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Abstract

Quasi-experimental designs allow re-
searchers to determine the effect of a
treatment, even when randomized con-
trolled trials are infeasible. A promi-
nent example is interrupted time series
(ITS) design, in which the effect of an
intervention is determined by compar-
ing the extrapolation of a model trained
on data acquired up to moment of in-
tervention, with the interpolation by a
model trained on data up to the inter-
vention. Typical approaches for ITS
use (segmented) linear regression, and
consequently ignore many of the spec-
tral features of time series data. In this
paper, we propose a Bayesian nonpara-
metric approach to ITS, that uses Gaus-
sian process regression and the spectral
mixture kernel. This approach can cap-
ture more structure of the time series
than traditional methods like linear re-
gression or AR (I)MA models, which im-
proves the extrapolation performance,
and hence the accuracy of causal infer-
ence. We demonstrate our approach in
simulations, and use it to determine the
causal effect of Kundalini yoga medita-
tion on heart rate oscillations. We show
that our approach is able to detect the
causal effect of interventions that alter
the spectral features of these time se-
ries.
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1. Introduction

Much of scientific research is concerned with
causal questions. A prime example is the es-
tablishment of a causal effect of a medical
treatment, which is typically determined in
randomized controlled trial (RCT) study de-
signs. Here, the effect of confounding vari-
ables that may influence the outcome can-
cel out, so that the causal effect can (in
principle) readily be determined (Pearl and
Mackenzie, 2018). When the RCT is not
possible, due to pragmatic or ethical consid-
erations, quasi-ezperimental designs (QEDs)
may provide an alternative. In these study
designs randomness is replaced with addi-
tional constraints, that under certain as-
sumptions approximately recreate the con-
ditions of the RCT. Quasi-experimental de-
signs have been used in many scientific do-
mains, such as medicine (Penfold and Zhang,
2013), neuroscience (Marinescu et al., 2018),
or epidemiology (Bhaskaran et al., 2013).

In this paper, we focus on a quasi-
experimental design that is tailored to time
series data: interrupted time series (ITS)
design (McDowall et al., 1980; Hausman
and Rapson, 2018). Here, the observations
are split into two subsets: one containing
all observations up to an intervention, and
one containing all observations from the in-
tervention on. ITS is especially relevant
for medical applications, as time series are
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prevalent in health care, and RCT may be
prohibitive due to ethical, financial, or ur-
gency constraints. For instance, one might
use ITS to study the effect of a drug on
heart rate measured via electrocariography
(ECG) (Matowe et al., 2003), or the effect
of public health care policies (Bernal et al.,
2017; Voké and Pitter, 2020). The latter
is especially relevant in the COVID-19 pan-
demic, where this study design is used fre-
quently (Voké and Pitter, 2020; Figueiredo
et al., 2020; Hamadani et al., 2020). ITS
establishes a causal effect by comparing the
extrapolation based on the pre-intervention
data, based on the interpolation based on
the post-intervention data. The majority
of ITS designs model the observations pre-
and post threshold using (segmented) poly-
nomial regression (Jandoc et al., 2015), but
these parametric models ignore many of the
temporal properties of these data sets (Haus-
man and Rapson, 2018; Nason, 2013). This
is an fundamental shortcoming, as the ITS
causal effect estimation relies on having an
adequate model for the extrapolation of the
pre-intervention time series. If this extrapo-
lation is poor, due to model misspecification,
the findings of the ITS study become ques-
tionable.

We propose a novel method for ITS designs
that replaces traditional parametric models
with Gaussian process (GP) regression (Ras-
mussen and Williams, 2006), together with
a spectral mixture kernel. This results in
a flexible Bayesian nonparametric ITS de-
sign. It extends recently proposed work that
applies a similar model to regression dis-
continuity (RD) design (Hinne et al., 2020;
Branson et al., 2019). Our main contribu-
tion is that we use a spectral mixture ker-
nel (Wilson and Adams, 2013) as the covari-
ance function of the GP. This kernel allows
for the identification of more temporal struc-
ture in the data than other covariance func-
tions (Schulz et al., 2017), which improves

extrapolation quality, and hence the estima-
tion of the causal effect of the intervention.

The paper is structured as follows. In sec-
tion 2, we describe the Bayesian model com-
parison approach for ITS that we use in our
method. In section 3, we recap Gaussian pro-
cess regression (GPR) and describe the spec-
tral mixture kernel. In section 4, we discuss
a simulation, followed by an applications on
heart rate oscillations of people trying Kun-
dalini yoga meditation in section 5. We pro-
vide a discussion of potential extensions of
the model in section 6 and conclude in sec-
tion 7.

2. Causal inference using
interrupted time series

We provide a brief introduction of the back-
ground of causal inference using I'TS designs.
For a more in-depth discussion, we refer to
e.g. Bernal et al. (2017); McDowall et al.
(1980).

The detection of a causal effect is nat-
urally formulated using the potential out-
comes framework by Rubin (1974). Consider
an observation ¢ with independent variable
z; € RP. Throughout this paper we consider
only the univariate case and assume P = 1,
but the extension to multidimensional input
is straightforward. In addition, we observe
an indicator variable z;. Here, z; = 1 indi-
cates the intervention has been applied, and
z; = 0 indicates it has not. The outcome
depends on treatment, that is

_ J%i(0)
{20

The individual causal effect is defined as the
difference between these two potential out-
comes, that is

di = yi(1) —4i(0) . (2)

Instead of the individual causal effect, we of-
ten estimate the average causal effect (ACE)

if z; =0,

otherwise.

(1)
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instead, defined by the differences in the ex-
pectations of the population:

dace = Ely(1)] - E[y(0)] . (3)

In the randomized controlled trial, as in-
dividuals are randomly assigned to the in-
tervention or control group, all differences
other than treatment are integrated out in
these expectations (Bloom, 2012). In ITS
designs however, the allocation to interven-
tion or control group is based on a thresh-
old (O’Keeffe and Baio, 2016):

if ; > zp and

1
zi = . (4)
0 otherwise,

where xg is the threshold that defines at
which point the intervention is applied.
Here, the causal estimand can be obtained
as the difference between observed post-
intervention regression function, fl(l), and
the extrapolated pre-intervention regression
function, fl(c) (Kim and Steiner, 2016). This
difference does not need to be constant, so
the causal estimand dyrg is itself a function
of x > x¢, given by (Kim and Steiner, 2016)

dirs(z) = f (@) - f1D@), @>a0 . (5)

2.1. Causal inference as model
comparison

Most ITS implementations determine the
presence of a causal effect by assuming a
parametric form for fl(c) and fl(l) , such as
linear regression, and subsequently testing
for B # 0, with (8 either the intercept or
the slope of the regression. This has a few
downsides. First, this approach allows one
to reject the null hypothesis of no effect, but
not to find evidence in favor of the null. Sec-
ond, the effect size estimate is provided as
a point estimate, ignoring the associated un-
certainty. Both issues can be remedied by us-
ing Bayesian model comparison instead (Wa-
genmakers, 2007), which proceeds as follows.

We define two models, My and M, that cor-
respond to the null model and the alternative
model, respectively. In My, all observations
D = {(x;,yi)}!", are modelled by the same
regression function fj, so that

yi ~ N (folz),07) | (6)
with observation noise 0(2). In My, separate
regression functions are used pre- and post
intervention instead, resulting in

if o; <o

N (H @), 02)

e N fl(I)(xi)aU%) if z; > o

where fl(C) and fl(l) correspond to the latent
functions pre- and post intervention, respec-
tively, and analogously 0‘%« and 0‘% represent
the corresponding observation noise levels.

The two models are compared via the
Bayes factor, the ratio of marginal likeli-
hoods

BF;o = 2

(DO | MOp(DD | My D)

p(D | Mo) ’

where D) = {(z;,51) | ©; < x0} and
D) = {(i,v:) | ©i > xo}. This step follows
because the observations prior to the inter-
vention are independent of the observations

after the intervention (conditioned on My).

3. Gaussian process regression

The latent functions F' = (fo, 1(0)’f1(1)>
form the basis of our model comparison ap-
proach. We follow Branson et al. (2019);
Hinne et al. (2020) and place a Gaussian pro-
cess (GP) prior on each function f € F, so
that we have

f~GgpP (,u(x; 0), k(z,2; 0)) , (9)
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where p(z;60) and k(z,2’;60) are the mean
and covariance function of the GP, respec-
tively, and 6 is a set of hyperparameters that
we will discuss later. We will drop the de-
pendency on the hyperparameter 6 from the
notation when no confusion is likely to arise.
The first GP parameter p(x) is the expected
mean of the function f, and is often assumed
to be zero for standardized data. The second
parameter k(z, z') is known as the covariance
function or kernel, and indicates how similar
the expected responses f(z) and f(z') are,
depending on the locations z, z’, and the
hyperparameters 6. By choosing the appro-
priate covariance function k, widely differ-
ent latent processes can be modelled (Ras-
mussen and Williams, 2006). For instance,
with a linear covariance function, we essen-
tially recover linear regression again, while
the commonly used squared-exponential ker-
nel results in smooth functions that are in-
finitely differentiable.

The GP posterior predictive distribution
is available in closed form (MacKay, 2002;
Rasmussen and Williams, 2006). This makes
it straightforward to estimate drpg by tak-
ing the difference in the predictive distri-
butions of fl(C)(:c) and fl(l)(x), evaluated
on r > xg. Predicting in the GP frame-
work proceeds as follows. The matrix K
has its entries defined as K;; = k(x;,x;)
and contains all (cross-)covariances. For a
single new point x, to predict, we write
k. = (k(x1,24),...,k(zn, z.)) to reflect the
covariance of the new response with all train-
ing responses. The latter is denoted as y =
(y1,...,Yn). This allows us to write the pos-
terior predictive mean and variance at lo-
cation z, using the following key equations
(Rasmussen and Williams, 2006):

E(f.] =kl (K +021)" 'y, (10)
V(f.] = k(zy, z4) — kI (K + 021) 'k, |
(11)

where [ is the n x n identity matrix. From
these equations, it follows that the predictive
distribution for a particular test point is it-
self Gaussian, with mean E[f,] and variance
V[f«] (Bishop, 2006).

The hyperparameters 6 of the covari-
ance function are typically unknown and
are usually optimized by maximizing the log
marginal likelihood log[p(y | D,0)]. This
term is also available in closed form, pro-
vided the observation model in (6) (and (7))
is Gaussian (Bishop, 2006; Rasmussen and
Williams, 2006):

1 _
logp(y ‘ D?‘g) = 7§yT(K+J§bSI) ly
1
—Qlog|K+a,2LI|
— glog27r .

(12)

3.1. Spectral mixture kernel

In (Branson et al., 2019) and (Hinne et al.,
2020), QEDs are implemented using either
the exponential, the squared-exponential, or
the Matérn covariance functions. Both of
these approaches are more flexible than clas-
sical polynomial regression or ARMA mod-
els, but they still capture few of the interest-
ing characteristics of time series data. Here,
we discuss the spectral mixture kernel intro-
duced by Wilson and Adams (2013), which
we propose to use in the ITS context to ad-
dress this shortcoming.

An important property of kernels is sta-
tionarity. A kernel is stationary if the covari-
ance between two responses f(x) and f(z')
only depends on the distance 7 = |z — 2|
between the inputs, so that it is invari-
ant to translations of the inputs (Wilson,
2014; Rasmussen and Williams, 2006; Duve-
naud, 2014). According to Bochner’s theo-
rem (Bochner, 1959), any stationary kernel
has a corresponding spectral density S(w)
which is its Fourier dual (Wilson and Adams,
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2013), that is

/S 27rzw T dw

(13)
S(w) = / (T)e —2mi’'T
Spectral densities for many popular kernels
can be obtained by plugging the kernel into
equation (13). One can also work the other
way around however, starting with a spec-
tral density and transforming it into a time-
domain covariance function. This provides
a powerful method for constructing new ker-
nels, where one starts by modeling a spectral
density, and subsequently converts this to a
time-domain covariance function. This can
lead to highly expressive covariance functions
that are still interpretable in their spectral
representation.
Consider the following spectral density
S(w), modelled as a univariate Gaussian dis-
tribution

S(w) =N (w; p,0?)

N

Via (13), S(w) is transformed into a station-
ary covariance function in the temporal do-
main, which then has the following form:

k(1) = exp (—2n°7%0?) cos (2rTp) . (15)
The flexibility of the covariance function is
greatly increased by instead defining S(w)
as a Gaussian mixture model (Bishop, 2006)
with ) components. This results in

Q
w) = quN (w;/*’L(ho-g) ) (16)
q=1

with py and 03 the mean and variance of mix-
ture component ¢, and w, is weight. By once
more transforming this spectral representa-
tion into a covariance function via (13), we

obtain the spectral mixture kernel (Wilson
and Adams, 2013)

Q
T)= Z wWq €os (27T 1q) exp (—27127'202)
q=1
(17)
This covariance function has hyperparame-
ters 0 = (Q,w, p, o), corresponding to the
weight, mean, and covariance of each Gaus-
sian component. These have a clear intuitive
interpretation: p, indicates the frequency of
component ¢, the inverse of the variance 1/0y
can be interpreted as the length scale of the
component, that reflects how quickly that
frequency contribution changes with the in-
put z, and lastly the weights w, indicate the
relative contribution of each mixture compo-
nent (Wilson and Adams, 2013)

3.2. Model estimation

To compute the Bayes factor that quantifies
whether there is a causal effect (using (8)),
we require the model marginal likelihoods

p(D | My) = / (D | Mo, 0)p(8 | My) 6

(18)
where m € {0,1}. Unfortunately, the model
marginal likelihood is not analytically avail-
able, so we instead adopt the common ap-
proach in GPR and approximate this quan-
tity with the Bayesian information criterion
(BIC) instead (Schwarz, 1978; Kim and Teh,
2018):

logp(D | My,) = logp(D | My, 0)— logn

(19)
where 6 are the hyperparameters optimized
via (12), and k are the number of hyperpa-
rameters of the model.

The hyperparameters w, p, and o are ob-
tained by optimizing the log marginal like-
lihood (12) summed with their respective
log prior density. The number of mixture
components () is optimized by selecting the
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value of @ that maximizes (12), out of a
range of components. The initial values of
the hyperparameters are determined by fit-
ting a Gaussian mixture model with () com-
ponents to the empirical spectrum obtained
with the Lomb—Scargle periodogram, a com-
monly used method for detecting periodic
features in unequally sampled data (Vander-
plas, 2018). The parameters of the mixture
model are then used to initialize the param-
eters of the spectral mixture kernel.

Subsequently, we compute the causal ef-
fect size given M by evaluating the poste-
rior predictive expectations of fl(l) and fl(c)
over a range of values z > xg. We then sum-
marize this effect size function by its mean
and its largest absolute value.

After a causal effect has been determined
via (8) and quantified via (5), inspecting the
optimized hyperparameters of f1(]) and fl(c)
allows for a further interpretation of the de-
tected effect. For instance, a particular fre-
quency component may have received a lower
mixture weight after intervention, which in-
dicates which property of the time series was
most affected by the change.

Our pipeline is implemented using GPflow
2.0 (Matthews et al., 2017), and is available
at https://github.com/DavidLeeftink/
Spectral-Discontinuity-Design.

4. Simulation study

Arguably one of the most straightforward
discontinuities in periodic features of a sig-
nal is a change in frequency. Here, we sim-
ulate data from fg,, defined as a sum of
two cosines, with frequencies 12Hz and 25Hz
(see Appendix A). For each cosine, from xg
onward, the frequency is increased by a =
{0,...,8}. We apply our analysis to these
generated data, using Gamma(1.0,1.0) pri-
ors for w and Gamma(8.0, 2.0) priors for o,
and improper uniform priors on the means
. Results are averaged over 20 runs.

An example data set and I'TS analysis us-
ing a = 4 are shown in 1A. The model cor-
rectly recovers the true frequencies underly-
ing the data, as well as the decreased am-
plitude of the second harmonic component,
and finds barely worth mentioning evidence
in favor of an effect (log BF19 = 0.15) (Wa-
genmakers, 2007). The estimated spectral
mixture of the continuous model is centered
between the true frequencies of the control
and intervention group. This faithfully rep-
resents the continuous hypothesis that the
observations can be explained without any
changes in spectral content. As the discon-
tinuity size grows larger, the standard devi-
ation of the components of the continuous
model increases as well, since it has to ac-
count for a larger difference. The discon-
tinuous model instead correctly identifies the
true mixture components.

We quantify the performance of our GPR
ITS approach using the RMSE between the
true effect dirg, and the estimates obtained
by taking samples from the posterior for fl(c)

and fl(I), as well as the estimate obtained
using an ARMA model (Prado and West,
2010). The ARMA parameters are deter-
mined using a grid search and evaluating
the model with its BIC score. The result is
shown in 1. The figure clearly shows the con-
sistent lower RMSE for the GPR approach.
In addition, Table 1 shows the log Bayes fac-
tors for the GPR analysis and the baseline.
Note that the GPR model detects an effect
after an increase of a = 4Hz.

5. Heart rate oscillations during
meditation

Peng et al. (1999) studied the effect of Kun-
dalini Yoga mediation techniques on heart
rate oscillations. = The authors hypothe-
size that such mediation results in quiescent
heart rate oscillations. However, they find
the opposite effect; the meditation seems to
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Figure 1: Simulation study. A. Model fit and extrapolation of My and M;. The data were
generated with a frequency shift of a = 4. We find log BF1p = 0.15. The shaded
interval represents two standard deviations around the mean. The colors of the
power density spectrum correspond to the legend of the regression. B. The RMSE
between the estimated and true dirg (see Eq. (5)), using posterior samples of our

approach and an ARMA baseline.

Due to the extrapolation capabilities of the

spectral mixture kernel, the RMSE is consistently lower for the GPR model than

for the ARMA model.

induce higher frequency oscillations instead.
The experiment is well-suited for I'TS design,
but is difficult to perform with standard tech-
niques such as the fast Fourier transform or
the periodogram, as the data is not uniformly
sampled. Gaussian process regression does
not have this prerequisite, and is applicable
here.

We apply our methodology to the same
data set to see if we can determine a causal
effect of the meditation on the measured
heart rate. The data is obtained from the

PhysioNet database and consists of heart
rates of two women and two men, of ages
20-52 (mean 33) (Goldberger et al., 2000).
To ensure the model comparison reflects
a discontinuity in spectral density rather
than mean value, the mean function u(z) of
the continuous model Mg is extended with
a changepoint kernel (Saatci et al., 2010),
which transitions between two constant ker-
nels at the intervention point. Similarly, the
mean functions of both submodels in M are
extended with a constant kernel to ensure the
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Table 1: The log Bayes factors for the GPR analysis and the ARMA baseline. Shown are
the mean and standard error over 20 runs.

a 0 1 2 3 4 5 6 7 8
GPR —27.44+0.3 —16.8+0.6 -9.1406 —1.840.5 4.0+0.5 7.0+ 0.9 9.8+ 0.6 10.9 + 0.6 14.2+0.8
ARMA  -10.44+04 —10.34+04 —-10.0+05 —-91+03 —-85+06 —73+05 —-7.0+04 —45+14 —43+06
------- Observations — fo(x) — f(Q(x), x < Xp R f(Q(x), X 2 X0 B f(l)(x)/ X > X
=90
g
Q
Q80
L
c 70
-
o
« 60
o]
T 50 5
-00:10 -00:07 -00:03 00:00 00:03 00:07 00:10 0.0 0.5 1.0 1.5
Time (h) w

Figure 2: Kundalini Yoga.

Model fit and extrapolation for subject 3 of the Kundalini
meditation data set. The onset of the actual meditation is shown by the vertical
dashed line. Note that the continuous regression fj is difficult to see due to its
overlap with ffc) and fl(I). To ensure the model comparison does not reflect
the mean increase of heart rate, fy is extended with a changepoints kernel that

transitions between two constant kernels at the intervention points, while fl(c)

and fl(l) are extended with a constant kernel. The extrapolation, indicated by the
dashed (mean) and dotted (posterior samples) red lines, is poor in comparison
to the actual observations, which is corroborated by the large log Bayes factor in
favor of the causal effect (log BF1o = 281.2).

mean value is not captured by low frequency
components.

Figure 2 shows for one subject the corre-
sponding regression and extrapolation. We
see that both the continuous and the discon-
tinuous models capture the data well, due
to the flexibility of the spectral mixture ker-
nel. However, the continuous model requires
more spectral mixture components to do so;
@ = 6 for fy compared to @) = 2 for fl(C) and
Q = 3 for fl(I). For each of the participants,
the effect is clearly visible, as can be seen
from the large positive log Bayes factors (see
Table 2). Note that these large Bayes factors
follow from the consistency property of Bayes

factors, which implies that as more and more
evidence comes in, log BF g — oo (Ly et al.,
2016; Stefan et al., 2019).

6. Discussion

There are a number of ways in which the ap-
proach could be improved or extended. First
of all, we determine the number of latent
mixture components () by simply optimizing
the (approximated) log marginal likelihood.
Preferably, we would extend the approach by
learning ) in a data-driven Bayesian non-
parametric way, for instance by replacing
the spectral mixture kernel with a spectral
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Table 2: The result of the ITS analysis for
the meditation data set for each
subject j. Shown are the log Bayes
factor, the maximum and mean ef-
fect size (in bpm increase), and the
number of spectral mixture compo-
nents in the continuous model (Qo),
in the pre-meditation phase (Q¢)
and in the meditation phase (Qr).

j 10g BFIO dmax dmcan QO QC QI
1 370.6 50.7 33.6 3 2 2
2 626.2 479 31.6 3 3 2
3 281.2 25.0 14.8 6 2 3
4 508.1 63.6 41.7 4 2 2

Dirichlet process mixture kernel (Tian et al.,
2019), or a Levy process (Jang et al., 2017).

Furthermore, contribution adopts
standard practices in GPR by replacing the
exact log model marginal likelihood in (18)
with the BIC approximation (Kim and Teh,
2018; Duvenaud, 2014). This largely ignores
the uncertainty in the hyperparameters, and
assumes their distribution is unimodal. In
practice, we noticed that this procedure is
sensitive to its initialization, which suggests
that alternatives, such Hamiltonian Monte
Carlo (HMC) approaches may be preferred.
However, HMC is computationally demand-
ing, and even the computation of the log
marginal likelihood in (12) becomes difficult
due to its O(n?) complexity. Sparse GPR
may provide a solution (Quinonero-Candela
and Rasmussen, 2005; Lazaro-Gredilla et al.,
2010) to scale the approach to data sets with
particularly large n.

our

Our approach assumes, by its dependency
on the spectral mixture kernel, that the la-
tent processes fo, fl(C), and fl(l) are station-
ary. However, using recent work on kernels
for non-stationary processes (Remes et al.,
2017), this assumption may be lifted, al-

though the substantial increase in flexibility
that follows from a non-stationary kernel will
make it more difficult to detect an effect in
the ITS framework.

In several realistic applications of ITS,
such as studies of the effect of novel med-
ication, it is to be expected that an ef-
fect is not instantaneously visible. Instead,
the observed response will follow an im-
pulse response function (IRF) such as typi-
cally estimated in nonlinear multivariate sys-
tems (Koop et al., 1996). The IRF can be
estimated using GPR (Ambrogioni et al.,
2017), and this extension can be incorpo-
rated into M, so that the transition into
a new stationary regime is estimated sepa-
rately from the spectral mixture of the new
stable state itself. This increases the inter-
pretability of the spectral mixture, as it does
no longer have to capture the spectral com-
ponents to reflect the response function.

7. Conclusion

We have presented a novel method for in-
terrupted time series design that uses GPR
with a spectral mixture kernel (Wilson and
Adams, 2013). The approach describes the
similarity in the observed responses as a
function of the spectral properties of the la-
tent function. This allows both the null
model (in which pre- and post intervention
time series have the same spectral mixture)
and the alternative model to be able to de-
scribe the data adequately. This is in con-
trast with commonly adopted methods in
ITS designs, such as segmented linear re-
gression and ARMA models (Jandoc et al.,
2015), that extrapolate poorly on data sets
with non-trivial spectral distributions. Our
approach is particularly suited for applica-
tions in the medical domain, such as detect-
ing the effect of treatment on heart rhythm.
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Appendix A. Simulation study:
generative model

The data used for in section 4 is generated
the following way:

Yi ~ N(f(xl)a 02)7 (20)
where f(x;) is defined as
f(z;) = sin(122;) + 2 cos(25z;) (21)

for x < zg and

f(z;) =sin((12 + a)x;) + % cos((25 + a)x;)

(22)
otherwise, where ¢ = 0.2 and zg = 0. For
each data set, n = 200 equally spaced ob-
servations are generated such that the num-
ber of observations is the same for the con-
trol and intervention model. We simulate 20
data sets for each value of a € {0,1,...,8}.
At the intervention threshold, the frequency
of both functions is increased by the discon-
tinuity size a.

Appendix B. Kundalini yoga:
Other participants

The results of our analysis for the other par-
ticipants of the data discussed by Peng et al.
(1999) is shown in Figure 3.
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Figure 3: Model fit and extrapolation for the remaining Kundalini meditation data sets.
The onset of the actual meditation is shown by the vertical dashed line. Note

that the continuous regression fj is difficult to see due to its overlap with fl(c)

and fl(I) .
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