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Abstract

We present CREDICI, a Java open-source tool for causal inference based on credal networks.
Credal networks are an extension of Bayesian networks where local probability mass functions
are only constrained to belong to given, so-called credal, sets. CREDICI is based on the recent
work of Zaffalon et al. (2020), where an equivalence between Pearl’s structural causal models
and credal networks has been derived. This allows to reduce a counterfactual query in a causal
model to a standard query in a credal network, even in the case of unidentifiable causal effects.
The necessary transformations and data structures are implemented in CREDICI, while infer-
ences are eventually computed by CREMA (Huber et al., 2020), a twin library for general credal
network inference. Here we discuss the main implementation challenges and possible outlooks.
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1. Introduction

Causal analysis is emerging as a major topic for modern data science, with lots of important ap-
plications in various domains such as social and biomedical sciences. This makes particularly
important the development of stable software tools for causal inference. Notable examples in
this field are the popular Python library DoWhy1 developed by Microsoft and based on Pearl’s
do-calculus, and the R package bartCause2 based on regression trees. Tools of this kind are typi-
cally designed to process identifiable queries, while only few libraries such as causaloptim3 can
process unidentifiable scenarios with some limitations in terms of scalability and generality.

Zaffalon et al. (2020) recently derived an equivalence relation between Pearl’s structural causal
models and credal networks (Cozman, 2000), which are Bayesian networks whose local param-
eters have the freedom to vary in, so-called credal, sets. The CREDICI library we present here
exploits such equivalence to compute (the bounds of) causal inferences even for unidentifi-
able queries. Given input observational data, a structural causal model is first converted into
an equivalent credal network, which is eventually queried by standard inference algorithms for
those models. CREDICI is an open-source Java library distributed through Maven under LGPL-
3.0 License.4 The tool is built on the top of the CREMA library5 (Huber et al., 2020), which con-
tains the inference algorithms and the data structures for credal networks.

1. https://github.com/microsoft/dowhy.
2. https://github.com/vdorie/bartCause.
3. https://github.com/sachsmc/causaloptim
4. https://github.com/IDSIA/credici.
5. https://github.com/IDSIA/crema.
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Let us introduce CREDICI here by means of an illustrative example. The reader is referred to
the online documentation6 for technical details.

2. Structural Causal Models and Credal Networks

Consider the directed acyclic graph in Figure 1.a corresponding to the Party example of Balke and
Pearl (1994). Non-root nodes are associated with observable, endogenous, variables. Root nodes
are instead associated with latent, exogenous, variables determining, together with the other par-
ents, the values of their endogenous children by structural equations such as X3 = f (X1, X2,U3).
This is an example of structural causal model as in Pearl (2009). If also marginal probabilities
of the exogenous variables (e.g., P (U1)) are provided, the model becomes a Bayesian network.
This allows to compute causal queries such as P (X3|do(x2)), i.e., the probability of X3 when X2 is
forced by intervention to take its state x2, as standard inference the post-intervention graph (Fig-
ure 1.b). Notation P (X3x2

|x ′
2) denotes instead a counterfactual scenario where we still evaluate

the effect on X3 of an intervention forcing X2 = x2, under the evidential information that X2 was
observed in its state X2 = x ′

2 6= x2. Following (Balke and Pearl, 1994), we compute such query in
an augmented model called twin network graph where the endogenous variables are duplicated.
After the necessary post-interventional surgery, the inference can be computed as in Figure 1.c.

(a)

U0

U1 U2

U3

X0

X1 X2

X3

(b)

U0

U1

U3

X0

X1

x2

X3

(c)

U0

U1

U2

U3

X0

X1 x2

X3

X ′
0

X ′
1

x′2

X ′
3

Figure 1: Examples of structural causal diagrams.

Unfortunately, as the exogenous variables are not directly observable, their marginal proba-
bilities are typically unavailable, and causal queries like the ones considered for above example
can be computed only in special, so-called identifiable, cases. Following Zaffalon et al. (2020),
we might obtain (exact) bounds on unidentifiable queries by exploiting the equivalence between
structural causal models and credal networks (Cozman, 2000). Linear constraints on the values
of P (U ), for each exogenous node U , can be obtained from the observational data about the en-
dogenous variable. The above discussed post-interventional queries in Bayesian networks can
be therefore addressed in the corresponding credal networks even in unidentifiable cases.

3. Using the Application Programming Interface

To illustrate the practical use of CREDICI, let us consider again the Party example. Observa-
tional information about the model in the form of a Bayesian network over the endogenous vari-
ables is assumed to be available as an input. The code snippet in Figure 2 parses the Bayesian
network (the popular UAI format for graphical models is supported) and initialize the corre-
sponding causal model. With the basic setting (line 4), the model graph is built as a Markovian

6. http://credici.readthedocs.io.
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model, with an exogenous parent for each endogenous model and the states of the exogenous
variables enumerating all the possible functional relations between an endogenous variable and
its endogenous parents. The class CausalBuilder allows more complex settings involving
non-Markovian models and more informative structural equations. The resulting causal model
is encoded as an object (classStructuralCausalModel), from which information about the
model can be accessed (e.g., the lists of the different types of variables as in lines 6 and 7).

1 //Load the empirical model
2 BayesianNetwork bnet = (BayesianNetwork) IO.read("models/party-empirical.uai");
3 // Build the causal model
4 StructuralCausalModel causalModel = CausalBuilder.of(bnet).build();
5 // Get the endogenous and exogenous variables
6 int[] x = causalModel.getEndogenousVars();
7 int[] u = causalModel.getExogenousVars();

Figure 2: Initializing a structural causal model in CREDICI.

The snippet in Figure 3 shows how the methods toVCredal and toHCredal achieve the
credal network conversions, the two variants corresponding, respectively, to credal networks
whose credal sets are specified by enumeration of the vertices (line 2) or linear constraints (line
3). Methods to access these credal sets and the local models are shown in lines 4-9.

1 // Convert the causal models into credal networks
2 SparseModel vcredal = causalModel.toVCredal(bnet.getFactors());
3 SparseModel hcredal = causalModel.toHCredal(bnet.getFactors());
4 // Access to the equations
5 VertexFactor fx0 = (VertexFactor) vcredal.getFactor(x[0]);
6 SeparateHalfspaceFactor fx0_ = (SeparateHalfspaceFactor) hcredal.getFactor(x[0]);
7 // Access to the credal sets of the exogenous variables
8 VertexFactor pu0 = (VertexFactor) vcredal.getFactor(u[0]);
9 SeparateHalfspaceFactor pu0_ = (SeparateHalfspaceFactor) hcredal.getFactor(u[0]);

Figure 3: Converting a causal models in a credal network in CREDICI.

The snippet in Figure 4 demonstrates the methods to eventually compute inferences in the
resulting credal network: CredalCausalVE is an exact method based on a credal version of
variable elimination, while CredalCausalApproxLP is an approximate methods based on
the linear programming reduction proposed by Antonucci et al. (2015).

1 // Exact inference engine
2 CausalInference infExact =
3 new CredalCausalVE(causalModel, bnet.getFactors());
4 // Approximate inference engine
5 CausalInference infApprox =
6 new CredalCausalAproxLP(causalModel, bnet.getFactors());

Figure 4: Setting up the causal inference engines in CREDICI.

Finally, Figure 5 shows how the above discussed causal queries are specified in CREDICI.
When required, the twin network graph is automatically generated by the methods.
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1 // Set up and run a causal query
2 VertexFactor resExact = (VertexFactor) infExact
3 .causalQuery()
4 .setTarget(x[3])
5 .setIntervention(x[2],1).run();
6 // Set up an run a counterfactual query
7 IntervalFactor resApprox = (IntervalFactor) infApprox
8 .counterfactualQuery()
9 .setTarget(x[3])

10 .setIntervention(x[2],1)
11 .setEvidence(x[2], 0).run();

Figure 5: Causal effects and counterfactual queries in CREDICI.

4. Conclusions

To the best of our knowledge, CREDICI represents the most effective and general tool to compute
bounds for unidentifiable queries in general structural causal models. The equivalence between
these models and credal networks derived by Zaffalon et al. (2020) allows to obtain the bounds by
inference algorithm for credal networks. As an important future work we intend to add support
to more sophisticated causal queries such as those involving a measurement bias (Pearl, 2010),
and the non-atomic interventions proposed by Correa and Bareinboim (2020).
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