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Abstract

Epilepsy, a common serious neurologi-
cal disorder, is characterized by its fre-
quently occurring seizures that cause
its patients to be three times as likely
to die prematurely. = While the ap-
plication of machine learning to EEG
recordings has enabled the successful
prediction of whether and when such
seizures will occur, the reliable detec-
tion of epilepsy during seizure-free pe-
riods is lacking. As far as the authors
are aware, this work proposes the first
deep learning approach for the latter
task — and the second machine learn-
ing approach altogether. Additionally,
it does so in an interpretable fashion
to validate the proposed method for a
more wide-spread adoption in health-
care and to potentially unveil unknown
epileptic biomarkers. The performance
of the Tiny Visual Geometry Group
(t-VGG) convolutional neural network
is evaluated against Temple Univer-
sity Hospital’s EEG Epilepsy Corpus, a
data set of variable-length EEG record-
ings gathered during routine checkups.
The t-VGG network predicted individ-
ual 10 second EEG windows with an
Area Under the Precision-Recall Curve
(AUPR) of 93.02% for epileptic predic-
tions and 55.85% for healthy ones — a
significant improvement of respectively
7.24pp and 18.6pp (p < .001) over the

current state-of-the-art. Averaging win-
dow predictions per recording improved
the t-VGG’s respective AUPR perfor-
mances further to 95.52% and 77.27%.
The Gradient-weighted Class Activa-
tion Mapping method for interpretabil-
ity confirmed that the model was able to
learn sensible features with connections
to well-known epilepsy markers.

Keywords: epilepsy, machine learn-
ing, interpretable, EEG, interictal

1. Introduction

Epilepsy affects over 50 million people
around the world, making it a common se-
rious neurological disorder. The number of
epileptic people diagnosed each year is es-
timated at 5 million and is expected to in-
crease as life expectancy is extended and peo-
ple are aging on a global scale (World Health
Organizition, 2019). It is infamously charac-
terized by seizures, i.e., periods of excessive
electrical discharges in the brain resulting
in abnormal behavior, unusual sensations,
or loss of awareness (Mayo Clinic, 2020).
The risk of premature death is up to three
times as high for epileptic patients due to
the several complications that can occur dur-
ing these seizures, such as falling, drowning,
car accidents, etc. However, estimates by
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the World Health Organizition (2019) show
that a proper diagnosis and treatment could
allow as much as 70% of people suffering from
epilepsy to live seizure-free.

1.1. Automated EEG Data Analysis

The most common test for diagnosing a pa-
tient with epilepsy and other neurological
disorders is the analysis of an Electroen-
cephalogram or EEG (Mayo Clinic, 2020),
ie.,
measure electrical impulses in the brain to
monitor its activity. Automation using pow-
erful machine learning techniques, that can
grasp the broad spatiotemporal complexity
of EEG signals, have become prominent in
neurological research since recent advance-
ments made such techniques more feasible
and accessible than ever (Niedermeyer and
da Silva, 2005; Castellano, 2016).

On one hand, the application of machine
learning has enabled near-perfect accuracy
when predicting imminent epileptic seizures
or detecting them as they are ongoing.
Conventional machine learning techniques
have shown promising performance (Acharya
et al., 2012; Agarwal et al., 2018), but the
most recent breakthroughs were achieved at
the hands of deep learning approaches re-
volving around Convolutional Neural Net-
works (CNN) (Daoud and Bayoumi, 2019;
Daoud and Bayoumi, 2018).

On the other hand, the diagnosis of
epilepsy during seizure-free, i.e., interictal,
periods has received less attention. Buet-
tner et al. (2019) presented a random for-
est classifier that uses the frequency band
powers measured in the 1.5-2Hz and 11-
12.5Hz frequency sub-bands — to the au-
thors’ knowledge the only machine learn-
ing approach so far. Their setup achieved
a near-perfect 99% accuracy, 100% sensi-
tivity, and 98% specificity when tested on
the short, single-channel intracranial, i.e.,
recorded within the skull, EEG segments of
the Bonn University department of Epilep-

a non-invasive test where electrodes

tology data set (Andrzejak et al., 2001).
However, a more modest 75.6% accuracy
was documented when applied to less inva-
sively and routinely recorded regular EEG
segments (Rieg et al., 2020).

1.2. Interpretable Machine Learning

For the successful and wide-spread adoption
of machine learning techniques in health-
care, a higher standard in terms of reliable,
accurate, and explainable predictions is re-
quired - a unique combination of challenges
for machine learning models (Ahmad et al.,
2018). Explainable diagnosis of any neuro-
logical disorders could offer valuable new in-
sights for future work, consequently improv-
ing the accuracy of automated diagnoses and
thus working towards a higher quality of life
for people suffering from them.

Despite having the ability to be very pow-
erful, the black-box nature of deep learning
models inherently offers no insight into how
decisions are made exactly (The Lancet Res-
piratory Medicine, 2018). To this end, sev-
eral techniques have found their way into
the EEG analysis domain to analyze predic-
tions made by such models. Often, these rely
on creating heat-maps of the contribution of
each input segment to making the final deci-
sion (Lawhern et al., 2018; Zhou et al., 2016;
Selvaraju et al., 2017; Bach et al., 2015).

1.3. Objective and Outline

This paper presents a deep learning solu-
tion for automatically diagnosing epilepsy in
routine EEG data, collected during routine
recordings of mostly interictal periods. The
Tiny-Visual Geometry Group (t-VGG) ar-
chitecture, proposed by Jonas et al. (2019),
is applied to tackle this task. It is particu-
larly interesting as it lends itself to visualized
and explainable predictions: the Gradient-
weighted Class Activation Mapping (Grad-
CAM) technique is used to offer insight into
how exactly predictions are being made.
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The outline for this work is as follows.
In Section 2, the proposed method is pre-
sented in greater detail, including the data
set of choice, t-VGG model architecture, and
Grad-CAM technique. Section 3 explains
how the proposed method will be objectively
evaluated. Section 4 presents and discusses
the model’s performance and analyzes its in-
terpretability. Finally, Section 5 summarizes
the presented work and proposes some guide-
lines for future work.

2. Materials and Methods

2.1. Data

The data set used for this experiment is
the Temple University Hospital (TUH) EEG
Epilepsy Corpus (TUEP) (Veloso et al.,
2017). It is part of a large collection of
over 30,000 clinical EEG signals recorded at
TUH, Philadelphia. The TUEP data set con-
tains over 1,600 variable-length EEG record-
ings from over 100 epileptic and 100 healthy
male and female subjects of varying ages,
ranging from 17 up to 88 years old. An
overview of the data distribution is shown in
Table 1. With over 400 hours of EEG record-
ings, TUEP is possibly the largest and most
varied public collection of routinely recorded
epileptic EEG signals. EEG recordings were
acquired using at least the 19 electrodes de-
fined by the 10-20 standard montage (Mor-
ley et al., 2016). The majority of record-
ings were average referenced and sampled at
256Hz. The epileptic recordings took place
in interictal periods mostly, but patients may
have experienced one or more epileptic dis-
charges or seizures at the time of recording.

To avoid discrepancies in the recordings,
only the EEG signals that were average ref-
erenced are used. Channels other than those
of the 10-20 montage are omitted and the
signals of all 19 channels are resampled to
256Hz. Frequency components are limited
to the 0.5-128Hz range, i.e., including the
brain’s slowest delta brain waves up to brain

Table 1: Overview of Temple University
Hospital’'s FEG Epilepsy Corpus

data set.
Diagnosis Patients Sessions Files
Epilepsy 100 436 1,360
No epilepsy 100 134 288
All 200 561 1,648

waves as fast as half the sampling rate and
just short of the highest frequency 140Hz
gamma brain waves. The signals are also
notch filtered at multiples of 60Hz to ex-
clude any line noise due to medical equip-
ment that may have occurred during record-
ing (Leske and Dalal, 2019). To explore if
the proposed model can be learnt to deal
with artifacts, just like trained physicians
would during manual assessment, artifact re-
moval is not considered. Finally, to deal with
the variable recording length each record-
ing is cut into 10 second windows to match
the window length employed by Jonas et al.
(2019). Though they decided on an overlap
of 75%, this is decided against as the ex-
periment would otherwise become too com-
putationally expensive. As a result, record-
ings are reduced to multiple windows of 2,560
samples over 19 channels; the total amount
of preprocessed EEG windows is 149,529 of
which 123,815 are epileptic and 25,714 were
recorded from healthy patients.

2.2. Machine learning modeling

The Tiny Visual Geometry Group (t-VGQG)
CNN architecture proposed by Jonas et al.
(2019) for coma outcome prediction has
shown promising performance on the task
of automated EEG analysis. It is based
on VGGNet, a complex and powerful deep
CNN architecture (Simonyan and Zisserman,
2015) that has shown powerful performance
in several image recognition domains (Rus-
sakovsky et al., 2015; Ke et al., 2018).
Because of its complexity, it often suffers
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from overfitting and requires tedious hyper-
parameter tuning — especially with a limited
amount of data. The t-VGG is a simplified,
single dimensional version of this architec-
ture that reduces depth and width both of
blocks and of layers of blocks. Each convo-
lutional layer goes accompanied by a Batch
Normalization (BN) layer (Ioffe and Szegedy,
2015) and a Rectified Linear Unit (ReLU)
activation function (Nair and Hinton, 2010).
The fully connected part of the network con-
sists of only one hidden layer consisting of
16 nodes, is regularized by the dropout of
50% of its neurons during training, and large
weights are penalized using L2-regularization
with a A parameter of 0.01. The architecture
of the model is presented in Figure 1.

The t-VGG network is the main model be-
ing tested in this research. Data windows of
recordings are shuffled and split in groups of
128 windows to achieve batches of indepen-
dent EEG windows that can be loaded in one
at a time. During training, the Adaptive Mo-
ment estimating (ADAM) (Kingma and Ba,
2014) optimizer is used with its standard set-
tings (n = 0.001, 5 = 0.9, B2 = 0.999) to
minimize the binary cross-entropy loss, as is
customary for binary classification problems.
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Figure 1: The t-VGG architecture. A kernel
length of 3 was used for the con-
volutional layers, and both a pool
size and stride of 4 for the max
pooling layers.

2.3. Model Interpretability

The importance of interpretable machine
learning, especially for black-box deep learn-
ing models, was already established in Sec-
tion 1. One technique for introducing
transparency specifically in CNN models is
Gradient-weighted Class Activation Map-
ping (Grad-CAM) (Selvaraju et al., 2017),
put forward by Jonas et al. (2019) as a com-
panion interpretability technique for their t-
VGG network. The technique relies on con-
volutional layers’ property of preserving spa-
tial information that was present in the in-
put data. The last convolutional layer is ex-
pected to be far enough up the feature learn-
ing hierarchy to translate into sensible and
high-level features while still offering insight
into the temporal information, that would
otherwise get lost in the fully-connected lay-
ers (Jonas et al., 2019). The gradient flow-
ing from the target class, i.e., an epileptic or
healthy diagnosis, into the last convolutional
layer is then used to weight the importance of
each neuron. The result is a rough heat-map
that, when run through the model’s activa-
tion function, highlights which segments of
the input data had positive influences on it
being classified as the class of interest.
Fully-connected layers at the end of a CNN
cause part of the decision to happen after
the last convolutional layer, resulting in the
weights of the latter not accurately repre-
senting the model’s learned features. A solu-
tion offered by Zhou et al. (2016) proposes to
end the CNN with a Global Average Pooling
(GAP) layer instead. This layer then resem-
bles the features detected by each filter of the
last convolutional layer for the model to base
its classification decision on directly.
Following the suggestion by Jonas et al.
(2019), a GAP variant of the t-VGG model
is also considered in this work. The diagnoses
of the test data, made by the t-VGG GAP
model, is inspected with the Grad-CAM pro-
cedure and activation maps are visualized
to see if systematic decision patterns can be
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identified from the trained network for both
epileptic and healthy diagnoses.

3. Experimental Setup

3.1. Models for Testing

To objectively measure the performance of
the proposed method, it is compared to the
performance of a collection of reference mod-
els. On top of the proposed t-VGG architec-
ture, these reference models are also trained
following the same method as described in
Section 2. What follows is an overview of the
reference models considered in this experi-
ment. For completeness’ sake, each method
will be accompanied by a number of po-
tential methods for explaining their predic-
tions. For more in-depth information and ad-
ditional techniques, the reader is referred to
specialized literature such as Molnar (2020).

The Dummy Classifier (DC) is a base-
line model that performs a weighted guess
that should reveal biases in the data distri-
bution. Since this model merely provides a
weighted guess, it is inherently explainable.
The Support Vector Machine (SVM)
(Evgeniou and Pontil, 2001) is often the sim-
plest well-performing model for a variety of
machine learning tasks. This model returns
a decision boundary which can be inspected,
though more advanced techniques may be
desired, e.g., extracting the most influential
support vectors or features for the classifica-
tion of a sample (Barbella et al., 2009). The
Random Forest (RF) (Breiman, 2001),
configured as proposed by Buettner et al.
(2019), is the current state-of-the-art for au-
tomated epilepsy diagnosis. Its underlying
structure can be inspected to explain predic-
tions, e.g., the most important features for
distinguishing between target classes (Buet-
tner et al., 2019) or the decision trees that
constitute the RF (Saeed, 2020). EEGNet
(Lawhern et al., 2018) is a compact CNN
model that offers well-known feature extrac-
tion concepts and has shown robust perfor-

mance in Brain-Computer Interface related
tasks. With this model, four interpretabil-
ity methods were presented: the Grad-CAM
technique described in Section 2.3, averag-
ing the outputs of hidden unit activations
that can be linked to specific temporal fea-
tures to localize them spatially, an average
wavelet time-differencing method that allows
the creation of visualized topologies per fil-
ter, and the visualization of convolutional fil-
ter weights. The Tiny-Visual Geometry
Group (t-VGGQG) and its t-VGG Global
Average Pooling (t-VGG GAP) vari-
ant (Jonas et al., 2019; Zhou et al., 2016)
are the CNN models being tested and com-
pared to the above models for their perfor-
mances. Beside the Grad-CAM technique,
these models are also eligible for the appli-
cation of the aforementioned EEGNet inter-
pretability methods.

To allow for a fair comparison, a selec-
tion of features is extracted to train and test
the non-neural network models. The band
powers for the fine frequency sub-bands pro-
posed by Buettner et al. (2019), i.e., 1.5-2Hz,
10.5-11Hz, 11-11.5Hz, and 11.5-12Hz, are ex-
tracted for each channel of the EEG windows
and serve as the input features for the DC,
SVM, and RF models. The neural network
classifiers, i.e., EEGNet and t-VGG (GAP),
are trained on the preprocessed EEG window
data.

3.2. Training and Testing Approach

Since different EEG recordings of the same
patient are inherently correlated, it is of ut-
most importance to create train, validation,
and test sets according to a group split on
the level of the patient to avoid date leak-
age. The train and test sets are constructed
by first calculating the cumulative number
of recording windows per patient and then
splitting off a number of patients that con-
stitute an approximate 20% of the data set
for testing. This procedure is repeated to
split off an approximate 20% of the train-
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ing data for validation purposes. To confirm
the proposed model performs well across all
patients rather than just those present in the
validation data, the experimental setup is ex-
tended with 5-fold cross-validation (Kohavi,
1995). This too is applied as a group split on
a patient level to prevent data leakage.

Keeping the class imbalances present in
the data of the resulting 5 folds could in-
hibit the model from learning important fea-
tures that allow it to accurately distinguish
between the target classes. To balance the
data while still providing the model with
as many different samples to learn from as
possible, all epileptic EEG windows are pre-
served by oversampling the minority healthy
class. Note that this is only done for the
training and validation data, as it is impor-
tant to test the model’s performance against
the original distribution to estimate how it
would perform in a real-world setting.

The test split and 5-fold cross-validation
split are done once and reused for all mod-
els being trained. The validation data serves
specifically for tuning the hyper-parameters
of the machine learning models until their
best-performing configurations are found.
Finally, all models are trained on the com-
bination of the training and validation data,
that make up the complete training set. Pre-
dictions are made for the test data and are
evaluated to estimate the models’ ability to
generalize on unseen data.

3.3. Model Evaluation

To grasp the model’s ability to distinguish
epileptic from non-epileptic EEG recordings,
the most important metric is the Area Un-
der the Precision-Recall curve (AUPR), i.e.,
a combination of the recall and precision
metrics that is high when both recall and
precision are high, corresponding to a low
False Negative Rate (FNR) and a low False
Positive Rate (FPR) respectively. However,
other conventional metrics, e.g., accuracy, re-
call, specificity, Area Under the ROC Curve

(AUC), etc., are kept track of for when a
more nuanced comparison is in order. A sta-
tistical paired t-test (Hsu and Lachenbruch,
2005) of all tracked metrics quantifies the dif-
ference in performance between the proposed
model and the described reference models. A
change in performance is considered signifi-
cant if the paired t-test results in a p-value
value smaller than 0.05.

To evaluate the proposed model’s inter-
pretability, the predictions made by the final
trained t-VGG model are looked into using
the Grad-CAM procedure. The activations
within the model are visualized and mapped
back on the original input data. Manual in-
spection of multiple samples of each type of
prediction, i.e., TP, FP, FN, and TN, have
to determine if the network makes system-
atic, interpretable decisions that can be con-
nected to findings made by Buettner et al.
(2019) or potentially reveal new insights into
how the classification is done by the t-VGG
model. To present as much of the proposed
method and interpretability method, the reg-
ular interpretability methods mentioned in
Section 3.1 are be explored further.

4. Results

4.1. Model performance

A summary of the proposed models’ most im-
portant performance metrics and how they
stack up against the reference models is
shown in Table 2.

The proposed t-VGG model predicted
window diagnoses with an accuracy, re-
call, and specificity of respectively 70.38%,
66.92%, and 82.98%, resulting in the high-
est positive and negative AUPR. scores of
93.02% and 55.85% respectively. This per-
formance significantly outperforms the SVM
(p = .0014), RF (p < .001), and EEGNet
(p < .001) classifiers. When averaged across
tokens, the positive and negative AUPRs in-
creased to 95.52% and 77.27% — again the
highest recorded performance so far. The
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Table 2: A summary of the most important performance metrics, with the two best scores
for each metric indicated in a bold typeface.

Window predictions Token-averaged predictions

Classifier AUPR Acc. Rec. Sp. AUPR Acc. Rec. Sp.

DC 0.7858  0.5019  0.5003  0.5078 | 0.7735 0.5191 0.5319  0.4762
SVM 0.8651  0.6174 0.6109 0.6410 | 0.8945 0.7432 0.7518  0.7143
RF 0.8578  0.6633 0.7014 0.5246 | 0.8867 0.8361 0.9291 0.5238
EEGNet 0.8834  0.5553 0.4886 0.7984 | 0.9011 0.7541 0.7589  0.7381
t-VGG 0.9302 0.7038 0.6692 0.8298 | 0.9552 0.7650 0.7589 0.7857
t-VGG GAP | 0.9242 0.7552 0.7501 0.7737 | 0.9315 0.8142 0.8156 0.8095

corresponding achieved token-averaged ac-
curacy and recall are lower than the SVM
(p < .001) and RF (p =.73) classifier while
the specificity is higher; all three are bet-
ter than reported for the EEGNet classifier
(p =.0028). Note that the high p-value for
RF was distorted by a trade-off between re-
call and specificity and that the t-VGG actu-
ally improved the RF’s positive and negative
AUPR with 6.85pp and 8.02pp respectively.
The t-VGG, RF, and EEGNet Precision-
Recall (PR) curves for their token-averaged
predictions are shown in Figure 2(a).

The GAP version of the t-VGG classifier
showed similar performance as the original
version. A slight, but insignificant decrease
in AUPR scores for both window and token-
averaged predictions can be observed, cor-
responding to slightly higher accuracy and
recall and lower specificity.

4.2. Interpretability

The Grad-CAM technique was used to in-
spect predictions made by the t-VGG GAP
model to find features that enabled the
model to make correct or incorrect deci-
sions. The heat-maps resulting from the
Grad-CAM algorithm were then overlaid on
the original input and reoccurring patterns
were identified. The model presented the
ability to recognize interictal spikes and as-
sociate them with a positive diagnosis. Addi-
tionally, it managed to indicate other known
wave patterns that are discriminative for
epilepsy, such as seizure discharges, tripha-

sic waves, burst suppressions, and slowing
waves (Seneviratne et al., 2016; Trinka and
Leitinger, 2015). Furthermore, it mainly as-
sociated segments resembling regular wak-
ing EEG recording with a negative diagnosis.
Figure 2(b) displays such CAM for an epilep-
tic segment, which shows interictal epilep-
tic spikes being correctly associated with an
epileptic outcome and regular waking EEG
rhythms corresponding with a healthy class
activation.

4.3. Discussion

The RF model’s previously reported near-
perfect performance on the Bonn Univer-
sity department of Epileptology (Andrzejak
et al., 2001) could not be reproduced, but it
still managed to achieve a token-averaged ac-
curacy of 83.61% which surpasses the results
from the retrospective study by Rieg et al.
(2020). This high accuracy, obtained using
only the band power of the presented fine
frequency sub-bands, seems to confirm that
these features are discriminatory for this task
to an extent. However, the large discrepan-
cies between performances based on the data
set of choice seem to suggest that it is not
a golden rule that can be followed; further
dedicated studies are in order to refine the
feature range to a general discriminator for
epilepsy in EEG signals.

The performance of the proposed t-VGG
architecture is the highest of all tested mod-
els. As shown in Table 2, for each metric on
both the window and token-averaged level,

361



INTERPRETABLE EPILEPSY DETECTION IN ROUTINE, INTERICTAL EEG DATA USING DEEP LEARNING

Area Under the Precision Recall Curve (AUPR)

10

0.8

0.6

Precision

a2{ — tvee (AP =0.385)
— EEGNet (AP =1091)
— RF (AP = 0.89)

-

0.0

T T T v T
00 0z 04 06 08 10
Recall

(a)

Figure 2:

The results of the experiment; Figure 2(a) shows the Precision-Recall (PR) curve

for the window predictions made by the three best performing classifiers and
Figure 2(b) shows the Grad-CAM of a recording containing interictal epileptic
discharges; Class 1 and Class 0 respectively indicate the epileptic and healthy

class.

either one of the t-VGG models is among
the two best performing models and both
are always among the three best perform-
ing models. The high token-averaged AUPR
scores reveal that the model managed to dis-
tinguish between epileptic and healthy pa-
tients’ EEG recordings quite well. It per-
forms better than the current state-of-the-
art RF model. Additionally, it significantly
outperforms the EEGNet classifier at only
a fraction of the model parameters and less
training iterations.

Despite the t-VGG GAP classifier sacrific-
ing some of its classification power by omit-
ting its fully-connected layer, its narrow and
heavily regularized dense layer shifted the
majority of the complexity for learning fea-
tures to the convolutional layers. Conse-
quently, replacing the fully-connected layer
with a Global Average Pooling layer did not
influence the model architecture nor predic-
tive power much. Furthermore, the lack of
performance deterioration is beneficial for
the Grad-CAM technique, as the visualiza-
tions can reveal more sensible features that
are almost as discriminatory as the ones
learned by the regular t-VGG model.

The good performance by the three DL
approaches tested in this experiment indi-
cates that these advanced ML techniques
are also suited for the automated diagno-
sis of epilepsy. Despite not being further
optimized for the task at hand, the EEG-
Net classifier managed to achieve high per-
formance that is on par with the RF clas-
sifier. On top of that, considering the t-
VGG model’s performance in the coma out-
come prediction task and the results of the
Grad-CAM algorithm, the model architec-
ture seems to also enable the encapsula-
tion of learning sensible features that can
be connected to known EEG abnormalities
and in some cases even to interictal or ictal
biomarkers for epilepsy (Seneviratne et al.,
2016; Trinka and Leitinger, 2015). Specifi-
cally, the model was able to detect epilepti-
form discharges, triphasic waves with slow-
ing waves, and periods of burst suppres-
sions as discriminant features for the epilep-
tic class. Mostly waking EEG signals with-
out much variations in frequency and ampli-
tude were as indicating a healthy EEG win-
dow. Besides its ability to correctly nuance
the presence of slight epileptic activations,
the model also seems to distinguish between
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epileptic abnormalities and other irregulari-
ties quite well. However, some features, such
as spikes due to artifacts or less prominent
epileptic-seeming patterns also occasionally
caused the model to make incorrect epileptic
and healthy predictions respectively. Note
that close clinical collaboration and input
is in order to obtain event-annotated data
for a complete and thorough analysis of the
model’s interpretability.

Though both t-VGG variants have shown
to be a great match for the problem at hand,
some remarks should be made on the limita-
tions of the described experiment. For one,
the lack of significant token-averaged per-
formance improvement of the t-VGG model
compared to the RF model can be explained
by the observation that a reduction of accu-
racy and recall scores comes with a rather big
increase in specificity. To allow for a better
and fairer comparison, prediction thresholds
should be looked into for all models to reach
an optimum recall and specificity trade-off.
Secondly, when further averaging predictions
on a session or patient level from the to-
ken level, a counter-intuitive drop in perfor-
mance is observed. This can be resolved us-
ing two techniques. On one hand, more ad-
vanced techniques, such as recurrent neural
networks, could account for mistakes made
by the model and the absence of discrimina-
tory wave patterns in some of the EEG win-
dows to come to an improved conclusion. On
the other hand, more advanced data splitting
techniques could resolve the changing class
imbalance ratios across levels and thus mis-
matches in performance bias. Thirdly, the
Grad-CAM techniques confirmed that the
overall performance of the proposed method
could be improved by removing abnormal
EEG segments caused by artifacts. Fourthly,
as this work aimed to present as much of the
proposed method as possible, a comparison
with the analyses of the reference models’ in-
terpretability was not included in this paper.
Lastly, while the impact of several alterations

to the t-VGG architecture was looked into,
e.g., kernel size, convolutional block depth,
network depth, network width, regulariza-
tion, etc., no significant improvements in per-
formance could be noted. However, there
is a lot of room for further experimentation
still. Rigorous testing of variations of the
t-VGG model in a grid-search-like fashion or
approaches with vastly different DL architec-
tures, inspired by state-of-the-art DL models
in neurology or new specially designed ar-
chitectures, should be looked into. Specific
attention should go to recurrent techniques
to exploit temporal correlations in electrode
channels and 2D-CNNs to exploit topology-
related spatial correlations between the dif-
ferent channels.

5. Conclusion

In this work, the second machine learning ap-
proach for the task at hand and the first deep
learning approach — to the authors’ knowl-
edge — was proposed to diagnose epilepsy
from EEG signals recorded routinely during
seizure-free periods. The t-VGG network ar-
chitecture was compared to an assortment of
reference models and was shown to achieve
state-of-the-art performance for this task.
Further, its predictions were inspected with
the Grad-CAM technique by creating heat-
maps of input segments that were positively
influenced the classification. This revealed
that deep learning is also capable of learning
the complex features from EEG data that
allow it to distinguish between epileptic and
healthy patients with high accuracy. This re-
search thus opened the door for other, more
advanced deep learning techniques to tackle
the challenge of improving the accuracy by
which epileptic patients can be properly and
reliably diagnosed.
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