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Abstract
This article discusses the current state of the art in terms of computational complexity for the
problem of finding the most probable configuration of a subset of variables in a multivariate domain
modelled by probabilistic graphical models such as Markov networks (random fields) or Bayesian
networks. It contains complexity proofs and an algorithm for the problem and shows empirical
results for Boolean trees which may suggest tractability of the task in some special cases.
Keywords: Bayesian and Markov networks, Maximum a Posterior, Most Probable Explanation.

1. Introduction

A Bayesian network (BN) is a probabilistic graphical model that relies on a structured dependency
among random variables to represent a joint probability distribution in a compact manner (Pearl,
1988). One of the hardest inference tasks in BNs is the maximum a posteriori (or MAP) problem,
where one looks for states of some variables that maximise their joint probability, given some other
variables as evidence (there may exist variables that are neither queried nor part of the evidence
and thus may need marginalisation). This problem is also called marginal or partial MAP, while
the version without variables requiring marginalisation is also called Most Probable Explanation
(MPE). In this paper we discuss on the state of the art in computational complexity of such tasks.
We revise some known and show some new theoretical results, in particular related to marginal MAP
in Bayesian and Markov network trees. It is disappointing, however, that the main goal of closing
the question about the complexity of marginal MAP in Boolean trees remains unreachable (to my
best knowledge). This paper provides further steps towards closing relevant complexity questions.

The reader is assumed to be familiar with complexity classes and reductions, and with MAP
and MPE in Bayesian networks (de Campos, 2011). Of use are the classes NP (non-deterministic
polynomial time) and PP (probabilistic polynomial time), as well as oracle constructions AB[m] to
represent the class A with access to a B-complete oracle such that the use of this oracle of class B is
restricted to at most m calls over all computations (m typically is a constant or a function of input
size; the notation without [m] means the oracle may be invoked as many times as desired).

Definition 1 A Bayesian network N is a triple (G,X ,P), where G = (VG ,AG) is a directed
acyclic graph with nodes VG associated (one-to-one) to random variables X = {X1, . . . , Xn}
over discrete domains {ΩX1 , . . . ,ΩXn} and P is a collection of probability values p(xi|πXi) ∈ Q,
the non-negative rational numbers defined by fractions of integers, with

∑
xi∈ΩXi

p(xi|πXi) = 1,
where xi ∈ ΩXi is a state of Xi and πXi ∈ ×X∈PAXi

ΩX a complete instantiation of states for
the parents PAXi of Xi in G. Furthermore, every variable is conditionally independent of its non-
descendant non-parents given its parents (Markov condition).

The joint probability distribution represented by a BNN = (G,X ,P) is obtained by the factori-
sation implied by the Markov condition: p(x) =

∏
i p(xi|πXi), where x ∈ ΩX and all states xi, πXi
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(for every i) agree with x. As abuse of notation, singletons {Xi} and {xi} may be respectively de-
noted as Xi and xi, and events such as {Xi = T} as xTi . Nodes of the graph and their associated
random variables are used interchangeably. Uppercase letters are used for random variables and
lowercase letters for their corresponding states. Bold letters are employed for vectors/sets. The
input size of a BN, called simply b here, is defined by the length of the bit string needed to specify
all information in the network, including the local conditional probability distributions.

An important concept is called treewidth. Treewidth measures the similarity of the graph with a
tree, and strongly relates to the hardness of inferences in BNs (Kwisthout et al., 2010).

Definition 2 Given a BN N = (G,X ,P) with AG 6= ∅, its minimum treewidth k ≥ 0 is obtained
by first moralising G (that is, connecting using an edge every pair of nodes sharing a common child
and then dropping the direction of all arcs) into G′ and then computing the minimum treewidth k of
G′, which is such that G′ is a subgraph of a k-tree, but not of any (k − 1)-tree.

Note that a BN whose graph has at most one parent per node has minimum treewidth k = 1 and
is called a BN tree, while a BN polytree also has no cycles in the underlying undirected graph, but
they appear because of moralisation.

The MAP problem for input (N ,X, e) is to find an instantiation xopt ∈ ΩX, with X ⊆ X \ E
(E are evidence variables given along their states e), such that its probability is maximised:

xopt = argmax
x∈ΩX

p(x|e) = argmax
x∈ΩX

p(x, e), (1)

because p(e) is a constant with respect to the maximisation (if p(e) = 0, then all x may be consid-
ered equally good/bad). In spite of that, the complexity of the decision version of the problem may
depend on whether one conditions or not, so I will define both variations here.

Definition 3 Given a BN N = (G,X ,P) chosen among those with maximum cardinality of any
variable at most z and minimum treewidth at most w, X ⊆ X \E, a rational r and an instantiation
e ∈ ΩE, Decision-MAPE-z-w is the problem of deciding if there is x ∈ ΩX such that p(x|e) > r. If
E∪X = X , we call the problem Decision-MPEE-z-w. If the query is changed to deciding whether
there is x such that p(x|e) < r, then we call it minimum a posterior and Decision-MINAPE.

Definition 4 Given a BN N = (G,X ,P) chosen among those with maximum cardinality of any
variable at most z and minimum treewidth at most w, X ⊆ X \E, a rational r and an instantiation
e ∈ ΩE, Decision-MAP-z-w is the problem of deciding if there is x ∈ ΩX such that p(x, e) > r. If
E ∪X = X , we call the problem Decision-MPE-z-w. If the query is changed to deciding whether
there is x such that p(x, e) < r, then we call it minimum a posterior and Decision-MINAP.

Table 1 shows a summary of known results. Before proceeding, it is worth noting that a BN can
be trivially cast as a Markov network by using the mass functions in P as potentials of the Markov
network and imposing the same factorisation through the product of potentials.

Definition 5 A Markov network (or random field) is a pair (X ,P), where P is a collection of
potentials over domains of subsets {Xj1 , · · · , Xjd} of X : fXj1

,··· ,Xjd
: ΩXj1

,··· ,Xjd
→ Q, with

variables X = {X1, . . . , Xn} over discrete domains {ΩX1 , . . . ,ΩXn} such that for every x ∈ ΩX :

p(x) ∝
∏

fXj1
,··· ,Xjd

∈P
fXj1

,··· ,Xjd
(xj1 , · · · , xjd) ,

where every xji ∈ ΩXji
is compatible with x.
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Table 1: Complexity situation of different MAP/MPE versions. tw means minimum treewidth, and
z means (a bound on) the (maximum) cardinality of any variable. (E) indicates that the
result holds both with and without the conditioning (see Definitions 3 and 4).

Problem Constraint z Result References
MAP(E) 2 NPPP-complete Park and Darwiche (2004)
MAP(E) tw = 1 5 NP-complete de Campos (2011)
MAP(E) tw = 1 b exp-APX-hard de Campos (2011)
MAP(E) Naive Bayes b NP-complete de Campos (2011)
MAP(E) tw = 1 3 NP-complete de Campos (2013), this paper

MINAP(E) tw = 1 2 NP-complete this paper
MAP(E) polytree tw = 2 2 NP-complete Park (2002)
MAP(E) tw ∈ O(1) O(1) FPTAS de Campos (2011)

MPE 2 NP-complete Shimony (1994)
MPEE 2 PP-hard, in PPNP[b] de Campos (2011), this paper

MPE(E) tw ∈ O(1) b in P well-known, see Darwiche (2009)
MPE 2 non approximable Kwisthout (2015), this paper

It is straightforward to use potentials f in Definition 5 to accommodate the functions of a BN
obtaining the very same joint distribution. In the special case of BN trees (at most one parent
per node), this translation yields an undirected tree with pairwise potentials (involving a node and
possibly its sole parent). Therefore, the hardness results for BNs often translate into hardness results
for Markov networks without major efforts.

It is also worth mentioning that work has been done on multiple variations of the problems, and
different complexity results for exact and approximate MPE/MAP inferences have been obtained,
see for example (Mauá et al., 2015; Kwisthout, 2011a,b). It is also worth noting that MPE cannot
be approximated in polynomial time by any multiplicative factor (even as function of input size). I
believe this is a well-known result, see for instance the discussion by Kwisthout (2015) and also by
Abdelbar and Hedetniemi (1998), but I have missed to find a proper citation for this precise result. I
invite the reader to point out where this result was first published and to cite the appropriate source.

Theorem 6 It is NP-hard to approximate MPE-z-b to any multiplicative ratio function, even if a(n
exponential) function of the input size and even for z = 2.

Proof It it is NP-hard to decide whether p(e) > 0 (Cooper, 1990; Kwisthout, 2018), hence it is
NP-hard to decide if exists x such that p(x, e) > 0. Since an answer of zero is not an approximate
value for any multiplicative ratio function, the result follows.

Therefore, note that a common “mild” assumption that the evidence which is provided as input
to the problem has positive probability changes the complexity class of MPE. Another common
“mild” assumption regards Markov networks, which is often defined using an exponential function
for the potentials. Again, this would imply strictly positive values everywhere, and hence MPE
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Y0 Y1 Y2 Y3 . . . Yn O

X1 X2 X3 . . . Xn

E1 E2 E3 . . . En

Figure 1: Tree used to prove Theorem 7.

Table 2: Probability values used in the proof of Theorem 7.
p(Yi|Yi−1) yTi−1 yFi−1 y∗i−1

yTi
1+ti

2 0 0

yFi
1−ti

2 0 0
y∗i 0 1 1

p(Ei|Xi) xTi xFi
eTi ti 1
eFi 1− ti 0

p(Xi|Yi) yTi yFi y∗i
xTi

ti
1+ti

1 1
2

xFi
1

1+ti
0 1

2

becomes approximable too. On the other hand, MPEE is not approximable regardless of these
considerations, as it is an PP-hard problem (de Campos and Cozman, 2005) (Theorem 2 there,
which has a flaw that will be discussed in the continuation, but which hardness result stands).

2. Hardness of Decision-MAP-3-1

The decision version of MAP is hard even in trees with cardinality five (de Campos, 2011). The
next theorem strengthens that result, and was first presented in a technical report but never published
elsewhere (de Campos, 2013). Pertinence in NP is trivial and well-known.

Theorem 7 Decision-MAP-z-w and Decision-MAPE-z-w are NP-hard even if z = 3, w = 1.

Proof We use a reduction from the partition problem (Garey and Johnson, 1979), which is the
problem of deciding whether a list of positive integer numbers s1, . . . , sn can be partitioned in a
way such that

∑
i∈I si =

∑
i/∈I si, where I ⊆ N = {1, . . . , n} (the notation i /∈ I means that

i ∈ N \ I). We say that the partition problem is a yes-instance if there is such a I , otherwise
we call it a no-instance. Instead of working with the partition problem in that form, we define
S :=

∑
i si/2 and vi := si/S, i = 1, . . . , n, and work with the partition problem using vi instead

of si (note that S is an integer, otherwise it would be trivially a no-instance, and that the hardness of
the problem remains the same, as there is a polynomial-time computable bijection between solutions
and decisions of the two variants).

We build a tree over variables X1, . . . , Xn, Y0, . . . , Yn, O,E1, . . . , En with graph as in Figure
1. The root node is associated to the ternary variable Y0 taking values in {yT0 , yF0 , y∗0} such that
p(yT0 ) = 1. For variable O, we have p(oT |yFn ) = p(oT |y∗n) = 1 and p(oT |yTn ) = 0. The remaining
variables are defined in Table 2.

Consider the computation of MAP where the variables of interest are X = {X1, . . . , Xn} (the
gray ones in Figure 1) and evidence (eT , oT ) = {∀i : Ei = eTi } ∪ {O = oT } (dark nodes in the
figure). It follows that

p(x, eT , oT ) =
∑
yn

p(oT |yn)p(yn,x, e
T ) = p(yFn ,x, e

T ) + p(y∗n,x, e
T ) =
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= p(x, eT )− p(yTn ,x, eT ) = p(eT |x)
(
p(x)− p(yTn ,x)

)
.

By calculations with this specification of the network, one obtains p(x) = 2−n (no matter the actual
states of x), p(yTn ,x) = 2−np(eT |x) = 2−n

∏
i∈I ti, where I ⊆ N is the set of indices of the

elements such that Xi is at the state xTi . Denote t =
∏

i∈I ti. Then p(x, eT , oT ) = 2−nt(1 − t).
This is a concave quadratic function on 0 ≤ t ≤ 1 with maximum at 2−1 such that t(1 − t)
monotonically increases when t approaches one half (from both sides). If we could set ti to be
exactly 2−vi , then 1

2n t(1 − t) = 1
2n 2−

∑
i∈I vi(1 − 2−

∑
i∈I vi), which achieves the maximum of

1
2n 2−1(1− 2−1) if and only if

∑
i∈I vi = 1, that is, if and only if there is an even partition.

It remains to show that we can specify values ti using only polynomially many bits in b such that
they are very close to 2−vi , and hence yes-instances of partition are separated from no-instances.
For that, one just needs to follow the results in (Mauá et al., 2013; de Campos and Cozman, 2013)
regarding errors introduced by using rationals in place of real numbers, or the very same approach
as in Theorem 3 of (de Campos, 2011), which we copy here for completeness.

Compute each ti to be equal to 2−vi with 4b + 3 bits of precision and by rounding it up (if
necessary), that is, ti = 2−vi + errori, where 0 ≤ errori < 2−(4b+3). Clearly ti can be computed
in polynomial time and space in b (this ensures that the specification of the Bayesian network,
which requires rational numbers, is polynomial in b). Note that 2−vi ≤ ti ≤ 2−vi + errori <
2−vi + 2−(4b+3) ≤ 2−vi+2−4b

(in short, this holds because 2−4b in the exponent makes the value
grow faster than the linear addition of 2−(4b+3)).

If I is not an even partition, then we know that one of the two conditions hold: (i)
∑

i∈I si ≤
S − 1 ⇒

∑
i∈I vi ≤ 1 − 1

S , or (ii)
∑

i∈I si ≥ S + 1 ⇒
∑

i∈I vi ≥ 1 + 1
S , because the original

numbers si are integers. Consider these two cases.
If
∑

i∈I si ≥ S + 1, then t <
∏

i∈I 2−vi+2−4b
equals to

2
∑

i∈I(−vi+2−4b) ≤ 2
n

24b
−(1+ 1

S
) ≤ 2

−1−( 1

2b
− 1

23b
)

= l,

by using S ≤ 2b and n ≤ b < 2b. On the other hand, if
∑

i∈I si ≤ S − 1, then t ≥
∏

i∈I 2−vi

equals to
2−

∑
i∈I vi ≥ 2−(1− 1

S
) = 2−1+ 1

S ≥ 2
−1+ 1

2b = u.

Now suppose I ′ is an even partition. Then we know that the corresponding t′ satisfies 2−1 ≤ t′

and
t′ <

∏
i∈I′

2−vi+2−4b
= 2

∑
i∈I′ (−vi+2−4b) ≤ 2

−1+ 1

23b = a.

To complete the proof, we show that the distance between t′ and 2−1 is always less than the
distance between t and 2−1 of a non-even partition plus a gap, that is,

|t′ − 2−1|+ 2−(3b+2) ≤ a− 2−1 + 2−(3b+2)

< min{u− 2−1, 2−1 − l} ≤ |t− 2−1|, (2)

which can be proved by analysing the two elements of the min. The first term holds because

a+2−(3b+2) − 2−1 < a · 2
1

22b − 2−1

= 2
−1+ 2−b+2−2b

2b − 2−1 < 2
−1+ 1

2b − 2−1 = u− 2−1.
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The second comes from the fact that the function h(b) = a+l+2−(3b+2) = 2
−1+ 1

23b +2
−1−( 1

2b
− 1

23b
)
+

2−(3b+2) is less than 1 for b = 1, 2 (by inspection), it is a monotonic increasing function for b ≥ 2
(the derivative is always positive), and it has limb→∞ h(b) = 1. Hence, we conclude that h(b) < 1,
which implies

a+ l + 2−(3b+2) < 1 ⇐⇒ a− 2−1 + 2−(3b+2) < 2−1 − l.

This concludes that there is a gap of at least 2−(3b+2) between the worst value of t′ (relative to an
even partition) and the best value of t (relative to a non-even partition), which will be used next to
specify the threshold of the MAP problem:

max
x

p(x, eT , oT ) > r = c · 1

2n
, (3)

where c is defined as a′ · (1 − a′), with a′ equals a evaluated up to 3b + 2 bits and rounded up,
which implies that 2−1 < a ≤ a′ < a + 2−(3b+2). By Eq. (2), a′ is closer to one half than any t
of a non-even partition, so the value c is certainly greater than any value that would be obtained by
a non-even partition. On the other hand, a′ is farther from 2−1 than a, so we can conclude that c
separates even and non-even partitions, that is, t · (1− t) < c ≤ a · (1− a) < t′ · (1− t′) for any t
corresponding to a non-even partition and any t′ of an even partition. Thus, a solution of the MAP
problem obtains p(x, eT , oT ) > r if and only there is an even partition. The conditional version
Decision-MAPE-3-1 is also hard by including the term 1

p(eT ,oT )
in r, which can be computed in

polynomial time by a BN propagation (Pearl, 1988).

3. Complexity of Decision-MPEE

It is known that MPE and MPEE are both solvable in polynomial time if the treewidth of the BN is
bounded by a constant using join-trees and/or variable elimination algorithms and given that know-
ing the treewidth bound allows one to find a good elimination order in polynomial time (Bodlaender,
1993). If treewidth is unbounded, then the situation changes: Decision-MPE-z-b is NP-complete
even if z = 2. Previously, we have attempted to demonstrate that Decision-MPEE-2-b is PP-
complete in Theorem 2 of (de Campos and Cozman, 2005). That proof is correct for hardness, but
unfortunately wrong for the pertinence in PP. The result remains open, but can be further tightened.

Theorem 8 Decision-MPEE-2-b is PP-hard and belongs to PPNP[b].

Proof PP-hardness comes from Theorem 2 in (de Campos and Cozman, 2005) (ignoring the mistak-
enly pertinence in PP claimed there). Pertinence in PPNP[b] is obtained by the following procedure:

1. Using an NP-complete problem (e.g. Decision-MPE-2-b), compute v = maxx p(x, e) exactly
by discovering its bits one by one through calls to Decision-MPE-2-b (we know that v requires
at most O(b) since it cannot be larger than all integers, numerators and denominators, in the
input multiplied, and thus all bits can be discovered by a sort of bisection approach).

2. If v = 0, then use the PP machine to check whether p(e) > 0. If so, answer zero, otherwise
answer as desired (based on your understanding of 0/0).

3. Use the PP machine to check whether p(e) < v/r ⇐⇒ v/p(e) > r (note that PP is closed
under complement, so the direction of the call does not matter).
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Note that PP = PPP[log b], so it is fine to run two calls of PP without changing complexity class.

To the best of my knowledge, it is unknown whether PPNP[b]=PP, though such equality would
not surprise this author (neither would the inequality) (de Campos et al., 2020).

4. Decision-MINAP-2-1 is NP-complete

The minimisation version of the MAP/MPE problem has been arguably less interesting, but it is
nevertheless an valid theoretical question. Moreover, as an example, it could be used to check
the “support” of the probability distribution by checking if p(x) > 0 everywhere (respectively by
checking if there is x such that p(x) ≤ 0 (or less than 2−O(b) to avoid using zero). I prove that such
task is NP-complete even if the BN is a tree and all variables are Boolean.

Theorem 9 Decision-MINAP-2-1 and Decision-MINAPE-2-1 are NP-Complete even in a Naive
Bayes structure.

Proof Pertinence in NP for both cases is trivial, as we can compute, for given x, the values p(x, e)
and p(e) in linear time in BN trees. Hardness comes with a reduction from the partition problem
(see beginning of proof of Theorem 7 for its definition – the same problem is employed here).

Table 3: Probability values used in the proof of Theorem 9.
p(Xi|Y ) yT yF

xTi
ti

1+ti
1

1+ti
xFi

1
1+ti

ti
1+ti

Define a Naive Bayes structure with Boolean class variable Y and p(yT ) = p(yF ) = 1/2, while
X1, . . . , Xn are the Naive Bayes features with mass functions defined in Table 3. Let ti = 2−vi ,
with vi = si/S, where S =

∑
i si/2 and s1, . . . , sn are the naturals in the input of the partition

problem. Those will be the MINAP(E) queried variables. Therefore, for any given x, we have

p(x) =
1

2
∏

i(1 + ti)

 ∏
i: xT

i ∈x

ti +
∏

i: xF
i ∈x

ti

 . (4)

Note that x defines which elements are put in each of the two terms. Moreover,

t =
∏

i: xT
i ∈x

ti +
∏

i: xF
i ∈x

ti = 2−
∑

i∈I vi + 2−
∑

i∈IC vi , (5)

with I ⊆ {1, . . . , n} and IC = {1, . . . , n} \ I defined as the indices of x with true and false
states, respectively. Expression (5) is a convex function in the terms, so it obtains its minimum at∑

i∈I vi =
∑

i∈IC vi = 1 (by construction
∑

i vi = 2), and in such case Expression (5) becomes
1. Therefore, a MINAP query (no evidence is required) of whether p(x) ≤ 1

2
∏

i(1+ti)
would solve

partition. The only remaining task is to show that we can encode the probability values described in
Table 3 succinctly while keeping the result correct. For that, we shall note that there is a gap between
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a partition solution yielding a yes result and the best possible no result. This gap will increase t by
at least 1/S in the exponent of one of its two terms, that is, if I is not an even partition, because the
original numbers si are integers, we have

t ≥ 2−1−1/S + 2−1+1/S > 1 + 2−O(b) .

Therefore, it is enough to encode all values ti with a precision of h(b) bits, for some polynomial
h, such that yes and no results do not get overlapped even with small “errors” introduced by the
approximate encode of ti = 2−vi . The gap of 2−O(b) is enough to avoid such overlapping so we can
query MINAP whether p(x) < 1

2
∏

i(1+t′i)
+ 2−h

′(b) with an appropriate polynomial h′ and appro-
priate approximations t′i ≈ ti used to define the BN. For a more detailed discussion, one can follow
the same ideas as in the proof of Theorem 7. It is also possible to arrive to this result by employing
results about the approximation of BNs by similar networks with rational parameters, e.g. through
a crafted use of Lemma 1 in (Mauá et al., 2014).

Despite numerous attempts, unfortunately I have not been able to prove the NP-hardness (or
create a provably tractable algorithm) for Decision-MAP-2-1, which remains an open problem.
This paper is an invitation for researchers who may have or may come up with a proof to close
this problem. Because of the lack of a proof in either direction (tractability or NP-hardness), I have
created a small software with the approach to solve MAP as presented in (Mauá and de Campos,
2012) in order to test the empirical characteristics of the problem.

5. An Efficient Implementation for MAP in Trees

This section builds an algorithm for MAP inferences. First, it is assumed that every node has a
“list” of potentials which is initialised with the potentials that regard itself and its parent (the root
node can be seen as having an imaginary parent to facilitate the description). The potentials are
stored in a list, with one potential for each state of the node’s variable, and each potential vector
coordinate value refers to the conditional on a particular state of the parent node (so these vectors
have dimension equal to the number of states of the parent node). Now, we start the algorithm by
calling it for the root node of the tree: MAPinTree(root).

The algorithm MAPinTree assumes the following about the MAP problem: (1) All MAP vari-
ables (those to be explained) are in the leave nodes, while all internal nodes are to be marginalised.
This is possible without loss of generality because one can, for every internal MAP node (processed
from the deepest to the shallowest), recursively solve the MAP problem by calling the algorithm
for all subtrees of such internal MAP node independently for each possible value of the MAP node,
and then linearly combine the results (making such internal MAP node become just like a leaf node
for all later purposes, as its subtrees were already resolved and their results integrated into its poten-
tials). Such recursion is efficient because it breaks the tree into smaller independent subproblems.
(2) All leaves are MAP nodes: If they are not, then they can be marginalised beforehand.

Algorithm MAPinTree(node): // Leaves are MAP nodes, others are to be marginalised

1. If node is leaf, return.

2. For each child of the node: call MAPinTree(child).
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3. While node has at least 2 children:

(a) Merge two children of node by multiplying (value-wise) every potential (vi)∀i of one
child with every potential (ui)∀i of the other, obtaining a new potential (vi ·ui)∀i. Here i
runs over the states of the current node, while the different potentials represent different
states of the child. This generates L1 · L2 new potentials if these children had L1 and
L2 potentials in their lists.

(b) Run Pareto-pruning and/or convex hull algorithm(s) on the new list of L1 ·L2 potentials
to potentially reduce its size and store in the merged child (discard the other child).

4. (Here node has only one child.) Cross-multiply each potential (vi)∀i of the sole child by the
potentials {pi : (wj)∀j} of the current node, obtaining the new potential (

∑
i vi ·pi,j)∀j . Here

i runs over states of the current node, while j runs over states of the parent of the current
node. The new potentials become the list of potentials of the current node. If we are at the
root node, the vectors become one-dimensional (as if there was a single option j).

5. Run Pareto-pruning and/or convex hull algorithm(s) on the new list of potentials of the current
node and return. (At the root node, this will become a single number.)

It is easy to keep track of the configurations so to return the MAP configuration in the end by
labelling potentials with states of the MAP variables as potentials are created. The correctness of
this algorithm is discussed in previous work (Mauá and de Campos, 2011; Maua et al., 2013; Mauá
et al., 2012; Mauá and de Campos, 2012), though in a more elaborate presentation because the work
there was not restricted to trees. The simplicity of this algorithm in the case of trees allows one
to implement the Pareto pruning in O(L2) regardless of the size of the state space of the variables
in the problem, where L is the number of potentials in the list, while the convex hull can be done
in O(L · logL) in the Boolean case, but grows quickly as we move to larger state spaces of the
variables (this is why it is particularly efficient in Boolean trees).

The algorithm trivially becomes a Fully Polynomial-Time Approximation Scheme (FPTAS) if
at each iteration we only keep one potential for each cell in a grid in the log-space translation
of the potentials (which are simply vectors with dimension equal to the number of states of the
parent node). Such a grid in a log-space gives us a multiplicative approximation. More details
can be found in (de Campos, 2011; Mauá et al., 2011). Under a clever implementation, this can
be achieved, for example, by limiting the precision of the numbers in some of the computations.
In order to understand better Decision-MAP-2-1 for which no complexity proof exists, I have run
some simple experiments with the algorithm and report the results here. The code works with
unnormalised Boolean tree BNs (Markov networks), is implemented in an efficient manner using
the C programming language and GNU multiple precision libraries. I have used three types of
input during the experiments: random structures with random parameters, Naive Bayes structure
with random parameters, and Naive Bayes structure with parameters mapping the partition problem
(with random positive integer input values). Results are presented in Table 4. All experiments used
256 bits of precision for mantissa (around five times a standard double precision number) and runs
were allowed 8GB of memory. Results involving the partition problem indicate the difficulty of
solving large instances. Random results suggest that MINAP complexity exponentially grows with
the size of the input, while MAP stays stable. This may suggest that the MAP problem in Boolean
trees is tractable, or is simply a reflection of domain sizes and limited numeric precision.
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Table 4: MAPinTree results on Boolean trees. Max. value regards the integer numbers in the input
(fractions are numerator / denominator; for partition, they regard the integers of the input
before translation to a BN). Memory is the max. number of potentials used. Median and
maximum are over 20 random runs. (∗These cases have always run out of 8GB memory).

Median Maximum
Problem Description Max Value Nodes Memory Time(s) Memory Time(s)
MINAP naive Bayes w/ 106 50 59 0.06 84 0.08

random params 100 125 0.198 200 0.285
200 396 1.328 1238 1.893
300 1103 2.793 20863 9.893

MAP naive Bayes w/ 106 50 5 0.01 7 0.015
random params 100 5 0.017 6 0.023

200 5 0.04 7 0.047
300 5 0.043 7 0.049

MINAP partition 104 10 512 0.034 512 0.039
problem 20 91857 11.553 100842 17.42

30 236979 77.09 264638 82.81
105 10 512 0.036 512 0.045

20 347065 27.599 372670 31.10
30 2046264 532.318 2237859 586.4

106 10 512 0.035 512 0.038
20 501347 34.672 510413 38.13
30∗ > 10Mln > 600 > 10Mln > 600

MINAP random struct. 106 50 57 0.046 101 0.073
and parameters 100 143 0.21 197 0.326

200 417 1.288 713 1.761
300 1129 2.509 10403 14.53

MAP random struct. 106 50 5 0.009 7 0.014
and parameters 100 5 0.018 6 0.023

200 5 0.042 7 0.047
300 6 0.049 7 0.061

6. Conclusion

This paper discusses on the current complexity results for marginal/partial MAP and full MAP (also
called MPE) queries in Bayesian networks (which naturally extend to Markov networks too) and
strengthens the theoretical results for them. A known non-approximability result is discussed for
MPE, and a previously unpublished result shows that the decision version of MAP is NP-hard in
ternary BN trees (and consequently in ternary Markov networks). A correction about a previous
pertinence-in-PP proof of the conditional version of MPE (here called MPEE) is discussed and a
corrected version yields pertinence in PPNP[b], that is, PP with access to an NP-complete problem
oracle limited to b calls overall (b means the size of the input). The author is not aware of whether
such complexity class equals PP or not. A new proof for the minimisation counterpart of partial
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MAP (called MINAP) shows that such query is NP-complete even in Boolean BN trees. An efficient
algorithm for MAP in trees is described, which is a specialisation of previous results that yield a
fully polynomial-time approximation scheme. The novelty is to exploit this specialised version to
implement a highly efficient code for trees with binary variables. Experiments suggest that the time
complexity of MINAP grows exponentially in the input size, while MAP’s time and memory usages
remain considerably flat. At a first glance, this might suggest that the MAP problem is tractable,
even though it may simply be a reflection of experimental design and amount of experiments. The
question will not be answered without a formal proof in either way, and this remains open.
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