
Proceedings of Machine Learning Research 136:328–340, 2020 Machine Learning for Health (ML4H) 2020

Evaluation of Contrastive Predictive Coding for
Histopathology Applications

Karin Stacke karin.stacke@liu.se
Department of Science and Technology (ITN), Linköping University, Sweden
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Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden
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Abstract

Recent advances in self-supervised
learning for image data are closing the
gap between unsupervised and super-
vised learning. However, the effective-
ness of self-supervised methods has pri-
marily been demonstrated for natural
images. If the results would extrapolate
to histopathology images, there could
be significant benefits due to the re-
duced need for annotated data. In this
paper, Contrastive Predictive Coding
(CPC), one of the most promising state-
of-the-art self-supervised methods, is
extensively evaluated on histology data
by varying a range of different param-
eters, including training objective, res-
olution, and data setup. From the
results, we are able to draw impor-
tant conclusions on the usefulness of
CPC for digital pathology. We show
strong evidence of the limitations of the
learned representation for tumor clas-
sification, where only low-level infor-
mation learned early during training,
in the first CPC layers, is used. Fur-
thermore, in our experiments, diver-

sifying the distribution of the dataset
(i.e., data from multiple organs or med-
ical centers) does not lead to the model
learning a more general representation.
This study deepens the understanding
of how the CPC model’s objective re-
lates to intrinsic characteristics of his-
tology datasets and will help the de-
velopment of effective self-supervised
methods for histopathology.

Keywords: Histopathology, Self-
supervised learning, Contrastive
learning

1. Introduction

Recent advances in self-supervised methods
have shown great success, closing the gap be-
tween supervised and unsupervised training
for natural images (Oord et al., 2019; Chen
et al., 2020a; Grill et al., 2020). Being able
to harness this success for other types of im-
age data is of great interest. Histopathology
is one example, where the digitization of im-
age slides has led to a wealth of digital data,
but where annotated data is scarce. Being
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able to utilize a pre-trained representation
would greatly increase the potential for effec-
tive deep learning methods for histopathol-
ogy applications.

One recently presented self-supervised
learning method, Contrastive Predictive
Coding (CPC), has been shown to be able
to learn high-level features for multiple do-
mains, such as vision, audio and reinforce-
ment learning (Oord et al., 2019). By using
a contrastive loss, the model learns to embed
subsets of the input data in such a way that
the representation within a single data point
is kept similar. This forces the model to
learn global, common features, rather than
local variances. The general nature of this
approach spurred our interest to evaluate it
in our domain. In this paper, we present a
rigorous evaluation of the CPC method for
histopathology applications. A large number
of configurations of the method are consid-
ered, multiple datasets are used for training,
and the models are evaluated by linear tumor
classification on three different tissue types.

The main contributions of this work are
the conclusions that can be drawn from our
large-scale study, summarized as follows:

• From investigating model specific pa-
rameters such as output dimensional-
ity and training objective, as well as
data specific parameters such as patch
size and magnification, the results show
that the best CPC configurations for
histopathology applications are not the
same as for natural images. Further-
more, the results show little correlation
between the CPC objective and down-
stream classification performance.

• From layer-wise performance analysis,
we find evidence that the CPC model
is unable to learn high-level features rel-
evant for tumor classification, and that
only low-level features from the first lay-
ers (which are learned quickly) are used.

• Evaluation of different data distribu-
tions, varying tissue type(s), dataset
size, and origin, show little difference
in classification performance, even with
widely different distributions.

2. Background and related work

Self-supervised learning (Sa, 1994) is
a specialization of unsupervised learning,
where a pretext task is formulated together
with labels directly accessible from the data,
such that the representations created for this
task are useful for other, downstream tasks.

The increase in popularity of self-
supervised learning for vision applications
started with Doersch et al. (2015), contin-
uing with Pathak et al. (2016); Zhang et al.
(2016); Noroozi et al. (2017); Noroozi and
Favaro (2016); Larsson et al. (2017), to men-
tion a few. Recently, methods such as Bi-
GAN (Donahue et al., 2017), CPC(v2) (Oord
et al., 2019; Hénaff et al., 2019), MoCo (He
et al., 2020), SimCLR(v2) (Chen et al.,
2020a,b), and BYOL (Grill et al., 2020) have
all shown high performance, quickly clos-
ing the gap between unsupervised and su-
pervised learning. In this study, CPC was
chosen as self-supervised method due to its
general nature. The implementation is less
coupled with the specific data type than
methods which rely on augmentation strate-
gies (such as SimCLR and BYOL). This al-
lows us to compare the training setup and
the learned representations across datasets,
without large domain specific adaptations.

In the domain of histopathology, the num-
ber of presented self-supervised methods
and applications are fewer. Gildenblat and
Klaiman (2020) presented a method for self
labeling based on spatial location of image
patches. Using the assumption that spatially
close patches are more similar than those far-
ther away, they train a Siamese network with
a contrastive loss such that this spatial re-
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lationship is kept in the embedding space as
well. Recently, Koohbanani et al. (2020) pre-
sented a self-supervised method tailored for
histology data by combining multiple pretext
task. They show that using the represen-
tations from the pretexts, they are able to
significantly reduce the amount of annotated
data needed for downstream tissue classifica-
tion.

Despite the growing success of self-
supervised methods, the understanding of
how and why these methods work is limited.
For example, Kolesnikov et al. (2019) showed
that the success of self-supervised methods
are as much related to the model architec-
ture as to the pretext task. Goyal et al.
(2019) presented results using millions of im-
ages, while Asano et al. (2020) showed that
low-level features can be learnt from a single
image. With this paper, we hope to expand
the understanding of training self-supervised
models on histopathology data.

Contrastive Predictive Coding (CPC)
was presented by Oord et al. (2019) as a
general self-supervised method for multiple
types of high-dimensional data. The method
is less coupled to specific datasets, com-
pared to methods depending on augmenta-
tions (e.g., SimCLR (Chen et al., 2020a)),
which may require significant effort to adapt
to new domains (Grill et al., 2020). By us-
ing a contrastive loss, high-dimensional rep-
resentations of subsets of each data point are
used for predicting the future subsets of the
same sample. For image data, this is con-
structed by dividing each input image into
a 7x7 grid of overlapping crops. For each
crop, the model predicts which of the rep-
resentations belong to the 1–k crops directly
below the target crop, by contrasting against
N negative samples. The negative samples
are taken as crops of images from the mini-
batch. This way, representations from the
same image are forced to be kept similar and
encode more global features, instead of local

variations (typically noise). We refer to Oord
et al. (2019) for a more detailed description
of the method.

3. Experimental Setup

In evaluating CPC for histology data, we fo-
cus on two separate aspects of the CPC train-
ing and its evaluation. The first investigates
how the configuration of the CPC objec-
tive and optimization affects the downstream
classification task, while the second focus on
the data fed to the CPC. By considering dif-
ferent types of training and test data we are
able to compare how the learned represen-
tation transfers between different domains
(natural images, different tissue types), and
how changing the distribution of the histol-
ogy datasets affects the learned representa-
tion.

3.1. Evaluation

We evaluate the quality of the CPC learned
representations by training a (supervised)
linear logistic classifier on top of the frozen
weights of the CPC model. As discussed
by Kolesnikov et al. (2019), linear classifica-
tion (compared to fine-tuning) is sufficient to
give a strong indication of representational
strength, in the context of a downstream
task. During training, a snapshot of the
model was extracted every 10th epoch for
evaluation of the training progress. For more
implementation details, we refer to supple-
mentary material S1.

3.2. Contrastive Predictive Coding

In this study, we follow the CPC model im-
plementation as in Löwe et al. (2019) 1. This
implementation differs slightly from the orig-
inal implementation by Oord et al. (2019)
as it does not use an auto-regression model.

1. Code available at https://github.com/loeweX/
Greedy_InfoMax.
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Table 1: CPC configuration parameters
evaluated. Bold values indicate
default values, underlines values
indicate the optimally found value
(see Section 4 from details).

Parameter Value
Output dim. 32 128 512 1024
Prediction dir. 1 4
Patch size 64x64 128x128
Crop augm. True False

This simplifies the model without loss of per-
formance. The model was trained in an end-
to-end fashion. The number of negative sam-
ples N was set to 16, and the number of
predictions steps k to 5. Each image was
cropped to 64x64 px (randomly during train-
ing, center crop during test), augmented with
random flip, and color variation of the hue
channel. Batch normalization was not used
(as in Oord et al. (2019); Löwe et al. (2019);
Hénaff et al. (2019)).

Hénaff et al. (2019) proposed a number
of modifications of the original CPC-model
configuration for image data. They found
that increasing model and patch size, using
an extended objective with multiple predic-
tion directions and additional data augmen-
tation help create better representations. In
our experiments, we evaluate a number of the
suggested additions/modifications, as shown
in Table 1. In addition to parameter eval-
uation, the effect of the dataset was evalu-
ated. Detailed description of the datasets is
given below. From the histology datasets,
patches were extracted at 20x magnification
with patch size 256x256 pixels. An example
image is shown in Figure 1, where patch sizes
of 64x64px (smaller square) and 128x128px
(larger square) are shown. All experiments
ran on 4 Nvidia Tesla V100 GPUs, with a to-
tal time of approximately 2500 GPU hours.

Figure 1: Example image, extracted at 20x
magnification. The smaller square
denote 64x64px patches, the larger
128x128px patches, from where a
grid of 7x7 crops is exemplified.

3.3. Datasets

The data used in the experiments originate
from four different datasets:

STL-10 (Coates et al., 2011): a dataset de-
veloped for unsupervised learning with a sep-
arate training set of unlabeled data, and a la-
beled test set, consisting of images from the
ImageNet (Deng et al., 2009) dataset. Each
image is of size 96x96 pixels.

CAMELYON17 (Litjens et al., 2018):
500 Haemotoxylin & Eosin (H&E) stained
whole slide images (WSI’s) of breast lym-
phnode tissue. This data was separated in
two training sets, one smaller and one larger,
with a common test set. Out of the 500
WSI’s, only 50 WSI’s contain tumor tissue.
Out of these, 10 WSI’s (20%) were selected
as test set, where patches were sampled in
a supervised way – dense sampling in tumor
areas for increased class balance between tu-
mor and non-tumor tissue (tumor patch per-
centage 17%). The remaining 40 WSI’s were
selected as training set, denoted CAM17 (tu-
mor patch percentage 7%). The extracted
patches can be considered as semi-supervised
sampling, as the slide label was known, but
sampling of the individual slides was done
without reference to tissue annotations. The
larger training set is a superset of CAM17,
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including samples from all remaining WSI’s
(tumor patch percentage 0.7%). Please see
supplementary material Table S1 for details.
Evaluation on CAM17 test set is done by 5-
fold cross validation, were 8 WSI’s were used
for training and 2 for testing.

AIDA-LNCO (Maras et al., 2019): 402
H&E-stained WSI’s from regional lymph
node metastasis in colon adenocarcinoma,
originating from 38 patients. From the
WSI’s, patches were sampled in a supervised
way, from annotated tumor/normal regions.
The dataset was split at patient level, such
that WSI’s from approximately 70% of the
patients were chosen as unsupervised train-
ing set, corresponding to 74% of the WSI’s
(tumor percentage 47%). The supervised
dataset was divided (at patient level) in one
training and one test set, with 48 and 58
WSI’s respectively (tumor percentage 25%
and 60%). A subset of the supervised train-
ing set was used as validation set for the un-
supervised learning. Please see supplemen-
tary material Table S1 for details.

AIDA-SKIN (Lindman et al., 2019): 106
H&E-stained WSI’s of skin tissue, from 71
patients. The dataset was split at patient
level, where 80% were used for unsupervised
training, and 20% for supervised training
and test. For supervised evaluation, a 5-
fold cross validation scheme was used, were
WSI’s from 12 patients were used for train-
ing and 3 for testing (1-2 WSI’s per patient).
The patches were sampled in a supervised
way, where tumor and normal patches were
sampled from annotated regions with corre-
sponding labels. The unsupervised dataset
consisted of 7% tumor patches, the super-
vised of 22%. Please see supplementary ma-
terial Table S1 for details.

MIXED For training the CPC model, a
dataset of three tissue types was constructed
by combining the unsupervised training sets
for CAM17, AIDA-LNCO, and AIDA-SKIN.

4. Training Contrastive Predictive
Coding on Histology Data

In this section, experiments and results are
presented. First, the impact of CPC config-
uration on the downstream classification ac-
curacy is shown, followed by a presentation
of the impact of the training dataset on the
model representations.

4.1. Configuration of CPC

We investigated different configurations of
the CPC method, by training and evaluat-
ing using the CAM17 dataset.

The CPC objective does not correlate
with downstream classification perfor-
mance. The first experiment evaluated the
effect of training time and number of iter-
ations. By evaluating the performance at
every 10th epoch, we saw that the perfor-
mance did not increase with increased train-
ing time, see Figure 2 (dark blue curve). Af-
ter 10 epochs the performance was more or
less stationary, i.e., the CPC model objec-
tive did not correlate with the downstream
performance (the CPC loss kept decreasing,
see Figure 3). This indicates that the con-
trastive learning objective is not helpful in
tumor classification. We found that these
results are consistent over multiple config-
urations and datasets. Random CPC (un-
trained) did however result in significantly
lower performance (see Figure 2, black dot-
ted lines), showing that the model indeed
learns something useful, and that this hap-
pens very quickly. For succeeding experi-
ments, we used 50 epochs as this point co-
incided with where the CPC training loss
plateaus (Figure 3).

Tumor classification relies on low-level
features. In order to more closely exam-
ine the reason behind the missing correla-
tion between the CPC objective (where the
loss keeps decreasing) and tumor classifica-
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32, 1 dir
128, 1 dir
512, 1 dir
1024, 1 dir
1024, 4 dir

1024, 4 dir
larger patch size

1024, 4 dir, 10x

1024, 4 dir
larger patch size
crop augment

random, 1024 dim

random, 32 dim

Figure 2: Accuracy over epochs for multiple configurations of the CPC method. All results
are the class-balanced linear classification accuracy on the CAM17 test set. Ran-
dom (untrained) CPC models with output dimension 32 and 1024 respectively
are shown in black, dashed lines.

tion (which remains plateaued), we evaluated
the representation at lower layers. Figure 4
(blue line) shows the linear classification ac-
curacy per layer of a CPC model trained for
50 epochs on CAM17 data. The best separa-
tion between tumor and non-tumor tissue oc-
curs already after the second block, i.e., very
early in the model. This was different from a
model trained and evaluated on STL-10 data
(red line), where the highest accuracy is at
the end. As high-level features are learned
in deeper layers, these results give strong ev-
idence that only low-level CPC features are
relevant for tumor classification. This find-
ing explains why the performance was not
increasing with longer training, as earlier lay-
ers converge first (see supplementary mate-
rial Figure S1 and Raghu et al. (2017)).

Direction invariant learning objective
boosts performance. In the original im-
plementation (Oord et al., 2019), the objec-
tive was only evaluated as prediction ability
on 1–k steps below the target crop. As in
Hénaff et al. (2019), adding more directions

(up, left and right) indeed increased the clas-
sification accuracy (see Figure 2, dark blue
dotted line). As WSI’s are rotation invari-
ant, the specific direction is of little interest,
and adding more directions increases the de
facto learning objective four times.

Larger field-of-view helps classifica-
tion performance. Using the results from
above, we kept the increased objective (with
four prediction directions), and investigated
how image content (size and scope) affect
the representation. The image content of
the field-of-view is determined by the mag-
nification level and patch size. Hénaff et al.
(2019) showed that a larger patch size im-
proves performance for natural images. How-
ever, increasing the patch size in this setup
from 64x64px to 128x128px at 20x magni-
fication did not improve performance (Fig-
ure 2, purple line). Interestingly, keeping the
patch size of 64x64px but reducing the mag-
nification to 10x - which results in the same
field-of-view but at different resolution - gave
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Figure 3: Loss of CPC model trained on
CAM17. The loss plateaus af-
ter around 50 epochs.
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Figure 4: Linear tumor classification ac-
curacy per block. Blue line
is trained and evaluated on
CAM17, red, dashed line is
trained and evaluated on STL-
10.

a considerable performance boost (Figure 2,
yellow line).

Larger model size not needed for tu-
mor classification. Hénaff et al. (2019)
showed that increasing the model size and
output dimension size from 1024 to 4096 led
to better representations for object detection
in natural images. In tumor classification
however, the inter-class variance of different
tissues can be considered much smaller than
the inter-class variance between the classes in
the STL-10 dataset (e.g., between airplane
and dog). For histopathology, we saw that
decreasing the output dimensionality from
1024, to 512 and 128 gave little performance
difference. Further reducing to 32 indeed re-
duced performance. Together with the find-
ings in the previous section, this indicates
that the model is unable to extract high-
level features relevant for tumor classifica-
tion, and instead relies more on low-level fea-
tures. This indicates that the current model
size is sufficient, but the current training
setup does not fully utilize its capacity for

tumor classification. We believe that larger
models or higher output dimensionality is
unlikely to boost performance. Verification
of this hypothesis is left for future work.

Individual crop augmentation does not
improve classification performance.
In Hénaff et al. (2019), individual crop aug-
mentations was presented as a way of in-
creasing performance. This is in some as-
pect similar to other recently presented self-
supervised methods, such as Chen et al.
(2020a); Grill et al. (2020), where the ob-
jective is to keep augmented versions of the
same data sample close. In our case, by indi-
vidually augmenting crops of the image sam-
ple, the model is forced to keep represen-
tations of the same image close/similar, in-
variant to the applied transformations. For
this experiment, individual crops as well as
the larger image patch were augmented with
color jitter and random horizontal flip. The
results however did not show any increase
in performance (Figure 2, red line). As dis-
cussed in Grill et al. (2020), augmentations
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for keeping representations close are specific
to the type of data used. It is possible that
a more extensive optimization of which aug-
mentations to use could help boost perfor-
mance.

4.2. Dataset impact

Based on the results above, we fix the
CPC configuration to use 10x magnification,
64x64px patches, and the extended objective
with four prediction directions. In this sec-
tion, we evaluate the effect of the data used
for training. All models are evaluated on the
three test sets from CAM17, AIDA-LNCO
and AIDA-SKIN, giving an indication as to
how the learned representations generalize
between tissues. The results are shown in
Table 2, reported as mean linear classifica-
tion accuracy training progress, taken from
five epochs (as in Figure 2).

Tumor classification can use represen-
tations learned from natural images.
By comparing CPC models trained on the
STL-10 dataset and CAM17, we get an un-
derstanding on how domain specific the rep-
resentation learned from CAM17 is. This
comparison is shown in the top two rows
of Table 2. As the results are in similar
in terms of accuracy between the two CPC
models, we can conclude that the represen-
tation learned from natural images in the
STL-10 dataset generalizes to histopathology
applications. There is no clear performance
gain on training on CAM17, despite this be-
ing domain specific.

Increasing tissue variation of training
data does not create more general rep-
resentations. The CAM17 dataset con-
tains only one tissue type, originating from
five different medical centers (Litjens et al.,
2018). Even if the size of the dataset (in
terms of extracted patches) is larger than
the STL-10 training set, the data may be

too homogeneous for the model to be able
to extract a general representation. To in-
vestigate if increased diversity is necessary
for the CPC model, we train a model on the
MIXED dataset (containing image patches
from three different tissue types). As seen
in Table 2, this did not result in a sig-
nificant boost of performance. For AIDA-
LNCO, the performance even dropped com-
pared to STL-10 and CAM17 CPC mod-
els, even if the MIXED dataset contained
images from the same distribution as the
test set. Naively mixing data from differ-
ent domains does not automatically gener-
ate a boost in performance, which was also
observed in Feng et al. (2019). For visualiza-
tions of the representations, see supplemen-
tary material Section S3).

Adding more data from same distri-
bution boosts performance. Continu-
ing, the effect of increased dataset size from
one domain only was investigated. The Full-
CAM17 dataset contains patches sampled
from all slides in the CAMELYON17 dataset,
giving approximately 10x more data as com-
pared to the CAM17 data. The added im-
age patches were, however, all from nor-
mal tissue; no new tumor data was added.
The downstream classification performance
of this CPC model did increased on the
CAM17 dataset, but was unchanged for
other datasets (Table 2, last row). Despite
reduced tumor percentage in the training
set, the model was able to extract better
features for tumor discrimination on same-
distribution data, even if this improvement
did not generalize to other tissue types. How
much this boost is attributed to the increased
training iterations vs increased data distribu-
tion is left for future work, but it is possible
that a similar effect could be achieved with
intensive data augmentation of a smaller
training set (Asano et al., 2020).
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Table 2: Mean linear classification accuracy (%) across five epochs (standard deviation in
parenthesis), comparing different (frozen) CPC representations, trained on differ-
ent datasets.

Unsupervised training set Supervised test

CAM17 AIDA-LNCO AIDA-SKIN

STL-10 82.3 (6.1) 79.7 (2.2) 81.2 (0.7)
CAM17 74.4 (2.7) 80.5 (1.7) 81.4 (1.7)
MIXED 79.0 (4.1) 78.0 (2.6) 83.0 (0.6)
FullCAM17 85.4 (5.0) 80.6 (3.7) 81.8 (0.3)

5. Discussion

Being able to learn relevant, general rep-
resentations for downstream histopathology
applications without the need for annotated
data is highly desirable. From extensive ex-
perimentation, we have shown how CPC in
its current formulation does not fully achieve
this goal. The results in Figures 2 and 4 give
strong evidence that only low-level features,
learned very quickly, are discriminative for
tissue classification. This is consistent with
the result that a CPC model trained on STL-
10 data have similar performance compared
to CPC models trained on histology data.
The model is able to extract these features
from many different types of data. According
to Asano et al. (2020), this could potentially
be done from one single image.

Thus, the image understanding that is re-
quired to perform the CPC task on histology
data does not require features which are rele-
vant for tumor tissue discrimination. This is
in contrast to the features learned for natural
images. An important difference between the
datasets are that the task of separating nat-
ural image classes (such as cars and planes)
requires less fine-grained features than those
required to separate tissue types in histology
data. For pathology, low-level features are
enough to achieve a basic separation between
normal and tumor tissue, but for detecting

the fine grained differences, required to reach
high performance on pathology data, higher-
level features are required. These are not
learned by the CPC.

Another problem with pathology data is
that domain differences, for example caused
by different tissue type or scanning protocols
at different medical centers, have strong dif-
ferentiating characteristics. These character-
istics have been shown to be encoded when
training supervised learning models (Stacke
et al., 2019; Lafarge et al., 2017). As noth-
ing in the self-supervised learning objective
is hindering the model from using these fea-
tures, they are likely to be encoded in the
CPC representation as well (see supplemen-
tary material S3 for UMAP visualizations
of the representation which indicate this).
Great care needs to be taken when training
unsupervised and self-supervised systems in
order such that these characteristics are not
allowed to hamper the learning of other, to
the downstream task, relevant features. A
strategy of either removing or reducing ex-
traneous features is needed, or a learning ob-
jective that forces the model to pay little at-
tention to them.

Although the evaluation has focused on tu-
mor classification as the downstream task,
the preceding reasoning also extends to other
tasks. Thus, we believe that general conclu-
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sions can be drawn from the results, which
are valid for other downstream tasks.

6. Conclusion

We have presented a rigorous evaluation of
CPC on histopathology data. Multiple con-
figurations and datasets have been used for
training CPC models, and evaluation has
been performed on multiple datasets of dif-
ferent tissue types. We have presented strong
evidence that only low-level features, learned
very early in the training process, are use-
ful for downstream tumor classification. We
have shown that these representations can
be learned from both histology and natu-
ral images. Furthermore, naively diversifying
the distribution of a histopathology dataset
by adding data from different medical cen-
ters, scanners or tissues will primarily in-
troduce extraneous features which impede
the model from learning relevant features for
downstream applications.
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Supplementary Material

Below follow supplementary material for the
article Evaluation of Contrastive Predictive
Coding for Histopathology Applications.

S1. Implementation Details

PyTorch was used for all experiments. The
CPC model was trained using the ResNet-v2
architecture (He et al., 2016), with the im-
plementations from Löwe et al. (2019), on 4
Nvidia Tesla V100 GPUs, each batch size 32.
Adam optimizer was used with learning rate
of 2e−4. For evaluation, we append a linear
logistic classifier on the frozen CPC model
weights. The linear layer was for histology
datasets trained for 10 epoch, for STL-10
test set for 50 epochs. Adam optimizer with
learning rate of 5e−4 was used. The dataset
sizes, in terms of number of whole slide im-
ages and extracted patches, are listen in Ta-
ble S1.

S2. Learning dynamics

Figure S1 shows the learning dynamics of the
CPC model trained on CAM17 data, show-
ing bottom up training where the lower lay-
ers learn first.

S3. UMAP visualizations

Figure S2 and S3 show the UMAP (McInnes
et al., 2018) visualizations of the embeddings
from two CPC models, trained on STL-10
and MIXED data respectively. Both embed-
dings show data from the MIXED dataset,
where the each input patch are drawn at its
corresponding position. The left embedding
in each figure shows the output from the first
(i.e., shallow) layer block, the right are the
embedding from the output layer. There is a
clearer clustering when training on MIXED
data, where same tissue types (such as fat tis-
sue) are separated in different clusters. The

clusters are highly correlated with origin (not
shown).
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Table S1: Number of WSI’s (# samples in parenthesis) in datasets. * indicate the dataset
is sampled in a supervised way, † 5-fold cross validation. The total supervised
CAM17 dataset consisted of 30280 patches. The total supervised AIDA-SKIN
dataset consisted of 90093 patches.

Unsupervised Supervised

Training Validation Training Test
CAM17 36 (209529) 4 (14537)

8*† 2*†
Full CAM17 441 (2043958) 49 (227394)
AIDA-COLON 296* (200445) 35* (12840) 48* (46876) 58* (43282)
AIDA-SKIN 61* (152128) 8* (34972) 22*† 5*†

0 1 2 3 4 5 6
Block (after training)

0
1

2
3

4
5

6
Bl

oc
k 

(d
ur

in
g 

tra
in

in
g)

20% trained

0 1 2 3 4 5 6
Block (after training)

40% trained

0 1 2 3 4 5 6
Block (after training)

60% trained

0 1 2 3 4 5 6
Block (after training)

80% trained

0 1 2 3 4 5 6
Block (after training)

100% trained

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Figure S1: SVCCA similarities showing the learning dynamics of the CPC model trained
on CAM17 dataset.

Figure S2: UMAP visualization of a CPC model trained on STL-10, output from the first
block (left) and final output (right) with data from the MIXED dataset, where
input images are shown at their corresponding position of the UMAP embedding.
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Figure S3: UMAP visualization of a CPC model trained on the MIXED dataset, output
from the first block (left) and final output (right) with data from the MIXED
dataset, where input images are shown at their corresponding position of the
UMAP embedding.
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