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Abstract

Being able to understand and fore-
cast epidemic developments is crucial
for policymakers. We develop a pre-
dictive model combining epidemiologi-
cal dynamics of compartmental mod-
els with highly non-linear interactions
learned by a LSTM Network. A novel
dynamic SIR model is fit to variables
related to the population transmission
of Covid-19. This is embedded in a
Bayesian recursive updating framework
which is then coupled with a LSTM
network to forecast cases of Covid-19.
The model significantly improves fore-
casts over simple univariate LSTM or
SIR models. We apply the model to
developed and developing countries and
forecast confirmed infections and ana-
lyze future trajectories.

Keywords: Epidemiology, Neural Net-
works, Forecasting, LSTM, SIR, Com-
partmental Model

1. Introduction

The outbreak of the global 2019-nCov pan-
demic requires robust government interven-
tion to mitigate future social and economic
costs of epidemics. The global south is es-
pecially vulnerable, thus in order to inform
policymakers we develop a robust forecast-
ing and inference model which is deploy-

able and generalisable across different pop-
ulations worldwide.
Combining machine learning and epidemic
modelling, we propose a new compartmental
SIR model for forecasting and policy evalu-
ation which incorporates new data in real-
time through Bayesian updating. The model
is applied to infer the amount of infected peo-
ple and parameters such as the disease trans-
missibility rate and the rate of recovery.
These dynamics are coupled with a neural
network which can model highly non-linear
interactions of variables which are not explic-
itly modelled in the dynamic SIR framework.
We label the model neural SIR by combining
the LSTM Neural Network with the dynamic
compartmental SIR model.
This novel architecture generates forecasts
of confirmed Covid19 cases across multiple
countries. The model combines the effec-
tiveness of LSTM networks in forecasting
with the epidemiological dynamics of SIR
models, which the network can learn and
use to enhance predictive accuracy. This
dual approach combines the high predictive
performance of blackbox machine learning
models with well-defined parametric models,
whose parameters are clearly derived and in-
terpreted in our work, contributing to in-
terpretability and transparency of epidemic
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forecasting models. The parsimonious struc-
ture of our model allows for generalisation
across multiple locations and scenarios by
adding new compartments and thus eases ac-
cess for practitioners and policy makers who
need to generate forecasts for local epidemic
outbreaks.
We use our model to compare accuracy of
forecasts in developed countries such as the
United States and the United Kingdom as
well as a multitude of developing countries
including India, Turkey and Brazil, where ac-
curate forecasting is crucial to support poli-
cymakers.
The rest of the paper is structured as follows:
Section 2 reviews related work, Section 3 in-
troduces the dynamic SIR model. Section 4
introduces the LSTM and Neural SIR model.
Section 5 discusses empirical results and sec-
tion 6 concludes.

2. Related Work

Authors such as Imai et al. (2020), Li et al.
(2020) and Wu et al. (2020) have done the
first studies on the size of the outbreak in
China using epidemiological compartmental
models. The analysis is based on basic SIR
or SEIR models where the models are fit
to Chinese cities in order to infer popula-
tion infection rates as well as parameters
such as the reproduction number of Covid19.
First studies of dynamic models using fil-
tering approaches for epidemiological mod-
elling have been conducted by other authors
such as Rhodes and Hollingsworth (2009)
and Bettencourt et al. (2007), which stud-
ied the frameworks in different cases such as
influenza using standard SIR models.Further
studies such as Bettencourt and Ribeiro
(2008) and Cobb et al. (2014) investigate
time varying parameters in more detail, al-
though only for established SIR models with
no relationship to the current coronavirus
outbreak. A more recent line of research such

as La Gatta et al. (2020) have investigated
the use of deep learning for epidemiologi-
cal analysis, learning spatio-temporal pat-
terns of Covid19. The authors in Coskun
et al. (2017) conducted initial studies cou-
pling LSTMs and filtering algorithms, but
limited to the context of pose detection and
not compartmental modelling.
We are the first to conduct a study of the cur-
rent spread of 2019-nCoV using Bayesian re-
cursive updating combined with LSTM mod-
els. Preliminary studies using only the dy-
namic SIR have been conducted in Nadler
et al. (2020). Because of the model’s inabil-
ity to capture non-linearities Arcucci et al.
(2017) which are not explicitly specified in
the model, model results may suffer inaccu-
racy. To overcome this limitation we couple
the SIR model with a recursive Bayesian up-
dating scheme and a LSTM network in order
to improve the accuracy of the model, which
we label Neural SIR.

3. The SIR Model

The analysis is conducted using a standard
SIR model Anderson (1991), which is a sys-
tem of three interrelated, non-linear ordinary
differential equations without an explicit an-
alytical solution. The dynamics of the model
are given by :

dS

dt
= −β IS

N
dI

dt
= β

IS

N
− γI

dR

dt
= γI

(1)

Where S denotes the susceptible popula-
tion size, I the infected people who are not
isolated from the population and R the re-
covered population. The total population is
given by N . The parameters β and γ de-
note the transmission and recover rate of the
virus infection. Note that for the outbreak in

255



A Neural SIR Model for Global Forecasting

cities or countries such as Brazil, the suscep-
tible number S is observable, which we define
as the population of the location currently
under analysis whereas the true number of
total symptomatic and asymptomatic infec-
tions I in the population is unobservable.
The recovered population R denotes patients
not infectious anymore or being quarantined
from the population.
We only observe confirmed cases Robs, which
for local Covid19 outbreaks is assumed to
be the number of cases which are reported
and being hospitalized or isolated, thus not
infecting the general population anymore.
Thus R is the absolute fraction of recovered
population in the model and Robs is the num-
ber of confirmed cases. We take this dif-
ference explicitly into account in the next
section where the model is updated by con-
firmed cases. We thus aim to evaluate the
prediction accuracy of the model to investi-
gate model fit as well as to use the generated
forecasts of the model to give an estimate for
the trend of the epidemic. We outline the
model in the following sections.

3.1. The General State Space Model

We first discuss the model updating frame-
work, which integrates new observations
into the model to enhance forecasts as well
as computing model parameters of interest
Asch et al. (2016). The methodology of
our proposed Bayesian updating framework
is derived from the literature on data assimi-
lation (DA), a form of hidden markov or state
space modelling Miller et al. (1999); Asch
et al. (2016), which conducts model param-
eter updates when new observations become
available.
It is often applied in physical sciences,
but has seen increased use in many other
fields such as machine learning or finance
Abarbanel et al. (2018). Minimization of
the appropriate cost function can lead to

well known filtering algorithms such as the
Kalman filter Kalman (1960). The general
updating model is described by the following
equation

xt+1 = Mt+1xt (2)

where xt and Mt are the state (back-
ground) vector and nonlinear model opera-
tor at timestep t respectively. In context of
the SIR model, Mt is the forecasting model
given by Eq. 1, and the statevector is xt =
[St, It, Rt]. Furthermore, the variable yot rep-
resents observations at timestep t and Ht

is the nonlinear observation operator that
maps observation to model space:

yot = Htxt (3)

Here, yot correspond to observations Robs and
model predictions thereof, based on which
model parameters will be updated. In order
to formulate the cost function of the model,
both the background error covariance matrix
Q and the observation error covariance ma-
trix P need to be computed depending on the
data Bannister (2008) which will be outlined
in the following sections.

The cost function is a form of Tikhonov
regularisation Dong et al. (2017) and is de-
fined as

J(x) = ‖x− xb‖Q−1 +
∑

window

‖Hx− yo‖P−1

(4)
where H is the linearized version of the non-
linear observation operator H with the back-
ground state vector give by xb. The window
size determines the number of past observa-
tions for updating and depends on the updat-
ing approach Lorenc (2003). We next show
how compartmental SIR models can be em-
bedded in this approach.
Using data from India, Fig. 1 illustrates
the difference between a static SIR model
modelled by three ordinary differential equa-
tions and a dynamically updated model us-
ing Bayesian updates. Depending on the pa-

256



A Neural SIR Model for Global Forecasting

rameterization a static SIR model would pre-
dict a simplistic exponential growth pattern
given the initial observations, whereas the
dynamic model incorporating model updates
adjusts infection estimates given the new ob-
servations.
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Figure 1: Comparing a standard SIR model as
static ODE representation with a dynamic (DA)
SIR model applying recursive Bayesian model up-
dates.

3.2. The Dynamic SIR Model

The continuous SIR model in equation (1)
can be discretized with respect to the time
variable, giving the following equations:

St+1 = St − β
ItSt
N

It+1 = It + β
ItSt
N
− γIt

Rt+1 = Rt + γIt

(5)

For a given time step t and assuming to
have observations of Robst , the model updat-
ing problem consists in computing the mini-
mum of the cost function

J(I) = argmin
I

t+τ∑
i=t+1

||Robst −H(i|I, β, γ)||P−1
t

+||I − It||Q−1
t

(6)

and
IDAt = argmin

I
J(I) (7)

within window length τ , where H : I → R
is a linear transformation function usually
called observation function Asch et al. (2016)
which is here represented by the SIR model,
and where Q and P denote the the back-
ground and the observation covariance ma-
trices, being an estimate of noise in the data.
Since results are sensitive to the parameteri-
zation of the covariance matrices, we outline
their calibration in appendix B. To compute
parameters, we minimize

β, γ = argmin
βi,γi

t+τ∑
i=t+1

||Robst −H(i|IDAi , βi, γi)||P−1
t

(8)
Solving the cost function leads to a mod-

ified Kalman filtering algorithm, where up-
dating the model state generates a latent se-
ries of latent asymptomatic infection num-
bers I, given parameters β and γ. The re-
sult is visible in Fig. 1 or in more detail in
appendix Fig. 7, where the model estimates
a much higher number of asymptomatic in-
fections not captured only by reported cases.
The examples show results for India and the
United Kingdom. As is visible in the later
case, if the epidemic is in a more advanced
stage and the model infers a high amount of
infections, the accuracy of the model suffers
due to the imposed structure of the differ-
ential equations, which in turn affects model
estimates. The next section introduces the
coupled LSTM network and discuss how the
models accuracy can be improved by com-
bining an LSTM and the generated latent
variables of the dynamic SIR model.

4. The LSTM Model

A generalized form of supervised learning for
neural networks is given by:

(xtr
t (l0),xtr

t+1(lF)) (9)
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where training of the network on data xtr
t

is done on a set of input and output pairs
which are available at input layer l0 and out-
put layer lF which are the observations with
xt = [St, It, Rt] and xt+1 = [St+1, It+1, Rt+1].
The structure and activation of each hidden
unit in the hidden layers li are determined by
the neurons in the previous layers, denoted
as ak(li).The activity of each layer is given
by the nonlinear activation function σ as in:

ak(li) = σ(
∑
j

wj,k(li)aj(li−1)+bk(li)) (10)

where wj,k(li) is the weight from the jth node
of layer li−1 to the kth neuron of the layer li,
with bk(li) and ak(li) representing the bias
and the activation terms of the kth neuron in
layer li. The summation over weights wj,k(li)
determines how the activities in layer li are
combined before allowing σ to act, yielding
the activities at layer li.
A popular and well tested model for se-
quential data is the Long Short Term Mem-
ory Network Hochreiter and Schmidhuber
(1997); Gers et al. (1999). The memory cells
of the LSTM can be described as Recurrent
Neural Networks (RNN) using memory cells
which allow the processing of data for long
temporal sequences, circumventing the issue
of vanishing gradients due to its gate struc-
ture Xingjian et al. (2015). The LSTM can
be described by the following system of equa-
tions:

it+1 = σ(wxixt + wbibt + wcict + bi)

ft+1 = σ(wxixt + whfht + wcfct−1 + bf )

ct+1 = ft+1ct + it+1tanh(wxcxt + whcht + bc)

ot+1 = σ(wxoxt + whoht + wcoct+1 + b0)

ht+1 = ot+1tanh(xt+1)

xt+1 = d(ht+1)
(11)

Where ct is a memory cell that accumulates
the information of the state. The three ele-
ments it, ft and ot denote the input, forget
and output gates respectively. If the input

gate it is activated, the information from a
new input will be accumulated, if the for-
got gate ft is activated then the status of the
cell ct−1 is forgotten. The propagation of the
last cell ct into the final state ht is controlled
by the output gate ot. As this network is
based on a recurrent neural network archi-
tecture, the output block is recurrently con-
nected back to the input and the three gates.

4.1. The Neural SIR Model

Coupling the LSTM and the dynamic SIR
model allows to capture possible higher or-
der non-linearities and interactions between
the variables which are not captured by the
SIR model dynamics.
The confirmed observed cases are used as
inputs for the LSTM as well as the SIR
model, whose outputs are used as inputs for
the LSTM model. Both models interact by
generating weighted model outputs of con-
firmed cases which is used as forecast. The
network input xtr(l0) in Eq. 9 is given by
state variables of the dynamic SIR model in
Eq. 4, which are the variables S, I, R respec-
tively as specified in Eq. 6. The state vec-
tor x = [S, I,R] is propagated through the
LSTM network and yields output xtr(lF).
The loss of the resulting model is represented
by

LNS = min||Robs − xtr(lF),

Robs −H(i|IDAi , βi, γi)||2
(12)

The coupled models given in Fig. 2 illustrate
the Neural SIR architecture. Both models re-
ceive new updates from observed cases, the
network then ingests the state variables of
the SIR model as additional inputs and both
model forecasts are combined. The final out-
put of the coupled model is obtained by com-
bining the network output of confirmed cases
xtr(lF) with the SIR model forecast Robst+1:

R∗
t+1 = w1x

tr(lF) + w2R
obs
t+1 (13)
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where both weights w1 and w2 are relative
weights defined by the previous periods fore-
casting error of each model.
The network architecture we use for our
model is a LSTM using ReLU activation
functions which is trained using Adam op-
timizer with a mean squared error loss func-
tion. The LSTM network was implemented
with 175 neurons followed by dense lay-
ers with finally one neuron. The model
is not constrained to this particular setup
and we searched over multiple hyperparam-
eters to vary the number of neurons, with
similar results. We provide model details
and reproducible code with various hyperpa-
rameter settings at: https://github.com/

pnadler-imperial/ode_nsir.

This enables the LSTM network to learn
the dynamics of the SIR model, without
explicitly imposing the exponential growth
curves of the SIR model, allowing for short
and long term deviation of trends.
Appendix Figures 8 and 9 visualise how the
dynamics of the model change when coupling
a LSTM network with a SIR model. The lin-
ear dynamics of the forecasted confirmed in-
fection cases of the simple LSTM are in stark
contrast to the dynamics of the Neural SIR
model which has coupled the LSTM network
with the adaptive SIR model.
In the next section we describe and discuss
the neural SIR results compared to other
benchmarks such as the dynamic SIR and
univariate LSTMs, applied to multiple coun-
tries.

5. Results

To illustrate the forecasting capability of the
Neural SIR model, we compare the number
of predicted confirmed Covid19 cases under
various measures for within- and out out of
sample scenarios. The in-sample fit of the
model is an important indicator for the valid-
ity of the model’s estimation of latent param-

eters, whereas the out-of-sample forecasts are
an important guide for policy makers. The
data for all analysis was obtained from the
John Hopkins University (JHU) Coronavirus
Resource Center1 which collects daily up-
dates on infected, recovered and deceased
patients affected by Covid19. Appendix Ta-
ble 3 gives a brief overview of the data. A
more detailed summary is publicly available
from JHU (2020).

5.1. In-Sample Fit

To make models comparable, we apply a
mean squared forecasting error (MSFE) met-
ric as well as mean absolute percentage errors
(MAPE).

We report MAPE percentage errors to al-
low cross-comparisons between countries but
pay special attention to absolute numbers
in MSFE and MAFE. This is due to the
absolute level of confirmed cases containing
important information for policymakers and
prediction errors mattering less when infec-
tion numbers are very low, whereas higher
accuracy for a high number of infections is a
desirable property of an epidemiological fore-
casting model . The main results are given in
Table 1 and Table 2. We report metrics for
Neural SIR, as well as forecasts produced by
the dynamic SIR. We furthermore present re-
sults for a univariate LSTM which is trained
only on confirmed cases Robs. If not explic-
itly specified, the network architecture is the
same as in the Neural SIR setup. We also
include a multivariate LSTM metric, which
is the forecast of the coupled multivariate
LSTM without combining its model forecast
with the SIR model.

The first two rows of Table 1 show that
the Neural SIR outperforms all other model
setups in terms of MSFE and MAFE for all
countries. In some cases the dynamic SIR
model has good prediction accuracy, but is

1. https://coronavirus.jhu.edu/map.html
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Figure 2: An illustration of the Neural SIR model structure, coupling the dynamic SIR model with
the LSTM network to generate forecasts of confirmed cases. Given the observed cases Robs

t the
dynamic SIR model generates latent model series at each timestep which serve as input layer ∈ R4

for the LSTM which is propagated through the model until the output layer ∈ R1

20
20

-0
3-

15

20
20

-0
3-

22

20
20

-0
4-

01

20
20

-0
4-

08

20
20

-0
4-

15

20
20

-0
4-

22

20
20

-0
5-

01

20
20

-0
5-

08

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pe
rc

en
ta

ge
 o

f P
op

ul
at

io
n

Brazil
LSTM
Neural SIR
Conf. Cases
SIR Model

Figure 3: An illustration of the in-sample sample
forecasting performance of different models for
Brazil

still below the Neural SIR. The other LSTM
field entries show similar results. The uni-
variate LSTM by itself performs weak in
terms of accuracy, showing that the incorpo-
ration of the SIR dynamics can significantly
increase the accuracy of the network.
The MAPE results in Table 2 show that the
Neural SIR still performs well but is outper-
formed by the dynamic SIR in the case of
India where reported cases are very low com-

pared to the overall population. This high-
lights that in phases with low infection num-
bers the dynamic SIR model performs better
than LSTM architectures which exhibit de-
creased predictive performance when infec-
tion numbers are low. The fitted forecasted
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Figure 4: An illustration of the in-sample sample
forecasting performance of different models for
the Philippines

values of models are also depicted in Fig. 3
for Brazil. All prediction models overesti-
mate the number of infected patients. We see
that the SIR model follows exponential dy-
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Table 1: Summary of all in-sample forecasting errors when forecasting one step ahead. Accuracy
is given in mean squared (MSFE) and mean absolute (MAFE) forecasting errors for developed and
developing countries. The Neural SIR model consistently outperforms other model setups in terms
of accuracy.

India Brazil Turkey Philipp. US UK

Neural MSFE 1.30E+08 4.47E+08 1.06E+08 7.19E+05 5.64E+09 2.50E+08

SIR MAFE 7.40E+03 1.34E+04 7.44E+03 6.70E+02 5.93E+04 1.38E+04

Dynamic MSFE 1.52E+08 2.34E+09 3.23E+09 2.36E+06 3.20E+10 4.27E+08

SIR MAFE 7.57E+03 1.42E+04 3.67E+04 1.07E+03 1.27E+05 1.75E+04

Univ. MSFE 2.43E+08 1.99E+09 1.56E+08 1.08E+06 1.56E+10 7.02E+08

LSTM MAFE 1.13E+04 2.98E+04 1.08E+04 1.03E+03 1.24E+05 2.46E+04

Multiv. MSFE 1.25E+08 3.06E+08 1.73E+08 9.51E+05 8.12E+09 3.18E+08

LSTM MAFE 8.53E+03 1.42E+04 1.17E+04 9.40E+02 8.44E+04 1.65E+04

Table 2: Mean absolute percentage errors (MAPE) for one step ahead forecasts for all experiment
setups

India Brazil Turkey Philippines US UK

Neural SIR 4.42E-01 1.53E-01 6.78E-02 1.19E-01 7.94E-02 1.64E-01

Dynamic SIR 3.20E-01 2.69E-01 3.39E-01 1.39E-01 1.43E-01 2.54E-01

Univ. LSTM 8.89E-01 2.88E-01 9.74E-01 5.83E-01 4.97E-01 2.89E-01

Multiv. LSTM 4.89E-01 8.54E-01 9.82E-01 4.86E-01 7.62E-01 2.56E-01

namics, similar to the univariate LSTM net-
work. The Neural SIR model is more flexible
and approximates the observed predictions
the closest. The results for the Philippines
in Fig. 4 reveal similar patterns although the
dynamic SIR framework is a better predictor
in the early sample with its performance de-
teriorating when absolute infection numbers
are higher.
Both cases highlight the drawback of the SIR
model being modelled by differential equa-
tions. When the amount of observable in-
fections relative to the population increases
the model will infer a very high amount of
unobservable infections I, negatively affect-
ing prediction accuracy. Since the Neural
SIR incorporates information of the differen-

tial equations as in Eq.1 but is not explicitly
constrained by the differential equations, its
prediction performance is superior.
The results show that for both the Philip-
pines and Brazil only a small number of in-
fected patients are reported, with 0.01 and
0.08 percent respectively. The confirmed
numbers show a strong upwards trend, es-
pecially for Brazil, therefore it is likely that
the number of infections is going to increase
at an accelerating rate in the close future.

5.2. Out of Sample Forecasts

We conduct an additional analysis perform-
ing a multiple day out of sample forecast of
the model. Fig. 5 and Fig. 6 depict the tra-
jectory of infections for both Brazil and the
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Philippines.
For Brazil, the depicted curve of the re-
ported infections is increasing. The coupled
LSTM predicts the lowest number of new
confirmed cases, whereas the dynamic SIR
predicts a much higher dynamic, with an in-
creasing slope at the end of the forecasting
period. The univariate network has a similar
behaviour with predicting an increase in in-
fection numbers at the end of the forecasting
period, although at a lower level. The dy-
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Figure 5: An illustration of a multiple days ahead
out of sample forecast comparing different mod-
els, applied to Brazil.

namics of the Philippines as given in Fig. 6
are less pronounced, with a lower rate of
new confirmed infections and the overall level
being lower at 0.013 percent of the popu-
lation. A strong uptick in confirmed cases
makes the long term out of sample forecasts
inaccurate for the Philippines, where the to-
tal number of infections relative to the pop-
ulation is very low, whereas in Brazil, the
coupled LSTM predicts the number of con-
firmed cases very well. For Brazil as well
as the Philippines, the results suggests that
Brazil is facing an increase in infection num-
bers whereas a strong uptick in confirmed
Covid cases in the Philippines with an over-
all lower level of reported cases indicates an-
other strong increase in the future confirmed
cases.
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Figure 6: An illustration of a multiple days ahead
out of sample forecast comparing different mod-
els, applied to the Philippines.

6. Conclusion

We introduced a novel epidemiological up-
dating scheme allowing for forecasts and
evaluation of the current covid19 outbreak
worldwide. We combined compartmental
models with recursive Bayesian updating,
showing the advantage of real-time forecast-
ing and parameter estimation which is com-
bined with a LSTM network, creating a novel
model type which we named Neural SIR
model. It combines the forecasting accuracy
of LSTM networks with the epidemiological
model dynamics of the SIR model. When
both models are coupled the LSTM learns
the dynamics of the SIR model and can sig-
nificantly increase accuracy, as our experi-
ments have confirmed.
The model is transparent and parsimonious,
allowing for additional compartments in the
SIR model or additional input data in the
network which makes it generalisable and ac-
cessible to policy makers worldwide.

Further research can analyze the coupling
of specific hidden layers in different network
architectures with the prediction and output
cycle of the dynamic SIR model. We also
suggest to investigate not just the increase in
forecasting performance, but how the highly
non-linear capabilities of the LSTM network
can be used to conduct inference on latent
parameters of the SIR model. We hope that
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researchers and local policymakers can apply
the model for initial estimates of infection
rates and confirmed cases, which help to im-
plement policies that help to mitigate further
social and economic costs of the pandemic.
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Appendix A. Additional Figures
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Figure 7: An Illustration of the latent infection
numbers I generated by a SIR model using re-
cursive Bayesian model updates

Figure 8: Illustration of the out of sample fore-
casting dynamics of a simple univariate LSTM
network.

Figure 9: Illustration of the out of sample fore-
casting dynamics of a coupled SIR-LSTM net-
work.

Appendix B. Covariance Matrix
Estimation

To compute robust covariances for each
model run, we estimate values for state and
observation covariance matrices Q and P us-
ing an ensemble approach Wang et al. (2013).
The values for P are based on an estimate
of the residual covariance matrix of the ob-
served time series.
Following the cost function give by Eq. 6,
with xb representing an individual back-
ground state vector, the full ensemble of
state vectors is given by

xb(1),x
b
(2), ..,x

b
(N) (14)

If the ensemble mean is defined as xb, then
Vens, the background state perturbations
are computed via

Vens = Xb =
1√
N − 1

(xb(1) − xb,

xb(2) − xb, ...,xb(N) − xb)

(15)

In this case, Vens and Xb are a n x N ma-
trix called the ensemble background pertur-
bation matrix. The rank-deficient version of
the background error covariance matrix is de-
fined as Q∗ with

Q∗ = XbTXb (16)
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The ensemble is static, meaning that
it does not evolve dynamically with time,
but it still incorporates flow-dependent
information at the start time which is still
beneficial for an extended Kalman filter
analysis. The way the ensembles are chosen
and computed determines the accuracy of
ensemble updating schemes.

The ensemble needs to be computed in
such a way that the time dependent variabil-
ity of the background error covariance ma-
trix, as well as the correlation of variables
is captured by the sampling procedure. The
method we devise is to divide the collection
of background states, xb based on the size
of the ensemble into N equally sized groups
with each group being denoted by xb(i) mean-
ing that ensemble members belong to the ith
group. The mean and standard deviation
of each group is then estimated and used to
sample the ensemble members from.

Algorithm 1 Build Ensemble

1: Inputs: xb

2: i = 0, N = ensemble size, n =
length(xb)

3: for xb(i) in array split(xb, N) do

4: µ(i) = mean(xb(i))

5: σ(i) = standard deviation(xb(i))

6: ensemble[:, i] =
normal distribution(µ(i)), σ

2
(i))

7: i = i+ 1
8: end for
9: ensemble mean = mean(ensemble)

10: for i = 0, 1, .., N do
11: Vens[:, i] = ensemble[:, i] −

ensemble mean
12: end for
13: return Vens

Algorithm 1 describes in detail how Vens

is computed and ensembles are formed. The
full background state matrix, xb is split into

N groups each of size n × n
N . Both, the

means as well as the standard deviations of
the n rows are estimated and used to gener-
ate draws from a multivariate Gaussian dis-
tribution to form the ensemble. In order to
form Vens, for each ensemble member the
corresponding mean is estimated and then
subtracted, computing the standard devia-
tion.

Appendix C. Data Overview

Table 3: Overview of country level data for the
last available date 2020/05/18, showing the ratio
of confirmed reported cases

Population Conf.Cases Ratio

India 1.34E+09 1.65E+05 1.24E-04

Brazil 2.09E+08 4.38E+05 2.10E-03

Turkey 8.00E+07 1.61E+05 2.01E-03

Philipp. 1.04E+08 1.56E+04 1.50E-04

US 3.28E+08 1.72E+06 5.25E-03

UK 6.60E+07 2.69E+05 4.08E-03
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