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Abstract
Dynamic Bayesian networks have been well explored in the literature as discrete-time models;
however, their continuous-time extensions have seen comparatively little attention. In this paper, we
propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian
networks. We discuss the different statistical tests and the underlying hypotheses used by our
proposal to establish conditional independence. Finally, we validate its performance using synthetic
data, and discuss its strengths and limitations. We find that score-based is more accurate in learning
networks with binary variables, while our constraint-based approach is more accurate with variables
assuming more than two values. However, more experiments are needed for confirmation.
Keywords: Continuous-time Bayesian networks, structure learning, constraint-based algorithm.

1. Introduction

Multivariate time-series data are becoming increasingly common in many domains such as health-
care, finance, telecommunications, social networks, e-commerce, and homeland security. Their size
and dimensionality is set to continue to increase in the future, requiring automated algorithms to
discover their probabilistic structure and to predict their trajectories over time.

In this paper we focus on the problem of learning the structure of continuous-time Bayesian
networks (CTBNs; Nodelman et al., 2002) from data. This type of probabilistic graphical model
has been successfully used to reconstruct transcriptional regulatory networks from time-course gene
expression data (Acerbi et al., 2016), to model the presence of people at their computers (Nodelman
and Horvitz, 2003), and to detect network intrusion (Xu and Shelton, 2008). The literature imple-
ments CTBN structure learning using score-based algorithms to maximize the Bayesian-Dirichlet
equivalent (BDe) metric, while in this paper we design the first constraint-based algorithm.

The main contributions of this paper are:

• the design of the first constraint-based algorithm for the structure learning of CTBNs, which
we call Continuous-Time PC (CTPC);

• the definition of different test statistics to assess conditional independence in CTBNs;

• an empirical performance comparison between score-based algorithms and our proposal.

The rest of the paper is organized as follows. Section 2 introduces CTBNs and the associated
score-based structure learning algorithms. The proposed constraint-based algorithm and the associ-
ated conditional independence tests are presented in Section 3. We then compare score-based and
constraint-based approaches in Section 4, and conclusions are summarized in Section 5.
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2. Continuous-Time Bayesian Networks

CTBNs are a particular type of probabilistic graphical model that combine Bayesian networks
(BNs; Koller and Friedman, 2009) and homogeneous Markov processes to model discrete-state
continuous-time dynamical systems (Nodelman et al., 2002). Compared to their discrete-time coun-
terpart, dynamic Bayesian networks (DBNs), they can efficiently model domains like those men-
tioned above in which variables evolve at different time granularities. The complexity of exact and
approximate inference in CTBNs has been shown to be NP-hard (Sturlaugson and Sheppard, 2014).

2.1 Definitions and Notations

A CTBN models a stochastic process over a structured state space for a set of random variables
X = {X1, X2, . . . , Xn}, where each Xk ∈ X takes value over a finite domain Val(Xk). It encodes
such a process in a compact form by factorizing its dynamics into local continuous-time Markov
processes that depend on a limited set of states.

Definition 1 (Nodelman et al., 2002). A CTBN N over X is characterized by two components:

• An initial distribution P0(X), specified as a BN over X.

• A continuous-time transition model specified as:

– a directed (possibly cyclic) graph G whose nodes correspond to the Xk ∈ X;

– a conditional intensity matrix QXk |U for each Xk.

The conditional intensity matrix (CIM) QXk |U consists of the set of intensity matrices

QXk |u =


−qx1 |u qx1x2 |u · · · qx1xm |u
qx2x1 |u −qx2 |u · · · qx2xm |u

...
...

. . .
...

qxmx1 |u qxmx2 |u · · · −qxm |u

 , m = |Val(Xk)|, 1

one for each possible configuration u of the parents U of Xk in G. The diagonal elements of
QXk |u are such that qxi |u =

∑
xj 6=xi qxixj |u, where qxi |u is the parameter of the exponential

distribution associated with state xi of variable Xk. Therefore, 1/qxi |u is the expected time that
variable Xk stays in state xi before transitioning to a different state xj . The off-diagonal elements
qxixj |u are proportional to the probability thatXk transitions from state xi to state xj when U = u.
Note that, conditional on Xk, QXk |u can be equivalently summarized with two independent sets of
parameters:

• qXk |u =
{
qxi |u, ∀xi ∈ Val(Xk)

}
, the set of intensities of the exponential distributions of

the waits until the next transition; and

• θXk |u =
{
θxixj |u = qxixj |u/qxi |u, ∀xi, xj ∈ Val(Xk), xi 6= xj

}
, the probabilities of tran-

sitioning to specific states.

1. For simplicity of notation, and without loss of generality, we omit the k subscript from m that implies that each Xk

may have a different domain.
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Therefore, a CTBN N over X can be equivalently described by a graph G together with the cor-
responding sets of parameters q =

{
qXk |u : ∀Xk ∈ X, xi ∈ Val(Xk),u ∈ Val(U)

}
and Θ ={

θXk |u : ∀Xk ∈ X, xi ∈ Val(Xk),u ∈ Val(U)
}

.
It is important to note that we assume that only one variable in the CTBN can change state at

any specific instant; and that its transition dynamics are specified by its parents via the CIM, while
being independent of all other variables given its Markov Blanket.2

2.2 Structure Learning

Let D = {σ1, . . . , σh} be a sample consisting of h trajectories σj = {〈t1, Xt1〉, . . . , 〈Tj , XTj 〉},
where Tj represents the length of trajectory σj , that is, the number of transitions. For each pair
〈ti, Xti〉, we denote the time of the ith transition as ti and the variable that leaves its current state at
that time as Xti . Learning the structure of a CTBN from D can be cast as an optimization problem
(Nodelman et al., 2003) in which we would like to find the graph G∗ with the highest posterior
log-probability given D:

ln P(G |D) = ln P(G) + ln P(D |G) (1)

where P(G) is the prior distribution over the space of graphs spanning X and P(D |G) is the
marginal likelihood of the data given G averaged over all possible parameter sets.

The prior P(G) is usually assumed to satisfy the structure modularity property (Friedman and
Koller, 2000), so that it decomposes as

P(G) =
∏
Xk∈X

P(Pa(Xk) = U). (2)

For simplicity, the literature often assumes a uniform prior, that is, P(G) ∝ 1.
The marginal likelihood P(D |G) depends on the parameter prior P(q,Θ | G), which is usually

assumed to satisfy the global parameter independence, the local parameter independence and the
parameter modularity properties (Heckerman et al., 1995) outlined below.

• Global parameter independence: the parameters qXk |U and θXk |U associated with each
variable Xk in a graph G are independent:

P(q,Θ | G) =
∏
Xk∈X

P(qXk |U,θXk |U | G). (3)

• Local parameter independence: for each variable Xk, the parameters associated with each
configuration u of parent set U are independent:

P(qXk |U,θXk |U | G) =
∏

u∈Val(U)

∏
xi∈Val(Xk)

P(qxi |u,θxi |u | G). (4)

• Parameter modularity: if variable Xk has the same parent set in two distinct graphs G and G′,
then the prior probability for the parameters associated with Xk should also the same:

P(qXk |U,θXk |U | G) = P(qXk |U,θXk |U | G
′). (5)

2. The definition of Markov blankets in CTBNs is the same as in BNs: a Markov blanket comprises the parents, the
children and the spouses of the target node; and it graphically separates the target node from the rest of the network.
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In the context of CTBNs, we assume that the priors over the waiting times and over the transition
probabilities are independent as well:

P(q,Θ | G) = P(q | G) P(Θ | G). (6)

Nodelman et al. (2003) suggested conjugate priors for both q and Θ in the form of

P(qxi |u) ∼ Gamma
(
αxi |u, τxi |u

)
, (7)

P(θxi |u) ∼ Dir
(
αxix1 |u, . . . , αxixm |u

)
, (8)

where αxi |u, τxi |u, αxix1 |u, . . . , αxixm |u are the priors’ hyperparameters. In particular, for any
Xk |U = u, αxi |u and αxixj |u represent the pseudocounts for the number of transitions from
state xi to state xj ; and τxi |u represent the imaginary amount of time spent in each state xi before
any data is observed. Note that αxi |u is inversely proportional to the number of joint states of the
parents of Xi. After conditioning on the dataset D, we obtain the following posterior distributions:

P(qxi |u | D) ∼ Gamma
(
αxi |u +Mxi |u, τxi |u + Txi |u

)
, (9)

P(θxi |u | D) ∼ Dir
(
αxix1 |u +Mxix1 |u, . . . , αxixm |u +Mxixm |u

)
, (10)

where Txi |u andMxixj |u are the sufficient statistics of the CTBN. In particular, Txi |u is the amount
of time spent by Xk in the state xi and Mxixj |u is the number of times that Xk transitions from
the state xi to the state xj , given U = u.3 The marginal likelihood P(D |G) arising from these
posteriors can be written as

P(D |G) =
∏
Xk∈X

ML(qXk |U : D) ML(θXk |U : D) (11)

due to (3) and (6). ML(qXk |U : D) is the marginal likelihood of qXk |U,

ML(qXk |U : D) =
∏

u∈Val(U)

∏
xi∈Val(Xk)

Γ
(
αxi |u +Mxi |u + 1

) (
τxi |u

)αxi |u+1

Γ
(
αxi |u + 1

) (
τxi |u + Txi |u

)αxi |u+Mxi |u+1
; (12)

and ML(θXk |U : D) is the marginal likelihood of θXk |U,

ML(θXk |U : D) =
∏

u∈Val(U)

∏
xi∈Val(Xk)

Γ
(
αxi |u

)
Γ
(
αxi |u +Mxi |u

) ∏
xj∈Val(Xk)

Γ
(
αxixj |u +Mxixj |u

)
Γ
(
αxixj |u

) .

(13)
The resulting P(D |G) is the Bayesian-Dirichlet equivalent (BDe) metric for CTBNs (Nodelman,
2007) based on the priors (7) and (8), which satisfies assumptions (3), (4), and (5) by construction.
The posterior in (1) can then be written in closed form as

P(G |D) =
∑
Xk∈X

log P(Pa(Xk) = U) + log ML(qXk |U : D) + log ML(θXk |U : D) (14)

assuming (2) is satisfied.
Since G does not have acyclicity constraints in a CTBN, it is possible to maximize (14) by

independently scoring the possible parent sets of each Xk. Furthermore, if we bound the maximum
number of parents we can find the optimal P(G |D) in polynomial time either by enumerating all
possible parent sets or by using hill-climbing to add, delete or reverse arcs (Nodelman et al., 2003).

3. The number of times Xk leaves the state xi when U = u is Mxi |u =
∑

xj 6=xi
Mxixj |u.
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Algorithm 1 PC Algorithm

1. Form the complete undirected graph G on the vertex set X.

2. For each pair of variables Xi, Xj ∈ X, consider all the possible separation set from the
smallest (SXiXj = ∅) to the largest (SXiXj = X \ {Xi, Xj}). If there isn’t any set SXiXj

such that Xi ⊥⊥ Xj |SXiXj then the edge Xi−−Xj is removed from G.

3. For each triple Xi, Xj , Xk ∈ G such that Xi−−Xj , Xj −−Xk, and Xi, Xj are not connected,
orient the edges into Xi → Xj ← Xk if and only if Xj 6∈ SXiXj for every SXiXj that makes
Xi and Xk independent.

4. The algorithm identifies the compelled directed arcs by iteratively applying the following two
rules:

(a) if Xi is adjacent to Xj and there is a strictly directed path from Xi to Xj then replace
Xi−−Xj with Xi → Xj (to avoid introducing cycles);

(b) if Xi and Xj are not adjacent but Xi → Xk and Xk−−Xj , then replace the latter with
Xk → Xj (to avoid introducing new v-structures).

5. Return the resulting CPDAG G.

3. A Constraint-Based Algorithm for Structure Learning

Learning the structure of a BN is a problem that is well explored in the literature. Several approaches
have been proposed spanning score-based algorithms, constraint-based algorithms and hybrid algo-
rithms; a recent review is available from Scutari et al. (2019). Score-based algorithms find the BN
structure that maximizes a given score function, while constraint-based algorithms use statistical
tests to learn conditional independence relationships (called constraints) from the data and infer the
presence or absence of particular arcs. Hybrid algorithms combine aspects of both score-based and
constraint-based algorithms.

On the other hand, the only structure learning algorithm proposed for CTBNs is the score-
based algorithm from Nodelman et al. (2003) we described in the previous section; to the best of
our knowledge no constraint-based algorithm exists in the literature. After a brief introduction to
constraint-based algorithms for BNs, we propose such an algorithm for CTBNs.

3.1 Constraint-Based Algorithms for BNs

Constraint-based algorithms for BN structure learning originate from the Inductive Causation (IC)
algorithm from Pearl and Verma (1991) for learning causal networks. IC starts by finding pairs
of nodes connected by an undirected arc as those are not independent given any other subset of
variables. The second step identifies the v-structures Xi → Xk ← Xj among all pairs Xi and
Xj of non-adjacent nodes which share a common neighbour Xk. Finally, IC identifies compelled
arcs and orients them to build the completed partially oriented DAG (CPDAG) which describes the
equivalence class the BN falls into.
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However, steps 1 and 2 of the IC algorithm are unfeasible for non-trivial problems due to the
exponential number of conditional independence relationships to be tested. The PC algorithm,
which is briefly illustrated in Algorithm 1, was the first proposal addressing this issue; its modern
incarnation is described in Colombo and Maathuis (2014), and we will use it as the foundation
for CTBN structure learning below. PC starts from a fully-connected undirected graph. Then, for
each pair of variables Xi and Xj it proceeds by gradually increasing the cardinality of the set of
conditioning nodes SXiXj until Xi and Xj are found to be independent or SXiXj = X \ {Xi, Xj}.
The remaining steps are identical to those of IC.

Neither IC nor PC (or other constraint-based algorithms, for that matter) require a specific test
statistic to test conditional independence, making them independent from the distributional assump-
tions we make on the data.

3.2 The CTPC Structure Learning Algorithm

CTBNs differ from BNs in three fundamental ways: BNs do not model time, while CTBNs do;
BNs are based on DAGs, while CTBNs allow cycles; and BNs model the dependence of a node on
its parents using a conditional probability distribution, while CTBNs model it using a CIM. These
differences make structure learning a simpler problem for CTBNs than it is for BNs.

Firstly, learning arc directions is an issue in BNs but not in CTBNs, where arcs are required to
follow the arrow of time. Unlike BNs, which can be grouped into equivalence classes that are proba-
bilistically indistinguishable, each CTBN has a unique minimal graphical representation (Nodelman
et al., 2003). For instance, let a CTBN N have graph G = {X → Y }: unless trivially X = Y , G
cannot generate the same transition probabilities as any CTBN N ′ with graph G′ = {X ← Y }.

Secondly, in CTBNs we can learn each parent set Pa(Xk) in isolation, thus making any struc-
ture learning algorithm embarrassingly parallel. Acyclicity imposes a global constraint on G that
makes it impossible to do the same in BNs.

Thirdly, each variable Xk is modelled conditional on a given function of its parent set Pa(Xk):
a conditional probability table for (discrete) BNs, a CIM for CTBNs. However, a CIM QXk |U
describes the temporal evolution of the state of variable Xk conditionally on the state of its parent
set U. Hence we can not test conditional independence by using classic test statistics like the
mutual information or Pearson’s χ2 that assume observations are independent (Koller and Friedman,
2009). Instead we need to adapt our definition of conditional independence to CTBNs to design a
constraint-based algorithm for structure learning.

Definition 2 Conditional Independence in a CTBN
Let N be a CTBN with graph G over a set of variables X. We say that Xi is conditionally

independent from Xj given SXiXj ⊆ X \ {Xi, Xj} if

QXi |x,s = QXi | s ∀x ∈ Val(Xj),∀ s ∈ Val(SXiXj ). (15)

If SXiXj = ∅, then Xi is said to be marginally independent from Xj .

It is important to note that Definition 2 is not symmetric: it is perfectly possible for Xi to be
conditionally or marginally independent from Xj , while Xj is not conditionally or marginally inde-
pendent from Xi. This discrepancy is, however, not a practical or theoretical concern because arcs
are already non-symmetric (they must follow the arrow of time) and therefore we only test whether
Xi depends Xj if Xj precedes Xi or the other way round.
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As for the test statistics, we can test for conditional independence using qXk |u (the waiting
times) and, if we do not reject the null hypothesis of conditional independence, we can perform a
further test using θXk |u (the transitions); qXk |u and θXk |u have been defined to be independent in
Section 2.1 so they can be tested separately. Note that conditional independence can be established
by testing only the waiting times qXk |u if the CTBN contains only binary variables. However, test-
ing for conditional independence involves both waiting times and transitions in the general case in
which variables can take more than two values. Since we consider that rates are the most important
characteristic to to assess in a stochastic process, we decide without loss of generality to test qXk |u
first, and then θXk |u.

For qXk |u, we define the null time to transition hypothesis as follows.

Definition 3 Null Time To Transition Hypothesis
Given Xi, Xj and the conditioning set SXiXj , the null time to transition hypothesis of Xj over

Xi is

qx | y,s = qx | s ∀x ∈ Val(Xi),∀ y ∈ Val(Xj),∀ s ∈ Val(SXiXj ). (16)

For θXk |u, we define the null state to state transition hypothesis as follows.

Definition 4 Null State To State Transition Hypothesis
Given Xi, Xj and the conditioning set SXiXj , the null state to state transition hypothesis of Xj

over Xi is

θx·| y,s = θx·| s ∀x ∈ Val(Xi),∀ y ∈ Val(Xj),∀ s ∈ Val(SXiXj ) (17)

where we let θx·| y,s be off diagonal elements of matrix QXi | y,s corresponding to assignment Xi =
x. It is worthwhile to mention that equality θx·| y,s = θx·| s has to be understood in terms of corre-
sponding components of vectors θx·| y,s and θx·| s.

Definition 3 characterizes conditional independence for the times to transition for variable Xi

when adding (or not) Xj to its parents; Definition 4 characterizes conditional independence for the
transitions of Xi when adding (or not) Xj to its parents.

To test the null time to transition hypothesis, we use the F test to compare two exponential
distributions from Lee and Wang (2003). In the case of CTBNs, the test statistic and the degrees of
freedom take form

Fr1,r2 =
qx | s

qx | y,s
, with r1 =

∑
x′∈Val(Xi)

Mxx′ | y,s, r2 =
∑

x′∈Val(Xi)

Mxx′ | s (18)

To test the null state to state transition hypothesis, we investigated the use of the two-sample
chi-square and Kolmogorov-Smirnov tests (Mitchell, 1971). For CTBNs the former takes form:

χ2 =
∑

x′∈Val(Xi)

(K ·Mxx′ | y,s − L ·Mxx′ | s)
2

Mxx′ | y,s +Mxx′ | s
, K =

√∑
x′∈Val(Xi)

Mxx′ | s∑
x′∈Val(Xi)

Mxx′ | y,s
, L =

1

K
; (19)
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and is asymptotically distributed as a χ2
|Val(Xi)|−1. The latter is defined as

Dr1,r2 = sup
x′∈Val(Xi)

∣∣Θxx′ | s −Θxx′ | y,s
∣∣ , Θxx′ =

∑
x′′∈Val(Xi)

x′′≤x′

θxx′′ . (20)

After characterising conditional independence, we can now introduce our constraint-based algo-
rithm for structure learning in CTBNs. The algorithm, which we call Continuous-Time PC (CTPC),
is shown in Algorithm 2. The first step is the same as the corresponding step of the PC algorithm in
that it determines the same pattern of conditional independence tests. However, as discussed above,
the hypotheses being tested are the null time to transition hypothesis and the null state to state
transition hypothesis. The second step of CTPC differs from that in the PC algorithm. Since inde-
pendence relationships are not symmetric in CTBNs, we can find the graph G of the CTBN without
indentifying and then refining a CPDAG representing an equivalence class. Therefore, steps 3 and
4 of the PC algorithm are not needed in the case of CTBNs.

CTPC starts by initializing the complete directed graph G without loops (step 1). Note that
while loops (that is, arcs like Xi → Xi) are not included, cycles of length two (that is, Xi → Xj

and Xj → Xi) are, as well as cycles of length tree or more. Step 2 iterates over the Xi to identify
their parents U. This is achieved in step 2.2.1 by first testing for unconditional independence, then
by testing for conditional independence gradually increasing the cardinality b of the considered
separating sets. Each time Algorithm 2 concludes that Xi is independent from Xj given some
separating set, we remove arc from node Xj to node Xi in step 2.2.2. At the same time, we also
remove Xj from the current parent set U. The iteration for Xi, Xj terminates either when Xj is
found to be independent from Xi or there are no more larger separating sets to try because b = |U |;
and the iteration over Xi terminates when there are no more Xj to test.

CTPC checks the null time to transition hypothesis (Definition 3) by applying the test for two
exponential means (18). On the contrary, the null state to state transition hypothesis (Definition
4) can be tested using two different tests, i.e., the two sample chi-square test and the two sample
Kolmogorov-Smirnov test. We call these two options CTPCχ2 the and CTPCKS, respectively.

Algorithm 2 Continuous-time PC Algorithm

1. Form the complete directed graph G on the vertex set X.

2. For each variable Xi ∈ X:

2.1 Set U = {Xj ∈ X : Xj → Xi}, the current parent set.

2.2 For increasing values b = 0, . . . , n, until b = |U|:
2.2.1 For eachXj ∈ U, testXi ⊥⊥ Xj |SXiXj for all possible subsets of size b of U\Xj .

2.2.2 As soon as Xi ⊥⊥ Xj |SXiXj for some SXiXj , remove Xj → Xi from G and Xj

from U.

3. Return directed graph G.
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4. Numerical Experiments

We assess the performance of CTPC against that of the score-based algorithm from Nodelman et al.
(2003) using synthetic data4.

In particular, we generate random CTBNs as the combinations of directed graphs and the asso-
ciated CIMs; and we generate random trajectories from each CTBN. We perform a simulation study
using a factorial experimental design over different numbers of nodes n = {5, 10, 15, 20}, network
densities {0.1, 0.2, 0.3}, number of states for the nodes |Val(Xi)| = {2, 3} and different numbers
of trajectories h = {100, 200, 300}. Each trajectory lasts on average for 100 units of time. Note that
we only generate connected networks, hence absolute density is bounded below by |X|. We perform
10 replicates for each simulation configuration with n < 10; and 3 replicates for configurations with
n > 10.

We measure the performance of the learning algorithms along two dimensions: structural ac-
curacy and speed. In particular, structural accuracy is measured using the F1 score over the arcs,
which is defined as follows,

F1 = 2 · precision× recall

precision + recall
; (21)

since there is no score equivalence in CTBNs, nor are networks constrained to be acyclic, comparing
graphs is equivalent to evaluating a binary classification problem. As for speed, we evaluate the
wall-clock time on a single core. While all algorithms we consider can be parallelized in some way,
we prefer to avoid the confounding effect of varying degrees of parallelism overhead on speed.

4.1 Results

The results of our simulation study are summarized in Table 1 (for the score-based algorithm in
Nodelman et al., 2003), Table 2 (for CTPCχ2) and Table 3 (for CTPCKS).

In the case of binary variables, the score-based algorithm performs better than the proposed
constraint-based algorithms for any combination of network density, number of trajectories and
number of nodes. CTPCχ2 and CTPCKS have comparable performance, which is expected since in
this case the two algorithms are identical (because the tests are identical, that is, we only test waiting
times). However, CTPCχ2 and CTPCKS have better F1 scores than the score-based algorithm for
ternary variables.

CTPCχ2 appears to perform marginally better than CTPCKS when n < 20, but the two algorithm
are again comparable when n = 20 and h = 300. This suggests that CTPCχ2 is more sample-
efficient than CTPCKS with respect to the number of trajectories.

However, CTPCχ2 and CTPCKS scale better than the score-based algorithm from Nodelman
et al. (2003), which exhausts the 24GiB of memory allocated for the experiment and fails to com-
plete in the allotted time as shown in the last line of Table 1.

4. Score-based learning has been performed by the CTBN-RLE package (Shelton et al., 2010), while CTPC
has been implemented in Python and made available at the following GitHub https://github.com/
AlessandroBregoli/ctbn_cba. CTBN-RLE uses Bayesian Score where a Gamma prior is used for parame-
ters of the exponential distributions while a Dirichlet prior is used for transition probabilities. Hyperparameters are
set to their default value, i.e., τ = 1 for the Gamma prior, while α = 1 for the Dirichlet prior.
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Cardinality Binary variables
Network density 0.1 0.2 0.3

# trajectories 100 200 300 100 200 300 100 200 300

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 .990 .990 .990 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00 .941 .993 1.00
20 .984 1.00 1.00 .987 1.00 1.00 .850 .922 .934

Cardinality Ternary variables

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 .949 .949 1.00 .987 .934 .962
15 .971 .983 1.00 .800 .841 1.00 .541 .605 .765
20 — — — — — — — — —

Table 1: F1-score for the score based algorithm.

Cardinality Binary variables
Network density 0.1 0.2 0.3

# trajectories 100 200 300 100 200 300 100 200 300

5 .988 1.00 1.00 1.00 1.00 1.00 .992 1.0 1.00
10 1.00 .988 1.00 .970 .970 .970 .966 .973 .967
15 .980 .994 1.00 .949 .981 .993 .830 .903 .933
20 .968 .988 .992 .935 .989 .980 .787 .871 .883

Cardinality Ternary variables

5 .972 .921 .909 .973 .973 .973 .966 .953 .979
10 .938 .938 .950 .984 .992 .992 .981 .975 .970
15 .967 .962 .967 .966 .984 .984 .820 .871 .887
20 .944 .944 .939 .880 .904 .913 .583 .720 .761

Table 2: F1-score for the CTPCχ2 algorithm.

Cardinality Binary variables
Network density 0.1 0.2 0.3

# trajectories 100 200 300 100 200 300 100 200 300

5 .988 1.00 1.00 1.00 1.00 1.00 .992 1.0 1.00
10 1.00 .988 1.00 .970 .970 .970 .966 .973 .967
15 .980 .994 1.00 .949 .981 .993 .830 .903 .933
20 .968 .988 .992 .935 .989 .980 .787 .871 .883

Cardinality Ternary variables

5 .667 .667 .667 .766 .771 .720 .871 .802 .785
10 .617 .623 .650 .811 .775 .780 .890 .886 .854
15 .762 .782 .775 .840 .863 .857 .775 .855 .875
20 .644 .624 .602 .820 .852 .859 .602 .704 .757

Table 3: F1-score for the PCKSCTBN algorithm.
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5. Conclusions

In this paper we introduced the first constraint-based algorithm for structure learning in CTBNs,
which we called CTPC, comprising both a suitable set of statistics for testing conditional indepen-
dence and a heuristic algorithm based on PC.

Compared to the only score-based algorithm previously available in the literature (Nodelman
et al., 2003), CTPC has better structural reconstruction accuracy when variables in the CTBN can
assume more than two values. For binary variables, that score-based algorithm performs well, but
its performance rapidly degrades when the number of states increases to three.

A major limitation of the proposed constraint-based algorithm is the computational cost which
becomes problematic in domains with more than 20 variables. Even so, CTPC scales better than the
score-based algorithm from Nodelman et al. (2003), which exhausts the 24GiB of memory allocated
for the experiment and fails to complete in the allotted time.

Further experiments are needed to elucidate the behaviour of CTPC when the number of states
of the variables increases. It would also be important to validate the performance of CTPC on
real-world data. Unfortunately, we are not aware of any suitable real-world data set where ground
truth is available, and thus we were unable to pursue this line of investigation. Furthermore, we are
planning additional numerical experiments to evaluate the impact of the type-I-error threshold for
the tests to better understand how to calibrate constraint-based algorithms.

References
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