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Abstract

Craniosynostosis (synostosis) is a seri-
ous disease where the sutures of a new-
born’s skull fuse prematurely leading
to debilitating head shape deformities.
Due to the seriousness of this condition
many normal infants and those with
benign head shape abnormalities are
referred to pediatric craniofacial plas-
tic surgeons, leading to a high refer-
ral burden and delays in diagnosis for
patients. A diagnostic delay beyond 4
months of age excludes patients from be-
ing treated with minimally invasive endo-
scopic procedures, leading to higher risk
open surgeries. Machine learning (ML)
image classifiers can enhance the triag-
ing process of these referrals through
the use of 3D images taken by a multi-
camera & angle setup during patient

visits. In doing so, children with syn-
ostosis can be identified earlier, quali-
fying them for less invasive endoscopic
surgical intervention. After training
a variety of convolutional neural net-
work (CNN) models on 3D images sup-
plemented with synthetic images using
generative adversarial networks (GANs),
the best-performing model was found to
be a novel approach developed in our
study called a multi-view collapsed 3D
CNN, which achieved area under the
receiver operating curves (AUROC) be-
tween 90.00-97.00% for detecting various
sub-types of synostosis. These results
demonstrate the ability for ML models
to potentially streamline the detection
of children with synostosis and help over-
come challenges associated with high re-
ferral burdens for these patients.
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1. Introduction

Infant skull deformities have become increas-
ingly common since the introduction of the
Back to Sleep Campaign Roby et al. (2012),
occurring at least once in every 60 live births.
The majority of these abnormalities are re-
lated to plagiocephaly — a relatively benign
condition that can be treated with simple in-
terventions such as changing sleep positions
and helmeting if severe Khanna et al. (2011).
Conversely, craniosynostosis (synostosis) is a
more severe condition in which one or more
of the sutures in an infant’s skull fuse prema-
turely, causing debilitating abnormalities in
skull growth and potential impacts on brain
development Biggs (2003).

Distinguishing between plagiocephaly and
synostosis is a technically difficult task for pri-
mary health care providers Yan et al. (2018),
resulting in both conditions being referred
for further consultation at high rates. The
craniofacial program at our tertiary children’s
hospital (Hospital for Sick Children) receives
thousands of new consultations for infant skull
deformities per year, with the majority be-
ing normal and plagiocephaly cases. This
high volume of patient referrals results in pro-
longed consult visit wait-times and diagnostic
delays for those with synostosis. This is of
particular concern, as infants who are diag-
nosed with synostosis prior to 4 months of
age can be treated with a relatively minimal
invasive endoscopic surgery Proctor (2014).
Those diagnosed after this window of time
require an extremely invasive procedure in
which the skull is removed from the head,
reshaped, and applied back on. This open
procedure is known to have a higher risk for
complications such as bleeding, longer lengths
of stay in hospital, and is associated with

higher healthcare cost Proctor (2014). Unfor-
tunately, approximately half of the patients
assessed at our hospital will have missed this
window of opportunity due to delays at both
the community and hospital level. Essentially,
cases of synostosis are lost amongst a sea of
normal referrals. Identification of patients
with synostosis early in the triage process
may help expedite care for those who are at
highest risk of needing surgical intervention.

Currently, our hospital triages referred pa-
tients mostly on a first come first serve basis
while also considering the potential severity of
the case as described by the referring provider.
The variability in how synostosis patients are
described in their referrals leads to an inabil-
ity to consistently identify the highest risk
patients. Hence, a novel standardized process
for identifying high-risk patients and priori-
tizing them in a referral process is required.

In this paper, we hypothesize that synosto-
sis can be distinguished from cases of plagio-
cephaly and those with normal head shapes
using convolutional neural networks (CNNs)
trained on 3D camera images of infants. In
doing so, we aim to build a machine learn-
ing (ML) based synostosis triaging system to
identify patients early and expedite their care
towards minimally invasive surgical interven-
tions as needed.

Although there have been other studies that
have focused on this problem, we believe we
are the first to use machine learning on 3D
photography images to detect synostosis in
infants. A similar study done by Porras et al.
(2019) demonstrated very impressive results
in predicting synostosis using 3D photogra-
phy images, however the age population they
focused on and their analyses were very dif-
ferent from what was done in this paper. The
authors of the paper used 3D images to first
extract anatomical metrics that are known
to be diagnostic of synostosis and then use a
machine learning model trained on those met-
rics (not the images) to predict if synostosis

227



CTS

is present. Additionally, the study included
patients up to the age of 6, which makes their
model less clinically relevant when solving our
particualr challenge of diagnosing infants prior
to 4 months of age. In our paper we aimed to
create an end-to-end workflow that predicts
from the images directly without any manual
preprocessing, and focuses only on patients
under 1 year of age. Other similar studies
done in this field use various image capturing
modalities, such as CT scans, which gener-
ally add bottlenecks in the image capturing
process and/or expose children to potentially
harmful radiation Ruiz-Correa et al. (2005)
Yang et al. (2011).

2. Data

2.1. Data Collection Process

Images were acquired via the 3dMDface
System (www.3dmd.com). The multi-camera
setup consists of 5 modular pods, each con-
taining 3 medical grade cameras for a total of
15 cameras. These pods cover the back-left &
right, front-left & right, and top-down views
of a patient. The software takes the above
information and creates a set of five 2D RGB
images (one from each angle), as well as one
3D point-cloud. Although the 2D RGB im-
ages were of good quality, they contained a
lot of background noise that made it difficult
to distinguish the subject (infant head) from
the rest of the image. For this reason, we
have decided to only focus on the 3D dataset
generated from this system. To provide a
higher resolution of the shape of the head,
hair was flattened by placing a single layered
nylon cap on the patient’s head, keeping the
ears and forehead exposed. Due to the main
purpose of the project being to create an early
detection system for classifying synostosis in
young infants, the dataset was restricted to
only contain children aged 1 year and under.
Furthermore, any images of patients that had
undergone surgery for synostosis have been

Table 1: Distribution of Labels

Diagnosis Sub-type Distribution

Synostosis
Sagittal 174

Metopic 149

Unicoronal 60

Plagiocephaly - 209

Other/Normal - 90

682

removed from the dataset. The distribution
of the remaining images is shown in Table
1. The diagnosis and corresponding label for
each patient was determined after in-person
clinical encounters with Pediatric Plastic Sur-
geons specializing in craniofacial diseases at
the Hospital for Sick Children.

2.2. Labels

The primary purpose of this project was to
use a machine-learning approach to predict
if a subject has synostosis, plagiocephaly, or
a normal head. Although this leads to 3 pri-
mary classes, synostosis itself is an umbrella
term consisting of multiple sub-types; primar-
ily sagittal, metopic, and unicoronal. These
three sub-types vary greatly from each other
in how they present anatomically, and each
have their own thresholds for intervention.
Thus, we expanded the synostosis sub-types
as additional labels, resulting in 5 total classes:
sagittal synostosis, metopic synostosis, uni-
coronal synostosis, plagiocephaly, and normal.

2.3. Data Pre-Processing

Our dataset originally consisted of 3D point-
clouds. Although there have been great break-
throughs on training classification models us-
ing 3D point-clouds , such as PointNet Qi et al.
(2017), there are still very few cases where
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such a modality is applicable. Point-clouds
still face the constraint of requiring a uniform
input shape for model training. However in
our dataset, the shape of the raw point-cloud
images varied greatly, and we did not feel com-
fortable subsampling and removing any part
of the dataset randomly to achieve a uniform
shape (which is a common technique when
dealing with point-cloud based models). For
this primary reason, we decided to move away
from point clouds and focus on a voxel-based
approach.
The point-cloud images were converted to

3D voxels using binvox Min (2004 - 2019).
The resulting dataset consisted of 3D images
of the shape (128 x 128 x 128 x 1), where
each point represents whether a voxel exists
or not. The images were also mirrored along
the vertical axis to help naturally augment the
dataset. It is of importance to note that the
validation and test datasets did not undergo
any augmentations, and no flipped images
exist within either datasets.

2.4. Dataset Split

The dataset was split into train-
ing/validation/test sections, with a
60%/20%/20% split of patients. This
was done to prevent any overlap of images
from the same patient between the training
section and the validation/test sections. To
account for the overall class imbalance in the
dataset, each class in the training dataset
was upsampled to create an even distribution,
while the validation and test datasets were
left untouched.

3. Methods

All models were developed under Python
v2.7.12, running Tensorflow Abadi et al.
(2015) v1.14.0. All models were optimized
using ADAM Kingma and Ba (2014), and ran
for 350 epochs. Dropout and EarlyStopping
were utilized to address model overfitting.

3.1. 3D CNN Model

A standard 3D ResNet18
(https://github.com/JihongJu/keras-
resnet3d) model architecture was trained
using 3D voxel data. This model took as
input a single 3D voxel image, with the model
output consisting of one of five predictions
for sagittal synostosis, metopic synostosis,
unicoronal synostosis, plagiocephaly, or
other/normal. One strong benefit of using
the 3D data was the depth information it
contained along with the spatial relationships
between key anatomical landmarks. We
believe this will help the model not only
understand the different types of deformities,
but also learn to gauge its severity.

3.2. Collapsed 3D CNN Model

There were concerns regarding how limited
the dataset was with respect to the wide 3D
problem space. In an effort to reduce the
problem space to a 2D space, while still main-
taining some aspects of the original depth
and spatial information, a novel method was
developed (henceforth referred to as the col-
lapsed 3D CNN model). This method takes
the existing 3D voxel of the head and cuts
it along the transverse view, and only keeps
the top half of the head. This subsection of
skull contains the most informative anatomi-
cal landmarks for diagnosing synostosis. The
slices from this new view were then subse-
quently aggregated (summed) together to cre-
ate a single 2D image, a top-down view from
the collapsed transverse section. In this 2D
space, the colour (i.e. the brightness) is a
direct indication of how dense that portion of
the head is. This transformation drastically
reduces the problem space (from 3D to 2D),
while still holding some latent representation
of the relative 3D depth across key anatomical
aspects of the skull (Figure 1a). A breakdown
of this new view for each class can also be
found in Figure 1b.
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(a) Visualization of the conversion of a 3D image into 2D space

(b) Collapsed views of the 5 classification sub-classes

Figure 1: Collapsed 3D Model

The final 2D image created from this pre-
processing approach is very different from the
original 2D images generated by the system.
First, the pixel values from the collapsed gen-
erated image reflect a latent representation
of the depth of the skull at that point, which
gives us a better understanding of which ar-
eas of the skull contain deformities, even in
this 2D space. The original RGB images cre-
ated by the system have no relation to depth,
which makes them much harder for a model
to train on. Additionally, the large amount of
background noise and variation in the original
RGB images introduces noise that are very
difficult to isolate from, which would again
cause the model to not converge efficiently.

The collapsed 3D model consists of a very
shallow network, with 2 CNN layers and 2
subsequent fully-connected layers. This con-
figuration was carefully selected due to the
limited amount of training images that were
available. Similar to the 3D CNN model,
the collapsed 3D model was trained for 350

epochs, with EarlyStopping used to prevent
overfitting.

3.3. Collapsed 3D Image Generation

Unlike most medical projects, our project suf-
fers from having too few control/normal im-
ages, as opposed to too many. This was found
to cause a significant drop in performance for
predicting our other/normal class. A reason-
able solution to this can be to reduce the
number of images in the rest of our classes
to reach a more uniform distribution; how-
ever, we found that to significantly impact
the performance of our model overall.
Instead, we opted to augment our normal

class in order to increase the number of images.
To do so, we trained a standalone WGAN GP
model Gulrajani et al. (2017) on the normal
class training set images, and used that to
generate new ’normal’ images. This model
was trained for 15000 epochs, after which it
was tasked to generate 100 images that were
classified by the discriminator as a ’real’ image
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(a) A real image from the Collapsed 3D processing

(b) Five images generated by the WGAN GP model

Figure 2: Real vs WGAN GP generated images

(i.e. were able to fool the discriminator). The
generated images can be seen in Figure 2.

3.4. Multi-view Collapsed 3D Image
Classification

A logical limitation with our current design is
that we are only viewing the new 2D image
from a single view, the top-down view. In an
effort to widen our field of scope, we decided
to additionally slice the 3D image across the
coronal view, which gives us a back view of
the skull. This helps provide us with two dif-
ferent 2D images from the original 3D image,
providing us with more viewpoints of the skull
while keeping the problem space constrained
to 2D. The CNN model was then altered to
accept two 2D images as input, and provide
a prediction for the same 5 classes mentioned
before.

4. Results

4.1. 3D Image Classification

Our 3D CNN model leverages information
pertaining to depth, contouring, and space
between key anatomical relationships, leading

to AUROCs for predicting sub-types of synos-
tosis between 93-97%. These excellent results
are overshadowed by the model’s high false
negative rates as seen in Figure 3a, leading
to cases of synostosis being under-recognized
and inadvertently bumped backwards in pri-
ority.

4.2. Collapsed 3D Image Classification

The collapsed 3D CNN model saw improved
performance compared to our traditional 3D
CNN model, due to it containing such dense
information while being restricted to a 2D
data space. AUROCs for predicting sub-
types of synostosis ranged from 89-99% with
true positive rates ranging between 79-91%.
When identifying cases of plagiocephaly and
other/normal patients AUROCs were 87%
and 74%, respectively (as can be seen in Fig-
ure 3b). This model out-performs our 3D
CNN model, as it provides with much more
confident synostosis predictions while mini-
mizing both false-negative and false-positive
rates.
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4.3. Collapsed 3D Image Generation

Our WGAN GP model was trained for 15000
epochs, after which it was tasked to gener-
ate 100 images that were classified by the
discriminator as a ’real’ image.
These 100 new generated ’normal’ images

were then appended to our training dataset,
and the CNN model was re-trained. Results
for this can be found under Table 2 and Fig-
ure 3c. The generated images helped not only
improve the true positive rate of our normal
class by 20%, but also increased the AUROC
scores between 1%-4% across all classes. Al-
though adding in the generated images did
result in improvement to the overall model
performance, there was an increase in false
negatives for the sagittal subclass, although
was still much lower relative to the original
3D model. This model did however obtain
a lower false negative rate for the metopic
sub-class.

4.4. Multi-view Collapsed 3D Image
Classification

Our multi-view approach achieved meaningful
improvement over all previous models. Fig-
ure 3d shows the confusion matrix for this
new analysis, showing true positive rates in-
creased by as much as 13% compared to the
single-view with generated images model. Ad-
ditionally, AUROC scores have also shown
some increase, with the synostosis sub-classes
hitting 90-97%, plagiocephaly at 89%, and
other/normal at 81%.

4.5. Next Steps

More research will be dedicated into modi-
fying our WGAN GP model to be able to
generate multi-view 2D images for all classes,
which we believe will boost performance fur-
ther enabling our ultimate goal of clinical
deployment.

5. Discussion

Synostosis is a relatively rare but serious time
sensitive problem that is increasing in preva-
lence, occurring 6.4 in every 10,000 live births
Cornelissen et al. (2016). To any individ-
ual community clinician the low frequency of
exposure to these cases creates a diagnostic
challenge when differentiating synostosis from
the large number of infants born with benign
head shape deformities, as both patient pop-
ulations present in a similar fashion. This
contributes to delays in referrals for patients
with synostosis who are initially thought to
have plagiocephaly along with issues in over-
referral of normal and benign head shape de-
formities. In any given state or province in
North America, there typically is one major
pediatric hospital with the expertise to for-
mally diagnose and treat patients with synos-
tosis. As a result, majority of referrals related
to head shape concerns are directed towards
these limited centers. This further contributes
to significant referral burden and an inability
to consistently provide timely care. These
clinical and logistical challenges cause many
patients to not qualify for lower risk, lower
cost, minimally invasive procedures which can
only be performed on patients 4 months of age
and younger. Hence, a solution is required to
more rapidly identify cases of synostosis at
both a community and territory care level.

For those patients who are referred, the
main bottleneck in the assessment pathway is
the availability of an expert craniofacial plas-
tic surgeon to confirm whether the disease is
present. The positive results obtained from
our collapsed 3D CNN models demonstrate
the potential for ML to assist in detecting
and triaging infants with synostosis, enabling
non-invasive diagnostics to begin earlier while
waiting for the surgeon appointment date. In
doing so, a risk score can be applied to all re-
ferred patients allowing for the prioritization
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Table 2: Outcome metrics for the 3D & Collapsed CNN models

Model Class Sub-type Precision Recall AUROC

3D

Synostosis
Sagittal 76.0% 73.1% 97.0%

Metopic 80.8% 80.8% 93.0%

Unicoronal 62.9% 84.6% 93.0%

Plagiocephaly - 83.0% 34.6% 83.0%

Other/Normal - 40.6% 50.0% 78.0%

Collapsed 3D

Synostosis
Sagittal 88.6% 91.2% 97.8%

Metopic 68.8% 81.5% 93.3%

Unicoronal 84.6% 78.6% 89.9%

Plagiocephaly - 81.6% 73.8% 87.0%

Other/Normal - 47.4% 45.0% 74.4%

Collapsed 3D

w/ GAN images

Synostosis
Sagittal 85.7% 88.2% 98.2%

Metopic 72.4% 77.8% 94.5%

Unicoronal 91.7% 78.6% 93.0%

Plagiocephaly - 84.2% 76.2% 88.1%

Other/Normal - 56.5% 65.0% 78.1%

Multi-view

Collapsed 3D

Synostosis
Sagittal 83.3% 96.2% 96.0%

Metopic 84.6% 84.6% 92.0%

Unicoronal 88.8% 92.3% 96.0%

Plagiocephaly - 84.2% 61.5% 92.0%

Other/Normal - 60.7% 65.4% 80.0%
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(a) Confusion matrix for the 3D Model (b) Confusion Matrix of the Collapsed 3D Model

(c) Confusion Matrix of the Collapsed 3D Model, with
100 generated normal images

(d) Confusion Matrix of the multi-view Collapsed 3D
Model

Figure 3: 3D CNN model and collapsed 3D CNN model confusion matrices.

of patients with the highest risk of needing
surgery.

Our best performing model was our multi-
view collapsed 3D CNN model which obtained
promising AUROC scores (90-97%) for di-
agnosing sub-types of synostosis along with
associated high true positive rates (85-96%)
and relatively low false negative rates (Figure
3d). We suspect this model obtained the best

performance for both clinical and technical
reasons. The assessment of head shape defor-
mities requires clinical assessment of anatom-
ical skull landmarks from multiple views dur-
ing a typical plastic surgery clinic encounter.
Depth, contouring, and the geometric space
between anatomical landmarks are richly cap-
tured within our 3D dataset with much of this
information being preserved in the multi-view
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collapsed 3D model data. This allowed for
the addition of more clinically relevant images
into our model while also benefiting from the
reduced feature input space when compared
to traditional 3D image inputs.
Our 3D CNN model performed well over-

all, however, it was plagued with relatively
low AUROCs and high false negative rates
limiting its ability for clinical implementation.
This is an important consideration as false
negative cases risk patients with synostosis
being bumped back in the triage queue. This
will further add to diagnostic delays and is
therefore critical that the final implemented
model have a low false negative rate. The
low ceiling hit when training this model was
likely due to the high dimensionality of our
3D data and the relatively small number of
patients within our dataset. To overcome
this, an attempt was made to reduce the di-
mensions of our 3D dataset while preserving
some of the enhanced anatomical relationship
data contained within it. This enabled us to
build a superior collapsed 3D CNN model that
outperformed our traditional 3D CNN and
appears to be a useful approach when work-
ing with small 3D datasets. In a data rich
environment it is not clear if our collapsed 3D
model will continue to outperform traditional
3D CNN approaches. Clarifying this will be
a focus of future work moving forward.

For applications where multiple views of the
skull may not be readily available and training
data limited as is often the case when working
in niche medical domains, our single view
collapsed 3D CNN model supplemented with
synthetic GAN images for training appears
to be an excellent alternative approach. Such
applications may include scaling to mobile
devices where 3D capture of a single view
may create a more user-friendly experience
when compared to trying to capture multiple
angles of a child’s head.
Given the relatively limited size of our

dataset, we cannot confidently state that our

models will generalize broadly. Rather this
work is important for demonstrating the key
role ML can have in augmenting the triage
and diagnostic pathways for patients with
synostosis, and highlights the need for future
collaboration and data sharing amongst pe-
diatric centers to advance this work forward.
Completing in-situ prospective clinical evalu-
ation both at our local pediatric hospital and
community partner sites will be an essential
next step for ensuring robust model validation
is completed prior to integration into clinical
workflows. In this process, a quantitative as-
sessment of patient-centered outcome metrics
such as time to surgery, incidence of surgi-
cal complications, length of stay in hospital,
and patient satisfaction can be assessed along
with overall healthcare costs.

An additional next step in this research
will focus on adapting models to predict on
3D image data obtained from mobile devices.
This will enhance our ability to translate to
community providers. With the rapid ad-
vancement of 3D camera technology in com-
mercially available mobile devices, there is
an opportunity to focus translation efforts to
community clinicians. In doing so, risk stratifi-
cation of patients with head shape deformities
can be completed earlier in the referral path-
way allowing for more children to receive less
invasive endoscopic surgery for synostosis.

6. Conclusion

3D images can be used to train CNN models
in order to develop an effective synostosis
triaging system. These ML based models
may potentially allow for the translation of
diagnostic knowledge from pediatric centres
to community care providers, enabling early
identification of patients with synostosis. In
doing so, we can likely improve the quality
of care provided to infants with synostosis
significantly, while simultaneously reducing
associated healthcare costs.

235



CTS

References

Martín Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on het-
erogeneous systems, 2015. URL http://
tensorflow.org/. Software available from
tensorflow.org.

Wendy S Biggs. Diagnosis and management
of positional head deformity. American
Family Physician, 67(9):1953–1956, 2003.

Martijn Cornelissen, Bianca den Ottelander,
Dimitris Rizopoulos, René van der Hulst,
Aebele Mink van der Molen, Chantal
van der Horst, Hans Delye, Marie-Lise van
Veelen, Gouke Bonsel, and Irene Mathijssen.
Increase of prevalence of craniosynostosis.
Journal of Cranio-Maxillofacial Surgery, 44
(9):1273–1279, 2016.

Ishaan Gulrajani, Faruk Ahmed, Martin Ar-
jovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein
gans. In Advances in neural information
processing systems, pages 5767–5777, 2017.

Paritosh C Khanna, Mahesh M Thapa,
Ramesh S Iyer, and Shashank S Prasad.
Pictorial essay: The many faces of cran-
iosynostosis. The Indian journal of radiol-
ogy & imaging, 21(1):49, 2011.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Patrick Min. binvox.
http://www.patrickmin.com/binvox or
https://www.google.com/search?q=binvox,
2004 - 2019. Accessed: yyyy-mm-dd.

Antonio R Porras, Liyun Tu, Deki Tsering, Es-
peranza Mantilla, Albert Oh, Andinet En-
quobahrie, Robert Keating, Gary F Rogers,
and Marius George Linguraru. Quantifica-
tion of head shape from three-dimensional
photography for presurgical and postsur-
gical evaluation of craniosynostosis. Plas-
tic and reconstructive surgery, 144(6):1051e–
1060e, 2019.

Mark R Proctor. Endoscopic craniosynostosis
repair. Translational pediatrics, 3(3):247,
2014.

Charles R Qi, Hao Su, Kaichun Mo, and
Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and
segmentation. In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pages 652–660, 2017.

Brianne Barnett Roby, Marsha Finkelstein,
Robert J Tibesar, and James D Sidman.
Prevalence of positional plagiocephaly in
teens born after the “back to sleep” cam-
paign. Otolaryngology–Head and Neck
Surgery, 146(5):823–828, 2012.

Salvador Ruiz-Correa, Raymond W Sze, H Jill
Lin, Linda G Shapiro, Matthew L Speltz,
and Michael L Cunningham. Classify-
ing craniosynostosis deformations by skull
shape imaging. In 18th IEEE Sympo-
sium on Computer-Based Medical Systems
(CBMS’05), pages 335–340. IEEE, 2005.

Han Yan, Taylor J Abel, Naif M Alotaibi,
Melanie Anderson, Toba N Niazi, Alexan-
der G Weil, Aria Fallah, John H Phillips,

236

http://tensorflow.org/
http://tensorflow.org/


CTS

Christopher R Forrest, Abhaya V Kulkarni,
et al. A systematic review of endoscopic ver-
sus open treatment of craniosynostosis. part
2: the nonsagittal single sutures. Journal
of Neurosurgery: Pediatrics, 22(4):361–368,
2018.

Shulin Yang, Linda G Shapiro, Michael L
Cunningham, Matthew Speltz, and Su-In
Le. Classification and feature selection for
craniosynostosis. In Proceedings of the 2nd
ACM Conference on Bioinformatics, Com-
putational Biology and Biomedicine, pages
340–344, 2011.

237


	Introduction
	Data
	Data Collection Process
	Labels
	Data Pre-Processing
	Dataset Split

	Methods
	3D CNN Model
	Collapsed 3D CNN Model
	Collapsed 3D Image Generation
	Multi-view Collapsed 3D Image Classification

	Results
	3D Image Classification
	Collapsed 3D Image Classification
	Collapsed 3D Image Generation
	Multi-view Collapsed 3D Image Classification
	Next Steps

	Discussion
	Conclusion

