Appendix

A Parameterizaion of likelihood function for DeepAR

 μ_{θ}

This paper follows the parameterization methods described in the references [6, 17] for l_{θ} of DeepAR. To be specific, we parameterize the model for a Gaussian likelihood distribution by using two affine functions:

$$l_{\theta}(z|\mathbf{h}) = \mathcal{N}(z; \mu_{\theta}(\mathbf{h}), \sigma_{\theta}(\mathbf{h}))$$

$$(\cdot) = \mathbf{w}_{\mu}^{T} \mathbf{h} + b_{\mu}, \quad \sigma_{\theta}(\cdot) = \text{softplus}(\mathbf{w}_{\sigma}^{T} \mathbf{h} + b_{\sigma})$$

$$(7)$$

where $\mathcal{N}(\cdot)$ is a likelihood function of normal distribution. The negative binomial distribution is parameterized as follows:

$$l_{\theta}(z|\mathbf{h}) = \mathcal{BN}(z;\mu_{\theta}(\mathbf{h}),\alpha_{\theta}(\mathbf{h})) = \frac{\Gamma(z+1/\alpha)}{\Gamma(z+1)\Gamma(1/\alpha)} \left(\frac{1}{1+\alpha\mu}\right)^{\frac{1}{\alpha}} \left(\frac{\alpha\mu}{1+\alpha\mu}\right)^{z}$$
(8)
$$\mu_{\theta}(\cdot) = \text{softplus}(\mathbf{w}_{\mu}^{T}\mathbf{h} + b_{\mu}), \quad \alpha_{\theta}(\cdot) = \text{softplus}(\mathbf{w}_{\alpha}^{T}\mathbf{h} + b_{\alpha})$$

B Estimation of joint distribution of future time series for DeepState

Unlike the auto-regressive models such as DeepAR, DeepState uses the observation values to compute the posterior distribution of latent state at each time step. Especially, DeepState integrates Kalman filtering [14, 15] into the model to estimate the analytical solution for the posterior: $p(\mathbf{l}_T^{(i)}|z_{1:T}^{(i)})$. From the estimated posterior, DeepState predict the conditional joint distribution of future time series as follows:

$$P(z_{T+1:T+\tau}^{(i)}|z_{1:T}^{(i)}, \mathbf{x}_{1:T+\tau}^{(i)}) = \prod_{t=T+1}^{T+\tau} p(z_t^{(i)}|z_{1:t-1}^{(i)}; \Theta_{0:t-1}^{(i)})$$

= $\int p(\mathbf{l}_T^{(i)}|z_{1:T}^{(i)}; \Theta_{0:T}^{(i)}) \left[\prod_{t=T+1}^{T+\tau} p(z_t^{(i)}|\mathbf{l}_t^{(i)}; \Theta_t^{(i)}) p(\mathbf{l}_t^{(i)}|\mathbf{l}_{t-1}^{(i)}; \Theta_t^{(i)})\right] d\mathbf{l}_{T:T+\tau}^{(i)}.$ (9)

Although the joint distribution is analytically tractable, it is evaluated by Monte Carlo approaches for the sake of implementation convenience following the reference paper.

C Additional Results

The mean and standard deviation value reported in following tables and figures are calculated over hyperparameter samples.

C.1 DeepAR

To illustrate the effect of important hyperparameters to the performance of DeepAR, we report the result with different scaling methods, output distribution, context length, and number of RNN layers. As reported in Section 4.1, applying scaling method is essential to achieve desirable performance. The longer the context length is, the better the RMSE and the mean NQL are. The output distribution and number of RNN layers slightly varies the performance: negative binomial distribution is shown to be better fits to our EC dataset, and the performance drops as the number of layers increases probably due to the overfitting.

C.2 DeepState

Primarily, we address the performance of DeepState with fully-learnable (FL) SSMs and partiallylearnable (PL) SSMs. We perform experiments with different context lengths and report each metrics's best mean score in Table C.2 and Fig. C.2. The performance of both models approximately converges after 56 days of context lengths. The model with FL SSMs shows inaccurate and imprecise performance, and this appears to be a problem of the inherent lack of representation power in the model and non-identifiability problem [18, 19] caused by SSMs' extreme flexibility.

Secondly, we compare the DeepState with different scaling methods: mean and median scalers. The performance degrades significantly when the scaler is not used. Empirically found that the model without scaler occasionally raise error when it calls Cholesky decomposition operator in Kalman filtering.

Table 2: RMSE, MAPE, and Mean NQL by scaling method for DeepAR and DeepState models.

Model	RMSE	MAPE	Mean NQL[0.1, 0.9]
DeepAR w/ mean scaler DeepAR w/ median scaler DeepAR w/o scaler	81.37±2.60 81.06±1.07 94.08±1.59	0.303±0.013 0.300±0.008 0.308±0.005	0.140±0.008 0.139±0.006 0.162±0.007
DeepState w/ mean Scaler DeepState w/ median scaler DeepState w/o scaler	$\begin{array}{c} \textbf{87.88} \pm \textbf{11.00} \\ 114.68 \pm 124.45 \\ 150.91 \pm 101.84 \end{array}$	$\begin{array}{c} \textbf{0.342} \pm \textbf{0.022} \\ 0.365 \pm 0.118 \\ 0.671 \pm 0.297 \end{array}$	$\begin{array}{c} \textbf{0.169} \pm \textbf{0.028} \\ 0.211 \pm 0.140 \\ 0.427 \pm 0.238 \end{array}$

Table 3: RMSE, MAPE, and Mean NQL by scaling method for DeepAR and DeepState models.

Model	RMSE	MAPE	Mean NQL[0.1, 0.9]
DeepAR w/ 3-layer GRU DeepAR w/ 5-layer GRU	$\begin{array}{c} 80.21 \pm 0.34 \\ \textbf{79.91} \pm \textbf{0.40} \end{array}$	$\begin{array}{c} \textbf{0.288} \pm \textbf{0.002} \\ 0.294 \pm 0.007 \end{array}$	$\begin{array}{c} \textbf{0.135} \pm \textbf{0.002} \\ 0.136 \pm 0.001 \end{array}$
DeepState w/ 3-layer GRU DeepState w/ 5-layer GRU	$\begin{array}{c} 120.45\pm 89.05 \\ \textbf{115.20}\pm \textbf{103.49} \end{array}$	$\begin{array}{c} 0.467 \pm 0.268 \\ \textbf{0.450} \pm \textbf{0.203} \end{array}$	$\begin{array}{c} 0.271 \pm 0.210 \\ \textbf{0.266} \pm \textbf{0.182} \end{array}$

Table 4: RMSE, MAPE, and Mean NQL by output distribution for DeepAR models.

Model	RMSE	MAPE	Mean NQL[0.1, 0.9]
DeepAR w/ Gaussian output	80.50±0.87	0.297±0.004	0.140±0.006
DeepAR w/ Negative Binomial output	80.87±1.27	0.296±0.008	0.138±0.006

Table 5: RMSE, MAPE, and Mean NQL by SSM architecture for DeepState models.

Model	RMSE	MAPE	Mean NQL[0.1, 0.9]
DeepState w/ partially-learnable SSMs	$\textbf{93.83} \pm \textbf{11.51}$	$\textbf{0.373} \pm \textbf{0.077}$	$\textbf{0.200} \pm \textbf{0.042}$
DeepState w/ fully-learnable SSMs	141.82 ± 131.80	0.545 ± 0.304	0.338 ± 0.256

Table 6: RMSE, MAPE, and Mean NQL by the seasonality modes for Prophet models.

Model	RMSE	MAPE	Mean NQL[0.1, 0.9]
Prophet w/ additive seasonality	83.89±1.98	0.461±0.038	0.202±0.009
Prophet w/ multiplicative seasonality	97.02±16.85	0.460±0.044	0.222±0.010

Figure 3: RMSE, MAPE, and Mean NQL by the context lengths for DeepAR models.

Figure 4: RMSE, MAPE, and Mean NQL by the context lengths for DeepState models.

Figure 5: RMSE, MAPE, and Mean NQL by the changepoint prior scales for Prophet models.

Figure 6: RMSE, MAPE, and Mean NQL by the seasonality prior scales for Prophet models.