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Abstract
InferPy is an open-source Python package for variational inference in probabilistic models con-
taining neural networks. Other similar libraries are often difficult for non-expert users. InferPy
provides a much more compact and simple way to code such models, at the expense of slightly re-
ducing expressibility and flexibility. The main objective of this package is to permit its use without
having a strong theoretical background or thorough knowledge of the deep learning frameworks.
Keywords: Deep probabilistic modeling; Hierarchical probabilistic models; Variational Inference;
Bayesian learning; TensorFlow; Keras; User-friendly.

1. Introduction

Probabilistic graphical models (PGMs) have been widely used for decades in reasoning under un-
certainty and applied to a variety of problems: self-driving cars (Weidl et al., 2018), financial data
analysis (Masegosa et al., 2020), environmental modeling (Maldonado et al., 2020), etc. Their
advantage resides on their intuitive nature, which makes them suitable to work with experts from
other fields who are usually not familiar with machine learning methods. However traditional PGM
approaches often fail to model non-linear relations among the variables in the problem.

Probabilistic programming languages over deep learning frameworks, unlike traditional soft-
ware for PGMs (Scutari, 2010; Masegosa et al., 2019b), allow the definition of probabilistic models
containing neural networks (NN). Some examples are TFP/Edward2 (Tran et al., 2018), Pyro (Bing-
ham et al., 2019), Stan (Carpenter et al., 2017), etc. The problem of these tools is that the model
specification becomes complex or a strong theoretical background is required. InferPy (Cabañas
et al., 2019; Cózar et al., 2019) by contrast provides a user friendly API built on top of TFP/Edward2
for defining and making inference in probabilistic models with NNs. In this paper we briefly de-
scribe the package. For further details we refer to the online documentation 1.

2. Theoretical background

InferPy focuses on hierarchical probabilistic graphical models (Masegosa et al., 2019a) which are
a kind of models defining a joint conditional distribution p(x, z|w) where z are the local hidden
variables governing the observable variables x and where w are the global parameters. These
models can employ NNs to define the parameters of the distribution of a random variable conditional

1. Home: http://inferpy.readthedocs.io; Source: https://github.com/PGM-Lab/InferPy
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on their parents. For instance, Fig. 1 depicts a model of this kind for classification of hand-written
digits: the images and true classes {xn, yn} correspond to the observable variables while zn is
the hidden representation of the images in a lower-dimensional space. Two neural networks define
the conditional distribution of xn|zn and yn|zn, respectively. In this case, the global parameters
correspond to α1 and α2 which are the trainable parameters of the two NNs.

xn

zn

yn

NN1 NN2α1 α2

N

zn ∼ Nk(0, I)

xn ∼ Ndx(NN1(zn), I)

yn ∼ Cat(logits = NN2(zn), I)

Figure 1: Probabilistic model with NNs for classification of hand-written digits where dx is the
number of pixels, dy the number of classes and k the size of the hidden representation.

3. Code example

Here, the usage of InferPy is illustrated with the code for defining and making inference in the digit
classification model described above. The probabilistic model with the prior probabilities, namely
the P-model, is defined as a function decorated with @inf.probmodel and will be made of the
random variable defined inside the function. Fig 2 shows the code for defining the P -model of the
running example. Dimensions of variables inside inf.datamodel() are specified in a single
instance basis, resembling the so-called plateau notation. Note that NNs are defined with regular
Keras code.

1 @inf.probmodel
2 def digit_classifier(k, d0, dx, dy):
3 with inf.datamodel():
4 z = inf.Normal(tf.ones(k) * 0.1, 1., name="z")
5

6 nn1 = tf.keras.Sequential([
7 tf.keras.layers.Dense(d0, tf.nn.relu),
8 tf.keras.layers.Dense(dx)
9 ])

10 nn2 = tf.keras.Sequential([
11 tf.keras.layers.Dense(dy)
12 ])
13 x = inf.Normal(nn1(z), 1., name="x")
14 y = inf.Categorical(logits=nn2(z), name="y")
15

16 p = digit_classifier(k=2, d0=100, dx=28*28, dy=3)

Figure 2: P -model of the digit classification model depicted in Fig. 1.

For stochastic variational inference (SVI) (Zhang et al., 2018), a variational approximating fam-
ily should be defined, namely the Q-model. As shown in in the code in Fig. 3, each observation xn

is passed through a encoder NN to obtain the parameters of zn.
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1 @inf.probmodel
2 def qmodel(k, d0, dx):
3 with inf.datamodel():
4 x = inf.Normal(tf.ones(dx), 1, name="x")
5

6 encoder = tf.keras.Sequential([
7 tf.keras.layers.Dense(d0, activation=tf.nn.relu),
8 tf.keras.layers.Dense(2 * k)
9 ])

10 output = encoder(x)
11 qz_loc = output[:, :k]
12 qz_scale = tf.nn.softplus(output[:, k:])+0.01
13 qz = inf.Normal(qz_loc, qz_scale, name="z")
14

15 q = qmodel(k=2, d0=100, dx=28*28)

Figure 3: Q-model for SVI associated to model in Fig. 2.

Once the P and Q models are defined, inference can be done. Fig. 4 shows how to load the
MNIST dataset, set up the inference engine and fit the model to the data with SVI. Finally, the

1 # get the MNIST dataset
2 (x_train, y_train), (x_test, y_test) = mnist.load_data(
3 num_instances=N, digits=[0, 1, 2])
4 # set the inference algorithm
5 SVI = inf.inference.SVI(q, epochs=10000, batch_size=M)
6 # fit the model to the data
7 p.fit({"x": x_train, "y":y_train}, SVI)

Figure 4: Stochastic variational inference with MNIST data.

hidden representation of all the images can be obtained by sampling from the posterior of zn. For
predicting the class of a set of test images, first the posterior of z given the test data is calculated
and, secondly, the posterior predictive of y is computed. This is shown in Fig. 5.

1 # extract the posterior of z given the training data
2 postz = np.concatenate([
3 p.posterior("z", data={"x": x_train[i:i + M, :]}).sample()
4 for i in range(0,N,M)])
5 # predict a set of images
6 def predict(x):
7 postz = p.posterior("z", data={"x": x}).sample()
8 return p.posterior_predictive("y", data={"z":postz}).sample()
9 y_gen = predict(x_test[:M])

Figure 5: Sampling from posterior distribution and classification of test data.

4. Conclusions

We have briefly presented InferPy, a high-level API that allows to define hirearchical probabilistic
models containing NNs. The use of different intuitive abstractions greatly simplifies the task of
defining complex models.
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