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Abstract

Interpreting and labeling human elec-
troencephalogram (EEG) is a challeng-
ing task requiring years of medical
training. We present a framework for
learning representations from EEG sig-
nals via contrastive learning. By re-
combining channels from multi-channel
recordings, we increase the number
of samples quadratically per record-
ing. We train a channel-wise feature
extractor by extending the SimCLR
framework to time-series data. We
introduce a set of augmentations for
EEG and study their efficacy on dif-
ferent classification tasks. We demon-
strate that the learned features im-
prove EEG classification and signifi-
cantly reduce the amount of labeled
data needed on three separate tasks:
(1) Emotion Recognition (SEED), (2)
Normal/Abnormal EEG classification
(TUH), and (3) Sleep-stage scoring
(SleepEDF). Our models show im-
proved performance over previously re-
ported supervised models on SEED and
SleepEDF and self-supervised models
on all three tasks.

Keywords: EEG, Self-supervised
Learning, Contrastive Learning, Emo-
tion Recognition, Sleep-stage scoring,
Abnormal EEG detection

1. Introduction

Electroencephalography (EEG) is a non-
invasive technique for measuring the electri-
cal activity of the brain. Since its invention
in 1924, EEG has found many applications
in clinical and research settings. EEG is
obtained by placing an array of sensors on
the skull and recording the voltage differ-
ences between the sensors. Despite the rela-
tive ease of recording, EEG signals are noisy,
hard to interpret, and challenging to use in
automated scenarios (e.g. via machine learn-
ing).

Traditionally, most machine learning ap-
plications on EEG signals have used hand-
crafted features inspired by the underlying
neuroscientific findings. In recent years, rep-
resentation learning and deep learning, in
particular, have been applied to EEG signals
and have lead to significant progress in many
classification tasks (see Craik et al. (2019);
Roy et al. (2019b)). Despite the success of
deep learning in classifying EEG signals, the
majority of these approaches learn in a su-
pervised manner that restricts the use of the
learned features to the specific task at hand.
Moreover, labeling EEG data is cumbersome
and requires either many years of medical
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training or sophisticated experimental de-
sign. Due to these problems, the amount
of publicly available and labeled EEG data
is limited and existing datasets are relatively
small. Moreover, the existing datasets use in-
compatible EEG setups (e.g. different num-
ber of channels, sampling rates, types of sen-
sors, etc.) that make them hard to fuse to
obtain a larger dataset appropriate for unsu-
pervised learning.

We are presenting a new framework that
allows us to (1) combine multiple EEG
datasets, (2) use the underlying physics of
EEG signals to multiply the number of sam-
ples (quadratic increase), and (3) learn rep-
resentations in a self-supervised manner via
contrastive learning without requiring la-
bels. Our approach concerns extracting fea-
tures from a single channel at a time as op-
posed to considering all channels simultane-
ously. That allows us to recombine channels
of a multi-channel recording to obtain new
channels (see Section 2.1) and fuse multiple
datasets with minimal preprocessing. In Sec-
tion 3.5, we study the effect of channel re-
combination (CR) and dataset fusion (DF)
through an ablation study. Our results show
that CR and DF steps can significantly im-
prove the quality of downstream tasks.

To learn EEG representations, we modify
the SimCLR framework (Chen et al. (2020))
to work with time-series data. SimCLR is a
contrastive learning method that learns rep-
resentations that are invariant under a set
of augmentations through a contrastive loss
(see Section 2.3 and Figure 1.A). Recently,
contrastive learning has been successful in
computer vision for representation learning
and pre-training (Bachman et al. (2019); He
et al. (2019); Chen et al. (2020); Khosla et al.
(2020)). In contrast to images where the
set of augmentations are intuitive and easily
verifiable by the human eye, it is not clear
what augmentations could be beneficial for
EEG. We consulted practicing neurologists

and EEG researchers to select a set of trans-
formations that leave the semantic informa-
tion in EEG channels intact. We performed
experiments and studied the efficacy of dif-
ferent augmentations in downstream tasks
(See Sections 2.2 and 3.6).

Since different EEG classification tasks re-
quire signals of different lengths, we designed
our method to output sequential representa-
tions (as opposed to point-representations) of
equal length to the input signal (see Section
2.3).
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Channel Encoder
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Figure 1: A. Pretraining the channel en-
coder. B. Using the pre-trained
channel encoder to classify multi-
channel EEG data

We applied our pre-trained channel en-
coder on three separate classification tasks:
(1) Emotion Recognition on the SEED
dataset (ER), (2) Normal/Abnormal Classi-
fication on the TUH dataset (NAC), and, (3)
Sleep-stage scoring on the SleepEDF dataset
(SSS). These tasks reflect a wide range of
applications since each concerns an entirely
different area of brain research. Our method
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showed improved performance over multi-
ple previously reported supervised and self-
supervised models, with remarkable sample-
efficiency and achieved 85.77% on ER and
85.12% on SSS tasks when fine-tuned on all
of the labels (see Section 3). In particu-
lar, we compared our results with 3 temporal
contrastive models namely Contrastive Pre-
dictive Coding (CPC) (Oord et al. (2018);
Banville et al. (2020)), Temporal Shuffling
(TS) (Banville et al. (2020)) and Relative
Positioning (RP) (Banville et al. (2020)) (see
Section 4). Our models achieved significantly
higher accuracy and sample-efficiency com-
pared to CPC, TS, and RP on all three tasks.

At the end (Section 3.7), we study the
structure of representations learned by our
method, showing that the latent space is rea-
sonably divided into physiologically mean-
ingful regions.

2. Method

2.1. Channel recombination and
preprocessing

Self-supervised learning via deep neural net-
works requires large amounts of data. Most
EEG datasets are relatively small and incom-
patible with one another. However, if the
goal is to learn the representation of a single
channel, we can combine different datasets
to obtain a larger one. Moreover, we can re-
combine channels in a multi-channel record-
ing to obtain more valid channels. An EEG
channel represents the voltage difference be-
tween a sensor and a common reference. By
subtracting two channels, one obtains a new
channel that represents the voltage difference
between the two sensors, resulting in another
physiologically valid channel. This is referred
to as re-referencing and is frequently used
by neurologists to obtain different views of
data (Marcuse et al. (2015)). Figure 2 shows
the process of recombining channels from a
3-channel recording. By including an extra

common average channel and performing re-
combination, we obtain n× (n− 1) +n = n2

new channels for an n-channel recording.

a

a-b
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Figure 2: channel recombination for a 3-
channel recording

Datasets Focusing on single channels en-
ables us to fuse multiple datasets. By re-
sampling the data to a fixed sampling rate
(200 Hz), we combined multiple datasets:
(1) Temple University Hospital Abnormal
EEG Corpus (López et al. (2017)), (2) SEED
Emotion Recognition dataset (Duan et al.
(2013); Zheng and Lu (2015)), (3) Sleep
EDF dataset (Kemp et al. (2000); Gold-
berger et al. (2000)), (4) Texas State Uni-
versity Resting State dataset (Trujillo et al.
(2017)) and (5) ISRUC-Sleep dataset (Kha-
lighi et al. (2016)). We selected datasets with
raw or minimally processed signals that en-
tailed long (¿20 seconds) sequences. In Sec-
tion 3.5 we run an ablation study to under-
stand the effect of recombining channels and
fusing extra datasets on the final accuracy of
downstream tasks.

Preprocessing We have resampled all
datasets to 200Hz and applied a fifth-order
band-pass Butterworth filter (0.3-80 Hz).
We have also removed the channels that in-
volved voltages higher than 500 µVs as they
normally represent artifacts. To train the en-
coder, we cut the channels into chunks of 20
seconds (see Section 3.1 for more details on
the sequence length).
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2.2. Channel augmentations

A key ingredient of contrastive learning is
a set of augmentations (or transformations)
that do not alter the semantic information
of data. A contrastive learning algorithm
learns representations that are maximally
similar for augmented instances of the same
data-point and minimally similar for differ-
ent data-points. For example, rotating im-
ages or increasing the amplitude of audio sig-
nals can dramatically change the numerical
values but not affect the meaning of data. By
identifying a set of such augmentations, we
can construct a self-supervised pretext task.
Our objective is to learn features that are
not sensitive to the transformations and re-
flect the high-level content of EEG signals.

We consulted four neurologists and two
postdoctoral researchers at [anonymized hos-
pital research group] specializing in clinical
interpretation of EEG to identify a set of
augmentations that do not change the in-
terpretation of EEG data. From the list,
we chose the transformations that were easy
to randomize programmatically and ran pre-
liminary experiments (see Appendix E) to
choose a minimal effective set. Figure 3
shows an example of each of the selected
transformations.

amplitude scale

time shift

DC shift

masking

band-stop �lter

additive noise

transformed original

Figure 3: Channel Augmentations

The strength of each transformation is ran-
domized on a specific range recommended
by neurologists. Table 1 shows the range of
transformations used to train the contrastive
encoder.

Table 1: Transformation Ranges

Transformation min max

amplitude scale 0.5 2
time shift (samples) -50 50
DC shift (µV) -10 10
zero-masking (samples) 0 150
additive Gaussian noise (σ) 0 0.2
band-stop filter (5 Hz width) (Hz) 2.8 82.5

2.3. Learning algorithm

Our method learns features by maximizing
the similarity between differently augmented
transformations of the same channel through
a contrastive loss in the latent space (Figure
1.A). We refer to our framework as SeqCLR
(Sequential Contrastive Learning of Repre-
sentations). Similar to SimCLR, our method
contains four modules.

Channel Augmenter randomly trans-
forms a mini-batch of N channels into 2N
augmented channels. For each channel, the
module randomly applies two of the augmen-
tations mentioned in Section 2.2 resulting in
a positive pair.

Channel Encoder transforms an input
channel into four feature channels of the
same length (see Appendix Appendix B for
hyper-parameter selection). This property
enables us to encode sequences of differ-
ent lengths for different downstream tasks.
For instance, emotion recognition task is de-
fined on 1-second-long segments, while the
sleep staging task considers 30-second-long
epochs. We designed two encoder architec-
tures: (1) A recurrent encoder (Figure 4.A)
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with a multi-scale input (using downsam-
pling and upsampling of the channel) to al-
low the GRU units to learn features at dif-
ferent time-scales. This architecture uses two
recurrent residual units (2) A convolutional
encoder (Figure 4.B) which utilizes reflection
paddings (corresponding to the kernel size of
the subsequent convolutional layer) to ensure
the output signal is of the same length as the
input signal. This architecture uses four con-
volutional residual units.

Projector A recurrent projection head
that collapses the output of the encoder into
a 32-dimensional point (Figure 4.C). The
projector network uses downsampling and bi-
directional LSTM units where the final out-
puts of each direction are concatenated and
fed into dense layers with a ReLU activation
in between.

Contrastive Loss identical to the NT-
Xent (normalized temperature-scaled cross
entropy) loss used in Chen et al. (2020).
Given a set {xk} including a positive pair
of channels xi and xj , the contrastive task
aims to identify xj in {xk}k 6=i for a given xi.
Assuming that zi and zj are the outputs of
the projector for the positive pair of xi and
xj , the NT-Xent loss term for the positive
pair is defined as:

`i,j = − log
exp(sim(zi, zj)/τ)∑2N
k 6=i exp(sim(zi, zk)/τ)

,

where sim(u,v) is the cosine similarity of u
and v and τ is the temperature parameter.
The final loss is the average of `i,j for all
positive pairs in both orders (i, j and j, i).

Classifier For downstream classification
tasks, we discard the projector and use a
classifier almost identical to the projector
with two differences: (1) the output dimen-
sion of the last dense layer is set to the
number of classes, and (2) a LogSoftmax

layer is added afterward. We use a negative-
log-likelihood loss alongside the LogSoftmax
layer to compute the cross-entropy loss.
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Figure 4: A. Recurrent encoder. B. Convo-
lutional encoder, C. Projector

3. Experiments

In this section, we discuss the training pro-
cess of the encoder and the results on three
classification tasks. We also study sample-
efficiency and the effect of augmentations on
the quality of obtained features. For the
classification tasks, we report the accuracy
for inter-subject classification to compare the
ability of our models to generalize across sub-
jects. For more details about classification
experiments, see Appendix D. We study the
effect of dataset fusion and channel recombi-
nation on downstream tasks. We also study
the structure of the latent space using dimen-
sionality reduction.

3.1. Training the channel encoder

To train the encoder, we experimented with
two architectures (Figure 4.A and 4.B). We
chose the signal length of 20 seconds (4000
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samples) for the channels by running pre-
liminary classification experiments to decide
the optimal signal length (see Appendix A).
For longer sequences the contrastive loss falls
rapidly during training since distinguishing
between long samples is easier; however, the
features learned on longer sequences, do not
perform as well in classification. As dis-
cussed by Chen et al. (2020), this method-
ology benefits from larger batch sizes and
training times. We used a batch size of 1000
for the convolutional encoder and 100 for the
recurrent encoder. Both architectures were
trained for 300 epochs. The τ hyperparame-
ter was set to 0.05. We also used `2 regular-
ization with λ = 10−4 (see Appendix C for
hyperparameter selection).

3.2. Emotion recognition

Dataset We conducted experiments on
SEED dataset (Duan et al. (2013); Zheng
and Lu (2015)). The dataset involves EEG
data of 15 subjects (7 males and 8 females)
recorded in 62 channels. The data was
recorded when participants watched emo-
tional videos chosen from movies in three cat-
egories of emotions, namely negative, neutral
and positive. The prior work on this dataset
(Zheng and Lu (2015); Song et al. (2018); Li
et al. (2018a,b, 2019); Zhong et al. (2020))
uses the hand-crafted Differential Entropy
feature (Duan et al. (2013)) obtained from
1-second long epochs of EEG data on five fre-
quency bands. Here we use the same signal
length, but instead, the preprocessed EEG
data was fed to the encoder.

Results We pass each channel through the
encoder and concatenate the 4-dimensional
output sequences. The input of the clas-
sifier, therefore, is a 4 × 62-dimensional se-
quence of length 200. We followed the same
train/test partitioning protocol as Zheng and
Lu (2015), which is also used in all other
prior works.

Table 2: Emotion recognition on SEED

Model Accuracy

Percentage of labels 1% 10% 50% 100%

RGNN - - - 85.30
BiHDM - - - 85.40

CPC 69.17 76.33 79.98 81.12
RP 67.76 74.29 77.95 80.39
TS 69.73 78.27 81.66 82.10

SeqCLR - C 77.09 81.01 83.73 84.11
SeqCLR - R 76.52 79.04 81.45 83.78
fine-tuned SeqCLR - C 79.04 83.12 85.21 85.77
fine-tuned SeqCLR - R 78.18 82.93 84.00 85.25

We compared our results with two super-
vised models, RGNN (Zhong et al. (2020)),
and, BiHDM (Li et al. (2019)) and three
self-supervised models, Contrastive Predic-
tive Coding (CPC) (Oord et al. (2018);
Banville et al. (2020)), Temporal Shuffling
(TS) Banville et al. (2020) and Relative Po-
sitioning (RP) Banville et al. (2020).

Table 2 shows the results of the experi-
ments. The rows marked with SeqCLR-C
(convolutional) and SeqCLR-R (recurrent)
show the results without fine-tuning where
the encoder parameters were frozen during
training.

Our method improves other self-
supervised algorithms by a large gap.
Moreover, when fine-tuned on the entire
dataset, SeqCLR achieves 85.77% accuracy,
slightly higher than the current state of the
art supervised model (BiHDM).

3.3. Normal vs. Abnormal
Classification

Dataset We conduct experiments on Tem-
ple University Hospital (TUH) EEG Ab-
normal Corpus (López et al. (2017)). The
dataset was created by selecting a demo-
graphically balanced subset of the larger
TUH EEG Corpus through a manual review
that consisted of 1488 abnormal and 1529
normal EEG sessions. The abnormalities
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Table 3: Abnormality detection on TUH

Model Accuracy

Percentage of labels 1% 10% 50% 100%

AlexNet - - - 87.32
Alhussein et al. - - - 87.68

CPC 72.04 75.62 81.24 83.51
RP 75.17 77.13 82.16 83.37
TS 77.84 79.50 82.46 84.99

SeqCLR - C 78.53 85.44 85.52 86.27
SeqCLR - R 77.31 84.05 84.71 86.09
fine-tuned SeqCLR - C 83.19 86.98 87.21 87.45
fine-tuned SeqCLR - R 82.60 85.29 86.18 86.99

cover a wide range of conditions, including
epilepsy, stroke, trauma, and coma. The
dataset includes recordings with different
numbers of channels and sampling rates, so
we selected the 21 common channels amongst
all recordings and downsampled to 200 Hz.
Most of The prior work considers the first
minute of the recordings for classification as
the quality of signals drops with time due to
the drying of sensors and sweating. However,
Roy et al. (2019a) demonstrated that using
the first 11 minutes of recordings can improve
the classification results. We have also used
the first 11 minutes in 1-minute long chunks.

Results The input of the classifier is a
4× 21-dimensional sequence of length 12000
samples. We followed the same evaluation
protocol as López et al. (2017) that is also
used in all other prior work.

Table 3 shows the classification accuracy
of our model compared to two supervised
models: a variation of AlexNet (Amin et al.
(2019)), and Alhussein et al. (2019) and three
self-supervised models: CPC, TS, and RP.

Our method improves other self-
supervised algorithms by a consistent
gap and achieves near SOTA accuracy when
fine-tuned on all of the labels.

3.4. Sleep Stage Classification

Dataset The expanded SleepEDF dataset
(Goldberger et al. (2000)) involves EEG
recordings of 20 healthy subjects during
sleep. Each recording includes two-channel
EEG data from Fpz-Cz and Pz-Oz with a
sampling rate of 100 Hz. Each 30-second
epoch was labeled with one of five classes
(Wake, REM, N1, N2, N3 ) standing for
sleep stages. We upsampled the signals to
200 Hz and only used the Fpz-Cz channel
for a fair comparison with prior work. Sim-
ilar to Tsinalis et al. (2016) and Vilamala
et al. (2017), we used five 30-second epochs
(2 before and 2 after for the context). Other
methods have used more (e.g. Back et al.
(2019)) or less (e.g. Phan et al. (2018)) num-
ber of epochs.

Results The input of the classifier is a 4-
dimensional sequence of length 30000 sam-
ples. We followed the same evaluation pro-
tocol as Tsinalis et al. (2016) which is also
used similarly in all other prior work.

We compare our results to two super-
vised models: DeepSleepNet (Supratak et al.
(2017)), and, IITNET (Back et al. (2019)).
U-Time Perslev et al. (2019), on the other
hand, reports a higher average F1-score than
IITNET and DeepSleepNet but does not re-
port accuracy. We also compare our results
to CPC, TS, and RP. Table 4 shows the re-
sults.

Our method improves other self-
supervised algorithms by a large gap.
Moreover, when fine-tuned on the entire
dataset, SeqCLR achieves 85.12% accuracy,
higher than both supervised models.

3.5. Ablation study of channel
recombination and dataset fusion

As discussed in Section 2.1, we used chan-
nel recombination (CR) and dataset fusion
(DF) to obtain a larger training set for self-
supervised learning. Table 5 shows the effect
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Table 4: Sleep-staging on SleepEDF

Model Accuracy

Percentage of labels 1% 10% 50% 100%

DeepSleepNet - - - 82.00
IITNET - - - 84.00

CPC 66.79 75.62 76.55 79.38
RP 68.04 74.00 77.84 79.15
TS 67.32 74.36 76.16 79.93

SeqCLR - C 71.09 73.63 81.18 82.71
SeqCLR - R 72.40 76.81 82.91 83.05
fine-tuned SeqCLR - C 74.16 81.81 82.60 83.91
fine-tuned SeqCLR - R 74.33 82.03 83.72 85.12

of removing each of these steps in the accu-
racy of the classifiers without fine-tuning.

Table 5: Ablation study of CR and DF

Channel
recombination

Dataset
fusion

SEED TUH SleepEDF

7 7 78.93 79.12 77.72
3 7 83.01 83.78 81.10
7 3 80.23 83.44 79.59
3 3 84.11 86.27 83.05

We observe that both steps of DF and CR
improve the accuracy of the classifiers. In
particular removing channel recombination
had a stronger effect in all three tasks.

3.6. Ablation study of augmentations

To study the effect of each augmentation on
the quality of the features, we ran an ablation
study. We trained 6 versions of the encoder,
removing one augmentations at a time. We
trained the classifiers on 100% of the labels.
Figure 5 shows the results for our best per-
forming models. We have used the convolu-
tional architecture for Emotion recognition
and Normal/Abnormal classification and the
recurrent architecture for Sleep-stage scor-
ing. We note that masking and scaling are
the most effective augmentations across the
three classification tasks. On the other hand,
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Figure 5: Ablation study of augmentations.
Each bar shows the accuracy of the
classifier when that augmentation
is removed.

additive noise and DC shift have the least ef-
fect on the performance of the classifiers.

3.7. Study of the latent space

SeqCLR produces sequential representations
that make the study of the latent space diffi-
cult. Instead of using the output sequences,
we used the output of the projector. We
fed the encoder a uniform sample of sig-
nals that were classified correctly (to avoid
corrupted channels). To make the results
comparable, we only chose the Fpz-Cz chan-
nel from each recording (total of 40,000 32-
d points). Figure 6 shows the t-SNE rep-
resentation (Maaten and Hinton (2008)) of
the combined dataset obtained with the per-
plexity of 125. We observe that the chan-
nel encoder has reasonably partitioned the
latent space into physiologically meaningful
regions.

4. Related work

Self-supervised learning and unsupervised
learning, in general, have had limited success
with EEG signals. Denoising autoencoders
have been used for pre-training and extract-
ing features in studies such as Li et al. (2015)
and Yin and Zhang (2017) and Yang et al.
(2019). Restricted Boltzmann machines and
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Figure 6: t-SNE plot for 40k Fpz-Cz chan-
nels sampled from A. THU, B.
SEED and C. SleepEDF, D. Par-
titioning

deep belief networks (DBNs) have also been
used for pre-training of supervised models.
For instance Zheng et al. (2014) and Hassan
et al. (2019) used DBN pre-training for emo-
tion recognition.

Aside from EEG signals, contrastive learn-
ing has been used for other time-series data.
Hyvarinen and Morioka (2016) introduced
the Time-contrastive learning (TCL) that
explores the temporal non-stationarity of
time series data. The learned represen-
tations are optimized to discriminate data
from different time segments. Specifically,
the TCL network is trained to discriminate
each segment of the time-series by using
the segment IDs as labels. Hyvarinen and
Morioka (2016) used TCL for classifying dif-
ferent brain states from magnetoencephalo-
gram (MEG) signals.

Oord et al. (2018) proposed the Con-
trastive Predictive Coding (CPC) algorithm
that learns representations by discriminat-
ing between possible future segments in time-
series data for a given segment.

The most relevant work to ours is the
study done by Banville et al. (2020). To learn
representations for EEG signals, they made
use of three self-supervised pretext tasks in-
spired by Hyvarinen and Morioka (2016) and
Oord et al. (2018). CPC and two tem-
poral context prediction tasks Relative Po-
sitioning(RP) and Temporal Shuffling(TS),
were used for feature learning. They showed
that the learned features are physiologically
meaningful and used them for Sleep-stage
scoring and Normal/Abnormal classification.
Their experiments also revealed that self-
supervised pretraining can greatly benefit
sample-efficiency in EEG classification. Our
paper also confirms their results and im-
proves upon them. We show that our pre-
text task (SeqCLR), which is inspired by an
image-based method (SimCLR), can outper-
form temporal pretext tasks and compete
with the state-of-the-art supervised models.

5. Conclusion

We introduced SeqCLR, a self-supervised
framework for learning representations of
EEG signals. In doing so, we proposed a
method to quadratically increase the number
of samples per recording and fuse multiple
datasets. We generalized the SimCLR frame-
work for time-series data and used it to im-
prove sample-efficiency and classification ac-
curacy in 3 separate tasks of emotion recogni-
tion on the SEED dataset, normal/abnormal
classification on the TUH dataset, and sleep-
stage scoring on the SleepEDF dataset. Our
models achieved improved performance over
baseline self-supervised models. With fine-
tuning on all of the labels, SeqCLR could
achieve accuracies higher than the current
state of the art supervised models in emo-
tion recognition and sleep-staging tasks.

To train SecCLR, we introduced six aug-
mentations on EEG channels. Our study
shows two of these augmentations, namely,
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masking and scaling, play a crucial role in
extracting useful features for downstream
tasks.

Our results demonstrate that self-
supervised learning techniques and con-
trastive learning, in particular, are promis-
ing tools for learning representations from
EEG signals.
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Appendix A. Choosing the
sequence-length

Different EEG classification tasks require dif-
ferent lengths of channels. For instance, clas-
sifying stages of sleep normally requires long
sequences of 30-second or longer length. On
the other hand, tasks such as emotion recog-
nition or motor imagery classification are de-
fined on shorter sequences of one-second or
sometimes shorter. To ensure that the en-
coder learns futures that are useful for a wide
range of tasks, we ran a preliminary experi-
ment with two classification tasks: (1) emo-
tion recognition and (2) sleep-stage scoring
where we trained the encoder on signals of
various length and compared the classifica-
tion accuracy. Figure 7 shows the results for
8 different lengths.
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Figure 7: Classification accuracy when the
encoder is trained on sequences of
different length.

We observed that sequences of length 20-
seconds perform well for both tasks. In-
creasing the length of the sequence improves
the accuracy in emotion recognition slightly
while decaying the performance in sleep-
stage scoring.

Appendix B. Choosing latent size

We trained the encoder with different latent
dimensions (Figure 8). When channel en-
coder is used in fine-tuning for down-stream
tasks, increasing the number of dimensions
increases the number of parameters and the
compute time linearly. Therefore we picked
D=4 since it produces comparable accura-
cies while allowing the network to be fast in
train-time and test-time.
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Figure 8: Classification accuracy when the
encoder is trained with different
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Appendix C. Choosing τ and λ

We jointly optimized τ (temperature param-
eter of the contrastive loss) and λ (`2 reg-
ularization coefficient or weight-decay). We
used the sleep-staging task on SleepEDF to
select these parameters. The selected param-
eters worked comparably well in the other
two tasks.

Appendix D. Classification
experiments

D.1. Classifier architecture

The architecture of the classifier is very sim-
ilar to the projector. The input is the con-
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Classification Accuracy on SleepEDF
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Figure 9: Classification accuracy when the
encoder is trained with different
values of τ ,$λ

catenation of output of the encoder for all
input channels of a multi-channel recording.
Figure 10 shows the architecture.
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Figure 10: Classifier architecture. Note that
the size of the output of the last
dense layer is set to the number
of classes.

D.2. Training

All classifiers were trained with early stop-
ping on the validation set. We performed
the experiments on 8 Nvidia Titan-V GPUs.
In half of the experiments, the parameters of
the encoder were frozen. The training time

is an order of magnitude longer when fine-
tuning with the recurrent encoder. Table 6
shows the number of epochs and the batch-
sizes used in training the classifiers.

Table 6: Training specifications

Task epochs batch-size

Emotion recognition 132 128
Normal/Abnormal classification 67 32
Sleep-stage scoring 29 64

D.3. Confusion matrices

Here we report the confusion matrices for the
three classification tasks with fine-tuning on
100% of the labels.
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Figure 11: Confusion matrix for emotion
recognition on SEED dataset
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data. A. convolutional model, B.
recurrent model

Appendix E. Choosing effective
augmentations

We set up a classification task with the con-
volutional SeqCLR architecture, only using
a single augmentation at a time. We trained
nine encoders and tested them on the three
classification tasks mentioned in the main
text. For training the classifiers, we froze
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the encoder parameters. This experiment al-
lowed us to choose the most effective aug-
mentations. Figure 12 demonstrates the clas-
sification accuracy for each model.

We observed that the six augmentations,
namely (1) zero-masking, (2) amplitude scal-
ing, (3) time-shift, (4) Gaussian noise, (5)
DC-shift, and (6) band-stop filter perform
significantly better in extracting useful fea-
tures for the downstream tasks.
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