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Abstract
M-Modes is the problem of finding the top M locally optimal solutions of a graphical model, called
modes. These modes provide geometric characterization of the energy landscape of a graphical
model and lead to high quality solutions in structured prediction. It has been shown that any mode
must be a local MAP within every subgraph of certain size. The state-of-the-art method is a search
algorithm that explores subgraphs in a fixed ordering, uses each subgraph as a layer and searches
for a consistent concatenation of local MAPs. We observe that for the M-Modes problem, differ-
ent search orderings can lead to search spaces with dramatically different sizes, resulting in huge
differences in performance. We formalize a metric measuring the quality of different orderings.
We then formulate finding an optimized ordering as a shortest path problem, and introduce pruning
criteria to speed up the search. Our empirical results show that using optimized orderings improves
the efficiency of M-Modes search by up to orders of magnitude.

Keywords: Graphical Model; Exact Inference; Heuristic Search; M-Modes.

1. Introduction

For inference in probabilistic graphical model, much effort has been directed at algorithms for
obtaining a single solution with the highest probability (MAP) (Figure 1(a)). In many applications,
it is useful to find a set of top solutions, i.e., M-Best (Nilsson, 1998; Dechter et al., 2012). However,
the M most probable configurations tend to be very similar to the MAP solution or to each other,
thus lacking diversity (Figure 1(b)).

Diverse multiple inference tries to address the drawback by attempting to find a set of solutions
with both high probability and high diversity and has shown impressive results in a number of
computer vision (Batra et al., 2012; Yadollahpour et al., 2013; Kirillov et al., 2015), computational
biology (Fromer and Yanover, 2009), and machine translation (Gimpel et al., 2013) where multiple
hypotheses are preferred for advanced reasoning. One method called Diverse M-Best (Batra et al.,
2012) finds multiple diverse solutions one by one greedily such that each solution has the highest
probability among all solutions that are certain distance away from existing solutions (Figure 1(c)).
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Figure 1: Illustration of four inference problems. Each vertical bar corresponds to a labeling. The
height corresponds to its probability.
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Figure 2: An illustration of modes under different δ. Each vertical bar corresponds to a labeling, and
the height corresponds to its probability. (a) When δ = 0, every labeling is a mode, and M-Modes
reduces to M-Best. (b) When δ = 1, there are three modes. (c) When δ = 4, only two modes are
left. The third mode is no longer locally optimal in its δ-neighborhood. (d)When δ = ∞, only the
first mode is a mode, and M-Modes reduces to MAP.

M-Modes (Chen et al., 2013), as another multiple inference method, aims to find a set of top
solutions that not only have high probabilities but also are the MAPs in respective local neighbor-
hoods. M-Modes is based on an inherent property of the distributional landscape description and
is not biased by different search strategies (Figure 1(d)). The state-of-the-art algorithm for solving
M-Modes is a heuristic search approach based on tree decompositions that is applicable to loopy
graphs (Chen et al., 2018).

In this work, we propose an improvement of current heuristic search method by optimizing a
better subgraph ordering. The key observation is that different orderings of subgraphs can lead to
very different search spaces. Only newly included boundary variables called frontiers will intro-
duce new branches to the search tree; other variables all correspond to verification layers without
branching. Therefore, an ordering with fewer frontiers can reduce the total size of the search space
exponentially. Based on the observation, we define a metric for evaluating the quality of search
orderings. We then formulate finding an optimized ordering as a shortest path problem. Besides, we
define an interesting related δ-vertex cover graph theory problem and prove its NP-completeness.
Empirical results show that using optimized orderings improve the efficiency of M-Modes search
by up to orders of magnitude.

2. Background

2.1 M-Modes Problem

The M-Modes method is the problem of computing the top M locally optimal configurations, each
of which has higher quality than all other solutions within a given scalar distance δ. These locally
optimal solutions, called modes, capture the topographical features of the probabilistic landscape of
the given graphical model, and are also highly possible and are naturally diverse.

Given a non-negative integer δ, δ-neighborhood Nδ(y) is defined as Nδ(y) = {x | ∆(x, y) 6
δ }. Without loss of generality, we assume using Hamming distance. Thus, a labeling y is a δ-
mode as y has highest probability (lowest energy) in its δ-neighborhood. So, M-Modes is a multiple
inference problem to compute the top M best modes.

The concept of δ-neighborhood ensures the modes are diverse; any two modes are at least δ
away. If δ is set too large, too many high-probability solutions are suppressed by superior neighbors,
and the top modes may contain too many low-probability solutions. Thus, the δ provides a tradeoff
between the diversity and probability of modes. Figure 2 illustrates what mode solutions and δ-
neighborhoods are and how the scale δ affects the number of modes. When δ = 0, every labeling is
a mode so that the problem becomes M-Best; when δ =∞, the MAP solution is the only mode.
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2.2 Global-Local Theorem

To compute M-Modes, one has to leverage the relationship between a mode and its local patterns.
Given a graph G, we are particularly interested in its connected subgraphs with size δ, called δ-
subgraphs. For a δ-subgraph, Sδ or S for simplicity, all variables that are adjacent to variables in
S are its boundary or boundary variables, denoted as ∂S. Denote by cl(S) the disjoint union of S
and its boundary ∂S, S t ∂S. For convenience, we also call the variables of S interior variables.

A label assignment to a δ-subgraph, S, is called a local labeling. Given a label assignment to
boundaries of S, the highest precedential local labeling of S is called a local MAP. We say two
local labelings are consistent if they agree on the overlaps. For example,〈101 . . . 〉 and 〈 011 . . . 〉
are consistent for they both have same label at overlaps, variable 2 and 3.

It was shown that there is a close connection between the modes of a graph and the local MAPs
of the δ-subgraphs. In particular, any consistent combinations of local MAPs is a global mode, and
vice versa (Chen et al., 2014). This property has been used by several recent algorithms for solving
M-Modes (Chen et al., 2016, 2018). Formally, we have:

Theorem 1 (Global-Local). A labeling is a δ-mode if and only if its local labelings of all δ-
subgraphs are local MAPs.

In order to use the Global-Local Theorem to find M Modes from a given model, we should
explore all δ-subgraphs of a graphical model as a prepocessing step. The calligraphic font Sδ or S
denotes the set of all the δ-subgraphs of a given graph. Table 1 shows the number of δ-subgraphs
of different δ size (|Sδ|) on three benchmark datasets. It empirically shows δ-subgraph set sizes are
about exponentially increasing to δ size (when δ is much smaller than the number of variables).

δ = 1 2 3 4 5 6 7 8

Child 20 32 92 282 770 1,785 3,498 5,843

Alarm 37 70 216 704 2,237 6,817 19,895 55,836

Hepar2 70 161 1,380 11,939 93,630 658,728 4,171,393 23,971,053

Table 1: δ-subgraph set sizes on dataset Child, Alarm, and Hepar2

2.3 Solving M-Modes

The computation of M-Modes is challenging. Based on this Global-Local Theorem, a dynamic
programming algorithm (Chen et al., 2013, 2014) for solving M-Modes, first computes all local
MAPs of each subgraph conditional on different boundary configurations. Next, it searches through
all the consistent concatenations of these local MAPs. The computational bottleneck is spending
most of the time computing unnecessary local MAPs; many of them are never used in any mode
due to inconsistency.

The current algorithm for solving M-Modes is a heuristic search approach which generates and
verifies necessary local MAPs on the fly (Chen et al., 2016). The algorithm explores all subgraphs
one-by-one according to a given ordering. At each step, local MAPs of a subgraph are computed
for different boundary variable values, and are used to verify that only permissible successor search
nodes are generated. The advantage of the search algorithm is that it computes only local MAPs
that are needed during the search, and heuristic functions guide the search to explore only the
most promising search space. However, due to the difficulty of coordinating mode search, heuristic
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function calculation and local MAP computation in general loopy graphs, the method was only
implemented and tested on special graphical models such as trees or submodular grid graphs. Thus,
Chen et al. (2018) provides a more general implementation of the search method based on tree
decompositions that is applicable to general loopy graphs. See Table 2 for listing the evolution of
algorithms for solving M-Modes.

Chains Trees Loopy Graphs

DP (Chen et al., 2013) DP (Chen et al., 2014) –

– HS* (Chen et al., 2016) HS + TD (Chen et al., 2018)

Table 2: Evolution of algorithms solving M-Modes on chains, trees, and general loopy graphs.
DP: Dynamic Programming; HS: Heuristic Search; TD: Tree Decomposition. * HS can also solve
submodular grid graphs;

3. Optimizing Heuristic Search Ordering for Solving M-Modes
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Figure 3: A tree graph

In this section, we present methods for finding optimized heuristic
search orderings for solving M-Modes. We use a simple example to
explain the impact of search orderings on the size of search spaces.
We define a metric for evaluating the quality of search orderings
and present related algorithms for finding optimized orderings.

A Naive Search Ordering: We now use a simple example to
illustrate how search orderings impact the size of search spaces. We
use the tree graph in Figure 3 as our example for easier illustration;
the same idea easily generalizes to loopy graphs by tree decompo-
sition. Assume that all the vertices have label size 2, and δ = 1.

First, we use a depth first traversal to get an ordering of vertices which is 0→ 1→ 2 . . .→ 8→ 9.
We then create an ordering of all the δ-subgraphs such that the interior variables of the subgraphs
follow the same ordering (See Column Sδ in Table 3(a)). Then, for each δ-subgraphs, we circum-
scribe it and get boundary variables (See Column ∂Sδ in Table 3(a)). For example, the boundary of
δ-subgraph {2} are {1, 3, 7, 8}. Fixing the labels of the boundary, there is a unique local MAP for
the interior variable {2}.

We first perform M-Modes search using the δ-subgraph ordering S+δ [ ~ord1] in Table 3(b). Ini-
tially, none of the vertices are instantiated. For the first layer, the δ-subgraph has interior 0 and the
new boundary 1. We create two successor search nodes corresponding to the two labels of vertex
1 respectively. We also compute the local MAP value for the interior 0 conditional on the value
of boundary 1. Afterwards, we may have two search nodes with partial labelings such as 〈10〉 and
〈01〉. Each of the nodes has a score of summing the energies of fixed vertices (as current cost) and
undecided vertices (as heuristic). We choose the search node with a lowest value to continue.

The δ-subgraph corresponding to the next layer has interior 1 and boundaries {0, 2}. But ver-
tices 0 and 1 are already instantiated in the previous step; only vertex 2 is a new boundary. We
therefore instantiate 2 to different values and verify whether the value of interior 1 is the local MAP
or not. We only create a successor node if it passes the verification. Out of the two possible succes-
sor nodes with partial labelings 〈100〉 and 〈101〉, we may find that only the second one passed the
verification and is kept for further search.
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Index Sδ ∂Sδ ~ord1 S+δ [ ~ord1] ~ord2 S+δ [ ~ord2]

[0] 0 1 [0] 1 [1] 0, 2

[1] 1 0, 2 [1] 2 [3] 4

[2] 2 1, 3, 7, 8 [2] 3, 7, 8 [8] 9

[3] 3 2, 4 [3] 4 [0] –

[4] 4 3, 5, 6 [4] 5, 6 [5] –

[5] 5 4 [5] – [6] –

[6] 6 4 [6] – [4] –

[7] 7 2 [7] – [7] –

[8] 8 2, 9 [8] – [2] –

[9] 9 8 [9] 9 [9] –

(a) (b) (c)

Table 3: δ-subgraphs for the tree graph in Figure 3 where δ = 1; (a) Index are the indices assigned
to all δ-subgraphs, Sδ are the interior variables of each δ-subgraphs, ∂Sδ are the boundary variables;
(b) S+δ [ ~ord1] are the frontiers given the default (naive) ordering ~ord1; (c) S+δ [ ~ord2] are the frontiers
given an optimized ordering ~ord2.

Then, the next layer has 3 new boundaries, so we need to consider all their combinatorial config-
urations, resulting in up to 23 = 8 new successor nodes. The search continues in the same way for
the remaining δ-subgraphs. If all of the δ-subgraphs have been checked and a search path survived,
the final labeling is a mode. If we use A* algorithm, the first mode found must be the 1-Mode,
which is also the MAP. And the second mode must be the 2-Mode, etc. We stop when we get
enough modes. See Figure 4(a) for the partial search tree created above.

A Better Search Ordering: Now consider another δ-subgraph ordering in Table 3(c). We
start by searching the δ-subgraph with interior 1 and boundaries {0, 2}. Up to four search nodes
corresponding to partial labelings 〈0 0〉, 〈0 1〉, 〈1 0〉 and 〈1 1〉will be created. The value of interior
1 is filled in by local MAP inference. Then for the next layer, since vertex 2 is already fixed, we skip
to search the δ-subgraph with interior 3 and new boundary 4, in which we branch on the values of 4
and get values for 3 by local MAP inference. Then, we skip to search the δ-subgraph with interior
8 and boundary 9. After only three search layers, we already obtained values for all vertices except
5, 6, 7, whose values can be obtained by local MAP inference as well. Other remaining δ-subgraphs
whose interiors did not obtain their values via local MAP inference need to be verified whether
the values are local MAPs or not. Therefore, all these remaining searches form one single search
path downward and do not increase the number of branches. We call these no-branching layers as
verification layers for simplicity. Comparing to the naive search ordering, the new ordering leads to
a much smaller search space. See Figure 4(b) for part of the new search tree.

3.1 Frontiers

We now formalize some observations from the simple example. At any step, the variables involved
in the search are either already instantiated in previous search steps, or new and yet to be instantiated.
Such new variables are either interior or boundary variables. When the boundary variables of a δ-
subgraph are instantiated to one particular configuration, the interiors have to take on the values
of the local MAP to be eligible for further search. Therefore, only the undecided new boundaries
contribute to increasing the size of search space, and interiors do not. The number of new successor
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Figure 4: Two example search trees (first three layers) for solving M-Modes for the tree graph in
Figure 3 when δ = 1. The layer indices are the search ordering (same as the interiors) and the labels
for each nodes are frontier labelings (the big numbers are the vertices and the subscripts are chosen
labels). (a) is the search tree for default ordering and (b) is for the optimized ordering.

nodes is exponential in the number of new boundary variables. We call these undecided boundaries
frontiers.

Definition 1 (Frontier). Vertex v is a frontier, denoted as v ∈ S+
δ [i] if and only if v ∈ ∂Sδ[i], and

v /∈ cl(Sδ[j]) for all j < i.

Frontiers are highly specific to particular δ-subgraph orderings. If a variable was first searched
as an interior variable, it has no chance to become frontiers. In Tables 3(b) and 3(c), Sδ denotes the
set of all the δ-subgraphs. This set can be ordered by an ordering vector ~ord, denotes as Sδ[ ~ord].
The ordering ord1 in Table 3(b) introduced 8 frontiers in total, while ord2 in Table 3(c) introduced
only 4 frontiers in total.

3.2 Defining Search Space Complexity

The simple example above shows that different search orderings lead to search spaces with drasti-
cally different sizes. We define a metric to measure the search space complexity induced by a search
ordering. Given a particular ordering of δ-subgraphs Sδ[ ~ord], we denote the induced search tree as
SearchTreeδ[ ~ord]. Traditionally, we use the size of the search tree as the complexity of the search
space, which is exponential in the depth of the tree. However, because the number of search layers
of M-Modes is always equal to the number of δ-subgraphs, but many of them form verification
layers without branching, we propose to use the number of leaves to measure the size of the search
space. The tree size can be bounded by the leaf size as follows:∣∣∣SearchTreeδ[ ~ord]

∣∣∣ = c ·
∣∣∣Leaf(Sδ[ ~ord])

∣∣∣, ( 2 < c < |Sδ| − 1 ) (1)

Here the coefficient c is greater than 2 because there must exist at least one verification layer.
And it is less than |Sδ| − 1 because there must exist at least one layer with frontiers.

Therefore, based on the fact that only frontiers increase the number of search branches, the num-
ber of leaves is equal to the total number of branches induced by the combinatorial configurations
of the frontiers. We get:

∣∣∣Leaf(Sδ[ ~ord])
∣∣∣ =

∣∣S+δ [ ~ord]
∣∣−1∏

i=0

∏
v∈S+

δ [i]

Lv =
∏

v∈S+δ [ ~ord]

Lv (2)
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3.3 Finding Optimized Search Ordering

Once the search space complexity is defined, we find an optimized ordering by searching for the
ordering which minimizes the leaf size. Taking log transforms the multiplicative total size into a
summation of log label sizes.

Problem 1 (Finding Optimized Ordering). Find ~ord s.t.

arg min
~ord

∑
v∈S+δ [ ~ord]

log(Lv) (3)

The new objective function is decomposable. We therefore formulate finding the optimal search
ordering as a shortest-path problem. We start from an empty ordering and adds one δ-subgraph
at each step until all δ-subgraphs have been added to the ordering; an accumulative total size is
maintained throughout. Given the ordering search is only a subroutine of mode search, and there
are |Sδ| ! possible solutions, we cannot afford to solve this problem optimally. We therefore chose
the depth-first search as we can stop it anytime to output the best ordering found thus far.

The depth-first search works as follows. At each step, we add the δ-subgraph which not only
overlaps with an existing δ-subgraph, if exists, but also increases the total size maximally, with
ties broken arbitrarily. This design of search step makes sure that no gap is introduced between δ-
graphs in the (partial) ordering throughout the search. Once current δ-subgraphs cover all vertices,
the remaining δ-subgraphs can be appended in any order as verification layers because they add zero
cost to the total size, producing a complete search ordering. We can run the depth-first search for as
long as allowed and output the best subgraph ordering found in the end.

Finding a search ordering is only a preprocessing step for the actual M-Modes search. We cannot
afford to spend too much time here. If the number of δ-subgraphs is large, solving the shortest-path
problem may take a long time, because there are |Sδ| ! possible solutions. In the following we
present two pruning criteria to speed up the ordering search. First, because only δ-subgraphs that
have frontiers affect the size of the search space, we only need to consider adding δ-subgraphs that
have undecided variables. All other δ-subgraphs are skipped. Once we have all vertices added
as either frontier or interiors, we simply append remaining subgraphs in any order as verification
layers, producing a complete search ordering. Note that we cannot skip any of these verification
layers ascribed to the Global-Local Theorem. Second, because we want to find an optimized search
ordering that is friendly for backward MAP inference, the δ-subgraphs with new boundary variables
in the optimized ordering is kept consistent with their order of appearance in the naive ordering, i.e.,
consistent with the cluster ordering within the tree decomposition context. In other words, the
former is a subsequence of the latter.

4. δ-Vertex Cover Problem

Ignoring label size for simplicity1, Optimizing search orderings for M-Modes is equivalent to solv-
ing a problem we call δ-vertex cover, formally define as follows.

Problem 2 (δ-Vertex Cover). A δ-vertex cover V ′ of an undirected graph G is a minimum subset of
V such that for each (δ+1)-subgraph, there is at least one vertex v ∈ (δ+1)-subgraph and v ∈ V ′.

1. The case considering label sizes is related to the weighted vertex cover problem.
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Figure 5: (a) A 2-Vertex Cover Example; (b) An example of reducing a vertex cover problem to a
3-vertex cover problem. The black vertices are the covered vertices, the solutions to each problems.

The connection between δ-vertex cover and optimizing search ordering is straightforward: since
there must be a vertex in the cover set for any (δ+1)-subgraph, the cover set V ′ must decompose the
graph into connected subgraphs with size no larger than δ. We can obtain an actual search ordering
from V ′ as follows: We start with a connected subgraph with size δ and create a corresponding
δ-subgraph; the neighboring vertices belonging to V ′ automatically become its boundary variables
(frontiers). Then for any connected subgraph adjacent to an existing δ-subgraph, if the subgraph
has a size δ, we directly map it to a δ-subgraph; otherwise if its size is smaller than δ, we borrow
as many vertices from already visited ones to create a full-size δ-subgraph. Any neighboring vertex
belonging to V ′ become new frontiers. We repeat this step until all vertices are visited. The above
procedure makes sure all the vertices in V ′ become frontiers in the search ordering.

Example. Retrieving an optimized search ordering from a given δ-vertex cover result:

Assume we already have a δ-vertex cover result, which δ = 2, for a 3×3 grid graph. See Figure
5(a). It is trivial to know that each edge belongs to a 2-subgraph’s interiors.

There are 4 vertices covered: 2, 3, 4, and 8. And connected subgraphs decomposed by the vertex
cover are {0, 1}, {5}, and {6, 7}, none of which is larger than 2.

In order to retrieve a search ordering, we can start by creating a 2-subgraph containing {0, 1};
Its boundaries are {2, 3, 4}. Up to now we have visited {0, 1, 2, 3, 4}. Next we go to 5. Because 5
is only 1 vertices, we need to include another visited vertex such that the adding will not introduce
vertices not in the cover set. So, we have to choose 2, forms subgraph {2, 5}. Now we have visited
{0, 1, 2, 3, 4, 5, 8}. The last step is trivial, that we just add subgraph {6, 7} to finish the work.

Therefore, based on the given δ-vertex cover, the subgraph ordering we get is {0, 1} → {2, 5} →
{6, 7}.

The decision problem of δ-vertex cover is defined as: Does graph G have a δ-vertex cover of
size at most k? It is clear that the standard vertex cover, an NP-Complete problem, is a special case
with δ equal to 1. By reducing the vertex cover problem to δ-vertex cover, we can prove the latter is
also NP-complete.

Theorem 2 (δ-Vertex Cover Complexity). The δ-vertex cover problem is NP-complete.

Proof 1) It is trivial that given the solution of a δ-vertex cover problem, we can quickly (O(n))
verify the number of covered vertices is at most k, and for each decomposed connected subgraph
(uncovered parts), verify its size is at most δ (e.g. via depth first traversal).

2) For the reduction, we take an instance of a vertex cover and reduce it to a δ-vertex cover
instance.
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First, assume that we have a vertex cover problem with the graph G. For each vertex in the G,
we extend a chain with size δ − 1. Hence, we shall prove that solving the vertex cover problem is
same as solving the δ-vertex cover problem. See Figure 5(b).

It is easy to see a vertex cover solution is a correct δ-vertex cover solution, since each covered
vertex’s has a size δ−1 chain, and uncovered vertices with its extended chain has size δ and bounded
by covering vertices. They are all at most δ size.

Then, we need to prove the δ-vertex cover solution covers the same vertices as the vertex cover
solution. For each added chain with original vertex, at most one vertex is needed to be covered,
since each chain with original vertex has size δ. Besides, it is not effective to select a vertex in the
chain because it cannot fully cover all its neighbor vertices chains. For example, See Figure 5(b): if
vertex 1 is selected as covered, it cannot cover vertex 2 and 3, because there are 4 distances to reach.
Therefore, we only need cover vertices at original graph G so that it would give same solution as
the vertex cover.

5. Experiments

We tested the optimized ordering method on the A* search algorithm (Chen et al., 2018) by tree
decomposition. We took the first solution found by the depth-first search as our optimized ordering.
We did not compare to the dynamic programming algorithms because they were shown less efficient
than A* with naive ordering. We provided Markov networks (triangulated already for consistency)
with clique potentials as input files. The experiments were performed on an IBM System with 32
core 2.67GHz Intel Xeon Processors and 512G RAM. And the program is written in language C++
using the GNU compiler G++ on a Linux system.

5.1 Results on benchmark models

We first tested the algorithms on several moderate-size benchmark models that are either created
from classic Bayesian networks, including Child (Spiegelhalter and Cowell, 1992), Alarm (Beinlich
et al., 1989), Barley and Hepar2 (Onisko, 2003), or learned from processed UCI datasets (Lichman,
2013). We first learn a Bayesian network and convert it into an undirected graphical model via
the standard moralization procedure (Lauritzen and Spiegelhalter, 1988). Finally, the undirected
graphical model is converted into a tree decomposition using a greedy heuristic called min-fill.

In these experiments, we set the δ = 3 and M = 4 by default. We chose δ = 3 as it reaches
a balance between the diversity and the probability of modes, both of which are necessary for high
quality solutions. But in cases A* cannot complete successfully, we adjusted δ down and report
the feasible value. Table 6 shows the performance of the competing algorithms on the benchmark
models. We list several important properties of the benchmark models that we think affect the
running time: the number of variables, max label size, max cluster size, and number of δ-subgraphs.
We also list the running time (seconds) and complexities (log scale) of M-Modes A* search before
and after optimizing search ordering as well as the running time of the M-Best baseline. The time
needed for optimizing the search ordering is included in the total time. We used a depth first search
to get the default ordering.

The results show that the theoretical complexity provides a good indication for the amount of
running time needed for solving the M-Modes problem. On a same model, the larger the complexity,
the more time it takes to solve M-Modes. The results also clearly show that the optimized search
orderings did help A* achieve much better efficiency; the improvement ranged from several times
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Name N δ Lmax Clmax Sub Time-Df Cmpl-Df Time-Opt Cmpl-Opt

Child 20 3 6 4 92 1.57 26.32 0.19 14.66

Flag 29 3 3 7 133 87.69 41.20 6.37 22.19

Alarm 37 3 4 5 216 0.20 50.94 0.08 22.09

Spectf 45 3 2 9 190 380.15 42.00 16.24 31.00

Barley 48 1 3 8 48 OT 74.49 321.37 45.96

Hepar2 70 1 4 7 70 OT 80.85 3.93 64.51

Name N deg δ M Sub Time-Df Cmpl-Df Time-Opt Cmpl-Opt

Semeion 256 5 6 10 1346 18.37 250.00 3.85 60.00

6 20 1346 80.71 250.00 10.46 60.00

7 10 2370 OT 249.00 73.95 67.00

Figure 6: Running time (sec) of M-Modes search on (Top) benchmark models and (Bottom) a real
dataset. The first column is the Name of models; N is the number of variables; δ is the subgraph
size; Lmax is the max label size of the model; Clmax is max cluster size; deg is the max tree degree
size; And Sub is the number of δ-subgraphs. Time-Df and Cmpl-Df are the searching time and
search space complexity for A* with default ordering. Time-Opt and Cmpl-Opt are the searching
time and search space complexity for A* with optimized ordering. OT means time out after half an
hour.

to orders of magnitude faster. For the largest datasets (Barley and Hepar2), A* using the default
ordering were not able to solve their M-Modes problem within half an hour, but the optimized
search ordering enable the algorithm to solve them quickly, even in seconds for Hepar2. However,
note that we were only able to solve problems when δ = 1 because M-Modes is challenging to
solve.

Semeion is a large UCI dataset with 256 variables, and is used to test the scalability of our
methods. We restrict the model to be a tree learned by the Chow-Liu algorithm (Chow and Liu,
1968). The tree had a maximum degree of 5. We varied δ and M in the experiments. The results
show that the optimized ordering again showed significant improvement over the default ordering.
As δ and M increase, the improvement seems to widen. M-Best timed out on all settings of this
dataset.

5.2 Results on random models

To get a more systematic understanding on how the theoretical complexity is affected by different
parameters, we also tested the orderings on randomly generated tree decompositions. We generate a
tree decomposition as follows: We start by creating a root cluster with certain size, randomly select
a number vertices from the root as separator, and create another cluster with the same size sharing
the separator. Then, we randomly pick an existing cluster and create A neighboring cluster in the
same way until we create enough clusters. Last, we add random potentials to each cluster. The
default parameter setting for generating tree decompositions is as follows: number of clusters is 6;
cluster size is 6, δ is 3, and label size is 2–3. We fix size of separators to be 2 in all experiments.
Each time we vary one parameter with others fixed; we generated 100 different junction trees. The
results are shown in Figure 7.
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Figure 7: An illustration of how theoretical complexity (log scale) of default ordering and optimized
ordering depends on number of clusters, cluster size, δ and average label size.

The results show that in all settings, optimized ordering always reduced the complexity ex-
ponentially, with slightly different trends for different parameters. The ordering is getting more
effective with increase cluster size, number of clusters and average label size. The effect of δ is
more interesting. The increase in δ initially led to reduction in theoretical complexity, but further
increase led to rebound in the complexity. The explanation is as follows. When the δ is small, larger
δ results in larger δ-subgraphs with more interiors and fewer new boundary variables. However, as
δ becomes even larger, close to the cluster size, most δ-subgraphs span multiple clusters, which will
include more new boundary variables more quickly.

6. Concluding Remarks

Based on the observation that different search orderings for solving M-Modes have huge impact on
the size of search spaces, we propose methods for measuring the quality of search orderings and
related algorithms for finding optimized search orderings. The proposed methods were shown to
result in up to orders of magnitude speedups in the experiments. We also proposed pruning criteria
for speeding up the ordering search.

An interesting observation from this research is that, in contrast to the common belief that search
orderings only affect the practical performance, in M-modes problem, a proper ordering also reduce
the size of the search space. This raises new challenges and opportunities for the design of efficient
heuristic search algorithms. We believe the investigation of M-modes problem would be a novel
addition to the rich literature of heuristic search.
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