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Abstract

Echocardiography monitors the heart
movement for noninvasive diagnosis of
heart diseases. It proves to be of pro-
found practical importance as it com-
bines low-cost portable instrumentation
and rapid image acquisition without
the risks of ionizing radiation. How-
ever, echocardiograms produce high-
dimensional, noisy data which frequently
proved difficult to interpret. As a solu-
tion, we propose a novel autoencoder-
based framework, DeepHeartBeat, to
learn human interpretable representa-
tions of cardiac cycles from cardiac ul-
trasound data. Our model encodes high
dimensional observations by a cyclic tra-
jectory in a lower dimensional space. We
show that the learned parameters de-
scribing the latent trajectory are well
interpretable and we demonstrate the
versatility of our model by successfully
applying it to various cardiologically rel-
evant tasks, such as ejection fraction pre-
diction and arrhythmia detection. As a
result, DeepHeartBeat promises to serve
as a valuable assistant tool for automat-
ing therapy decisions and guiding clini-
cal care.

Keywords: unsupervised representa-
tion learning, sequence modeling, inter-
pretability

1. Introduction

The assessment of cardiac function proved
to be crucial for the diagnosis and progno-
sis of patients suffering from ventricular dys-
function (Bellenger et al., 2000; Roger et al.,
2011). Impairment of cardiac function, also
known as heart failure, is a rapidly growing
global health issue. Although the underlying
causes vary according to sex, age, ethnicity,
comorbidities and environment, the major-
ity of cases remain preventable (Ziaeian and
Fonarow, 2016) by minimally invasive diag-
nostics like echocardiography. However, to
correctly quantify cardiac function and di-
agnose dysfunction, expensive and time con-
suming medical imaging methods are often
required. In developing countries, the lack of
available diagnostic modalities may delay care
at a more advanced stage of illness, poten-
tially resulting in increased hospitalizations
for heart failure or treatment for more exten-
sive cardiovascular diseases (Jeemon et al.,
2014). The versatility of ultrasound, on the
other hand, may provide increased access to
necessary cardiovascular imaging. Echocar-
diography is indeed the most commonly used
noninvasive modality as it combines portable
instrumentation, rapid image acquisition and
high temporal resolution, without the risks
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of ionizing radiation (Lang et al., 2015). Its
clinical benefits are substantial in countries
with limited access to diagnostic equipment,
as it offers sensitive case detection at a frac-
tion of common expenses (Beaton et al., 2015;
Richter et al., 1990; Sippel et al., 2011). For
the above reasons, automatic disease predic-
tion based on affordable medical instruments,
such as echocardiography, provides a solution
to enhance health care for people with car-
diovascular diseases and for those who are at
high cardiovascular risk, regardless of their
economic realities. This diagnostic tool could
alleviate a shortage of medical expertise in
countries that have been adversely affected
by the migration of their health professionals
(Naicker et al., 2009).

In recent years, machine learning has been
successfully applied to the detection of dif-
ferent cardiovascular diseases (Zhang et al.,
2018; Ouyang et al., 2020)like ... . However,
the applicability of machine learning models
is still limited due to their black-box nature.
This shortcoming is particularly problematic
in medicine, where the reasons behind a cer-
tain prediction are as important as the predic-
tion itself. As an additional challenge, cardiac
ultrasound videos are high-dimensional and
contain noisy information. Thus, it is highly
desirable to reduce the dimensionality of the
data by analysing its periodic patterns and
by retaining its discriminative features, to
facilitate downstream classification tasks.

For the aforementioned reasons, we pro-
pose DeepHeartBeat, a novel autoencoder-
based model, to learn an interpretable low
dimensional representation of echocardio-
gram videos (ECHOs) and electrocardio-
grams (ECGs) in an unsupervised way. Our
approach explicitly models the periodic fea-
tures of the cardiac cycle, providing mean-
ingful insights for practitioners. By enforc-
ing periodic trajectories in the latent space,
DeepHeartBeat extracts periodic features of
the data as well as their frequencies. The

learnt latent embeddings enable then to solve
further downstream tasks, such as diagnosis,
anomaly detection, denoising, heart rate pre-
diction and heart cycle alignment. We apply
our framework to ECHO data, showing hu-
man level performance in ejection fraction
prediction, and to electrocardiograms, show-
ing good results in arrhythmia detection. Due
to its successful application to multiple use
cases, our method serves as a promising step
towards a general purpose model for the in-
terpretation of periodic sequences such as
ECHOs or ECGs.

2. Related work

The growing amount of medical data and the
time costs associated with its labeling makes
unsupervised learning particularly important
in the medical applications. Deep genera-
tive models have recently achieved great suc-
cess in unsupervised representation learning.
They generate a compressed latent represen-
tation of the data that captures the explana-
tory factors of the observed input. Some
of the most commonly used and efficient
approaches are Autoencoders (LeCun et al.
(2015)), Variational Autoencoders (Kingma
and Welling, 2013) and Generative Adversar-
ial Networks (Goodfellow et al., 2014; Kulka-
rni et al., 2015). However, such compressed
representations are often not humanly intelli-
gible and this opaqueness has often prevented
their widespread usage in the medical do-
main. Disentangled representations, on the
other hand, represent an important step to-
wards the direction of learning interpretable
encodings of the input, as they recover the
independent explanatory factors of variation
of the data. Many architectures have been de-
veloped in the literature to learn disentangle
representations by modifying the deep gener-
ative models presented above (Vondrick et al.,
2016; Chen et al., 2016; Higgins et al., 2016).
Most of these works assume the input data

195



Sequence modelling for medical data

to be i.i.d., however, in some domains, data
naturally come in sequences, where the ob-
servations are temporally correlated. While
many unsupervised sequence-to-sequence ap-
proaches for representation learning already
exist (Sutskever et al., 2014; Srivastava et al.,
2015), learning temporal representations with
disentangled factors of variation is still an
open problem. A promising approach was
presented by Louis et al. (2019) where the
authors modelled the temporal progression of
Alzheimer’s disease using an encoder-decoder
neural network architecture, which maps a
patient’s brain MRI images taken at different
points in time onto a straight trajectory in a
latent space, therewith decoupling state and
progression velocity of the disease. Another
approach presented by Denton et al. (2017)
leverages the temporal coherence of video and
uses a novel adversarial loss to learn a rep-
resentation that factorizes each frame into
a stationary part and a temporally varying
component.

In the medical domain, several works fo-
cused on applying machine learning to cardiac
ultrasound video data. Madani et al. (2018)
trained a convolutional neural network to clas-
sify standard views, Zhang et al. (2018) devel-
oped a pipeline that automates key aspects of
ECHO interpretation, including identifying
views, delineating individual cardiac cham-
bers and detecting specific diseases. Ouyang
et al. (2020) present a video-based deep learn-
ing algorithm that surpasses the performance
of human experts in the tasks of segmenting
the left ventricle, estimating ejection fraction
and assessing cardiomyopathy. Using con-
volutional neural networks, Ghorbani et al.
(2019) showed that deep learning applied to
echocardiography can identify local cardiac
structures, estimate cardiac function, and pre-
dict systemic phenotypes.

While these models are specifically tailored
to different tasks, our feature extractor model
can be considered task agnostic as it is able

to extract informative and well interpretable
features which subsequently can be used for
a wide range of tasks, achieving comparable
or even better performance than previous ap-
proaches. Furthermore, the proposed model
is applicable to both video data as well as
high frequency wave data.

3. Method

We present an autoencoder-based framework
for learning cyclic latent trajectories of peri-
odic sequences1. An overview of the architec-
ture is sketched in Figure 1.

3.1. Cyclic latent trajectory

We define a sequence of observations as
(yj , tj)

n
j=1 where yj ∈ RD represents a sam-

ple at each point in time tj , i.e. for video
data yj corresponds to the pixels of a par-
ticular frame and n is the number of frames.
We model the observations of a sequence as
following a trajectory over time in a lower
dimensional space Z = Rd, with d ∈ N, as
from now on referred to as latent space. We
integrate prior knowledge about the periodic-
ity of the sequence of a particular subject i
into our model by using the following cyclic
trajectory:

`i(t) = cos(2πfi(t− τi))e1
+ sin(2πfi(t− τi))e2

+

d∑
j=3

b
(j)
i ej ,

(1)

where (e1, . . . , ed) is the canonical basis of Z
in which the sequences are embedded. The
frequency parameter, fi > 0, corresponds
to the number of cycles per time unit and
the offset parameter τi allows the sequences
to start at different points in time within
the cycle. The b-parameters characterise the

1. The code with experiments is available at: https:
//github.com/laumerf/DeepHeartBeat
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Figure 1: Overview of the proposed network architecture. First, the encoder extracts
features from each observation of an input sequence, i.e. echocardiogram. Then,
it aggregates the information over time with a temporal network and outputs the
parameters (ϕ) describing the latent trajectory of the input sequence. Conversely,
the decoder takes as input the embeddings on the latent trajectory ` and maps
them back to the observation space.

shape of the signal2. The first two dimensions
of the latent space are used to describe a circle
such that the projection of the trajectory
onto the plane spanned by e1 and e2 is a
unit circle centered at the origin. We define

ϕi = (fi, τi, b
(3)
i , . . . , b

(d)
i ) to be the trajectory

parameters of subject i.

3.2. Autoencoder Model

The model consists of an encoder and a de-
coder part. The encoder maps a sequence of
observations (yj , tj)

n
j=1 to trajectory param-

eters ϕ describing a circular trajectory `(t)
given by Equation (1). The observation times
t1, . . . , tn are subsequently used to calculate

2. Examples of how different b parameters influence
the shape of ECGs can be found in Appendix B.

the embeddings `(t1), . . . , `(tn) in the latent
space from which the decoder reconstructs
the input sequence y′1, . . . ,y

′
n.

3.2.1. Encoder

The encoder is composed of two neural net-
works, an observation encoder network (OEN)
and a temporal neural network (TNN). The
OEN serves as a feature extractor for the ob-
servations yj . These features combined with
the corresponding time information tj are
then fed into the TNN, i.e. a LSTM (Graves
and Schmidhuber, 2005). The TNN aggre-
gates the inputs over time and outputs the
latent parameters ϕi for each sequence i.
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3.2.2. Decoder

The sample at time t in the temporal sequence
i corresponds to the embedding `i(t) ∈ Z
in the latent space. The decoder maps the
embeddings on the latent trajectory `i back to
the observation space. Note that the decoder
does not directly process the encoder’s output
ϕ, but rather it processes the embeddings
lying on the latent trajectory parameterised
by the encoder’s output.

3.3. Training

Let D = {(y1j , t1j)
n1
j=1, . . . , (yNj , tNj)

nN
j=1} be

a set of N observation sequences and let
{(y′1j)

n1
j=1, . . . , (y

′
Nj)

nN
j=1} be the correspond-

ing reconstructions, i.e. the output of the
decoder. We train the neural network weights
by minimising a cost function c, defined as

c(D) =

1

N

N∑
i=1

 1

σ2
1

ni

ni∑
j=1

L(y′ij ,yij) + r(ϕi)

 ,

(2)

which consists of a reconstruction error term
and a regulariser r balanced by a trade-off
parameter σ2. L defines a loss-function, i.e.
L1-loss for high frequency wave data and L2-
loss for videos. To give equal weight to all
subjects independent of the number of obser-
vation in a sequence, we average the frame
reconstruction errors for each video. The reg-
ulariser forces the shape parameters b3i , . . . , b

d
i

to be near the origin, and it is defined as

r(ϕi) =
d∑

j=3

(b
(j)
i )2. (3)

The trade-off parameter σ2 is estimated based
on the loss function. In order to increase sta-
bility during training, especially when using
small batch sizes NB, we update σ2 after each
training step by calculating an exponential

moving average:

σ2t+1 ← (1−η)
1

NB

∑
i∈B

1

ni

ni∑
j=1

L(y′ij ,yij)+ησ
2
t ,

(4)
where parameter η ∈ [0, 1) controls the speed
with which the estimate of σ2 is updated. We
train the neural network weights using the
Adam optimizer (Kingma and Ba, 2015). A
fraction of the sequences is used to compute
the following reconstruction error required for
early stopping:

cval(D) =
1

N

N∑
i=1

1

ni

ni∑
j=1

L(y′ij ,yij). (5)

The model is implemented in Python using
TensorFlow (version 2.2.0). For more detailed
information on the model architectures and
training procedure for the different experi-
ments the reader is referred to Appendix A.

4. Datasets

4.1. Echocardiogram video data

For the general assessment of our cardiac
cycle mode we use the publicly available
EchoNet-Dynamic dataset (Ouyang et al.,
2020) consisting of 10,030 apical four-chamber
view echocardiograms collected at Stanford
Medicine. The published videos have a res-
olution of 112x112 pixels. The dataset is
accompanied by ejection fraction values of
the left ventricle and frame numbers of end-
systole and end-diastole frames determined
by medical practitioners.

4.2. ECG data

To show that our framework is general enough
to handle different data modalities, we ap-
ply it to electrocardiograms (ECGs) as an
example of waveform data. We use the Phys-
ioNet/CinC Challenge 2017 dataset (Clifford
et al. (2017)) consisting of 8,528 single-lead
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ECG recordings between 9 and 61 seconds in
length labeled as one of four classes: recording
shows normal sinus rhythm, atrial fibrillation
(AF), an alternative rhythm, or is too noisy
to be classified.

5. Experiments

In the following, we provide a thorough em-
pirical assessment of our proposed method
on the two challenging cardiac datasets de-
scribed in Section 4. In particular, we
use the echocardiogram video data for heart
rate detection (5.1.1), echocardiogram video
alignment (5.1.2), ejection fraction prediction
(5.1.3), and denoising of semantic segmenta-
tions of the cardiac chambers (5.1.4). Ad-
ditionally, we show that DeepHeartBeat can
successfully extract the heart rate from ECGs
(5.2.1), detect anomalies using ECG noise la-
bels (5.2.2), and classify ECG sequences into
atrial fibrillation and other rhythms (5.2.3).

5.1. Echocardiogram video data

The proposed method is able to recognise the
heart beat as the fundamental frequency of
the cyclic model, as demonstrated in this sec-
tion, and, thereby, it enables semantic align-
ment of echocardiogram recordings. Further-
more, based on the latent parameter vector
(ϕ) learnt by the model, it is possible to
reliably predict the ejection fraction using
straightforward regression methods.

5.1.1. Heart rate detection

We conjecture that a single cycle along the
trajectory `i of a given subject parameterised
by ϕi corresponds to one complete cardiac
cycle. Given the parameterisation of `i this
holds if and only if the frequency parameter
fi corresponds to the heart rate in beats per
second.

Due to missing ground truth heart rates for
the videos in the EchoNet-Dynamic dataset,

we compare the heart rates extracted by our
model to the heart rates determined by rank-
2 Robust Non-negative Matrix Factorisation
(RNMF), which was shown to reliably identify
the periodic pattern present in echocardio-
gram videos (Dukler et al., 2018). By using
RNMF, we successfully determined the heart
rate as described in Appendix C for 8, 798
subjects, which are used for comparison with
our model.

For a given subject i, let fi,model and
fi,RNMF denote the model rate and RNMF
rate in beats per minute respectively. We
define the deviation εi for subject i as the
relative difference with respect to the smaller
of the two rates:

εi =
|fi,model − fi,RNMF|

min{fi,model, fi,RNMF}
. (6)

The choice of this symmetric metric is mo-
tivated by the fact that we cannot assume
that fi,RNMF is the true heart rate. In fact,
either rate could be more accurate and, to
account for this, εi is the maximum relative
error when assuming either rate to correspond
to the ground truth.

When fitting our model five times to the
EchoNet-Dynamic dataset (each time using
a different train/validation split), we obtain
mean deviations between 4.4% and 6.7%, and
median deviations ranging from 1.7% to 3.1%.

5.1.2. Semantic Alignment

We expect latent embeddings that are located
on the same position s ∈ [0, 1) on the unit
circle to be semantically equivalent, i.e. they
should encode the same stage of the cardiac
cycle.

To test this hypothesis, we take advantage
of the EchoNet-Dynamic dataset. Each video
is accompanied by the frame numbers of the
end-systole frame and the end-diastole frame,
from which we derive the end-systole time
ti,systole and the end-diastole time ti,diastole.
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For each subject i, we determine si,systole
by solving the following equations:

cos(2πsi,systole) = cos(2πfi(ti,systole − τi))
sin(2πsi,systole) = sin(2πfi(ti,systole − τi)).

We also compute si,diastole similarly. Fig-
ure 2 shows the distribution of si,systole and
si,diastole. We can observe a concentration of
the end-systole values at 0.28 and a concen-
tration of end-diastole values at 0.92.

Figure 2: Distribution of end-systole values
si,systole (blue) and end-diastole val-
ues si,diastole (orange).

To obtain a quantitative measurement for
the semantic alignment, we discretise the val-
ues of si,systole by rounding to the nearest
100th. Let ssystole denote the most frequent
value. The absolute deviation of a given value
of si,systole from ssystole is defined as

|∆si,systole| = min{|ssystole − si,systole|,
1− |ssystole − si,systole|}.

(7)

Figure 3 illustrates this concept for two sub-
jects using the projection of the latent tra-
jectory onto the (e1, e2)-plane. We follow
the same procedure to calculate the end-
diastole deviations |∆si,diastole|. When fit-
ting our model five times to the EchoNet-
Dynamic dataset, we achieve mean (median)
end-systole deviations between 0.068 (0.047)

Figure 3: End-systole deviation on the pro-
jection of the latent trajectory onto
the (e1, e2)-plane

and 0.085 (0.058). The mean (median) end-
diastole deviations range from 0.069 (0.046)
to 0.084 (0.056). This time interval corre-
sponds to approx. 3-4 frames deviation from
the ground truth assuming a heart rate of 60
bpm and a frame rate of 50 Hz.

Further experiments and figures for heart
rate prediction and semantic alignment are
summarized in Appendix D.

5.1.3. Ejection fraction prediction

The ejection fraction of the left ventricle
serves as a widely used biomarker of cardiac
health. It measures the ratio of the blood vol-
ume of the left ventricle ejected during a heart
cycle and the left ventricle’s end-diastolic vol-
ume. The videos of the EchoNet-Dynamic
dataset are accompanied by ejection fraction
measurements as determined by human ex-
perts.

For predicting the ejection fraction, we first
determine the latent trajectory parameters ϕi

of each subject as given by our cardiac cycle
model. These parameters are subsequently
used as inputs to a neural network which is
trained to predict the ejection fraction. We
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Table 1: MAE, RMSE, and R2 scores for different ejection fraction prediction methods.

Methods MAE RMSE R2

DeepHeartBeat 6.34± 0.209 8.59± 0.264 0.506± 0.0303
R2+1D (Ouyang et al., 2020) 7.35 9.53 0.40
R3D (Ouyang et al., 2020) 7.63 9.75 0.37
MC3 (Ouyang et al., 2020) 6.59 9.39 0.42
EchoNet-Dynamic, Ouyang et al. (2020) 4.05 5.32 0.81

choose a simple neural network with two hid-
den layers, each one with 1024 nodes and
ReLU activation functions. The weights are
inferred by an Adam optimiser with learning
rate 10−4 and mini-batches of size 4.

Repeating this procedure five times re-
sults in a MAE of 6.34± 0.209, a RMSE of
8.59±0.264, and an R2 score of 0.506±0.0303
when evaluating the performance on a com-
pletely hold out test split. The standard
deviation of the corresponding metric is cal-
culated based on 5 different training runs
of DeepHeartBeat. Our method is concep-
tually comparable to the three models pre-
sented by Ouyang et al. (2020) which predict
the ejection fraction based on the full-length
videos without using any addition averaging
methods. We are able to surpass the per-
formance of all these three models, of which
the best-performing one achieves a MAE of
6.59, a RMSE of 9.39, and an R2 score of
0.42. We note that the best model presented
by Ouyang et al. (2020), named EchoNet-
Dynamic, surpasses our performance. How-
ever, it is not directly comparable to our work
as it applies averaging over subsequences and
uses additional human annotations for train-
ing. The results are summarized in Table
1.

To put those numbers into perspective, the
mean standard deviation of the ejection frac-
tion measurements of different medical prac-
titioners based on the same echocardiogram
video amounts to 8.3 (Cole et al., 2015), which
is comparable to DeepHeartBeat.

5.1.4. Denoising

To illustrate the denoising effect of our model
we apply it to the semantic segmentation of
ECHOs as inferred by the neural network
model of Zhang et al. (2018). The first col-
umn of Figure 4 shows the time evolution
of an echocardiogram video of a single pa-
tient and the middle column depicts the cor-
responding frame wise segmentations. One
can see that the segmentations are often un-
satisfactory for certain frames. For example,
the first frame in Figure 4 does not correctly
depict the left atrium and the segmentation
borders are subject to irregular variations.
We fit our model to the segmented videos of
the EchoNet-Dynamic dataset by modifying
the decoder to output a probability distribu-
tion over the six possible segment classes and
by choosing the negative log-likelihood as the
loss function L in Equation (2). The right
column of Figure 4 shows the maximum like-
lihood reconstructions of the frames in the
middle column as calculated by our model.
The artefacts described previously have been
removed resulting in a smooth deformation
over time. For more examples please consult
Appendix E.

5.2. Electrocardiograms

5.2.1. Heart rate detection

To show the applicability of DeepHeartBeat
to waveform data, we repeat the heart beat ex-
periment for ECG data. To track the progres-
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Figure 4: Left: Consecutive raw cardiac ul-
trasound frames. Center: Corre-
sponding segmentation on a frame
by frame basis. Right: The maxi-
mum likelihood reconstructions as
given by DeepHeartBeat.

sion of the heart rate during the recording, we
extract sequences of 2.75 seconds with a stride
of 0.01 seconds and encode each sequence
separately. Figure 5 shows that the fi pa-
rameter of the trajectory indeed corresponds
to changes of the heart rate. Furthermore,
one can notice that the phase parameter τi
expresses periodic behaviour corresponding
to the heart cycle. In contrast to the echocar-
diogram data, the ground truth for ECGs

can be obtained by extracting R-peaks and
calculating time between them. In Figure 10
in Appendix D one can see how the phase
linearly changes as we continuously calculate
and plot τ and that its periodicity is aligned
with the heart beats.

5.2.2. Anomaly detection

The presence of noise renders the reconstruc-
tion and classification of ECG signal a chal-
lenging task as such recordings do not show
regular periodic behaviour anymore. Since
our model is designed to capture periodicity
of the input signal, we postulate the hypoth-
esis that the quality of reconstruction can be
informative for detecting such noisy signals.
As noisy recordings contain only 3.3% of the
dataset, we formulate the noise detection as
an anomaly detection problem. We encode
and reconstruct the full ECG recordings to
show that reconstruction error is indeed a
good predictor for the noise class yielding an
AUC score of 0.81.

5.2.3. Arrhythmia classification

Medical sequence classification defines an-
other clinically relevant downstream tasks.
Following the PhysioNet-Challenge, we focus
on atrial fibrillation (AF) detection. We com-
bine the trajectory parameters ϕ with the
reconstruction error and use them as features
for training a SVM classifier to distinguish
between AF and other rhythms present in the
data. The b parameters encode information
about the shape of a normal heart beat vs.
an AF heart beat as visualized in Figure 6.
Our representation allows to reach a balanced
accuracy of 0.70 on the hold out test set pro-
vided by PhysioNet Challenge consisting of
300 ECG recordings. This result is on par
with human expert performance in AF classi-
fication (Hannun et al., 2019). Note that we
use only one trajectory embedding per ECG
which does not allow to track short changes
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Figure 5: We depict the change in heart rate over a sliding subsequence of an ECG recording
starting at the moment when R-peaks occur. Note that ECG signal and heart
phase are re-scaled for visualization purposes.

within the signal. Aggregating trajectory pa-
rameters from different subsequences of the
original recording should further improve the
results, but is left for future work since it
does not directly relate to the representation
learning approach presented in this paper.

6. Conclusion

We presented a novel autoencoder-based
model to learn geometrically interpretable
low dimensional representations of ECHOs
and ECGs in an unsupervised way. The
model maps high dimensional observations
to a cyclic trajectory in a lower dimensional
space. We evaluated our model on large pub-
licly available data sets in a variety of ex-
periments and, thereby, touching upon sev-
eral aspects of practical interest including
heart rate detection, as well as end-systole
and end-diastole identification. Furthermore,
we demonstrated that the extracted shape
parameters can be used for reliably detecting
arrhythmia in ECGs and we achieve human
comparable performance in predicting the
ejection fraction based on cardiac ultrasound
data. Due to its successful application to
multiple use cases, our method is a promis-

ing step towards a general purpose model
for extracting interpretable and informative
features from periodic sequences.

6.1. Limitation and future work

Our approach assumes a constant cycle fre-
quency, a clear limitation for its applicability
to patients suffering e.g. from arrhythmia.
For future work, we suggest to overcome this
deficiency by adapting the parameterization
to capture phase and frequency changes which
would further increase the applicability of our
model.

In the past, machine learning has been used
to detect and classify a wide range of car-
diac conditions based on ECG and ECHO
data. Motivated by our promising experi-
ments, it would be interesting to explore to
what degree the features extracted by Deep-
HeartBeat with its separation of dynamic and
static features will improve on those works.
Especially, in situation where task-specific
labels are scarce, using another larger task-
agnostic dataset for training DeepHeartBeat,
could improve the quality of the extracted
task-specific features, and, consequently, also
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the performance of the down-stream task of
interest.
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Appendix A. Implementation details

A.1. Echocardiogram video data

The layer-by-layer description of the neural network architecture of the encoder can be found
in Table 2 (observation encoder network) and Table 3 (temporal neural network). Table 4
describes the decoder architecture.

Layer type Output shape

Input (frame, pixel values scaled to [0, 1]). 112× 112× 1
4× 4 conv. 8 filters. stride 2. ReLU 55× 55× 8
4× 4 conv. 16 filters. stride 2. ReLU 26× 26× 16
4× 4 conv. 16 filters. stride 2. ReLU 12× 12× 16
4× 4 conv. 16 filters. stride 2. ReLU 5× 5× 16
Flatting. 400

Table 2: Neural network architecture of the observation encoder network (OEN) part of the
encoder.

Layer type Output shape

Input (sequence of frame embeddings). m× 401
Bidirectional LSTM. 128 units per direction. Tanh. 256
Fully-connected. d units. Linear. d = 128

Table 3: Neural network architecture of the temporal neural network (TNN) part of the
encoder. The size of the output depends on the dimensionality of the latent space.
m denotes the sequence length.

Layer type Output shape

Input (point in latent space). d = 128
Fully-connected. 400 units. Linear. 400
Reshaping. 5× 5× 16
4× 4 transp. conv. 16 filters. stride 2. ReLU 12× 12× 16
4× 4 transp. conv. 16 filters. stride 2. ReLU 26× 26× 16
4× 4 transp. conv. 8 filters. stride 2. ReLU 55× 55× 8
4× 4 transp. conv. 1 filter. stride 2. Sigmoid 112× 112× 1

Table 4: Neural network architecture of the decoder. The size of the input depends on the
dimensionality of the latent space.

For the Adam optimiser, we choose a learning rate of α = 5 · 10−4 and exponential decay
rates of β1 = 0.9 for the first and β2 = 0.999 for the second moment estimates. We run 200
iterations per epoch and use mini-batches consisting of NB = 32 subsequences of duration
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at least two seconds randomly sampled from the set of training videos. For the exponential
average update of the reconstruction/regularity trade-off parameter σ2 in equation (4) we
select η = 0.99. The L2 norm was used as the loss function L.

A.2. Electrocardiogram

The layer-by-layer description of the neural network architecture of the encoder can be found
in Table 5 (observation encoder network) and Table 6 (temporal network). Table 7 describes
the decoder architecture.

Layer type Output shape

Input (single value in R). 1
Fully-connected. 16 units. ReLU. 16

Table 5: Neural network architecture of the observation encoder network (OEN) part of the
encoder.

Layer type Output shape

Input (sequence of frame embeddings). m× 17
Bidirectional LSTM. 128 units per direction. Tanh. m× 256
Bidirectional LSTM. 128 units per direction. Tanh. 256
Fully-connected. d units. Linear. d = 8

Table 6: Neural network architecture of the temporal neural network (TNN) part of the
encoder. The size of the output depends on the dimensionality of the latent space.
m denotes the sequence length.

Layer type Output shape

Input (point in latent space). d = 8
Fully-connected. 128 units. ReLU. 128
Fully-connected. 128 units. ReLU. 128
Fully-connected. 1 unit. Linear. 1

Table 7: Neural network architecture of the decoder. The size of the input depends on the
dimensionality of the latent space.

For the Adam optimiser, we choose a learning rate of α = 5 · 10−4. The exponential decay
rates are set to β1 = 0.9 for the first and β2 = 0.999 for the second moment estimates. We
run 1000 iterations per epoch and use mini-batches consisting of NB = 64 subsequences of
duration between 1.5 and 4.0 seconds randomly sampled from the set of training subjects.
For the exponential average update of the reconstruction/regularity trade-off parameter σ2

in equation (4) we select η = 0.99. The L1 norm was used as the loss function L.
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To prevent the model from encoding multiple heart cycles for a single cycle along the
latent trajectory, we penalise frequencies f that correspond to heart rates below 40 bpm by
extending the regularisation term in Equation (3) to

r(ϕi) =
d∑

j=3

(b
(j)
i )2 + max

{
0,

40

60
− fi

}
.

Appendix B. Visualization b-parameters for ECG

We visualize the reconstruction of a normal heart beat and an AF heart beat. In order
to visualize how the different b-parameters influence the shape of an ECG, we linearly
interpolate each b-parameter from a normal signal to the corresponding AF parameter
and reconstruct the generated signal over one heart beat. In Figure 6, each b is changed
separately while keeping the other bs fix. In Figure 7, we linearly interpolate all parameters
simultaneously from a normal signal representation to an AF representation.

0 25 50 75 100
200

0

200

400

600

800

b(3)
normal b(3)

AF

normal
AF

0 25 50 75 100
200

0

200

400

600

800

1000

b(4)
normal b(4)

AF

normal
AF

0 25 50 75 100

0

200

400

600

800

b(5)
normal b(5)

AF

normal
AF

0 25 50 75 100

0

200

400

600

800

1000

b(6)
normal b(6)

AF

normal
AF

0 25 50 75 100

0

200

400

600

800

b(7)
normal b(7)

AF

normal
AF

0 25 50 75 100

0

200

400

600

800

b(8)
normal b(8)

AF

normal
AF

Figure 6: We visualize the reconstructed signals over a heartbeat when linearly interpolating
each b parameter of a normal signal to the b parameter of an AF signal.
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Figure 7: We visualize the reconstructed signals over a heartbeat when linearly interpolating
the b vector of a normal signal to the b vector corresponding to an AF signal.

Appendix C. Rank-2 Robust Non-negative Matrix Factorisation for
heart rate detection

We describe the procedure used to determine the heart rate of a echocardiographic video
based on rank-2 Robust Non-negative Matrix Factorisation (RNMF) (Dukler et al., 2018).

Assume we are given an echocardiographic video consisting of m frames with n pixels
each, which we represent as a non-negative matrix X ∈ Rn×m

+ . RNMF aims to find matrices

W ∈ Rn×k
+ , H ∈ Rk×m

+ , and S ∈ Rn×m such that

X ≈WH + S. (8)

This is achieved by minimising the energy function

f(W,H,S) = ‖X−WH− S‖2F + λ‖S‖1 (9)

where λ > 0 controls the sparsity in S.
We choose k = 2, λ = 0.1, and determine W ∈ Rn×2

+ , H ∈ R2×m
+ , and S ∈ Rn×m using

the iterative thresholding approach presented by (Dukler et al., 2018). If successful, the
coefficients in both rows of H, denoted by h1 and h2, should exhibit a periodic pattern. To
determine the frequency of this pattern we fit the simple sine model

hi ≈ a sin(2πtif + d) + bt+ c, i = 1, . . . ,m (10)

to both h1 and h2 independently. ti denotes the time of the ith frame and hi denotes the ith

element of either h1 or h2. We optimise a, b, c, d, f by minimising the mean squared error.
Figure 8 shows an example for an optimal sine fit.
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Figure 8: Sine model fits for h1 (blue) and h2 (orange) of a given echocardiographic video.
The crosses show the values of the elements of h1 and h2. The solid lines are the
corresponding optimal sine model fits.

We end up with two frequency values f1 and f2, one for each row in H, corresponding to
the heart rate in beats per second. The final heart rate in beats per minute is f∗ = 60f1+f2

2 .
As we do not always get reasonable heart rates, we define the heart rate detection to be
successful if the difference |f1 − f2| amounts to less than 10% of min{f1, f2} and if the final
value f∗ ends up in the range [45, 180].

Appendix D. Heart rate and semantic alignment

D.1. Echocardiogram

We use the trained model to continuously extract the frequency f as well as the phase τ of
a sliding window consisting of 90 frames (Figure 9). Our model is able to track the phase of
the cardiac cycle as well as changing heart rate over an echocardiographic video. This could
for example be used for detecting arrhythmia solely based on echocardiographic videos as
shown in the lower part of Figure 9.

D.2. ECG

We use the trained model to continuously extract the frequency f as well as the phase τ of
a sliding window consisting of .75 seconds. Our model is able to track the phase/frequency
(Figure 10) of the cardiac cycle as well as changing heart rate (Figure 5) over an ECG
recording.

Appendix E. Denoising semantic segmentations

Some additional qualitative examples of improved and denoised semantic segmentation. The
segmented cardiac regions are: left ventricle blood pool (green), left atrium blood pool
(blue), left ventricle myocardium (red), right ventricle blood pool (yellow), and right atrium
blood pool (cyan).
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Figure 9: We depict the change in heart phase and heart rate over a sliding subsequence
of an ECHO. In the upper part, one can see how the phase linearly changes as
we continuously calculate and plot τ . In the bottom part, we track the heart
rate over a couple of heart beats. The difference between normal patients and an
arrhythmia patient is clearly visible.
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Figure 10: We depict the change in heart phase over a sliding subsequence of an ECG
recording. One can see how the phase linearly changes as we continuously
calculate and plot τ and that its periodicity is aligned with the heart beats.
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Figure 11: Upper row: Series of consecutive raw cardiac ultrasound frames. Middle row:
Semantic segmentation (Zhang et al., 2018). Bottom row: Maximum likelihood
reconstruction as given by DeepHeartBeat.
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Figure 12: Upper row: Series of consecutive raw cardiac ultrasound frames. Middle row:
Semantic segmentation (Zhang et al., 2018). Bottom row: Maximum likelihood
reconstruction as given by DeepHeartBeat.
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Figure 13: Upper row: Series of consecutive raw cardiac ultrasound frames. Middle row:
Semantic segmentation (Zhang et al., 2018). Bottom row: Maximum likelihood
reconstruction as given by DeepHeartBeat.
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Figure 14: Upper row: Series of consecutive raw cardiac ultrasound frames. Middle row:
Semantic segmentation (Zhang et al., 2018). Bottom row: Maximum likelihood
reconstruction as given by DeepHeartBeat.
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Figure 15: Upper row: Series of consecutive raw cardiac ultrasound frames. Middle row:
Semantic segmentation (Zhang et al., 2018). Bottom row: Maximum likelihood
reconstruction as given by DeepHeartBeat.
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