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Abstract tured photos of digital x-rays under dif-
ferent settings, and (2) generated syn-
thetic transformations of digital x-rays
targeted to make them look like pho-
tos of digital x-rays and x-ray films.
We release this dataset as a resource
for testing and improving the robust-
ness of deep learning algorithms for au-
tomated chest x-ray interpretation on
smartphone photos of chest x-rays.

Clinical deployment of deep learning
algorithms for chest x-ray interpreta-
tion requires a solution that can inte-
grate into the vast spectrum of clini-
cal workflows across the world. An ap-
pealing approach to scaled deployment
is to leverage the ubiquity of smart-
phones by capturing photos of x-rays
to share with clinicians using messaging
services like WhatsApp. However, the
application of chest x-ray algorithms to
photos of chest x-rays requires reliable

classification in the presence of arti- 1. Background & Summary

facts not typically encountered in dig-

ital X-rays used to train machine learn- Chest X-rays are the most common imag_
ing models. We introduce CheXphoto, ing exams, critical for diagnosis and man-

a dataset of smartphone photos and

i i : agement of many diseases and medical pro-
synthetic photographic transformations

of chest x-rays sampled from the CheX- cedures. With over 2 billion chest X—'rafys
pert dataset. To generate CheXphoto performed globally each year, many clinics
we (1) automatically and manually cap- in both developing and developed countries
have an insufficient number of radiologists

* These authors contributed equally to this work  to perform timely x-ray interpretation [1, 2].
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Figure 1: Overview of the CheXphoto data generation process.

Computer algorithms could help reduce the
shortage for x-ray interpretation worldwide.

Several recent advances in training deep
learning algorithms for automated chest x-
ray interpretation have been made possible
by large datasets [3, 4]. In controlled set-
tings, these deep learning algorithms can
learn from labeled data to automatically
detect pathologies at an accuracy compa-
rable to that of practicing radiologists [5].
These developments have been fueled by
both improvements in deep learning algo-
rithms for image classification tasks [6, 7],
and by the release of large public datasets
[8,9, 10, 11]. Although these algorithms have
demonstrated the potential to provide accu-
rate chest x-ray interpretation and increase
access to radiology expertise, major obsta-
cles remain in their translation to the clinical
setting [12, 4].

One significant obstacle to the adoption of
chest x-ray algorithms is that deployment re-
quires a solution that can integrate into the
vast spectrum of clinical workflows around
the world. Most chest x-ray algorithms are
developed and validated on digital x-rays,
while the majority of developing regions use

films [13, 2]. An appealing approach to
scaled deployment is to leverage the ubig-
uity of existing smartphones: automated
interpretation of x-ray film through -cell
phone photography has emerged through a
“store-and-forward telemedicine” approach,
in which one or more digital photos of chest
films are sent as email attachments or in-
stant messages by practitioners to obtain sec-
ond opinions from specialists as part of clin-
ical care [14, 15]. Furthermore, studies have
shown that photographs of films using mod-
ern phone cameras are of equivalent diag-
nostic quality to the films themselves [13],
indicating the feasibility of high-quality au-
tomated algorithmic interpretation of photos
of x-ray films.

Automated interpretation of chest x-ray
photos at the same level of performance as
digital chest x-rays is challenging because
photography introduces visual artifacts not
commonly found in digital x-rays, such as
altered viewing angles, variable ambient and
background lighting conditions, glare, moiré,
rotations, translations, and blur [16]. Image
classification algorithms have been shown to
experience a significant drop in performance
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when input images are perceived through
a camera [16]. Although recent work has
demonstrated good generalizability of deep
learning algorithms trained on digital x-rays
to photographs [17], interpretation perfor-
mance could be improved through inclusion
of x-ray photography in the training process
[18, 19]. However, there are currently no
large-scale public datasets of photos of chest
X-Tays.

To meet this need, we developed CheX-
photo, a dataset of photos of chest x-rays
and synthetic transformations designed to
mimic the effects of photography. We be-
lieve that CheXphoto will enable researchers
to improve and evaluate model performance
on photos of x-rays, reducing the barrier to
clinical deployment.

2. Methods

We introduce CheXphoto, a dataset of pho-
tos of chest x-rays and synthetic transforma-
tions designed to mimic the effects of pho-
tography. Specifically, CheXphoto includes a
set of (1) Natural Photos: automatically and
manually captured photos of x-rays under
different settings, including various lighting
conditions and locations, and (2) Synthetic
Transformations: targeted transformations
of digital x-rays to simulate the appearance
of photos of digital x-rays and x-ray films.
The x-rays used in CheXphoto are primarily
sampled from CheXpert, a large dataset of
224,316 chest x-rays of 65,240 patients, with
associated labels for 14 observations from ra-
diology reports [8].

CheXphoto comprises a training set of nat-
ural photos and synthetic transformations of
10,507 x-rays from 3,000 unique patients that
were sampled at random from the CheXpert
training set, and validation and test sets of
natural and synthetic transformations of all
234 x-rays from 200 patients and 668 x-rays
from 500 patients in the CheXpert valida-

tion and test sets, respectively. In addition,
the CheXphoto validation set includes 200
natural photos of physical x-ray films sam-
pled from external data sources, intended to
more closely simulate pictures taken by radi-
ologists in developing world clinical settings.
As much of the developing world performs x-
ray interpretation on film, this distinct set of
images enables users to perform additional
validation on a novel task that may be en-
countered in clinical deployment.

2.1. Acquiring Natural Photos of
Chest X-Rays

Natural photos consist of x-ray photography
using cell phone cameras in various lighting
conditions and environments. We developed
two sets of natural photos: images captured
through an automated process using a Nokia
6.1 cell phone, and images captured manu-
ally with an iPhone 8.

2.1.1. AuTOMATED CAPTURE OF
NOKIA10K DATASET

We developed the ‘NokialOk’ dataset by cap-
turing 10,507 images of digital chest x-rays
using a tripod-mounted Nokia 6.1 cell phone
(16 megapixel camera with a Zeiss sensor)
and a custom Android application termed
CheXpeditor to fully automate the processes
of photography and metadata management.
The primary challenge in automation was
synchronizing picture-taking on the phone
with displaying the chest x-ray on the moni-
tor, to maintain a 1-to-1 correspondence be-
tween each chest x-ray and its photographed
image. Without a robust synchronization
method, photos of chest x-rays might be
skipped or duplicated, jeopardizing the data
collection process. Thus, bidirectional com-
munication over UDP was established be-
tween the phone and the computer driving
the monitor to exchange image metadata,
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Figure 2: Acquiring Natural Photos of Chest X-Rays Using Automated Capture a. Visual
representation of the automated picture-taking process used for NokialOk. The
steps are described: 1. X-ray retrieved from computer storage, 2. X-ray displayed
on monitor, 3. X-ray index and metadata sent to phone over UDP, 4. Index
verified by phone, and camera triggered, 5. Application UI updated with new
picture and filename, 6. Picture saved to phone storage with metadata in filename,
7. Computer notified that imaging was successful. b. The physical setup used for
NokialOk, set in an example environment. c. Phone application Ul, displaying
most recent picture and saved filename.

take photos, and advance the chest x-ray on
the monitor.

The 10,507 x-rays in NokialOk were in-
dexed deterministically from 1 to N. We
selected disjoint subsets of 250 to 500 consec-
utive indices to be photographed in constant
environmental conditions. For each subset of

indices, photography was conducted as fol-
lows:

1) The ith chest x-ray was retrieved from
computer storage. 2) The ith chest x-ray
was displayed on the monitor. 3) The image
metadata m was assembled by the computer,
and (7, m) were sent to the phone via UDP.
4) The phone verified that ¢ was one greater
than the previous index. If so, its camera
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Table 1: The distribution of labeled observations for the NokialOk training dataset.
Pathology Positive (%) Uncertain (%) Negative (%)
No Finding 972 (9.25) 0 (0.00) 9535 (90.75)
Enlarged Cardiomediastinum 518 (4.93) 600 (5.71) 9389 (89.36)
Cardiomegaly 1313 (12.50) 370 (3.52) 8824 (83.98)
Lung Opacity 5184 (49.34) 213 (2.03) 5110 (48.63)
Lung Lesion 415 (3.95) 78 (0.74) 10014 (95.31)
Edema 2553 (24.30) 634 (6.03) 7320 (69.67)
Consolidation 671 (6.39) 1315 (12.52) 8521 (81.10)
Pneumonia 263 (2.50) 885 (8.42) 9359 (89.07)
Atelectasis 1577 (15.01) 1595 (15.18) 7335 (69.81)
Pneumothorax 957 (9.11) 166 (1.58) 9384 (89.31)
Pleural Effusion 4115 (39.16) 607 (5.78) 5785 (55.06)

Pleural Other
Fracture
Support Devices

391 (3.72) 31 (

(
(
170 (1.62) 127 (1.21)
0
5591 (53.21) 48 (0

10210 (97.17)
30) 10085 (95.98)
46) 4868 (46.33)

was triggered. Else, the computer was noti-
fied of an error, and the entire picture-taking
process was aborted. 5) The phone appli-
cation U, responsible for displaying status
and current image, was updated to show the
new picture and filename. 6) The picture
was saved to phone storage with the meta-
data m embedded in the filename. 7) The
phone notified the computer that the imag-
ing was successful, and the entire process was
repeated for the ¢ + 1st chest x-ray.

After all images for a NokialOk subset were
taken, they were exported in one batch from
the phone to storage. The metadata was
parsed from the image filenames and used
to automatically assign the correct CheX-
pert label. Alterations made to the imaging
conditions after every subset included mov-
ing to a different room, switching the room
light on/off, opening/closing the window-
blinds, rotating the phone orientation be-
tween portrait/landscape, adjusting the po-
sition of the tripod, moving the mouse cur-
sor, varying the monitor’s color temperature,
and switching the monitor’s screen finish be-
tween matte/glossy. In all conditions, the

chest x-ray was centered in the camera view-
finder and lung fields were contained within
the field of view.

2.1.2. MANUAL CAPTURE OF IPHONE1K
DATASET

We developed the ‘iPhonelk dataset’ by
manually capturing 1,000 images of digital
chest x-rays using an iPhone 8 (12 megapixel
camera with a Sony Exmor RS sensor).
The digital x-rays selected for the iPhonelk
dataset are a randomly sampled subset of the
x-rays used in the NokialOk dataset. To pro-
duce the iPhonelk dataset, chest x-rays were
displayed in full-screen on a computer moni-
tor with 1920 x 1080 screen resolution and a
black background. A physician took photos
of the chest x-rays with a handheld iPhone 8
using the standard camera app. The physi-
cian was advised to change angle and dis-
tance from the computer monitor in-between
each picture within constraints.

For all images, the chest x-ray was cen-
tered in the viewfinder of the camera, and
the thoracic and lung fields were contained
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within the field of view. Conformant to ra-
diological chest x-ray standards, both lung-
apices and costodiaphragmatic recesses were
included craniocaudally, and the edges of the
ribcage were included laterally. Photos were
captured in sets of 100 to 200 images at a
time; between sets, ambient alterations were
made, such as switching the room-lighting
on/off, opening or closing of the window-
blinds, and physically moving the computer
monitor to a different location in the room.

2.2. Generating Synthetic
Photographic Transformations of
Chest X-Rays

Synthetic transformations consist of auto-
mated changes to digital x-rays designed to
simulate the appearance of photos of digi-
tal x-rays and x-ray films. We developed
two sets of complementary synthetic trans-
formations: digital transformations to alter
contrast and brightness, and spatial trans-
formations to add glare, moiré effects and
perspective changes. To ensure that the level
of these transformations did not impact the
quality of the image for physician diagnosis,
the images were verified by a physician. In
some cases, the effects may be visually im-
perceptible, but may still be adversarial for
classification models. For both sets, we apply
the transformations to the same 10,507 digi-
tal x-rays selected for the NokialOk dataset.

Digital transformations were produced by
successive random alterations of contrast and
brightness. First, the image was either en-
hanced for greater or lesser contrast. Set-
ting a contrast factor of 1 for the original
image, the contrast up transformation in-
creased contrast by a factor of 1.1 and the
contrast down transformation decreased con-
trast by a factor of 0.83. For both these fac-
tors, random noise between -0.01 and 0.01
was applied. After the contrast modification,
the brightness of the image was then trans-

formed randomly up or down using the same
numeric factors. Both the brightness and
contrast transformations were applied using
the Python PIL ImageEnhance class.

Spatial transformations consisted of alter-
ations to add glare, moiré effects and per-
spective changes. First, we applied a glare
matte transformation to simulate the effect
of photographing a glossy film which reflects
ambient light. This was produced by ran-
domly generating a two-dimensional multi-
variate normal distribution which describes
the location of a circular, white mask. Sec-
ond, a moiré effect was added to simulate
the pattern of parallel lines seen by digi-
tal cameras when taking pictures of com-
puter screens. The effect is produced as a
result of the difference in rates of shutter
speed and LCD screen sweeping refresh rate.
The moiré effect was simulated by generat-
ing semi-transparent parallel lines, warping
them and overlaying them onto each image.
Finally, a tilt effect was added to simulate
random distortions of perspective that may
arise in taking a photo at angle to the screen.
The tilt effect was produced by randomly
scaling the = and y values of each of the cor-
ners by a factor between 0 and 0.05 towards
the center. This random movement of cor-
ners is used to skew the entire photo.

Both the digital and spatial transforma-
tions are provided in CheXphoto. Each
transformation may be reproduced individ-
ually using the code provided. Additional
transformations - glare glossy, blur, motion,
rotation, translation - are also included.

2.3. Validation and Test

We developed a CheXphoto validation and
test set to be used for model validation and
evaluation. The validation set comprises nat-
ural photos and synthetic transformations of
all 234 x-rays in the CheXpert validation set,
and is included in the public release, while
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Table 2: Natural Photos (a-b) and Synthetic Transformations (Digital (c-f) and Spatial

(g-1)) included in CheXphoto.

——mm

(c) Brightness Up  (d) Brightness Down

(e) Contrast Up  (f) Contrast Down

(g) Glare Matte

the test set comprises natural photos of all
668 x-rays in the CheXpert test set, and is
withheld for evaluation purposes.

We generated the natural photos of the
validation set by manually capturing images
of x-rays displayed on a 2560 x 1080 monitor
using a OnePlus 6 cell phone (16 megapixel
camera with a Sony IMX 519 sensor), follow-
ing a protocol that mirrored the iPhonelk
dataset. Synthetic transformations of the
validation images were produced using the
same protocol as the synthetic training set.
The test set was captured using an iPhone 8,
following the same protocol as the iPhonelk
dataset.

The validation set contains an additional
200 cell phone photos of x-ray films for 200
unique patients. As photos of physical x-

(h) Moiré

(i) Tilt

ray films, this component of the validation
set is distinct from the previously described
natural and synthetic transformations of dig-
ital x-rays. Films for 119 patients were
sampled from the MIMIC-CXR dataset [11],
and films for 81 patients were provided by
VinBrain, a subsidiary of Vingroup in Viet-
nam, and originally collected through joint
research projects with leading lung hospitals
in Vietnam. The film dataset spans 5 obser-
vation labels (atelectasis, cardiomegaly, con-
solidation, edema, pleural effusion), with 40
images supporting each observation. Obser-
vation labels for each image were manually
verified by a physician. Images were cap-
tured using a VinSmart phone with a 12MP
camera by positioning the physical x-ray film
vertically on a light box in typical clinical

324



CHEXPHOTO

Table 3: The number of patients, studies,
and images in CheXphoto.

Dataset Patients Studies Images
Training

iPhone 295 829 1,000
Nokia 3,000 8,931 10,507
Synthetic 3,000 8,931 10,507
Validation

Natural 200 200 234
Synthetic 200 200 234
Film 200 200 200
Test 500 500 668

lighting conditions, and images were auto-
matically cropped and oriented.

2.4. Technical Validation

CheXphoto was developed using images and
labels from the CheXpert dataset [8]. Pho-
tography of x-rays was conducted in a con-
trolled setting in accordance with the pro-
tocols documented in the Methods section,
which were developed with physician consul-
tation. Although CheXphoto contains mul-
tiple images for some patients, either from
the same or different studies, there is no pa-
tient overlap between the training, valida-
tion, and test sets. Code developed for syn-
thetic transformations is version controlled
and made available as an open source re-
source for review and modification. All im-
ages are uniquely identifiable by patient ID,
study ID, and view, and the age and sex of
each patient is provided in the data descrip-
tion CSV file. The original, unaltered images
can be obtained from the CheXpert dataset
by the unique identifiers.

The CheXphoto dataset is organized by
by transformation; the training and valida-
tion sets contain directories corresponding to
the method of data generation. Within each

Figure 3: CheXphoto directory structure

CheXphoto-v1.0/

— train
— natural
iphone
patientxxxxx
L study1
t:: viewl_frontal.jpg
view2_lateral.jpg
patientyyyyy
patientzzzzz
nokia
— synthetic
L— train.csv
L— valid

directory, the x-ray images are organized in
subdirectories by a patient identifier, study
ID, and one or more individual views. Im-
ages are stored as JPEG files, and image di-
mensions vary according to the method of
generation. Each transformation set has an
associated CSV file, which provides observa-
tion labels from the CheXpert dataset and
relative paths to the corresponding images.

2.5. Data Access

The CheXphoto training and validation sets
are available for download!. The CheXphoto
test set is withheld for official evaluation of
models. CheXphoto users may submit their
executable code, which is then run on the pri-
vate test set, preserving the integrity of the
test results. The testing process is enabled
by CodaLab [20], an online platform for col-
laborative and reproducible computational
research. Codalab Worksheets exposes a
simple command-line interface, which en-
ables users to submit a Docker image, depen-
dencies, and the necessary commands to run
their models. These features allow us to run
arbitrary code submissions on the withheld

1. https://stanfordmlgroup.github.io/
competitions/chexphoto

325


https://stanfordmlgroup.github.io/competitions/chexphoto
https://stanfordmlgroup.github.io/competitions/chexphoto

CHEXPHOTO

test set. Omnce a user has successfully up-
loaded their code to CodaLab, we will eval-
uate their performance on the withheld test
set and share results on a live leaderboard on
the web.

In addition, the code used to prepare
the synthetically generated dataset is pub-
licly available?. The synthetic transforma-
tions can be reproduced by running the
synthesize.py script with the appropriate
CSV file containing the paths to the images
for which the perturbation is to be applied.
Detailed instructions on flags and usage are
included in the repository README.

3. Conclusion

We believe that CheXphoto will enable
greater access to automated chest x-ray
interpretation algorithms worldwide, prin-
cipally in healthcare systems that are
presently excluded from the benefits of dig-
ital medicine. By facilitating the develop-
ment, validation, and testing of automated
chest x-ray interpretation algorithms with a
ubiquitous technology such as smartphone
photography, CheXphoto broadens access to
interpretation algorithms in underdeveloped
regions, where this technology is poised to
have the greatest impact on the availability
and quality of healthcare.
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