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Abstract

Abbreviation expansion is an impor-
tant problem in clinical natural lan-
guage processing because abbreviations
often occur in text notes in medical
records, and expansions of these ab-
breviations are critical for downstream
applications such as assistive diagno-
sis and insurance code review. Previ-
ous studies have treated abbreviation
expansion as a special case of word
sense disambiguation; however, abbre-
viation expansion is easier because we
only need the character level expansion
and not necessarily the full sense of
the abbreviation. In particular, such
character level expansions may natu-
rally occur elsewhere in medical con-
texts. Accordingly, we consider two
categories of methods for abbreviation
expansion: (a) non-sense-based meth-
ods that use information solely at lexi-
cal levels using state-of-the-art language
models, and (b) sense-based methods
that also incorporate sense information,
such as glosses, from knowledge bases,

to simultaneously perform the two tasks
of expansion and disambiguation of the
abbreviation. We propose two language
model based approaches, including a
novel length-agnostic permutation lan-
guage model, find non-sense methods
to be more effective than sense-based
methods, and achieve the state-of-the-
art on three clinical datasets. 1

Keywords: Clinical NLP, abbrevia-
tion expansion

1. Introduction

Many tasks at the intersection of health-
care and machine learning, such as diagnos-
ing patients, insurance coding for hospital
procedures, and returning search results for
medical terms, among others, often involves
clinical notes expressed in natural language.
However, clinical notes pose an idiosyncratic
difficulty: abbreviations are commonly used

1. Code available at https://github.com/
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without reference to their meaning. For ex-
ample, about 15% of PubMed queries include
abbreviations (Islamaj Dogan et al., 2009),
and about 15% of tokens in a clinical note are
abbreviations (Xu et al., 2007). Thus, the
task of determining the words of an abbre-
viation, called abbreviation expansion (AE),
is helpful for any manual auditing of these
notes, as well as for potential downstream
systems to accomplish medical NLP tasks.

Abbreviation expansion poses two prin-
cipal challenges: (a) abbreviations are not
unique and may depend on the context, and
(b) there is relatively little labeled data. As
an illustration of the non-uniqueness of ab-
breviations, “AB” may refer to either “Abor-
tion” or “Ankle-brachial.” Thus, practical
approaches to abbreviation expansion must
incorporate contextual information and func-
tion with little labeled data.

Most prior work on abbreviation expan-
sion cast it as an instance of word sense dis-
ambiguation (WSD) and consequently have
used models adapted from general WSD
tasks for clinical abbreviation expansion.
However, there is an important distinction
between abbreviation expansion and WSD.
Fundamentally, abbreviation expansion in-
volves a character level expansion into a word
or phrase, whereas WSD not only implicitly
performs the character level expansion, but
also assigns a unique “sense” from a given
list of candidate senses. Like general vocab-
ulary, medical terms have homonyms, so the
word itself is not enough to determine the ex-
act sense in many cases. For examples, the
anatomic term pelvis may refer to hip bones
or to regions of the kidney.

This difference has practical implications:
WSD is a fundamentally more difficult prob-
lem since it not only implicitly performs a
character level expansion as a first step but
also an additional step of sense assignment.
Moreover, the first step is potentially much
simpler than the second since we have am-

ple observations of character level expansions
into words and phrases in the text corpus,
whereas this is not true of word senses.

Thus, we propose two categories of ap-
proaches for abbreviation expansion. The
first class is non-sense-based approaches,
which use language models (LMs) that pre-
dict the probability of words in a specified
location. Such an approach might not be ap-
plicable to WSD. The second class is sense-
based approaches that use additional infor-
mation on senses, such as the gloss, of various
senses to perform WSD, which also results in
an abbreviation expansion.

Additionally, we provide two language
model-based approaches: one is based on
the masked language model of BERT and
the second is a novel adaptation of the per-
mutation language model XLNet. Specif-
ically, we call our adaptation the length-
agnostic permutation language model, since
it resolves an issue of exposing candidate ex-
pansion lengths.

Our non-sense-based approaches outper-
form the sense-based approaches, corrobo-
rating the intuition that abbreviation ex-
pansion may be easier than WSD. More-
over, non-sense based methods are easier
to implement because they do not require
additional knowledge. We examine three
datasets: the MeSH index of MEDLINE
dataset (MSH), and the Shared Annotated
Resources/Conference and Labs of the Eval-
uation Forum dataset (ShARe/CLEF), and
the University of Minnesota dataset (UMN).
On these datasets, our method achieves
state-of-the-art prediction accuracies.

The remainder of our paper is organized
as follows. In Section 2, we provide details
on related work. In Section 3, we describe
our methods. In Section 4, we describe our
data and experiments in detail, and we an-
alyze the results in Section 5. Finally, we
discuss directions for future research in Sec-
tion 6. In the appendix, we provide de-
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scriptions of additional methods, an exper-
iment on partially-supervised and unsuper-
vised training, and further details on our ex-
perimental setup.

2. Related Work

Here, we review three lines of related prior
work: clinical abbreviation expansion, word
sense disambiguation, and contextualized
word embeddings.

2.1. Abbreviation Expansion

Clinical abbreviation expansion has been a
topic of research for the past decade. Early
work trained separate classifiers for each am-
biguous abbreviation. Wu et al. (2015);
Moon et al. (2012b); Sabbir et al. (2017)
use Word2vec technique to learn word and
concept embeddings and train SVM, Naive
Bayes, decision trees, and k-nearest neigh-
bors for each abbreviation. More recent
works use contextualized word embeddings.
Li et al. (2019); Jin et al. (2019) use BiL-
STM to produce contextualized embeddings.
Both use dedicated neural networks for each
ambiguous abbreviation to predict the can-
didate expansions from the embedding. On
the other hand, all of our approaches use
a one-fits-all classifier that is applicable to
unseen abbreviations and candidate expan-
sions. One notable sense-based work is Pe-
saranghader et al. (2019), which however, it
is a considerably more complex model: it
uses pre-trained UMLS concept (CUI) sense
embeddings, and given a context and candi-
date sense, uses a max pool over sense em-
beddings of each context word, computes co-
sine similarities to the candidate sense, and
uses a BiLSTM over these cosine similarities,
to extract contextualized features. It thus
requires training a new embedding when a
candidate is added. In contrast, we discuss a
much simpler sense-based model architecture
that performs comparably, and moreover can

be applied to an unseen candidate expansion
as long as the sense definition is available.

Some prior works augment the input fea-
tures via knowledge bases (Moon et al.,
2012b; Sabbir et al., 2017; Pesaranghader
et al., 2019). Among our approaches, the
sense-based methods use the sense defini-
tions obtained from UMLS in fine-tuning and
inference steps.

2.2. Word Sense Disambiguation

Word sense disambiguation is the task of de-
termining the definition or sense of a given
word. Prior work in WSD has attempted to
use additional information, such as knowl-
edge graphs or sense definitions, also known
as gloss. Recent methods use gloss in neural
network architectures (Luo et al., 2018a,b).
These methods use non-contextualized and
contextualized embeddings of the gloss to de-
termine the word sense. GlossBERT (Huang
et al., 2019) is a more recent example that
concatenates the context and the gloss to de-
termine the best sense.

2.3. Contextualized Word
Embeddings

Contextualized word embeddings are in-
creasingly common components of NLP
tasks; recent important models include
ELMo (Peters et al., 2018), BERT (Devlin
et al., 2018), and XLNet (Yang et al., 2019).
We discuss the latter two in more detail.

BERT adapts the transformer encoder ar-
chitecture (Vaswani et al., 2017) to gen-
erate contextualized embedding. BERT
takes word embeddings, positional embed-
dings, and segment embeddings as input.
BERT uses two unsupervised NLP tasks, the
masked language model and next sentence
prediction, to pre-train word embeddings.
Variants of BERT are also made for spe-
cific settings by then training using domain-
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specific data; NCBI-BERT (Peng et al.,
2019) is a clinical version of BERT.

XLNet uses a generalized auto-regressive
pre-training method that learns bidirectional
contexts by maximizing the expected likeli-
hood over all permutations of the factoriza-
tion order. For both BERT and XLNet, 1/K
fraction of tokens are selected for prediction,
where K = 6 in experiments.

3. Setup and Methods

In this section, we introduce our mathemati-
cal formulation of the problem and the meth-
ods we propose. Note that none of our meth-
ods involve training a separate classifier for
each abbreviation. We visualize the methods
with an examples in Figure 1.

3.1. Setup

In this subsection, we describe inputs, con-
texts, and embeddings, and we illustrate the
notation in Example 1. Let V be a vocab-
ulary, a set of subwords used by the tok-
enizer such as the BERT tokenizer. The
vector x = [x1, · · · , xN ] in V N is an input
sentence, tokenized into a sequence of sub-
words. In the input sentence, the abbrevi-
ation spans from is to ie, since an abbre-
viation may be tokenized into multiple sub-
words. Thus, the abbreviation to be resolved
is a = [xis , · · · , xie ] = xis:ie .

Next, we define the context. The left con-
text is cleft = [x1, · · · , xis−1], and the right
context is cright = [xie+1, · · · , xN ]. In words,
the left and right contexts are the parts of the
text occurring before and after the abbrevi-
ation. Thus, the context is c = [cleft, cright].

Now, we discuss the expansions. Let K be
the number of candidate expansions of the
abbreviation. Then for any k in {1, . . . ,K},
we denote the k-th candidate expansion by
the vector yk = [yk,1, · · · , yk,Mk

] in VMk .
Here, Mk is the length of the k-th candi-
date expansion and may vary with k. The

Example 1.
◦ Input Text: “... as well as continued
bleeding from the cervical os. This is con-
sistent with an incomplete AB. The pa-
tient presents now for a suction D&C ...”
◦ Expansion Candidates:

1. abortion 2. ankle-brachial
◦ Vectors:
Input x = [..., as,well, ...,AB, ...,&,C, ...]
Cand y1 = [abortion]
Cand y2 = [ankle, -, bra,##chia,##l]
True expansion y = [abortion]

true expansion is denoted by y, and this is
a vector in VM for some M . The gloss of
the k-th candidate expansion is denoted by
gk in V N ′

k . We also denote the random vari-
ables corresponding to the input, output and
context via X,Y,C respectively.

3.2. Language Model Methods

In this subsection, we discuss our language
model methods which are non-sense-based.

A functional characterization of the cor-
rect expansion of an abbreviation is that
when the expansion is fit into the position
of the abbreviation, it conveys the original
meaning of the sentence correctly. This en-
ables us to directly use a pre-trained lan-
guage model to compute the probability of
a candidate expansion yk, being in the place
of the abbreviation, given the context c:
log Pr(Y = yk|c). We consider two LM ap-
proaches: a masked LM approach and a per-
mutation LM approach. A visualization is
shown in Figure 3a.

Masked Language Model. BERT first
replaces words with a number of masked to-
kens, denoted by [MASK], and then uses the
transformer encoder to predict the original
tokens. During pre-training, the model max-
imizes the sum of the log probabilities of out-
puts at the positions of [MASK] tokens, as-
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◦ Input text: ... She has been lightheaded and then presented to the ER today for ...
◦ Candidate expansion: emergency room
◦ Gloss of the candidate: Hospital department responsible for the administration ...

…
…

6.08
…

… 
5.11

…
…

room
emergency 5.60

BERT / XLNet
Token Prediction Layer

Mask + Context

[MASK] [MASK]… the today …

(a) Language Model Methods

… the emergency room today …

BERT

(0.12, … ,-0.60)

Classification Layers

7.51

Candidate + Context

(b) Candidate Classification

BERT

(-0.02, …, 0.39)

Classification Layers

4.22

Hospital department …… to the ER today …
Input Text + Gloss

(c) Sentence Classification

Figure 1: Non-sense-based and sense-based methods for abbreviation expansion task. Meth-
ods (a) and (b) are non-sense-based methods, and method (c) is a sense-based method. Note
that the classification layer in each method performs binary classification and is used for
arbitrary abbreviations and candidate expansions.

suming that the outputs at the masked posi-
tions are independent.

Thus, we can apply the pre-trained
masked LM to abbreviation expansion, by re-
placing the abbreviation with [MASK] tokens
and computing the log probability of each
candidate expansion. We choose the expan-
sion that gives the highest log probability,
which we denote by ŷ, and defined as:

ŷ = arg max
yk

log Pr(Y = yk|cmask; θ)

= arg max
yk

Mk∑
i=1

log Pr(Yi = yk,i|cmask; θ),

where cmask is the context c with the [MASK]
tokens, and θ is the set of BERT parameters.

Permutation Language Model. The
masked LM approach has two drawbacks: (a)
It fails to model dependencies between posi-
tions within the candidate. (b) It exposes the
length of the candidate to the model since it
replaces an abbreviation with the same num-
ber of [MASK] tokens as each candidate, mak-
ing it difficult to compare candidates of dif-
ferent lengths.

The permutation language model of XL-
Net (Yang et al., 2019) maximizes the ex-
pected log-likelihood of a sequence with re-
spect to all possible permutations of the fac-
torization order. We can apply the permuta-
tion LM to solve the abbreviation expansion
task by setting a factorization order so that
the tokens of the candidate expansion appear
from left to right. We can then obtain the log
probability of a candidate expansion:

log Pr(Y = yk|c; θ)

=

Mk∑
i=1

log Pr(Yi = yk,i|yk,<i, c; θ).

Here yk,<i is all tokens before the i-th token
of the candidate.

This approach better models dependen-
cies between positions within the candidate
phrase than the masked LM does. How-
ever, the length of the candidate is still ex-
posed to the XLNet via positional encod-
ings. To hide the candidate length from
the model, we design a new positional en-
coding scheme and a new pre-training task,
the Length-Agnostic Permutation Lan-
guage Model.
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We assign two positions to each token in
the sequence, global position and local
position. In XLNet, a fraction of tokens
are for prediction and others are not for pre-
diction. We group a contiguous span of to-
kens for prediction as a single unit. For each
token, its global position is the position of
the unit that contains it, and its local posi-
tion is its position within the unit. We apply
relative positional encoding in XLNet with
respect to these two positions and sum the
embedding vectors. For abbreviation expan-
sion, the model gets no information about
the length of the candidate, which solves the
issue. Figure 2 shows the input represen-
tation and the pre-training objective of the
length-agnostic permutation LM.

The language model approaches can be
performed in unsupervised or supervised
way. Please see Appendix A.2.1 for the su-
pervision used in fine-tuning.

3.3. Classification Based Methods

Another way of using a pre-trained language
model to perform abbreviation expansion is
to train a classifier that takes the contextu-
alized embeddings of the candidates as in-
put and outputs the probability of being a
correct expansion. We call the non-sense-
based and sense-based version of this classi-
fication based approach as candidate clas-
sification and sentence classification, re-
spectively.

In candidate classification, the classifier
takes the embeddings of candidate expan-
sion contextualized by the context as input.
In sentence classification, the classifier uses
the joint sentence level representation of the
context and the gloss. This idea was ex-
plored in GlossBERT (Huang et al., 2019),
and we re-implement with biomedical fine-
tuned BERT. Due to space limitations, we
describe the details of these methods in Ap-
pendix A.

Dataset Abbr Exp Examples

MSH 203 410 37888
ShARe/CLEF 996 1058 7579

UMN 75 351 37500

Table 1: Summary statistics for the three
datasets. For the ShARe/CLEF 2013 task 2
dataset, the number of unique abbreviations
are counted after normalization.

4. Experiments

4.1. Datasets

In this section, we describe three datasets
on clinical abbreviation expansion that we
use to evaluate our methods and our pre-
processing procedure. Statistics of the three
datasets are shown in Table 1.

MSH. The MSH WSD dataset (Jimeno-
Yepes et al., 2011) is a biomedical WSD
dataset collected from MEDLINE and man-
ually annotated. The dataset consists of
37,888 instances of 203 ambiguous terms, 88
of which are abbreviations. Each term has 2
to 5 senses, each of which has at most 100
examples. The sense distribution is nearly
uniform since most of the senses have 100 in-
stances. All senses are represented as Unified
Medical Language System (UMLS) Concept
Unique Identifiers (CUI) in the dataset; so
we can collect the names and the glosses of
the senses from the UMLS. 2

ShARe/CLEF 2013 Task 2. The
ShARe/CLEF eHealth challenge 2013
(Mowery et al., 2016) has three clinical
NLP tasks defined on clinical reports from
MIMIC-II dataset, and task 2 is a normal-
ization of acronyms and abbreviations. The
training set and test set have annotations
of 3,805 and 3,774 abbreviations extracted
from 199 and 99 notes, respectively. An-
notated abbreviations are labeled with

2. For the UMN dataset, we do not use gloss since
less than a half of the data are labeled with CUIs.
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XLNet
Token Prediction Layer

the  emergency  roomthe ... presented to today … 

Global Positions

acute  abnormalities .

Local Positions

Tokens

Maximize:

0 7 8 10999 27 27 28

0 0 0 0321 1 2 0

...

...

...

...

Figure 2: The length-agnostic permutation language model. Two positional encodings,
global positions and local positions, are used to represent the locations of the tokens to be
predicted while hiding the candidate length from the model. In the example, “the emergency
room” and “acute abnormalities” are the tokens to be predicted.

expansions and their corresponding CUIs.3

For expansions for which the corresponding
CUI does not have a UMLS gloss, we use
the expansions themselves as the gloss.

The abbreviations in this dataset are more
realistic in two respects. First, the abbre-
viations are not normalized, and thus there
are many variants, reflecting different ways
in which practitioners abbreviate the same
phrase. So we did variation normalization
in the same way as in Wu et al. (2013) to
group the occurrences of abbreviations and
to have better candidate expansions. Specif-
ically, we removed special characters and
lower cased all letters. For example, abbrevi-
ations “AFib”, “AFIB”, “afib”, and “A. fib”
were converted into “afib” and the candidate
expansions were shared among them.

Second, there are some test abbreviations
that are unseen in the training set. For
these test abbreviations, we made a set of
candidate expansions (CUIs) using the ta-
ble of acronyms and abbreviations (LRABR)
in UMLS and MetaMap software (Aronson,
2001). Out of 549 unseen test examples,
382 examples are given candidate CUIs. We
marked the remaining examples as incorrect
for fair comparison with baselines.

UMN. The UMN dataset (Moon et al.,
2012a) is collected from clinical notes from

3. Some abbreviations are labeled as #CUI-less,
and we treat all of these as a single expansion.

hospitals in the University of Minnesota affil-
iated Fairview Health Services. Researchers
manually annotated 500 instances for each of
75 abbreviations. Each abbreviation has an
imbalanced distribution of expansions.

Some examples are annotated as MISTAKE,
NAME, or UNSURE SENSE. We discarded them
during pre-processing. Besides, some exam-
ples are labeled GENERAL ENGLISH, where the
abbreviation is a general term instead of a
biomedical abbreviation. In such cases, we
used the abbreviation itself as its expansion.

One key difference between the UMN
dataset and the others is that labels are
not represented as CUIs. 4 Using sense-
based approaches would require developing
a knowledge-base; thus, we only present re-
sults for non-sense based approaches.

4.2. Training and Evaluation

We initialize BERT with the pre-trained
NCBI-BERT model (12-layer, uncased) for
fine-tuning. We truncate sentences so that
their lengths do not exceed 128, the maxi-
mum sequence length of NCBI-BERT, and
the lengths of the left and right context are
as similar as possible. For the approaches us-
ing two segments as input, we truncate the
second segment of each instance so that its
length does not exceed half of the maximum

4. There is a sense inventory in the dataset, but it
has CUIs for only 189 of the 337 labels.
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length. We fine-tune BERT and the classifi-
cation layers with Adam optimizer (Kingma
and Ba, 2014).

Since there is no biomedical version of XL-
Net available so far, we pre-train XLNet on
biomedical corpora, PubMed abstracts and
MIMIC-III clinical notes. We use the same
pre-training settings as NCBI-BERT with
only a few exceptions. Detailed settings are
shown in the supplementary material. Pre-
training XLNet takes 18 days with 4 NVIDIA
Tesla V100 GPUs. We conduct the super-
vised and unsupervised permutation LM ap-
proach on the UMN and the MSH dataset,
with the same sentence truncation and opti-
mizer as in BERT.

Neither the MSH nor the UMN dataset
has an official split for training and evalu-
ation. We divide the datasets into 10 folds
randomly and ran hyperparameter search for
each round of 10-fold cross-validation sepa-
rately. We use macro-averaged accuracy as
the performance measure and report the av-
erage over 10 rounds. The details of the hy-
perparameter search are in the supplemen-
tary material.

For the ShARe/CLEF dataset, the train
and test set are provided. Since the num-
ber of training examples is small, we train
the models with the best parameters cho-
sen from the other datasets. We train each
model five times with random initialization
and data shuffling, and we report the aver-
age of the test performances. Micro-averaged
accuracy is used as the performance measure
since the distributions of abbreviations is im-
balanced.

On all the datasets, we consider two base-
lines: choosing a candidate expansion uni-
formly at random (“Random”) and choos-
ing the most common expansion for a given
abbreviation (“Majority”). These are most
relevant for comparison against our unsuper-
vised methods.

Method Macro Acc(%)

Random 48.74
Majority 54.48

Non-sense-based Methods
NB Jimeno-Yepes et al. (2011) 93.86
k-NN Sabbir et al. (2017) 94.34
SVM Jimeno-Yepes (2017) 95.97
Bi-LSTM Li et al. (2019) 96.71
Masked LM 95.89
Permutation LM 96.83
Candidate Classification 95.94

Sense-based Methods (Gloss)
BLSTM Pesaranghader et al. (2019) 96.82
Sentence Classification 95.60

Table 2: Accuracy results for the MSH
dataset. Our methods perform nearly as well
as the state-of-the-art with less specialized
approaches.

Method Micro Acc(%)

Random 40.24
Majority 68.55

Non-sense-based Methods
SVM + Profile Wu et al. (2013) 71.9
Masked LM 76.56
Permutation LM 77.97
Candidate Classification 76.14

Sense-based Methods (Gloss)
Sentence Classification 75.95

Table 3: Results for ShARe/CLEF 2013
Task 2, seen abbreviations only. Our super-
vised and partially-supervised methods out-
perform pre-existing methods.

5. Results and Analysis

We report our results and those of prior
work for the MSH, ShARe/CLEF, and UMN
datasets in Table 2, Table 3, and Table 4,
respectively. Recall that our key question is
whether non-sense based methods are prefer-
able. The most important aspect of this
question is whether non-sense approaches
can provide comparable or superior perfor-
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Method Macro Acc(%)

Random 25.76
Majority 68.89

Non-sense-based Methods
SVM Moon et al. (2012b) 92.75
SVM Wu et al. (2015) 95.79
Masked LM 98.39
Permutation LM 98.28
Candidate Classification 98.34

Table 4: Accuracy results for the UMN
dataset. Our supervised masked LM per-
forms best and achieves the state-of-the-art.

mance in a supervised setting, and our ex-
perimental results confirm that non-sense ap-
proaches are superior. A secondary question
is how much our models perform on unseen
abbreviations. Since our model uses a one-
fits-all classifier, it performs much better on
unseen test abbreviations than previous ap-
proaches. We detail the results of these ex-
periments.

Sense vs Non-Sense in Supervised Set-
tings. For the MSH dataset, our per-
mutation LM outperforms both our basic
sense-based approaches and other recent ap-
proaches. Our permutation LM outper-
forms the sense-based approaches by over
1%, which is considerable given the already
high accuracy and is comparable to re-
cent approaches. Specifically, the permuta-
tion LM narrowly outperforms Bi-LSTM and
BLSTM, which were the previous best non-
sense and sense based approaches respec-
tively (Li et al., 2019; Pesaranghader et al.,
2019). For the ShARE/CLEF dataset, our
permutation LM approach outperforms our
sense-based approaches by over 2%. Finally,
we note that our results with non-sense based
approaches constitute the new state-of-the-
art on both datasets.

We can further illustrate the utility of non-
sense based approaches by considering the
UMN dataset. As noted earlier, the UMN

dataset has no gloss; so our sense-based
methods are not used. However, our non-
sense based approaches achieve over 98% ac-
curacy, establishing the new state-of-the-art.

Performance on Unseen Abbreviations
To test our model in a difficult setting, we
analyze the performance on unseen test ab-
breviations of the ShARe/CLEF dataset and
compare with Wu et al. (2013). As described
in 4.1, we use the LRABR table of UMLS
to get the expansion candidates for the un-
seen test abbreviations, and the best candi-
date is chosen by the trained model. In Wu
et al. (2013), unseen abbreviations are dis-
ambiguated by a WSD method built on a pri-
vate clinical corpus and UMLS Terminology
Services API. Note that the LRABR table is
also used to build the WSD method.

Table 5 shows the micro accuracy on the
seen and unseen test abbreviations of the
ShARe/CLEF dataset. Note that the num-
ber of unseen test examples can be different
because of the abbreviation preprocessing.
For the test examples with unseen abbrevia-
tions, our method achieves accuracy almost
three times higher than the competitor. We
attribute this to the universality of our model
that can be applicable to all abbreviations
given the list of candidate expansions. Note
that only 382 out of the 549 unseen test ex-
amples are covered by LRABR and more ex-
haustive knowledge base would lead higher
accuracy.

6. Discussion

Our experiments show that non-sense based
methods can obtain state-of-the-art perfor-
mance in clinical abbreviation expansion.
Additionally, a key feature is that non-sense
methods are easier to use than sense-based
approaches since they do not require a knowl-
edge base. However, a number of problems
still need to be solved for abbreviation ex-
pansion to be performed more effectively in
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Seen Unseen Total

Wu et al. (2013) 82.53 (2650/3211) 11.20 (63/563) 71.89 (2713/3774)
Masked LM 84.37 (2721/3225) 30.42 (167/549) 76.52 (2888/3774)

Table 5: Accuracies on unseen abbreviations for ShARe/CLEF 2013 Task 2. The numbers
in parentheses are the number correct and the number of samples. Seen/Unseen: test
examples with seen/un-seen abbreviation. Note that the number of unseen test examples
can be different because of the abbreviation preprocessing.

practice, regardless of the method. Two
important directions are better methods for
choosing candidate expansions and for han-
dling abbreviation variants. Such advances
may greatly improve performance on down-
stream tasks.
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Appendix A. Additional Methods

In this section, we describe several variants
of non-sense-based and sense-based methods
for abbreviation expansion. These methods
either perform binary classification with the
contextualized embeddings of the candidates
or compare the embeddings of the abbrevia-
tion with that of the candidates. Please see
3 for visualization.
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◦ Input text: ... She has been lightheaded and then presented to the ER today for ...
◦ Candidate expansion: emergency room
◦ Gloss of the candidate: Hospital department responsible for the administration ...

…
…

6.08
…

… 
5.11

…
…

room
emergency 5.60

BERT / XLNet
Token Prediction Layer

Mask + Context

[MASK] [MASK]… the today …

(a) Language Model Methods

… the emergency room today …

BERT

(0.12, … ,-0.60)

Classification Layers

7.51

Candidate + Context

(b) Candidate Classification

BERT

(-0.02, …, 0.39)

Classification Layers

4.22

Hospital department …… to the ER today …
Input Text + Gloss

(c) Sentence Classification

BERT

(0.12, … ,-0.60)

Classification Layers

3.55

BERT

(0.44, … ,-0.97)

Candidate + ContextInput Text

… the emergency room today …… to the ER today …

(d) Abbreviation comparison method

BERT

(-0.02, …, 0.39)

Hospital department responsible …
Gloss

BERT

(0.44, … ,-0.97)

Input Text

… to the ER today …

Classification Layers

3.95

(e) Gloss comparison method

Figure 3: Non-sense-based and sense-based methods for abbreviation expansion task. Meth-
ods (a), (b) and (d) are non-sense-based methods, and method (c) and (e) are sense-based
methods. Note that the classification layer in each method performs binary classification
and is used for arbitrary abbreviations and candidate expansions.
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A.1. Contextualized Embeddings

In this subsection, we define contextualized
word embeddings. A contextualized embed-
ding with dimension L of the vector x ∈ V N

is a vector

e = [e1, · · · , eN ] ∈ RN×L.

In all experiments except the permutation
language model, we use BERT to obtain con-
textualized word embeddings. Using BERT :
V N → RN×L to stand for the mapping given
by BERT, we write e = BERT(x).

In our methods, we use a feature vector
representation of the abbreviation and the
candidate expansions that we obtain by aver-
aging the corresponding contextualized word
embeddings. Given the input sentence, the
feature vector of the abbreviation vabbr is

vabbr = avg(eis:ie)

where e = BERT(x) and avg(v1, · · · , vn) =
1
n

∑n
i=1 vi. To get the feature vector of k-th

candidate expansion vcand,k, we replace the
abbreviation with the candidate and repeat
the procedure:

ecand,k = BERT([cleft,yk, cright]),

vcand,k = avg(eis:is+Mk−1
cand,k ).

In sense-based methods, we use the sen-
tence level feature vector vsent of BERT. This
is obtained by using the contextualized vec-
tor of the first [CLS] token vsent = e1 or tak-
ing the average of all the contextualized vec-
tors vsent = avg(e).

A.2. Non-sense-based Methods

Candidate Classification Approach.
Our main embedding approach is to train
a classifier that determines if a candidate is
consistent with the context. Specifically, we
take the BERT embeddings of an expansion
candidate vcand,k, which captures the coher-
ence of the candidate with the context of the

abbreviation, and perform binary classifica-
tion:

outputk = f(vcand,k) + γ,

where f is a feed-forward neural network and
γ is a scaling parameter. We train the net-
work to output the probability of each can-
didate being correct independently.

In the test phase, given K candidate ex-
pansions, we choose the candidate with the
highest log probability:

k̂ = arg max
k

outputk.

Figure 3b shows an example of the candidate
classification approach.

Additionally, we can compare the contex-
tualized embedding of the abbreviation and
each of the expansion candidates. Since this
is a minor architecture variant that produces
similar results, we discuss this further in the
Appendix.

A.2.1. Supervised,
Partially-supervised, and
Unsupervised Approaches

Additionally, our non-sense based LM ap-
proaches can be used in an unsupervised or
partially supervised manner. In the former,
LMs are trained only on generic text corpora,
as is typical in large-scale NLP, and then
used directly for abbreviation expansion. In
the latter, partially supervised methods train
a classifier on top of the LM, which is far
more computationally efficient.

Since language models are already pre-
trained with a large corpus, an interesting
observation is that the LM approaches ex-
plained above can perform abbreviation ex-
pansion without further fine-tuning. How-
ever, they can also be fine-tuned so that cor-
rect expansions can have high probability.
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To fine-tune the BERT or XLNet model,
we use margin loss of the log probability:

L(x,y,yneg; θ)

= max{β + log Pr(Y = yneg|cmask; θ)/|yneg|α

− log Pr(Y = y|cmask; θ)/|y|α, 0},

where yneg is an incorrect expansion, β is
the hyper-parameter for margin, and α is the
hyper-parameter for length normalization to
reduce the bias towards short sequences, fol-
lowing common practice in neural machine
translation Graves (2012).

A final alternative is a partially super-
vised approach for the embedding methods
in which we fix the language model and train
the classifier only. The key benefit is that
this speeds up the training since we do not
require the gradient update of BERT and the
embeddings only need to be computed once.

While the main focus of our paper is on
the non-sense versus sense-based dichotomy,
we also give the results for this interesting
ablation study.

A.3. Sense-based Methods

So far we have discussed approaches to ex-
pand abbreviations using non-sense-based
methods. Alternatively, we can perform
WSD to solve the problem of expanding
abbreviations as a by-product. This al-
lows us to use external information about
the candidate expansions; here, we focus on
knowledge-based approaches where we have
access to the gloss, or definition, of each ex-
pansion.

Sentence Classification Approach.
With glosses, we can use BERT to inter-
nally compute the coherence between the
input text and the gloss of each candi-
date expansion. This is the key idea of
GlossBERT Huang et al. (2019).

We feed the concatenation of the input
text and the gloss of a candidate into BERT.

Method Macro Acc(%)

Random 48.74
Majority 54.48

NB Jimeno-Yepes et al. (2011) 93.86
k-NN Sabbir et al. (2017) 94.34
SVM Jimeno-Yepes (2017) 95.97
Bi-LSTM Li et al. (2019) 96.71
BLSTM Pesaranghader et al. (2019) 96.82

Unsupervised Methods
Masked LM 70.41
Permutation LM 77.84

Supervised Methods
Masked LM 95.89
Permutation LM 96.83
Candidate Classification 95.94
Abbreviation Comparison 95.90

Partially-supervised Methods
Candidate Classification 94.07
Abbreviation Comparison 94.02

Sense-based Methods (Gloss)
Sentence Classification 95.60
Gloss Comparison 95.20

Table 6: Accuracy results for the MSH
dataset. Our methods perform nearly as well
as the state-of-the-art with less specialized
approaches.

As with the candidate classification approach
in A.2, we do binary classification, but the in-
put to the classifier is the sentence level fea-
ture vsent which is computed from econcat,k =
BERT([x,gk]). The method is visualized in
Figure 3c.

Additionally, we can compare the contex-
tualized embedding of each of the expansion
candidates with its gloss; this is a minor ar-
chitecture variant that we discuss in the fol-
lowing.

A.4. Embedding Comparison
Architectures

We also tried another variant of the non-
sense candidate classification method and of
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Method Micro Acc(%)

Random 40.24
Majority 68.55

SVM + Profile Wu et al. (2013) 71.9

Unsupervised Methods
Masked LM 69.26
Permutation LM 71.83

Supervised Methods
Masked LM 76.56
Permutation LM 77.97
Candidate Classification 76.14
Abbreviation Comparison 76.53

Partially-supervised Methods
Candidate Classification 75.77
Abbreviation Comparison 76.47

Sense-based Methods (Gloss)
Sentence Classification 75.95
Gloss Comparison 74.51

Table 7: Results for ShARe/CLEF 2013
Task 2, seen abbreviations only. Our super-
vised and partially-supervised methods out-
perform pre-existing methods.

the sense-based sentence classification ap-
proach. Together, we call these embedding
comparison architectures, since they com-
pare the embedding of the candidate with
that of the abbreviation or the gloss.

Abbreviation Comparison Method
For this method, we simply compare the
contextualized embedding of the abbrevia-
tion and each of the expansion candidates.
In supervised setting, we train the BERT
model so that the contextualized embed-
dings of both the abbreviation and the
candidate expansion are used to classify
whether the candidate fits the context.

For the classifier, we concatenate the fea-
ture vectors (vabbr, vcand,k) and feed it into
feed-forward neural network that outputs the
log-probability:

log Pr(Y = yk|x; θ) + γ = f(vabbr, vcand,k).

Method Macro Acc(%)

Random 25.76
Majority 68.89

SVM Moon et al. (2012b) 92.75
SVM Wu et al. (2015) 95.79

Unsupervised Methods
Masked LM 68.53
Permutation LM 78.29

Supervised Methods
Masked LM 98.39
Permutation LM 98.28
Candidate Classification 98.34
Abbreviation Comparison 98.38

Partially-supervised Methods
Candidate Classification 98.02
Abbreviation Comparison 98.15

Table 8: Accuracy results for the UMN
dataset. Our supervised masked LM per-
forms best and achieves the state-of-the-art.

This approach can be viewed as Siamese neu-
ral network since we use same network twice
to get embeddings. For training the sentence
classification approach and the abbreviation
comparison approach, we use binary cross-
entropy loss. A visual representation is given
in Figure 3d.

Gloss Comparison Method Along the
same lines as the abbreviation comparison
method, we can compare the feature vector
of the abbreviation vabbr and the sentence-
level feature vsent of the gloss of each can-
didate obtained from egloss,k = BERT(gk).
To compute the probability, we concatenate
these vectors and feed them into a feed-
forward neural network. Figure 3e shows a
diagram of the method.

Appendix B. Partially-supervised
Training

In the embedding methods, we can fix the
language model and train the classifier only.
This speeds up the training since we do not
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Method MSH SC13 UMN

Majority 54.58 68.55 68.89

U Masked LM 70.41 69.26 68.53
U Permutation LM 77.84 71.83 78.29
S Masked LM 95.89 76.56 98.39
S Permutation LM 96.83 77.97 98.28

PS Cand Classification 94.07 75.77 98.02
S Cand Classification 95.94 76.14 98.34

Table 9: Accuracy results of the ablation
study of fine-tuning. Our unsupervised
methods outperforms simple baselines, and
our partially-supervised methods with per-
form slightly worse than supervised meth-
dos. U : unsupervised, S : supervised, PS :
partially-supervised, SC13: ShARe/CLEF
2013 Task 2.

require the gradient update of BERT and the
embeddings only need to be computed once.

In supervised methods, we have the size
of hidden layers same as the dimension of
the word embeddings. For the partially-
supervised methods, we increase the hidden
layer size by a factor of 5 to increase the ex-
pressiveness of the classifier.

We give the full results, including the
partially-supervised methods and the em-
bedding comparison methods, in Table 6,
Table 7, and Table 8 for the MSH,
ShARe/CLEF, and UMN datasets respec-
tively.

Appendix C. Comparison of
Supervised,
Partially-Supervised,
and Unsupervised
Methods.

Table 9 contains the results for supervised
and unsupervised language models and su-
pervised and partially supervised candidate
classification approaches, which utilize LMs.
First, we observe that the supervised meth-

ods perform the best, although the partially-
supervised candidate classification approach
is not much worse. Thus, fine-tuning the
language model during training gives bet-
ter performance, but the performance reduc-
tion with a lack of such fine-tuning may be
tolerable in some cases because training is
faster. Second, our unsupervised methods
have much worse performance than the par-
tially supervised or supervised methods, but
our unsupervised permutation LM method
greatly outperforms the baselines. The im-
provements is the least in the ShARe/CLEF,
about 3%, but majority baseline is fairly dif-
ficult given the class imbalance. In fact,
our unsupervised permutation LM performs
nearly as well as the previous state-of-the-art
method Wu et al. (2013), with a micro accu-
racy difference of 0.07%. Considering that
unsupervised LM methods do not use any
training data for the task at hand, such im-
provements are outstanding.

Appendix D. Transfer Learning

Since our approaches train a single model
that can be used for all abbreviations, we
can perform evaluation on a dataset different
than training. This transfer learning proce-
dure is prevalent in WSD literature, where
training is done with a large dataset and
evaluation is done with smaller ones. To
study the efficacy of transfer learning and
also compare against unsupervised and su-
pervised learning, we chose the masked LM
approach. We trained the model with the
MSH dataset and evaluated the model on
the UMN dataset. The experiment was re-
peated 5 times and the average of the macro-
averaged test accuracies is reported.

Table 10 shows the results of the trans-
fer learning experiment. Training the model
with a different dataset improves the per-
formance modestly. However, the improve-
ment is not as substantial as the supervised
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Method
Fine-tune

Macro
(Masked LM) Acc(%)

Unsupervised × 68.53
Transfer MSH 75.68

Supervised UMN 98.39

Table 10: Transfer learning result for the
UMN dataset. Transfer learning is helpful,
but not as effective as supervised learning.

method. We attribute this to the small over-
lap of between the two datasets; only 8 out
of 75 abbreviations in the UMN data are in
the MSH data.

Appendix E. Pre-training
Biomedical XLNet

To ensure that the performance of our differ-
ent approaches is comparable, we used the
same pre-training dataset as NCBI-BERT
Peng et al. (2019). We preprocessed the
training data by lower-casing applying Moses
tokenizer5 and lower-casing all characters.
Table 11 shows the statistics of our text cor-
pora for pre-training our Length-Agnostic
XLNet (the number of words is counted after
tokenization).

Corpus Words Domain

PubMed abstract 4,470M Biomedical
MIMIC-III 556M Clinical

Table 11: Corpora for pre-training.

Our XLNet Yang et al. (2019) implemen-
tation is based on the source code released
by the authors6. Following them, we built
sentencepiece encoding on the corpora. Be-
cause XLNet has more parameters given the

5. https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/

tokenizer/tokenizer.perl

6. https://github.com/zihangdai/xlnet

same number of layers and hidden dimen-
sions as NCBI-BERT, we reduced the hidden
dimensions of feedforward layers from 3,072
to 2,048 so that our XLNet is of the simi-
lar size as NCBI-BERT. As a result, the to-
tal number of parameters of our XLNet is
116M, which is similar to NCBI-BERT. Ta-
ble 12 shows all the hyperparameters for pre-
training.

Hyper-param Value

# layers 12
Hidden size 768
Feedforward size 2048
Vocabulary size 49152
# attention heads 12
Dropout 0.1
Attention dropout 0.1
Learning rate 1e-4
Adam settings (0.9, 0.98, 1e-6)
Batch size (tokens) 131072
Sequence length 128
# predicting tokens 20
Training steps 500000
Warmup steps 10000

Table 12: Hyperparameter settings for pre-
training Length-Agnostic XLNet.

Appendix F. Hyper-parameter
Search

For the UMN and the MSH dataset, there is
no split of the dataset for training and evalu-
ation. We divided the datasets into 10 folds
by splitting the instances per abbreviation
uniformly at random over the folds. For each
round of 10-fold cross-validation, we set aside
1 fold (10%) for testing and used the remain-
ing folds (90%) for hyperparameter search.
Training on 8 folds and evaluating on 1 fold,
we chose the hyperparameter with the best
macro-averaged accuracy. After we found
the best hyperparameter, we re-ran training
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with all the 9 training folds. We ran this
process of hyperparameter search and test-
ing for all 10 rounds, and report the average
of the macro-averaged accuracy as the final
performance of the method.

Below are the lists of the hyper-parameters
searched during 10-fold cross-validation for
the UMN and the MSH dataset with the
hyper-parameters chosen to train the mod-
els on ShARe/CLEF 2013 Task 2 (SC13T2)
dataset. For each of the Siamese network
approaches, we tried cross-entropy loss and
margin loss. We chose the best hyper-
parameters from all configurations of both
losses.

Hyper-param UMN / MSH SC13T2

Margin β {0.1, 0.5, 2.0, 5.0} 2.0
LengthNorm α 1.0 1.0
Learning rate {2e-5, 5e-5} 2e-5

Batch size 16 16
Train epochs 5 5

Table 13: Supervised masked LM approach

Hyper-param UMN / MSH

Margin β {0.1, 0.5, 2.0, 5.0}
LengthNorm α 0.6
Learning rate {3e-5, 4e-5}
Adam settings (0.9, 0.98, 1e-6)

Batch size 32
Train epochs 5
Weight decay 0.1

Table 14: Supervised permutation LM Ap-
proach

Hyper-param UMN / MSH SC13T2

# Layers {2, 3, 4} 3
Hidden size 768 768

Learning rate {2e-5, 5e-5} 2e-5
Batch size 32 32

Train epochs 5 / 10 10

Table 15: Supervised candidate embedding
approach

Hyper-param UMN / MSH SC13T2

# Layers {2, 3, 4} 3
Hidden size 768 768

Loss function xent xent
Learning rate {2e-5, 5e-5} 2e-5

Batch size 16 16
Train epochs 3 / 5 5

Table 16: Supervised Siamese network ap-
proach (cross-entropy loss)

Hyper-param UMN / MSH SC13T2

# Layers 3

Not
chosen

Hidden size 768
Loss function margin

Margin β {0.1, 0.2, 0.5, 1.0}
Learning rate {2e-5, 5e-5}

Batch size 16
Train epochs 4 / 5

Table 17: Supervised Siamese network ap-
proach (margin loss)

Hyper-param UMN / MSH SC13T2

# Layers {2, 4, 6} 4
Hidden size 3840 3840

Learning rate {2e-5, 5e-5} 5e-5
Batch size 32 32

Train epochs 5 / 10 10

Table 18: Partially-supervised candidate em-
bedding approach
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Hyper-param UMN / MSH SC13T2

# Layers {2, 4, 6}

Not
chosen

Hidden size 3840
Loss function xent
Learning rate {2e-5, 5e-5}

Batch size 16
Train epochs 5 / 8

Table 19: Partially-supervised Siamese net-
work approach (cross-entropy loss)

Hyper-param UMN / MSH SC13T2

# Layers 4 4
Hidden size 3840 3840

Loss function margin margin
Margin β {0.1, 0.2, 0.5, 1.0} 0.2

Learning rate {2e-5, 5e-5} 5e-5
Batch size 16 16

Train epochs 5 / 8 8

Table 20: Partially-supervised Siamese net-
work approach (margin loss)

Hyper-param UMN / MSH SC13T2

Weak supervision {Y, N} N
Sentence feature {[CLS], avg} avg

# Layers 3 3
Hidden size 768 768

Learning rate {2e-5, 5e-5} 2e-5
Batch size 32 32

Train epochs 10 10

Table 21: Semantic sentence embedding ap-
proach

Hyper-param UMN / MSH SC13T2

Sentence feature {[CLS], avg}

Not
chosen

# Layers {3, 4}
Hidden size 768

Loss function xent
Learning rate {2e-5, 5e-5}

Batch size 16
Train epochs 5

Table 22: Semantic Siamese network ap-
proach (cross-entropy loss)

Hyper-param UMN / MSH SC13T2

Sentence feature {[CLS], avg} avg
# Layers 3 3

Hidden size 768 768
Loss function margin margin

Margin β {0.2, 0.5} 0.2
Learning rate {2e-5, 5e-5} 5e-5

Batch size 16 16
Train epochs 5 10

Table 23: Semantic Siamese network ap-
proach (margin loss)
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