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Abstract

Generative machine learning (ML)
methods can reduce time, cost, and
radiation associated with medical im-
age acquisition, compression, or gen-
eration techniques. While quantita-
tive metrics are commonly used in the
evaluation of ML generated images, it
is unknown how well these quantita-
tive metrics relate to the diagnostic
utility of images. Here, fellowship-
trained radiologists provided diagnoses
and qualitative evaluations on chest ra-
diographs reconstructed from the cur-
rent standard JPEG2000 or variational
autoencoder (VAE) techniques. Co-
hen’s kappa coefficient measured the
agreement of diagnoses based on dif-
ferent reconstructions. Methods that
produced similar Fréchet inception dis-
tance (FID) showed similar diagnostic
performances. Thus in place of time-
intensive expert radiologist verification,
an appropriate target FID – an objec-
tive quantitative metric – can evalu-
ate the clinical utility of ML generated
medical images.
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1. Introduction

Medical imaging is vital for the diagnosis
and management of a wide range of dis-
eases. However, due to multiple considera-
tions such as time, cost, and radiation dose
required for image acquisition, certain imag-
ing modalities may not be available for cer-
tain patients. Machine learning (ML) tech-
niques have been proposed as a means of
addressing these shortcomings and generat-
ing medical images (Lundervold and Lun-
dervold, 2019). A famous example of this
currently in use is compressed sensing mag-
netic resonance imaging (CS-MRI), which
decreases the time of a scan, reduces bur-
den on the patient, and can minimize mo-
tion artifacts and undesired contrast washout
(Yang et al., 2016, 2018). Generative adver-
sarial networks (GANs) have generated syn-
thetic computed tomography (CT) images
from MRI images, eliminating unnecessary
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radiation exposure to the patient and sim-
plifying radiation treatment planning (Lei
et al., 2019; Nie et al., 2018). Autoencoders
compress medical data into dimension re-
duced latent vectors and can ease the trans-
fer and storage requirements of large hospital
systems that acquire thousands of images ev-
ery day (Theis et al., 2017). The decoder of
autoencoders generate an image output that
restores the original image from the com-
pressed latent vectors.

Successful correlation of quantitative met-
rics to diagnostic performance can reduce the
time to translation of machine learning tech-
niques and guide more faithful reconstruc-
tion of target modalities. Establishing an ob-
jective evaluation metric for diagnostic util-
ity can alleviate the time and volume limita-
tions of expert radiologist evaluations, which
often form the bottleneck of validation exper-
iments. While expert radiologist evaluations
are still vital and cannot be replaced, quan-
titative metrics can decrease the time to de-
velop generative ML algorithms to the clinics
by speeding up the prototyping process.

In this paper, we compute diagnostic per-
formance based on various quantitative met-
rics. We used a multi-level, vector-quantized
variational autoencoder (VQ-VAE-2) ap-
proach to create compressed chest radio-
graphs (CXR) of variable compression per-
formance and image qualities, as evaluated
by quantitative metrics, in relation to the
original source image (Razavi et al., 2019).
We compare this method to the current stan-
dard of image compression, JPEG2000, and
assess the diagnostic utility of generated im-
ages in a simulated radiology workflow (Liu
et al., 2017).

2. Related Works

Quantitative metrics have been developed to
objectively evaluate the similarity of simu-
lated or generated images to real-world im-

ages. Peak signal to noise ratio (PSNR),
derived from the root mean square error
(RMSE), and structural similarity index
measure (SSIM) have been used to estimate
qualitative metrics of diagnostic quality, but
not diagnostic performance, of medical im-
ages from new methods to those from the
original standard of care method (Mason
et al., 2020). A more recent metric, Fréchet
inception distance (FID), can provide an ob-
jective measure of how closely the semantic
structure of generated images resemble those
from target acquisition modalities (Heusel
et al., 2017; Lei et al., 2019; Nie et al.,
2018). While these quantitative metrics can
guide development of ML algorithms, review
of generated images by expert radiologists
is necessary for successful and safe integra-
tion of these techniques to the clinical work-
flow. Mason et al. have compared objec-
tive image quality metrics to expert radiol-
ogists’ scoring of diagnostic quality of MR
Images, but radiologists graded the subjec-
tive image quality instead of making any di-
agnoses from the MR images (Mason et al.,
2020). To our knowledge, no studies have
been performed to directly correlate radiol-
ogist’s performance on actual classes of di-
agnoses on various ML generated images to
these quantitative metrics.

3. Materials and Methods

3.1. Datasets

We used the CheXpert (https:
//stanfordmlgroup.github.io/

competitions/chexpert/) dataset to
train our model and MIMIC-CXR
(https://doi.org/10.13026/C2JT1Q)
dataset to externally test our model (Irvin
et al., 2019; Johnson et al., 2019). CheXpert
and MIMIC-CXR have a large number
of radiographs (224,316 and 377,100, re-
spectively) and contain both frontal and
lateral views. For the training set, the
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frontal view radiographs from CheXpert
were center cropped and downsampled to
a 256x256 pixel resolution (n=191,027).
All preprocessed images were stored in an
HDF5 dataset to improve input/output
(I/O) performance in the data loader (Folk
et al., 2011). For the test set, the frontal
view radiographs of the previously unseen
MIMIC-CXR dataset were center cropped
and sampled at a higher 1024x1024 pixel
resolution (n=1759).

3.2. Compression Architecture

We used the JPEG2000 compression algo-
rithm configured to the standard currently
used in a hospital system based in New York
City. We compared this to our models cre-
ated from the two-level vector quantized,
variational autoencoder (VQ-VAE-2) archi-
tecture (Figure 1) (Razavi et al., 2019). 2D
convolutions were of filter size 4, stride 2, and
padding 1 (i.e., each dimension was isomet-
rically reduced by 50% each time). We cre-
ated two VQ-VAE models of varying levels
of compression , standard compression and
high compression, by changing the number
of 2D convolutions at each level of encoding
(Figure 2). The number of channels of the
encoder output was set to 64 (i.e. for each
integer index/key, there are 64 values) for the
image reconstruction task. The loss function
for VQ-VAE-2 consists of reconstruction loss,
codebook loss, and commitment loss, further
explained in Razavi et al. (2019)’s paper.

3.3. Expert Evaluation of
Radiographs

We recruited three board-certified radiolo-
gists. Two had completed their thoracic ra-
diology fellowship training, and one was in
the final year of thoracic radiology fellow-
ship.

We first selected 20 radiographs and re-
constructed them using the JPEG2000 and

Figure 1: Multi-level vector-quantized vari-
ational autoencoder (VQ-VAE).
VQ = vector quantization layer.

two VQ-VAE models. Radiologists were pro-
vided with all three reconstructions of the
same radiograph, blinded to the reconstruc-
tion method. For each set of 3 reconstruc-
tions for a given radiograph, radiologists
identified and grouped reconstructions that
they thought were indistinguishable from one
another (i.e. they would make the same di-
agnosis based on each reconstructions; Fig-
ure 3).

We selected 115 radiographs for evaluation
by subspecialty trained thoracic radiologists.
Five radiographs were duplicated to test for
the internal consistency of radiologists. Each
of the resulting 120 radiographs was com-
pressed and reconstructed using JPEG2000,
VQ-VAE-2 standard compression, and VQ-
VAE-2 high compression. Each of the three
radiologists was randomly assigned one of the
three reconstructions for every radiograph.
Then we measured inter-rater agreement be-
tween radiologists, each of whom provided a
diagnosis based on the radiograph but recon-
structed differently from either JPEG2000 or
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Figure 2: Sample images and quantitative metrics of tested compression and reconstruc-
tion methods. Both VQ-VAE models retain key diagnostic features such as the
spinous processes within the trachea and the costophrenic angle as well as the let-
ters “L 27” (mirrored), though high compression shows loss of spatial resolution
that is vital for certain tasks such as identification of pneumothorax. Standard
compression VQ-VAE and the current JPEG2000 standard used in clinics today
are both qualitatively and quantitatively nearly identical.
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Figure 3: Qualitative review of the different
reconstructions of the same radio-
graph.

standard or high compression VQ-VAE mod-
els Figure 4.

The radiologists were then asked to assess
for the presence of the following pathological
findings: 1) Lung Lesion, 2) Lung Opacity, 3)
Pleural Effusion, 4) Pneumothorax, 5) Pul-
monary or Interstitial Edema, 6) Fractures,
7) Medical Device, and 8) Normal Findings.

For each pathological class, radiologists
provided a label of a definitive presence of, a
definitive absence of, or an inability to deter-
mine the pathology. Again for each patholog-
ical class, radiologists graded the radiograph
on the following Likert scale: (5) excellent di-
agnostic quality, (4) good diagnostic quality,
(3) fair diagnostic quality, (2) poor diagnos-
tic quality, (1) non-diagnostic.

3.4. Measurement of Internal
Consistency of Radiologists

Five radiographs were duplicated to test for
the internal consistency of radiologists. The
original radiographs were included in the
first half of the dataset, and duplicate ra-
diographs were included in the second half
of the dataset. The radiologists did not
know that there were duplicate radiographs
in the second half of the dataset. We evalu-
ated the consistency of both the assessment

of presence or absence of eight pathologi-
cal classes and their associated Likert scores
based on a pair of first and second obser-
vations. Based on five radiographs, eight
pathological classes, and three radiologists,
we evaluated a total of 120 diagnostic assess-
ments and associated Likert score pairs.

3.5. Statistical Analysis

Cohen’s kappa coefficient measured the
inter-rater agreement of the diagnostic tasks
between different compression methods (i.e.
JPEG2000 vs standard compression VQ-
VAE, JPEG2000 vs high compression VQ-
VAE, or standard compression VQ-VAE vs
high compression VQ-VAE). For each com-
parison between two reconstruction modal-
ities, the Cohen’s kappa coefficient is the
average value calculated from all individual
diagnoses. The kappa coefficient weighed
disagreements between definitive presence
and definitive absence twice as much as the
disagreement between definitive absence or
presence and inability to determine. To cal-
culate 95% confidence intervals for the kappa
coefficient, we used bootstrapping experi-
ments as previously described (DiCiccio and
Efron; Hall et al., 2004; Boyd et al., 2013).
We used an analysis of variance (ANOVA) to
compute confirm or reject the null hypoth-
esis that the distributions of Likert scores
were the same among JPEG2000, standard
compression VQ-VAE, and high compression
VQ-VAE with significance set at p = 0.05.
We then used Tukey’s Honestly Significant
Difference (HSD) to find which Likert score
populations were unequal and computed its
significance level.

4. Results

4.1. Image Reconstruction

Two machine learning, autoencoder-based
image reconstruction models had different
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Figure 4: Clinical trial design to evaluate
ML techniques of image recon-
struction.

observed compression ratio and reconstruc-
tion quality. Standard compression VQ-
VAE had a similar Fréchet inception dis-
tance (FID) as that of the current stan-
dard JPEG2000 algorithm (2.13 vs 2.28)
but 2.5 times the compression ratio (38.4 vs
15.4). High compression VQ-VAE had ad-
ditional convolutional layers that increased
both the compression ratio (180.7) and the
FID (9.08). Upon visual assessment by ra-
diologists JPEG2000 and standard compres-
sion VQ-VAE looked identical, but high com-
pression VQ-VAE had visible decreases in
the spatial resolution (Figure 2). Sample im-
ages of each reconstruction method is pro-
vided in Appendix A. Given that the ra-
diologists indicated that the images from
JPEG2000 and standard compression VQ-
VAE are indistinguishable, we proceeded to
a double blinded simulated clinical trial to
confirm the ability to deploy standard com-
pression VQ-VAE to clinical practice.

4.2. Assessment of Internal
Consistency of Radiologists

Each radiologist had five duplicate radio-
graphs; each radiograph had eight patholog-
ical classes; three radiologists were recruited
for our study. We evaluated a total of 120

pairs (5 radiographs x 8 classes x 3 radiol-
ogists) of diagnostic assessments and Likert
scores for evaluation of internal consistency.
All three radiologists demonstrated 100% in-
ternal consistency and gave the same diag-
nostic assessment for all pathological classes
for both the first and second observations.
Of the 120 Likert score pairs from the first
and second observation of the duplicate ra-
diographs, only 6 values differed, and never
more than a Likert score by 1 (Appendix B).

4.3. Agreement of Radiologist
Diagnostic Assessment

Radiologists, when provided all three re-
constructions from the compression methods
tested, concluded that they will have made
the same diagnostic assessment for all pairs
of JPEG2000 and standard compression VQ-
VAE (Figure 3).

The average weighted Cohen’s kappa co-
efficient of diagnoses from JPEG2000 and
standard compression VQ-VAE was 0.608
(95% confidence interval: [0.569, 0.647]; Ta-
ble 1). The weighted Cohen’s kappa coef-
ficients between JPEG2000 and high com-
pression VQ-VAE was 0.525 (95% confi-
dence interval: [0.486, 0.564]), similar to the
weighted Cohen’s kappa coefficients between
high compression VQ-VAE and low compres-
sion VQ-VAE was 0.517 (95% confidence in-
terval: [0.448, 0.556]).

4.4. Agreement of Radiologist
Evaluation of Diagnostic Quality

The average Likert score for each patho-
logical class for the three tested compres-
sion algorithms are presented in Table 2. A
one-way ANOVA showed that not all Likert
score populations from all three compression
methods were the same (p < 0.001). In the
subgroup analysis, JPEG2000 and standard
compression VQ-VAE had the same distri-
bution of Likert scores (Tukey HSD test p >
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Cohen’s Standard Compression High Compression
Kappa Coefficient VQ-VAE VQ-VAE
JPEG2000 0.608 0.525
(Current Standard) [0.569, 0.647] [0.486, 0.564]
Standard Compression — 0.517
VQ-VAE [0.448, 0.556]

Table 1: Measurement of inter-rater agreement of diagnostic assessment between radiolo-
gists, each of whom provided diagnosis based on the radiograph but reconstructed
differently from JPEG2000 or standard or high compression VQ-VAE. The inter-
rater agreement between the radiologists who provided diagnoses on JPEG2000
and Standard Compression VQ-VAE, despite the different reconstruction tech-
nique, was within the substantial agreement range and similar to previously re-
ported inter-rater agreements for diagnoses from chest radiographs. The interval
indicates 95% confidence interval.

0.99), whereas JPEG2000 and high compres-
sion VQ-VAE had different distributions of
Likert scores (Tukey HSD test p < 0.001). As
expected, medical devices with high contrast
or pleural effusions that are easy to diag-
nose on CXR had high Likert scores. Pneu-
mothorax and fractures, pathological classes
that require high spatial resolution to make
a definitive diagnosis, showed the greatest
decrease in Likert score and percent agree-
ment of diagnosis from standard compres-
sion to high compression VQ-VAE. Lung le-
sion likely showed the lowest percent diagno-
sis agreement due to variable interpretation
by radiologists (e.g. inclusion vs exclusion of
benign, non-cancerous mass).

5. Discussion

Previously, quantitative metrics and qualita-
tive evaluations have directed machine learn-
ing techniques that generate medical im-
ages. However, few studies have assessed
inter-rater consistency in clinical diagnoses
rendered based on the ML-generated im-
ages. We presented three clinical subspe-
cialty trained radiologists with ML generated
images of variable compression performance
to demonstrate non-inferiority of a new ML

technique with a similar quantitative metric.
We acquired quantitative metrics and corre-
lated them to the inter-rater agreement for
the diagnosis classes to inform target met-
rics for future medical image generative mod-
els and minimize the need for time intensive,
volume limited review by expert radiologists.

We first confirm previous studies that ra-
diologists have remarkable intra-rater consis-
tency (Bonnyman et al., 2012; Neuman et al.,
2012; Smith et al., 2013; Thelle et al., 2015).
All three radiologists gave the same diagnos-
tic assessment for duplicate radiographs (120
pairs of diagnostic decisions in total; Ap-
pendix B). The Likert score that evaluated
qualitative diagnostic quality only differed on
6 of 120 pairs of measurements, and never by
more than 1 score.

Although the inter-rater consistency was
lower than the intra-rater consistency, the
agreement between JPEG2000 and stan-
dard compression VQ-VAE was “substan-
tial” based on the originally published guide-
line of the Cohen’s kappa coefficient (Co-
hen, 1960). This level of substantial agree-
ment is on par with the previous published
agreements between board certified radiolo-
gists and within the acceptable level of dif-
ference between clinicians (Rajpurkar et al.,
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Pathology JPEG2000 Standard Comp. High Comp.
(Current Stan-
dard)

VQ-VAE VQ-VAE

No Finding 4.867 4.891 4.008
Lung Lesion 4.900 4.941 3.875
Edema 4.858 4.808 3.733
Lung Opacity 4.942 4.958 4.025
Pleural Effusion 4.892 4.933 4.267
Pneumothorax 4.783 4.791 3.150
Fractures 4.958 4.867 3.533
Medical Device 4.992 5.000 4.775
Total 4.899 4.899 3.921
p-value — p > 0.99 p < 0.001
(vs JPEG2000)

Table 2: Likert scale for each requested diagnostic task and the percent agreement between
the diagnoses from JPEG2000 and either standard or high compression VQ-VAE.
Likert scale is nearly indistinguishable between JPEG2000 and standard compres-
sion VQ-VAE. P-value from Tukey Honestly Significant Difference (HSD) test after
ANOVA showed that not all Likert scores are the same (p < 0.001)

2018). Inter-rater consistency was not as re-
liable as intra-rater consistency, but 2D chest
radiographs (CXRs) is a less precise modality
than computed tomography (CT) and thus
can lead to greater variability of what each
radiologist requires as a threshold for diag-
nosis of certain findings.

Overall, the Cohen’s kappa coefficient
was substantial and within the previ-
ously reported range of inter-rater variabil-
ity when comparing diagnostic assessments
from compression-reconstruction modalities
of nearly identical FID scores (JPEG2000 vs
standard compression VQ-VAE). High com-
pression VQ-VAE had increased the number
of convolutions, which increased compression
but decreased the spatial resolution of the
reconstructed images. The decreased spa-
tial resolution is reflected by the increased
FID score compared to JPEG2000 or stan-
dard compression, and the statistically sig-
nificant drop in the diagnostic performance
as measured by the decrease in the Cohen’s
kappa coefficient was nearly identical when

comparing JPEG2000 or standard compres-
sion to high compression VQ-VAE. This not
only confirmed that increased FID score cor-
relates to poorer diagnostic performance, but
also showed that JPEG2000 and standard
compression created qualitatively indistin-
guishable reconstructions with similar diag-
nostic utility.

Various quantitative metrics (e.g. PSNR,
SSIM, and FID) were nearly identical be-
tween the current JPEG2000 standard and
standard compression VQ-VAE. The differ-
ence in magnitude of quantitative metrics
was greatest in FID (2.1-2.2 for JPEG2000
and standard compression, 9.1 for high com-
pression VQ-VAE) compared to other met-
rics that are widely used PSNR (45-46 for
JPEG2000 and standard compression vs 44
for high compression VQ-VAE) and SSIM
(0.965-0.968 for JPEG2000 and standard
compression vs 0.947 for high compression
VQ-VAE). High compression VQ-VAE still
had high PSNR and SSIM values despite
the demonstrated decrease in the diagnos-
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tic quality, and thus PSNR and SSIM val-
ues should be used with caution. Especially
for generative models that attempt to sim-
ulate an image that exists (e.g. original vs
compressed radiographs, fast acquired vs tra-
ditionally acquired MRI, synthetic vs actual
CT scans), computing the FID between gen-
erated images and target images is more ap-
propriate to quantify the dependability of the
generative task.

We also demonstrate that the target FID
score may change depending on the diagnos-
tic task. Diagnostic tasks that are sensitive
to spatial resolution, such as determination
of pneumothorax, demonstrated a decrease
in the Likert score when FID score increased
(Table 2). On the other hand, the increase
in FID from 2 to 9 did not decrease the Lik-
ert score for this task significantly for de-
termination of objects of high contrast (e.g.
medical devices such as central lines; Ta-
ble 2). That is, even though the radiographs
may qualitatively look different (Appendix
A), the diagnostic performance and the as-
sociated Likert scale assessment of diagnos-
tic quality may not change for certain tasks.
Therefore both quantitative metric and the
diagnostic task of interest should be consid-
ered, as some pathological and anatomical
patterns are more robust to image distortions
than others.

Our study did not study how different
methods of image distortions (e.g. injected
black and pepper noise, blur, black rectan-
gles, swirls, etc.) that generate the same
increase in the FID score specifically affect
the diagnostic performance (Heusel et al.,
2017). We also lack the number of datasets
of varying FID to quantitatively correlate the
metric to their associated diagnostic perfor-
mance. Nonetheless, as long as there exists a
standard (e.g. currently used compression al-
gorithm or existing CT scans for MRI to CT
generation), ML methods can likely demon-
strate non-inferiority to the current standard

based on similar FID scores. By comparing
ML generated images to the existing stan-
dard during training, even non experts may
identify obvious distortions that result in the
same FID score or identify the clinical rele-
vance of the distortion locations. Thus vi-
sual inspection must continue to be used in
conjunction with the proposed quantitative
metric.

6. Conclusion

We show that machine learning techniques
that generate medical images with a low
Fréchet inception distance (FID) as the tar-
get population or a similar FID as the cur-
rent standard method likely retains the nec-
essary and appropriate diagnostic informa-
tion. In doing so, we validated a two-
level, vector quantized variational autoen-
coder (VQ-VAE-2) that is a lightweight and
fast method to compress medical images
while preserving diagnostic utility. Depend-
ing on the required diagnostic task, some
loss of image quality may be an acceptable
trade-off to further increase compression or
decrease acquisition time. Additional works
that correlate quantitative metrics to diag-
nostic performance can lead to their use as
an objective proxy measurement of diagnos-
tic quality, which will result in faster develop-
ment and deployment of generative machine
learning (ML) techniques to clinic.
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Compression
Algorithms
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Figure 5: Current standard JPEG2000 compression and reconstruction.
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Figure 6: Standard compression VQ-VAE and its reconstruction. Radiologists reported
that JPEG2000 and standard compression VQ-VAE radiographs looked identical
and would have made the same diagnoses based on either of the two reconstruc-
tions.

191



Evaluation of Diagnostic Utility of ML Generated Images

Figure 7: High Compression VQ-VAE and its reconstruction. Radiologists noted decreases
in the spatial resolution, but the radiograph was not completely rendered nondi-
agnostic.
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Appendix B. Internal Consistency
of Radiologists

Reviewing % Agreement % Agreement
Radiologist Diagnosis Likert Score
Radiologist 1 40/40 (100%) 38/40 (95.0%)
Radiologist 2 40/40 (100%) 37/40 (92.5%)
Radiologist 3 40/40 (100%) 38/40 (95.0%)

Table 3: In the set of 120 radiographs that
each radiologist reviewed, 5 radio-
graphs in the second half of the
dataset were duplicates of the pre-
viously seen radiograph in the first
half of the dataset. From the 5 ra-
diographs, 8 diagnostic tasks and
the associated Likert scores were
evaluated for percent agreement.
All radiologists had 100% agree-
ment for all diagnostic criteria. Of
the 6 Likert scores that changed,
none changed by more than a differ-
ence of 1 Likert score: Two reviews
changed from 5 to 4, two reviews
from 3 to 2, and two reviews from
4 to 5.
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