Ma et al., 2010), without further attempts
on classification.
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3. Data Collection

We collected a new Chinese speech corpus
containing speech samples recorded from 34
patients with PD and 34 healthy controls
(HCs) via different phones and DVs. This
uncontrolled device and environment record-
ing condition rather than well-controlled ex-
perimental settings was more applicable in
daily life, making it accessible to the major-
ity of the disorder group. It also helped to
train classifiers which would be easier to gen-
eralize and more robust in real application.
The set of PD patients included 20 males
aged 45 to 73 years (mean 56.70±8.35 years)
and 14 females aged 41 to 68 years (mean
58.29 ± 6.94 years). All PD patients were
clinically diagnosed by experienced neurolo-
gists. The HC group included 16 males aged
20-55 years (mean 41.22±14.89 years) and 18
females aged 21-74 years (mean 48.55±11.65
years). We noticed that our participant
groups were not precisely matched in age
and gender. However, Sapir et al. (1999)
proved that age and gender were not rele-
vant to speech abnormalities. All subjects
signed an informed consent form before their
participation.

Speech signals of each subject were sam-
pled at 48kHz for three tasks:

1) Image description (describe the image
content after watching it for 30sec);

2) DDK test (quickly repeat /lalala-tatata-
dadada/ for three times);

3) Text reading (read two ancient Chinese
poems, composed of eight seven-word sen-
tences).

4. Methods

4.1. Preprocessing

We first removed non-speech episodes and
non-subject speech episodes from all record-
ings. Then, speech segments were extracted

for each task respectively, according to the
following criteria:

1) For image description, segments were
extracted between speech pauses;

2) For DDK test, each segment included
one /lalala-tatata-dadada/ sample;

3) For text reading, each segment included
one seven-word sentence.

We excluded poor quality segments (e.g.,
containing significant noise, deviating from
task requirements, etc.), and acquired 4820
speech segments in total for all 68 subjects
(task 1: 2098, task 2: 773, task 3: 1949).
Each segment was given a label indicat-
ing whether it belonged to PD patients or
healthy subjects.

We calculated 128 MFCCs within 2000Hz
frequency for each segment, using a sliding
window of 2048 points (about 42.67msec)
with an overlap of 75%. Among all 128
MFCCs, the 5th to 44th MFCCs were chosen,
which covered the major frequency range of
human speech. Thus, each segment was rep-
resented by a 40 × n matrix, where 40 indi-
cated the number of selected MFCCs (the 5th

to 44th of 128 MFCCs), and n denoted the
number of time bins sized around 10.67msec.
The calculation of MFCCs was implemented
with LibROSA library (McFee et al., 2015)
in Python.

4.2. Classical Machine Learning
Methods

Classical machine learning methods classify
each segment via its features. The fea-
ture extraction and selection are essential,
determining the performance of the classi-
fier. We examined several commonly used
classical machine learning methods in this
study, including kNN, RF, and SVM with
three different kernels: polynomial kernel,
linear kernel, and Gaussian radial basis func-
tion (RBF) kernel. These methods were im-
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plemented with the Scikit-learn library (Pe-
dregosa et al., 2011) in Python.

4.2.1. Feature Extraction

The size of MFCCs matrices varied due to
the differences in duration of speech seg-
ments. To build fixed-length feature vectors
for classical machine learning methods, we
compressed the 40 × n matrices along the
second dimension (temporal dimension). We
calculated four time-domain statistics (aver-
age value, standard deviation, skewness, and
kurtosis) for each MFCC to encompass the
segment-level information, as what Orozco-
Arroyave et al. (2016b) had done. To reduce
the loss of time-variant information in matrix
compression, we also added the first and the
second derivatives of MFCCs (MFCCs(1) and
MFCCs(2)) and the same time-domain statis-
tics of them. Concatenating all the MFCCs
and their derivatives and statistics, we finally
aquired a 1-D feature vector of length 480
(40 MFCCs× 3 derivatives× 4 statistics)
for each segment.

4.2.2. Feature Selection and
Classification

We performed feature selection in the entire
feature space to remove irrelevant and redun-
dant features. Firstly, we applied nine fil-
tering methods according to Li et al. (2017)
to all features. Among those filtering meth-
ods, fisher score, reliefF, and trace ratio were
based on similarity. These methods assessed
features’ importance by their ability to pre-
serve data similarity, especially referring to
the data manifold structure encoded by an
affinity matrix. RFS, ls l21 (Liu et al., 2012),
and ll l21 were based on sparse learning.
These methods considered minimizing both
biases of fitting models and sparse regulariza-
tion terms. Gini index, f-score, and t-score
were based on statistics, assessing feature
importance with statistical measures. Each

method provided a feature-rank, which de-
scribed the importance of features in clas-
sifying patients with PD from HCs. In this
sense, features with higher ranks played more
significant roles in classification.

Secondly, we performed feature selection
and PD classification with RBF-kernel based
SVM classifiers simultaneously. Each time
we selected the top m (m = 1, 2, ..., 480) fea-
tures according to their ranking orders gen-
erated from one of the nine filtering methods
as inputs for the classifier. The leave-one-
subject-out (LOSO) strategy was deployed
during classification: segments from one sub-
ject were excluded as test samples, and the
rest were used for training. This strategy
guaranteed that segments from the same sub-
ject only appeared either in the training or
test set, eliminating the risk of identity con-
founding (Neto et al., 2019). As a result,
LOSO provided a more objective and fair
evaluation of classifiers.

We traversed the nine feature-ranks and
all possible values of m. The classification
performance for each of these combinations
guided the selection of the best feature sub-
set. We also examined the performance of
KNN, RF, and linear- and polynomial-kernel
based SVM classifiers, using grid search
strategy for parameter tuning.

4.3. Deep Learning Methods

Deep learning methods allowed us to use the
original MFCCs matrices (see Section 4.1) as
inputs to differentiate PD patients without
manually extracting and selecting features,
thus avoiding the loss of time-variant infor-
mation when calculating the four statistics in
previous classical machine learning methods.
We extracted samples from a sliding window
of 40 time bins (which corresponded to the
speech signal of about 426.7msec) with an
overlap of 75% for each of the original 40×n
MFCCs matrices. In total, 66438 samples
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sized 40× 40 were obtained as the inputs for
the two types of deep neural networks we de-
signed to perform the classification.

4.3.1. 6-layer Convolutional Neural
Network

CNN has been widely applied in tasks re-
garding images in various domains. CNN
introduces convolutional and pooling layers
as hidden layers. With its shared-weights
architecture, CNN has a great response to
the sliding and deforming of images. Ac-
cordingly, CNN is suitable for processing the
time-frequency representation of speech sig-
nals. The CNN architecture proposed here
included six layers, described in Table 1.

Table 1: Description of the CNN structure

Layer Kernel Size Output Size

Input - 40 × 40 × 1
Conv 3 × 3 × 16 40 × 40 × 16
Conv 3 × 3 × 16 40 × 40 × 16
MaxPool 2 × 2 20 × 20 × 16
Conv 3 × 3 × 32 20 × 20 × 32
MaxPool 2 × 2 10 × 10 × 32
Conv 3 × 3 × 64 10 × 10 × 64
MaxPool 2 × 2 5 × 5 × 64
MaxPool 5 × 5 1 × 1 × 64
Flatten - 64
FC 64 × 8 8
Dropout p = 0.5 -
FC 8 × 2 2

4.3.2. Self-attention based Long
Short-Term Memory Network

Long Short-Term Memory (LSTM) networks
are a kind of Recurrent Neural Networks
(RNNs) dealing with long-term sequences
(Hochreiter and Schmidhuber, 1997). In-
spired by the physiological process of human
decision-making after listening to a speech
segment where attention is involved, we con-
structed a self-attention based LSTM archi-
tecture. The MFCCs matrix was fed into the
LSTM layer chronologically frame by frame,

producing a 2-D dimensional output matrix
V of size 40 × Hidden size. We designed
the attention layer according to the struc-
ture of the Transformer proposed by Google
(Vaswani et al., 2017). We chose the last out-
put vector as the feature vector extracted by
the encoder, fed it into the classifier to make
a decision. The LSTM structure is described
in Table 2.

Table 2: Description of the LSTM structure

Layer Kernel Size Output Size

Input - 40 × 40
LSTM Hidden Size = 512,

Layer Number = 3 40 × 512
Attention Self-Attention 40 × 512
Last output - 512
MaxPool 2 256
FC 256 × 64 64
FC 64 × 8 8
Dropout p = 0.4 -
FC 8 × 2 2

4.3.3. End-to-End System

The end-to-end (E2E) system usually means
the network that can utilize the original sig-
nal without additional processing. In this
work, we also constructed a deep neural net-
work that directly adopted the original wave-
form signal as the input. We hoped this de-
sign could capture preciser time information
than using MFCCs as input. We used a time-
convolutional layer structure as the front-end
network instead of the calculation of MFCCs
in Section 4.1, inspired by the CLDNN struc-
ture proposed by Sainath et al. (2015). We
used the LSTM network as the back-end net-
work to make a final decision. The E2E ar-
chitecture proposed here is described in Ta-
ble 3.

4.3.4. Training

We utilized the same LOSO strategy to di-
vide training and test sets, and further sepa-
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Table 3: Description of the E2E structure

Layer Kernel Size Output Size

Input - 1 × 21500
Unfold Window = 21500,

Stride = 500 40 × 2000
1d-Conv 200 × 40,

Stride = 25 40 × 73 × 40
MaxPool 73 × 1 40 × 1 × 40
Flatten - 40 × 40
Log-ReLU - 40 × 40

LSTM Hidden Size = 512,
Layer Number = 3 40 × 512

Last output - 512
MaxPool 2 256
FC 256 × 64 64
Dropout p = 0.4 -
FC 64 × 8 8
FC 8 × 2 2

rated 20% samples from the training set for
validation. We chose BCE loss as the loss
function, Adam as the optimizer, and set the
learning rate to 0.001. The training process
was stopped when accuracy on the validation
set reached 0.99 or the maximum number of
epochs reached (in this case, we chose the
number of epochs when the highest valida-
tion accuracy was achieved).

4.4. Evaluation

We evaluated the performances of classi-
fiers at segment-level. The classical ma-
chine learning methods directly provided
a segment-level classification. While in
deep learning methods, we fed the 40 × 40
MFCCs matrix (named ’sample’ of a speech
’segment’) into the classifier, thus made a
sample-level classification. We then aver-
aged the prediction probabilities of samples
belonged to the same segment. The seg-
ment’s label was assigned according to the
averaged probability. To improve robust-
ness and generalizability, we excluded sam-
ples with the top and bottom 30% probabil-
ity values from averaging. This strategy gen-

erated a segment-level classification result,
making it available to compare the perfor-
mance of deep learning and classical machine
learning methods.

The classifiers were evaluated through the
prediction accuracy (ACC) by calculating
the ratio of correctly classified segments to all
segments. Confusion matrix and Area Under
the receiver operating characteristics Curve
(AUC) were also used as the extension eval-
uation criterion.

Figure 1: Distribution of selected features

5. Results and Discussion

For classical machine learning methods, us-
ing ls 121, the sparse learning-based feature
selection method led to the achievement of
the best performance comparing to others.
We selected the top 100 features with ls l21
as the input feature subset for classification.
This group of features reached execellent per-
formance (exceeded 99% of maximum AUC)
with a small number of features. Figure 1
presents the distribution of this feature sub-
set. MFCCs accounted for a large proportion
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Figure 2: Confusion matrices of four methods

of selected features at higher ranks, whereas
the proportion of MFCCs(1) and MFCCs(2)

raised in lower rank intervals. The total
number of each statistic selected for classifi-
cation is shown in the upper part of Figure 1.
The average value of MFCCs played a ma-
jor role in classification, indicating the lower
speech volume of PD patients. The widely
distributed standard deviation of MFCCs
and its derivatives indicated the importance
of time-variant information in speech signals.
This result revealed the contribution of each
feature in differentiating the PD patients.

Among the three classical machine learn-
ing classifiers mentioned in Section 4.2.2,
RBF-kernel based SVM with the selected
feature subset achieved the highest AUC of
0.978 and ACC of 0.930, which was sig-
nificantly better than those acquired with
all 480 features (AUC = 0.966 and ACC
= 0.906), showing the importance of fea-
ture selection. Figure 2 (a) shows the con-
fusion matrix for RBF-kernel based SVM,
with both the sensitivity and specificity
higher than 0.89. After grid search, the
best parameters we found in RBF-kernel
were C = 4 and gamma = 1/(#features ×
variance of training samples).

Other classifiers with the top 100 feature
subset provided by ls l21 also performed well,
though worse than RBF-kernel SVM: AUC =
0.955 and ACC = 0.880 for RF, AUC = 0.923
and ACC = 0.868 for kNN, AUC = 0.931 and

ACC = 0.854 for linear kernel based SVM,
and AUC = 0.954 and ACC = 0.875 for poly-
nomial kernel based SVM.
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Figure 3: ROC curve of four methods

For deep learning methods, the 6-layer
CNN, self-attention based LSTM and E2E
system all exhibited better performance.
CNN performed the best, with an AUC
of 0.984 and ACC of 0.938. Self-attention
based LSTM reached an AUC of 0.981 and
ACC of 0.942, while E2E system reached
an AUC of 0.982 and ACC of 0.945. Fig-
ure 2 (b), (c) and (d) presents the confu-
sion matrices for these three methods respec-
tively. The better result may due to the de-
tailed usage of signal information. In clas-
sical machine learning methods, we roughly
represented the signal by the statistics of
MFCCs, losing some time-variant informa-
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tion of the speech signal. Orozco-Arroyave
et al. (2015) successfully classify PD speech
from voiced/unvoiced transitions, showing
that parkinsonian speech disorder can be de-
tected from the rapid changes of speech. The
original MFCCs matrix can provide a higher
time-domain resolution than its statistics,
which may benefit the classification. The lo-
cal view of each method’s ROC curve is pre-
sented in Figure 3, providing a visual com-
parison of these four methods.

This study included three speech tasks,
as described in Section 3. Accordingly, we
tested the classification performance on each
task individually. The same feature selection
procedure in Section 4.2.2 was applied. Fig-
ure 4 shows the AUC calculated for classi-
fication performance with different numbers
of selected features using RBF-kernel based
SVM.
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Figure 4: AUC of each tasks

The AUC of task 2 (DDK) is lower than
task 1 (image description) and task 3 (text
reading), which is consistent with the re-
sult shown in Orozco-Arroyave et al. (2016a).
Sentences involved different words, pauses,
and rhythms, while DDK in this study
mainly contained the single vowel /a/. Thus
DDK covered less variation in voice and only
reflected a narrower range of vocal space.
This performance difference might support
the assumption that MFCCs are more suit-

able for complicated tasks or speech, as dis-
cussed in Moro-Velazquez et al. (2020).

Besides, task 1 achieved a significantly bet-
ter classification result compared to task 3.
The reason might be that text reading only
involved fixed contents, while image descrip-
tion allowed more freedom with fewer lim-
itations. Another possible explanation of
this difference could be that subjects were
more focused on recalling the image’s con-
tent when they participated in task 1, thus
relaxed the control of some muscles and ex-
hibited more severe speech disorder. As a re-
sult, the difference between PD patients and
healthy subjects’ speech was shown more ob-
viously. This trick of attracting patients’ at-
tention is also used in other tests to illumi-
nate their movement disorder. PD patients
could be classified from natural speech with-
out specifically designed tasks, indicating the
potential to detect PD patients from speech
obtained in daily life and assist early clinical
diagnosis of PD.

Though worse than task 1, task 3 also
achieved a strong classifying ability and was
better than task 2. The reading texts we de-
signed in task 3 were two ancient Chinese po-
ems, which are very familiar to Chinese peo-
ple. Subjects could read the poems in their
most comfortable way as a conditional re-
flex, significantly reduced the time cost. Be-
sides, it is uncertain whether image descrip-
tion may be influenced by cognitive function.
Reading tasks were more focused on speech
function and can provide an equal number of
training data, which is suitable for machine
learning.

We visualized the selected features using
t-distributed stochastic neighbor embedding
(t-SNE). In detail, we performed principal
component analysis (PCA) to reduce the fea-
tures from 480-d to 50-d and retain more
than 90% of the effective information. Then
we performed t-SNE on PCA result. Figure 5
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showed the separability of features from the
two groups.

We further compared our RBF kernel-
based SVM results in single speech task with
previous studies, as shown in Table 4. Our
method (in bold) surpassed previous state-
of-the-art results.

6. Conclusions and Future Work

In this study, we built a speech dataset
with different tasks in Mandarin Chinese; in-
vestigated features for speech disorders re-
lated to Parkinson’s disease; developed high-
accuracy methods for the classification of pa-
tients with PD and healthy subjects.

Both classical machine learning methods
with feature selection and deep learning
methods we developed have state-of-the-art
performance. In addition, we tested the clas-
sification performance for different speech
tasks. The result suggests that free talk has
stronger classification power than standard
tasks, which could aid the design of future
speech tests for efficient early diagnosis of the
disease.

For future work, more specifically designed
neural networks may further improve accu-
racy and generalizability. The pipeline of fea-
ture selection and the neural network struc-
ture proposed in this study could also be
applied to speech tasks in other languages.
High quality and large volume data on speech
tasks from patients and healthy subjects are
crucial for practical applications. A better

understanding of the speech disorders’ mech-
anism would also help us in developing more
effective diagnostic tools.
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