
A The Full MEKA Algorithm with Adaptive Step Sizes

Algorithm 1 MEKA with adaptive step sizes based on maximizing the probability of improvement.

Hyperparameters: decay rates βr=0.999, βΣ=0.999, βα=0.999
m0, P0 ← ~0, 104 . large variance initialization ensures first Kalman gain is one
u0, s0 ← 0, 104

δ0 = ~0
t← 0
repeat
t← t+ 1
f

(i)
t ,∇f (i)

t ,∇2f
(i)
t δt−1 ← VectorizedMap(f, {xi}Mi=1; θt−1) . compute per-example

quantities
yt, rt ← MeanVarEMA({f (i)

t };βr) . exponential moving average (EMA) on the variances
gt,Σt ← MeanVarEMA({∇f (i)

t };βΣ)

bt, Qt ← MeanVar({∇2f
(i)
t δt−1})

ut, st ← FilterUpdate(ut−1, st−1;mt−1, Pt−1, yt, rt, bt, Qt) . filter update equations
mt, Pt ← FilterUpdate(mt−1, Pt−1; gt,Σt, bt, Qt) . filter update equations
αt ← arg minα (13) . with an EMA (decay rate βα) on the coefficients
δt ← αtmt

θt ← θt−1 − δt
until convergence

B The Function Value Dynamics Model

We discuss inferring the function value ft, taking into account uncertainty due to changes in function
value and observation noise during optimization. The gradient dynamics (5) imply the following
dynamics model for the function value itself:

ft | ft−1 ∼ N (ft−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1,

λt + δTt−1Pt−1δt−1 +
1

4
δTt−1Qtδt−1)

yt | ft ∼ N (ft, rt)

(16)

where we again use a quadratic approximation using Taylor expansion. Instead of the intractable
∇f and ∇2f , we use the estimates from Section 2. The observations yt and rt are the empirical
mean and variance of ft from a minibatch. The variance terms in the dynamics model are due to the
uncertainty associated with mt−1 and Btδt−1.

Here we have included a scalar term λt, which acts as a correction to the local quadratic model. This
acts similar to a damping component, except we can automatically infer an optimal λt by maximizing
the likelihood of p(yt | y1:t−1), with a closed form solution (see Appendix B.1). While damping
terms are usually difficult to set empirically (Choi et al., 2019), we note that including our λt term is
essentially free, and it automatically decays after optimization stabilizes.

B.1 Adaptively Correcting the Dynamics Model

We construct a dynamics model of the function value as follows (repeated for convenience):

ft | ft−1 ∼ N (ft−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1, λt + δTt−1Pt−1δt−1 +

1

4
δTt−1Qtδt−1)

yt | ft ∼ N (ft, rt)
(17)

We include a scalar parameter λt in case the local quadratic approximation is inaccurate, ie. when
yt is significantly different from the predicted value. If this occurs, a high value of λt causes the
Kalman gain to become large, throwing away the stale estimate and putting more weight on the new
observed function value.
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We pick a value for λt by maximizing the likelihood of p(yt|y1:t−1). Marginalizing over ft, we get

p(yt|y1:t−1) = N

ut−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1︸ ︷︷ ︸

u−
t

, λt + st−1 + δTt−1Pt−1δt−1 +
1

4
δTt−1Qtδt−1 + rt︸ ︷︷ ︸

ct


(18)

Taking the log and writing it out, we get

log p(yt|y1:t−1) ∝ −1

2

[
(yt − u−t )2

λt + ct
+ log(λt + ct)

]
(19)

and its derivative is

−1

2

[
−(yt − u−t )2

(λt + ct)2
+

1

λt + ct

]
= −1

2

[
−(yt − u−t )2 + λt + ct

(λt + ct)2

]
(20)

Setting this to zero, we get
λt = (yt − u−t )2 − ct (21)

Since the role of λt is to ensure we are not overconfident in our predictions, and we don’t want to
deal with negative variance values, we set

λ∗t = max{(yt − u−t )2 − ct, 0} (22)

As can be seen from Figure 8, this λt term goes to zero when it is not needed, ie. when the dynamics
model is correct, which occurs on MNIST after convergence. It is also a quantity that shows us just
how incorrect our dynamics model is, and for the problems we tested, we find that it is significantly
smaller than the posterior variance st. This suggests that it has minimal impact if removed, but we
keep it in the algorithm for cases when a quadratic approximation is not sufficient.
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Figure 8: The quantity 2st + λt shows up as a constant variance term during step size adaptation. We
find that though λt has an effect only during a few iterations, it is usually small enough to be ignored.
This suggests that the quadratic approximation assumption is okay most of the time. Nevertheless, a
self-correcting term that is essentially compute-free is a desirable component.

B.2 Dealing with negative curvature in step size adaptation

When the gradient estimating is pointing in a direction of negative curvature, there is a chance that
the optimal step size is infinity (Figure 9a).
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(b) Negative curvature with λt||δ||6.

Figure 9: Negative curvature can result in infinite step sizes. An extra correction term to the variance
ensures the optimal step size is finite.
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This occurs when the variance of ft+1− ft rises slower than the expectation. To handle this situation,
we can add a third order correction term, which appears in the variance as a term that scales with
||δ||6. Using the same procedure as inferring a constant λt, we can instead add the term λt||δ||6 to
the variance. We then choose λt as

λ∗t = max

{
1

||δ||6
(
(yt − u−t )2 − ct

)
, 0

}
(23)

This extra term (if λt > 0) in the variance ensures that variance increases faster than the expectation.
Adaptive step sizes based on the probability of improvement will then have an optimal step size that
is finite in value (Figure 9b). An additional damping effect may be added by lower bounding λt.
We did not fully test this approach as the exponential moving averaged curvature used in practice
was always positive for our test problems. Incidentally, Figures 9a and 9b show that the expected
improvement is not a good heuristic as it is extremely large even with this extra term. Moreover, the
quadratic approximation will result in negative step sizes.

C Using the Current Hessian vs the Previous Hessian

For the dynamics model, we make the choice to use the Hessian at the updated location Bt, which is
an unbiased estimate of ∇2f(θt), instead of Bt−1, the Hessian at θt−1. Firstly, we made this choice
for computational reasons: it is easier to compute the Hessian at θt since we are already computing
the gradient gt evaluated at θt. Secondly, we found that using the current Hessian results in better
performance and more stability. Figure 10 shows this on MNIST. For CIFAR-10, we found that using
the previous Hessian Bt−1 resulted in immediate divergence and NaNs, so we do not show those
plots.
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Figure 10: The choice of using current vs previous Hessian on MNIST.

D Comparison of Adaptive Step Size Schemes
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Figure 11: Comparing step sizes with a scaling factor c such that the update is θt = θt−1 + cαtδt.
This comparison includes expected improvement (EI). We note that it performs poorly on MNIST
and requires a scaling of 2.0 to match PI on CIFAR-10. Using a smaller scaling factor results in
worse performance.
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Figure 12: MEKA is competitive with optimizers that have additional tunable hyperparameters.
Results are averaged over 5 random seeds; shaded regions are 5th and 95th percentiles.

D.1 Comparison with Tuned Optimizers

We measure the performance of our method against a variety of other approaches. We compare with
fixed step size versions of SGD, SGD with momentum (Polyak, 1964), and ADAM (Kingma and Ba,
2014). For these, we tune the step size using grid search. We also compare against ADADELTA (Zeiler,
2012), which is a competing learning rate-free algorithm, and SVRG (Johnson and Zhang, 2013),
an optimization algorithm focused around estimating the full batch gradient, using the same step
size as the tuned SGD. For comparison, we implemented MEKA using the same constant learning
rate as the tuned SGD, and ADAMEKA with the same learning rate as the tuned ADAM. We applied
fully adaptive step sizes with MEKA update directions; on ResNet-32, we used ADAMEKA update
directions to mitigate poor conditioning.

Figure 12 shows the resulting loss and accuracy curves. As this includes optimizers across a wide
range of motivations, we highlight some specific comparisons. MEKA generally performs better
than SGD in terms of test accuracy, showing that too much stochasticity can hurt generalization.
Though both designed with gradient estimation in mind, MEKA seems to compare favorable against
SVRG in terms of performance. We note that the per-iteration costs of MEKA were also cheaper as
SVRG requires two gradient evaluations. With the default learning rate of 1.0, ADADELTA performs
decently on MNIST but ends up diverging on CIFAR-10. In comparison, our adaptive step sizes
converge well and generally outperform fixed step sized MEKA (or ADAMEKA) in both trainng loss
and test accuracy.

E Experiment Details

E.1 Dataset Description

We used the official train and test split for MNIST and CIFAR-10. We did not do any data augmenta-
tion for MNIST. For CIFAR-10, we normalized the images by subtracting every pixel with the global
mean and standard deviation across the training set. In addition to this, unless specified otherwise,
we pre-processed the images following He et al. (2016a) by padding the images by 4 pixels on each
side and applying random cropping and horizontal flips.

E.2 Architecture Description

All models use the the ReLU (Nair and Hinton, 2010) activation function.

MLP We used an MLP with 1 hidden layer of 100 hidden units.

CNN We used the same architecture as the “3c3d” architecture in Schneider et al. (2019), which
consists of 3 convolutional layers with max pooling, followed by 3 fully connected layers. The first
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convolutional layer has a kernel size of 5 × 5 with stride 1, “valid” padding, and 64 filters. The
second convolutional layer has a kernel size of 3× 3 with stride 1, “valid” padding, and 96 filters.
The third convolutional layer has a kernel size of 3× 3 with stride 1, “same” padding, and 128 filters.
The max pooling layers have a window size of 3× 3 with stride 2. The 2 fully connected layers have
512 and 256 units respectively.

ResNet-32 Our ResNet-32 (He et al., 2016a) model uses residual blocks based on He et al. (2016b).
We replaced the batch normalization layers with group normalization (Wu and He, 2018) as batch-
dependent transformations conflict with our assumption that the gradient samples are independent,
and hinder our method to estimate gradient variance.

E.3 Optimizer Comparisons Description

We tuned the step size of SGD in a grid of {0.001, 0.01, 0.1, 1.0}. We tuned the step size of SGD
with momentum, and ADAM in a grid of {0.0001, 0.001, 0.01, 0.1}. We chose the best step size of
SGD for the variant of MEKA with a constant learning rate, and for SVRG.

The chosen step size for SGD was 0.1 for MNIST, and 0.1 for CIFAR-10. For SGD with momentum,
the chosen step size was 0.01 for MNIST, 0.1 for ResNet-32 on CIFAR-10, and 0.001 for CNN on
CIFAR-10. The best step size for ADAM was 0.001 for MNIST and ResNet-32 on CIFAR-10, and
0.0001 for CNN on CIFAR-10.

For SGD with momentum, the momentum coefficient γ was fixed to 0.9. For ADAM, β1, β2, ε were
fixed to 0.9, 0.999, and 10−8 respectively. For ADADELTA, ρ and ε were fixed to 0.95 and 10−6

respectively.

F Sensitivity of MEKA’s Hyperparameters
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Figure 13: The performance of MEKA with constant learning rate for CNN on CIFAR-10 is not
sensitive to the choice of the exponential moving average decay rates βr and βΣ.
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Figure 14: The performance of MEKA with the PI adaptive scheme for CNN on CIFAR-10 is not
sensitive to the choice of the exponential moving average decay rate βα.
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G Additional Cost of MEKA

Table 1: The memory cost of using a vectorized map to obtain individual gradients is greater than
taking the gradient of a sum over the minibatch, whereas the asymptotic compute cost is the same. B
is the batch size, |θ| is the number of parameters, and D is the number of activations in the model.

∇
∑m
i=1 f

(i)
t VMap(∇, f (i)

t )

Memory O (|θ|+BD) O (B(|θ|+D))
Compute O (BD|θ|) O (BD|θ|)

Table 2: The ratio of the time it takes to complete one iteration for MEKA versus SGD. Note that in
addition to the vector mapped gradients, we also compute an additional Hessian-vector product. The
runtimes are after just-in-time compilation of JAX has settled. Runtimes are tested on the NVIDIA
TITAN Xp GPU.

Dataset Architecture SGD Meka (fixed lr) Meka (PI adaptive)

MNIST MLP 1.00 1.10 1.00
CIFAR-10 CNN 1.00 0.83 1.34
CIFAR-10 ResNet-32 1.00 1.68 2.97

H Proofs

Proof of Proposition 1. A standard Lipschitz bound yields

E[ft+1] ≤ E[ft]− αE[∇fTt mt] +
Lα2

2
E[‖mt‖2]

≤ E[ft]−
α

2

(
E[2∇fTt mt − ‖mt‖2]

)
= E[ft]−

α

2

(
E[‖∇ft‖2]− E[‖mt −∇ft‖2]

)
.

(24)

Using strong convexity (‖∇ft‖2 ≥ 2µ(ft − f∗)) and subtracting f∗ from both sides results in

E[ft+1 − f∗] ≤ (1− αµ)E[ft − f∗] +
α

2
E[‖mt −∇ft‖2] (25)

So in each step, we get a multiplicative decrease in the expected function value (left term) but we add
a term that depends on the variance of our filtered gradient estimate mt. So, in essence, to establish
convergence, we have to show that E[‖mt −∇ft‖2] decreases to zero sufficiently fast.

Since all assumptions of the Kalman filter are satisfied, we know that E[mt] = E[∇ft] and E[(mt −
∇ft)(mt − ∇ft)T ] = Pt. Hence, E[‖mt − ∇ft‖2] = tr(Pt). We now show inductively that
Pt = 1

t+1Σ. This holds for t = 0 by construction. Assume it holds for arbitrary but fixed t− 1. Then

Kt = Pt−1(Pt−1 + Σ)−1 =
1

t
Σ

(
1

t
Σ + Σ

)−1

=
1

t
Σ

(
t+ 1

t
Σ

)−1

=
1

t+ 1
I (26)

and, thus,

Pt = (I −Kt)Pt−1 =

(
I − 1

t+ 1
I

)
1

t
Σ =

1

t+ 1
Σ (27)

Plugging E[‖mt −∇ft‖2] = tr(Pt) = 1
t+1 tr(Σ) back into Eq. (25) and introducing the shorthands

et = E[ft − f∗] and σ2 := tr(Σ) reads

et ≤ (1− αµ)et−1 +
ασ2

2

1

t
. (28)
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Iterating backwards results in

et ≤ (1− αµ)te0 +
ασ2

2

t−1∑
s=0

(1− αµ)t−1−s

s+ 1
= (1− αµ)te0 +

ασ2

2

t∑
s=1

(1− αµ)t−s

s
. (29)

Lemma 1 shows that the sum term is O(1/t). The first (exponential) term is trivially O(1/t), which
concludes the proof.

Lemma 1. Let 0 < c < 1 and define the sequence (for t ≥ 1)

at =

t∑
s=1

ct−s

s
.

Then at ∈ O( 1
t ).

Proof. Let T be the smallest index such that cT+1
T < 1, i.e., T = dc/(1− c)e. Define

M = max

(
TaT ,

(
1− cT + 1

T

)−1
)

(30)

This ensures that aT ≤ M
T and

1

M
+ c

t+ 1

t
≤ 1 (31)

for all t ≥ T . We now show inductively that at ≤ M
t for all t ≥ T . It holds for t = T by construction

of M . Assume it holds for some t ≥ T . Then

at+1 =

t+1∑
s=1

ct+1−s

s
=

1

t+ 1
+ c

t∑
s=1

ct−s

s︸ ︷︷ ︸
=at≤M/t

≤ 1

t+ 1
+ c

M

t
=

M

t+ 1

(
1

M
+ c

t+ 1

t

)
︸ ︷︷ ︸
≤1 by Eq. (31)

≤ M

t+ 1
.

(32)
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