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Abstract

A causal graph can be generated from a dataset using a particular causal algorithm, for instance,
the PC algorithm or Fast Causal Inference (FCI). This paper provides two contributions in learning
causal graphs: an easy way to handle mixed data so that it can be used to learn causal graphs using
the PC algorithm/FCI and a method to evaluate the learned graph structure when the true graph is
unknown. This research proposes using kernel functions and Kernel Alignment to handle mixed
data. The two main steps of this approach are computing a kernel matrix for each variable and
calculating a pseudo-correlation matrix using Kernel Alignment. The Kernel Alignment matrix
is used as a substitute for the correlation matrix that is the main component used in computing
a partial correlation for the conditional independence test for Gaussian data in the PC Algorithm
and FCI. The advantage of this idea is that is possible to handle more data types when there is a
suitable kernel function to compute a kernel matrix for an observed variable. The proposed method
is successfully applied to learn a causal graph from mixed data containing categorical, binary,
ordinal, and continuous variables. We also introduce the Modal Value of Edges Existence (MVEE)
method, a new method to evaluate the structure of learned graphs represented by Partial Ancestral
Graph (PAG) when the true graph is unknown. MVEE produces an agreement graph as a proxy to
the true graph to evaluate the structure of the learned graph. MVEE is successfully used to choose
the best-learned graph when the true graph is unknown.

Keywords: Causal learning; Kernel Alignment; Mixed data; graph structure evaluation.

1. Introduction

A causal graph is a graphical model used to describe the cause-effect relationship between variables.
Algorithms for learning causal graphs from data include the PC algorithm (Spirtes et al., | 2001)), Fast
Causal Inference (FCI) (Spirtes et al.l 2001) and Really Fast Causal Inference (RFCI) (Colombo
et al., 2012). Data that includes both discrete and continuous is called mixed data. The PC and FCI
algorithms use conditional independence tests to generate a causal graph from a dataset (Spirtes
et al., 2001; [Kalisch and Buhlmann, 2007). Testing for conditional independence is more complex
when data is mixed than when it is either entirely discrete or entirely continuous.

Methods have been developed to handle mixed data for learning causal graphs. Tsagris et al.
(2018) proposed the likelihood-ratio test based on an appropriate regression model then derived
symmetric conditional independence tests. This test only works well when certain conditions hold.
Raghu et al.| (2018)) proposed a conditional independence test based on linear and logistic regression
to handle mixed data for causal discovery. It was implemented together with the modification of
FCI for the causal discovery of latent variables from mixed data. |[Raghu et al.| (2018) assumed
linear and logistic regression were accurate models of the interactions between continuous and
discrete variables, but it is not clear how well these assumptions will hold in certain continuous
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nonlinear cases. The Copula PC algorithm is a method for causal discovery from mixed data with
an assumption that the data is drawn from a Gaussian copula model (Cui et al., 2016). The Copula
PC algorithm implements Gibbs sampling based on the extended rank likelihood, then estimates a
scale matrix and degrees of freedom from the Gibbs samples. The scale matrix substitutes for a
correlation matrix and the degrees of freedom acts as the effective number of data points for the
conditional independence test. The Copula PC algorithm can be used to learn causal graphs from
mixed data containing binary, ordinal, and continuous variables but is not appropriate for non-binary
categorical variables whose values cannot be ranked, such as blood type.

Kernel methods have been used to measure conditional (in)dependence. [Bach and Jordan
(2002a) proposed Kernel Generalized Variance (KGV) to measure conditional dependence and it
can be used to learn a hybrid network from discrete and continuous variables. KGV allows discrete
and continuous variables to be treated as Gaussians obtained from Mercer kernels in a feature space.
Kernel Canonical Correlation (KCC) was proposed as a measure of independence (Bach and Jordan,
2002b). [Gretton et al.|(2005) proposed Kernel Mutual Information (KMI) to measure the degree of
independence of random variables. Sun et al.| (2007) developed a causal learning method for dis-
crete and continuous variables by measuring the strength of statistical dependencies in terms of the
Hilbert-Schmidt norm of kernel-based cross-covariance operators and used incomplete Cholesky
decomposition. [Fukumizu et al.| (2007 proposed a method to measure conditional dependence us-
ing kernels based on a normalized cross-covariance operator on reproducing kernel Hilbert spaces.
The Kernel PC algorithm was successfully developed by [Tillman et al.| (2009). KGV, KCC, KM]I,
and the Kernel PC algorithm use incomplete Cholesky factorizations for efficient implementation
but this is not numerically stable.

In this study, there are two research questions: (i) how to handle mixed data in learning causal
graphs? (ii) how to evaluate the learned graph structure when the true graph is unknown? We
propose kernel functions and Kernel Alignment to handle mixed data in a way which allows existing
algorithms (e.g. PC, FCI) to be used. In this research, we use the PC and FCI implementation
from pcalg (Kalisch et al.l 2012)). The second goal is evaluating the structure of a learned graph
when the ground truth is unknown. We introduce a new method called Modal Value of Edges
Existence (MVEE) to evaluate different learned PAGs (partial ancestral graphs). We implement
kernel functions to compute kernel matrices where we have a choice of kernel parameters. Different
kernel parameter choices can produce different learned graphs. We use our MVEE method to choose
between these various learned graphs, since in real applications we do not have the ground truth to
help us make this choice.

2. PC algorithm and Fast Causal Inference

PC and FCI consist of two main stages: generating the skeleton and orienting the edges (Spirtes
et all 2001). A graph’s skeleton is an undirected graph. The output of the PC algorithm is
represented by Completed Partially Directed Acyclic Graph (CPDAG) (Kalisch and Buhlmann,
2007). Assume the distribution P of the random variables X is multivariate normal. For ¢ # j €
{1,...,p},k c{1,...,p}\{¢, 7} the partial correlation between X; and X; given {X,;r € k} is de-
noted by p; jj- pijjx = 0 if and only if X; and X; are conditionally independent given { X7 ek}
The estimated partial correlation p; j;, can be computed via regression, inversion of part of the co-
variance matrix or recursively. Fisher’s z-transform is used to test whether the partial correlation
is equal to zero or not. We reject the null hypothesis Hy (i, j|k) : pijik = 0 against the two-sided
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alternative H (i, j|k) : p; jp # 0if \/n — k| - 3|Z (4, j|k)| > @' (1 - /2) (Kalisch and Buhlmann,
2007). PC is a causal algorithm that can be applied to a dataset assuming there are no latent vari-
ables. A latent variable is a variable that is not measured or not recorded (Colombo et al.| [2012).
FCl is a causal algorithm that allows the presence of latent variables (Spirtes et al.,2001). The early
steps of FCI generate a skeleton graph then the edges are oriented. The output of FCI is as a Partial
Ancestral Graph (PAG) (Colombo et al., 2012). PC and FCI apply conditional independence tests
to generate a graph from a dataset.

3. Kernel Functions and Kernel Alignment for Mixed Data

In this paper we use the standard conditional independence test for Gaussian data which requires
partial correlations |[Kalisch and Buhlmann| (2007)). Partial correlations can be computed from a
correlation matrix Meloun and Militky| (2011). We propose an easy way to compute a correlation
matrix from mixed data using kernels. This approach is inspired by learning graphical models
using KGV (Bach and Jordan, 2002a). The method was proposed by |Bach and Jordan| (2002a)
who map data into a feature space using a set of Mercer kernels, with different kernels for different
data types. They then treat all data equally as Gaussian in the feature space. Suppose 1, ..., Tm
are m random variables with values in space X, ..., X,,. A Mercer kernel k; is assigned to each
input space X;, with feature space F; and feature map ®;. The random vectors of feature images
¢ =(P1,.ym) = ((P1(x1), ..., P (x1,))) has a covariance matrix C' defined by blocks. Block
C;; is the covariance matrix between ¢; = ®;(z;) and ¢; = ®;(x;). Suppose ¢¢ = (¢¥, ..., ¢%)
denotes a jointly Gaussian vector with the same mean and covariance as ¢ = (¢1, ..., ¢ ). The
vector ¢© will be used as the random vector on which the learning of graphical model structure is
based. |Bach and Jordan|(2002a)) proposed a general framework that can be applied to any type of
variable.

Computing sample covariances using the kernel trick needs high computation, and for effi-
cient implementation it uses incomplete Cholesky decomposition. However, applying incomplete
Cholesky decomposition to find a low-rank decomposition matrix might lead to numerically insta-
bility. Our idea is to transform each variable in the mixed data using a suitable kernel function for
each data type into a single Gaussian variable in the feature space. We then use kernel alignment to
compute pairwise ‘covariances’ and thus construct a pseudo-covariance matrix. In this way we ob-
tain a pseudo-correlation matrix which can be used for conditional independence tests in the normal
way. The prefix ‘pseudo-’ is used to emphasize that the resulting matrix is not a correlation matrix
for the original variables.

3.1 Kernel Functions

A kernel is a function & that for all x, z € X satisfies k(x,2) = (¢(x), @(z)), where ¢ is a mapping
from X to an (inner product) feature space F, ¢ : © — ¢(x) € F (Shawe-Taylor and Cristianini,
2004). Given a set of vectors S = {x1, ..., xp}, the Gram matrix is an ¢ x £ matrix G whose entries
are G;; = (x;,x;). Using a kernel function  to evaluate the inner products in a feature space
with feature map ¢, the associated Gram matrix has entries G;; = (¢(x;), ¢(z;)) = k(xi, z;). In
this case the matrix is often referred to as the kernel matrix. This paper uses the RBF kernel for
continuous variables and the Categorical kernelBelanche and Villegas|(2013) for discrete variables.

12
The RBF Kernel is x (z;,2;) = exp (—M) ,0 > 0. The Categorical kernel is & (z;,2;) =
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{ ho (Pz (2)) i 2 =z . P is probability and hy(.) is a function that depends on the parameter

0 ifzi:tzj.

1/6

0. 1t is defined as hg(z) = (1 - ze) ,0 > 0. Note that our method is not restricted to these

particular choices of kernel.

3.2 Kernel Alignment

Given a sample S = {z1,..., 2, }, the inner product between two kernel matrices is (K1, K3) =
Yijo1 K1(xi, v5) K2 (i, ;). The alignment between a kernel k; and kg of the sample S is de-

fined as A(S, ki,ka) = %, where K; is the kernel matrix of the sample S using

kernel function k; (Cristianini et al., 2001). We use Kernel Alignment as follows. Suppose, a
mixed dataset consists of two variables (X and Y') and ¢ data points, i.e X = {z1,z9,...,x¢} and
Y = {y1,vy2,...,ye}. We compute kernel matrices Ky and Ky using kernel functions k1 and ko,
respectively. Kernel matrices K x and Ky correspond to variables X and Y, respectively. Kx (7,7)
can be thought of as the similarity between x; and x, the ith and jth observed values of X. It is also
the inner product of the x; and x; in the feature space. In the same way Ky encodes similarities
between observed values of Y and contains inner products in the feature space for Y.

The alignment A(K x, Ky ) is built from the inner product between Ky and Ky (and so is a
(normalised) inner product of inner products). Equation [1|defines Kernel Alignment.

B (Kx,Ky) _ (Kx,Ky) _ X7 o1 b (wa,zy )k (yi,y5)

AR, Ky) = VIEx Ex) Ky, Ky) [ExIIEY] /(S ki(@i;)k (@i2) (S ka2 (iry; k2 (i)
Suppose a dataset D = {Vj,..,V,} consists of p variables and a set of kernel matrices K =
{Ki,...,Kp} is computed from those variables. The kernel alignment matrix A is a p x p Gram
matrix where each entry A(s,t) is an inner product of the two vectors produced by flattening the
kernel matrices K and K;. A Gram matrix is a positive semi-definite matrix |Shawe-Taylor and
Cristianini|(2004). Every positive semi-definite matrix is a covariance matrix, so a kernel alignment
matrix A is a covariance matrix. Given any covariance matrix, it is possible to construct a Gaussian
distribution with that covariance matrix. Thus the use of kernels in this proposed method can be
viewed as a way of (implicitly) generating a Gaussian distribution whose covariance matrix is the
kernel alignment matrix. This proposed method differs from that Bach and Jordan|(2002a) in that the
(implicitly constructed) Gaussian always has the same dimension as the original data (since unlike
them we use kernel alignment), but in common with Bach and Jordan there is a separate kernel
for each of the original variables. Like Bach and Jordan| (2002al), we do not view this treating-
variables-separately approach as unduly restrictive. (Note that for Copula PC the mapping is in
the other direction: the observed variables are viewed as the result of a mapping from some latent
Gaussian distribution.) The alignment between a kernel matrix and itself is A(s,s) = A(K, Kg) =

o (KeKs)  _ _ _ . . 2
A et 1, so that o, = /1 = 1. A(s,s) and A(t,t) can be viewed as variance o

and o2, respectively. Thus, the entry of the correlation matrix can be defined as py; = % =
A(K&Kt) _ A(stKt)
A(K57K5)A(Kt7Kt) - (1)(1)
correlation matrix A. Note that the entries in any Kernel Alignment matrix are in the range [0, 1]
(Shawe-Taylor and Cristianini, 2004).
It is useful to compare Kernel Alignment to Distance correlation (Székely et al., 2007). Kernel

Alignment values have the same range as Distance correlation values and both can be used for

ey

= A(K, K;). Hereafter, this correlation matrix is called a pseudo-
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mixed data. However, Kernel Alignment values are connected to the angle between pairs of vectors
resulting from flattening kernel matrices (see equation [I). In contrast, the Distance correlation
between two variables is related their Euclidean distance apart.

4. Modal Value of Edges Existence (MVEE)

Intersection-validation (InterVal) (Viinikka et al., 2018) is a method for evaluating CPDAG learning
algorithms when the ground truth is unknown. The basic idea is to generate an agreement graph
from the CPDAGs learned by different algorithms from the same dataset. The agreement graph is
then used as a proxy for the ground truth.

Let G = (V,FE) be a graph with node set V' and edge set F ¢ V x V. Denote a node pair
(u,v) by uv and say that its type in GG (or, in F) is bidirected, forward, backward, or nonadjacent
if, respectively, both uv and vu, only uv, only vu, or neither belongs to /. Agreement graphs are
partial graphs where a partial graph on a set of node pairs S € V x V' is a pair (S, F') where E' ¢ S.
An ordinary graph on V is obtained as a special case with S =V x V.

Suppose, a set of CPDAGs G = {G1,Go, ..., Gy} are learned from a dataset using algorithms
Alg = {A1, Ay, ..., Ay} as input graphs. Figure[l](a) shows the original InterVal method to generate
an agreement graph, which is a partial graph, from two CPDAGs (dashed lines connect excluded
node pairs not in .S) (Viinikka et al.,[2018]). In this example, the agreement graph has the following
node pairs S = {(A, B),(4,C),(B,C)} and only one edge E = {(A,C)}.

InterVal applies a strict rule where it only includes a node pair in the agreement graph when
all input graphs agree on that node pair. InterVal might produce an agreement graph containing no
node pairs when there is no exact matching node pair type from all input graphs, especially when
we create an agreement graph form PAGs. A PAG has three kinds of marks that form six different
types of edges (o, <>, o—0, —, o—, and —), so to get an exact match for all input graphs is difficult.
Figure (1] (b) shows the agreement graph of two PAGs has two node pairs (A4, D) and (B, C).

Agreement graph

® ® oo
O O0—© OO

(a) Two CPDAGs and agreement graph created using InterVal

G2 Agreement graph
O
Q

o9

(b) Two PAGs and agreement graph created using InterVal

(c) Four PAGs and agreement graph created using MVEE

Figure 1: Generating agreement graph using InterVal and MVEE

Suppose we have competing algorithms that are used to generate learned graphs from the same
dataset and they output the same type of graph (e.g. PAG). It is difficult to choose the best-learned
graph when the true graph is unknown. In this situation, we assume that an edge (resp. non-edge)
that exists in most of the learned graphs has a high possibility of being a true edge (resp. non-edge).
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Based on this assumption, we propose a method based on the modal value of the edge type for any
node pair to create a proxy to the true graph when the true graph is unknown.

Modal Value of Edges Existence (MVEE) is modified from the original InterVal concept pro-
posed by |Viinikka et al.[(2018). Like InterVal MVEE adopts the idea of an agreement graph that
is generated from input graphs and uses it as a proxy for the true graph. Specifically, we consider
the PAG output from FCI algorithm. For a given pair of a graph G and a distribution P faithful to
it, there may be two different FCI-PAGs that represent graph G but they will have the same skele-
ton (Colombo et al.l 2012}, so ‘true’ PAGs have the same skeleton. Since they will all share the
same skeleton, it is useful to use a skeleton agreement graph as a proxy for the skeleton of the true
PAG and use it to choose the ‘best’ graph from the output of competing PAG-learning algorithms.
MVEE finds a skeleton agreement graph using a majority vote from the skeletons of a set of input
graphs. This differs from InterVal where (i) all graphs must agree on a node pair for that node pair
to be included in the agreement graph and where (ii) the agreement graph is not just a skeleton (see
Fig[I[a)).

InterVal was designed for choosing between CPDAGs and MVEE for choosing between PAGs
which contain more edge types than CPDAGs. Fig[I] (c) shows the input graphs represented by
PAGs, skeleton of input graphs and the skeleton agreement graph generated using MVEE. In this
example, a tie happens: two graphs have an edge between node C' and D and two other graphs do
not. In this situation, MVEE decides to abstain and so does not include (C, D) in the node pairs for
MVEE’s skeleton agreement graph (dashed line connects excluded node pair). If every node pair
on input graphs results in a tie, the MVEE agreement graph has no node pairs. If there are no ties
then S, the set of node pairs in the MVEE agreement graph is all possible pairs. If all input graphs
were empty the MVEE agreement graph is (S, F') where S'is V' x V and F is the empty set.

5. Experimental Result and Discussion
5.1 Datasets and Experimental Design

In our experiments, mixed datasets are produced using forward sampling from a hybrid network.
We use Conditional Linear Gaussian (CLG) models (Koller and Friedman, 2009). First we gener-
ate random DAGs containing 10, 20 and 30 nodes. Each variable is given a data type. For each
different group of nodes, there are produced 10 different graphs and each graph produces five dif-
ferent datasets. We generate two groups of datasets according to the kind of data types: dataset 1
(binary, ordinal and continuous variables) and dataset 2 (binary, ordinal, categorical and continu-
ous variables). The generated datasets are used in the simulation. The experiment is divided into
several groups according to the algorithms and datasets. Experiment 1 uses dataset 1. The purpose
of Experiment 1 is to compare the performance of our Kernel Alignment PC algorithm (KAPC) to
the Copula PC algorithm. According to previous research by |Cui et al.| (2016), the Copula PC algo-
rithm can be used to learn causal graphs from mixed data containing binary, ordinal, and continuous
variables. For a fair comparison, we do not use categorical variables. Experiment 2 and experiment
3 use dataset 2. We only run KAPC and KAFCI for experiment 2 and experiment 3, respectively.
The first step is computing the kernel matrix from each variable using a suitable kernel function
for each data type. The RBF kernel and Categorical kernel are applied to compute kernel matrices
from continuous and discrete variables, respectively. Let P;(o,6) be the kernel parameters for the
RBF and Categorical kernel, respectively. We apply centring to all kernel matrices. The detailed
explanation of centering kernel matrices had been studied by Meila| (2003). The second step is
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computing a Kernel Alignment matrix from a set of centred kernel matrices. The third step is apply-
ing the Kernel Alignment matrix as input for conditional independence tests for learning a causal
graph using PC/FCI. The quality of the structure of the learned graph is measured using Structural
Hamming Distance (SHD) score (T'samardinos et al., [2006). The SHD score is normalized using
a method proposed by [Malone et al.| (2015). Lower SHD score means that the learned graph has
less mismatch to the true graph and has a high similarity to the true graph. The experiments use
generated datasets. The experiments are run for N = {1000, 2000, 3000, 5000} data points. There
are no missing values in the dataset.

5.2 Experiment using Benchmark Datasets

To further investigate the performance of the proposed method, we also ran experiments using the
datasets gaussian.test (sampled from a Gaussian) and clgaussian.test from the R package bnlearn
and gmD (discrete variables) from the pcalg R package. The distribution from which clgaussian.test
was sampled contains one Gaussian variable, 4 discrete variables (2 binary and 2 categorical vari-
ables) and 3 conditional Gaussian variables.

In our analysis of experiments we use the following terms. A frue edge is an edge in the learned
graph that has exactly the same position and marks as the edge on the true graph. A missing edge is
an edge that not appear in the learned graph but exists in the true graph. An extra edge is an edge
in the learned graph that does not exist in the true graph. A wrongly marked edge is an edge in the
learned graph that exists in the true graph but has a different mark on one or both sides.

KAPC uses the RBF kernel for continuous variables and the Categorical kernel for discrete
variables. Figure [2|(a) shows the learned graphs generated by the original PC algorithm and KAPC
using gaussian.test data at o = 0.05. KAPC successfully generates all true edges but it produces
one extra edge (red edge). Figure [2|(b) shows the true graph and learned graphs generated from the
gmD dataset at o = 0.1. The original PC algorithm and KAPC produce the same graph skeleton as
the true graph skeleton but they have one wrongly marked edge. Figure [2](c) shows the true graph
and learned graph generated from clgaussian.test data using KAPC with o = 0.05. KAPC generates
a learned graph containing 10 true edges and 1 extra edge.

5.3 Experiment using Generated Datasets

We run KAPC and Copula PC (Cui et al.| [2016)). The first experiment uses kernel parameters for
RBF kernel o and Categorical kernel 8, P = {P;(o = 0.001,60 = 0.5), P,(0 =0.01,6 = 1), P3(o =
0.001,0 = 1), Py(oc = 0.01,0 = 1.5), Ps(c = 0.001,6 = 1.5)}. The experiment using generated
datasets uses o = 0.1 and a = 0.05. The experiment results in this section shows that different values
of the kernel parameters produce different learned graphs. Figure [3] A shows the result for KAPC
using different kernel parameters (P1-P5) and Copula PC algorithm (C). Copula PC produces lower
SHD scores for graphs with 10 nodes and KAPC using kernel parameter P1, P3, and PS5 slightly
outperforms Copula PC for graphs with 20 and 30 nodes. In the second and third experiments,
we only run KAPC and KAFCI to learn causal graphs from mixed datasets containing categorical,
binary, ordinal and continuous variables. The second and third experiment uses kernel parameters
for RBF kernel o = {1,0.1,0.01,0.001,0.0001} and Categorical kernel § = 2. The general result
of the second experiment is similar to the result of the first and third experiments, KAPC produces
a lower SHD score if it is given the proper kernel parameter. In the third experiment, we randomly
delete 1, 4, and 8 variables from graph 10, 20, and 30 nodes, respectively. Those variables represent
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(a) True graph (b) KAPC (c) PC algorithm 3
using Pearson correlation (a) True graph (b) KAPC (c) PC algorlthm

(a) The true graph and learned graphs generated from gaussian.test dataset (b) The true graph and learned graphs generated from gmD dataset

Binary variable — True edge
. . Wi ientati d;
Categorical variable TORg ONCMIUON eaze
— — Extra edge
\/ Continuous variable - --- Missing edge

(a) True graph (b) KAPC

(c) The true graph and learned graphs generated from clgaussian.test dataset

Figure 2: The true graph and learned graphs generated from Benchmark datasets

latent variables. Kernel matrices and kernel alignment for conditional independence test for FCI are
computed from the remaining variables. Figure[3|B shows the SHD scores of KAFCI using different
kernel parameters. The learned graphs generated using KAFCI are used as input for MVEE.
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Figure 3: (A) Experiment Results KAPC and (B) Experiment Result KAFCI

The kernel-based approach and Copula approach 2016) compute a matrix, which
is used as a correlation matrix, from mixed data, it then uses this matrix as input for conditional
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independence tests in the PC algorithm. The main reason to develop a kernel-based approach is that
it provides a procedure to treat categorical variables similarly to the binary, ordinal and continuous
variable in learning a causal graph from mixed data using PC algorithm and FCI. The kernel-based
approach uses n data points for conditional independence tests, where n is the number of data points
in the dataset. The Copula PC algorithm computes the scale matrix and degree of freedom and uses
them as input for conditional independence test (Cui et al., 2016). The Copula PC algorithm uses
as the number of data points around 80% of the actual number of data points. PC Algorithm and
FCI work well if they are given sufficient data. Having more data typically leads to more accurate
learned graphs.

B MVEE B MVEE
[ Interval ] Interval

N - l

1000 3000 5000 1000 3000 5000
Data Points Data Points

Skeleton Error Score
b

The Number of True Edges
=]

—
-]

Figure 4: The evaluation of agreement graph

The advantage of KAPC is that, unlike Copula PC, it works for categorical variables as well as
binary, ordinal, and continuous variables. Generally, the kernel-based approach runs faster than the
Copula model. The Copula PC algorithm does not work for 48 datasets due to failure to generate
the scale matrices. We do not investigate the reason for failure because it is not our main concern.
Meanwhile the proposed method succeeds in generating the kernel alignment matrix for all datasets
used in the simulation. The issue in applying the kernel-based approach is how to choose the best
value of kernel parameter for the kernel function. The kernel-based approach can be implemented
to learn a causal graph from mixed data as long as there is a suitable kernel function for particu-
lar variables. The kernel-based approach gives a simple solution for learning causal graphs from
mixed data using the PC algorithm and FCI. The experiments using different values of parameters
show that KAPC and KAFCI produce graphs with lower SHD score when it is given proper kernel
parameter values. This proposed method might generate the wrong graph when we use the wrong
kernel parameter.

We use MVEE to estimate the best learned graph when the true graph is unknown. First, we gen-
erate learned graphs from the same dataset using KAFCI with different kernel parameters. KAFCI
with different kernel parameters can be viewed as different algorithms. An agreement graph is gen-
erated from the skeletons of the learned graphs from the same dataset. In this experiment, we use
learned graphs from the third experiment.
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The InterVal approach uses subsamples of the data to analyze how close the resulting graph
is to the agreement graph. Our goal is different from InterVal, so we do not use exactly the same
approach. Our goal is to use MVEE to estimate the best learned graph produced by KAFCI with dif-
ferent kernel parameters when the true graph is unknown. Suppose, G = {G1, Ga, ..., G, } is a set of
learned graphs generated from the same dataset using different algorithms Alg = { A1, Ag, ..., Ay }.
These learned graphs are used as input for MVEE to produce an agreement graph Sy. We apply
partial Hamming distance (PHD) from Viinikka et al.| (2018)) to compute the mismatch between
the skeleton agreement graph and the skeleton of a learned graph. We call the score as Partial Skele-
ton Error (PSE) score. The learned graph with the lowest PSE score is considered the best learned
graph.

To evaluate MVEE, we first find which learned graphs have minimal (i.e. best) SHD when
compared to the true graph: this is the set of optimal learned graphs. We generate an MVEE
agreement graph from the learned graphs generated using KAFCI with different values of kernel
parameters from the same dataset. We estimate a best learned graph by computing the PSE score
between the learned graphs and the agreement graph; the estimated best learned graph is some
learned graph with minimal PSE score. In our evaluation of MVEE we have found that MVEE
identifies an optimal graph 91.56% of the time.

We analyze the agreement graphs to understand their performance as a proxy for the true graph.
First, we compute the mismatch between the skeleton of the agreement graph and the skeleton of the
true graph. This score is named the skeleton error score. Figure 4| (A) shows the MVEE skeleton
agreement graph has less mismatch than InterVal skeleton agreement graph. Figure 4] (B) shows
MVEE skeleton agreement graphs have more true edges than Interval skeleton agreement graphs.
Unsurprisingly both methods are more accurate as the number of datapoints increases.

6. Conclusion

In conclusion, our kernel-based approach is a promising method for learning a causal graph from
mixed data containing categorical, binary, ordinal, and continuous variables using PC and FCI.
The kernel-based approach offers better treatment for the categorical variable in mixed data which
cannot be handled properly using the Copula PC developed by Cui et al.|(2016). MVEE is a method
that successfully chooses the best learned graph when the true graph is unknown. In the experiment
to choose the best learned graph, MVEE produces accuracy 91.56%. For future research, we will
use kernel functions for missing data (i.e kernel extensions for missing data proposed by [Nebot-
Troyano and Belanche-Munoz| (2009)) to substitute the regular kernel functions in this paper, so
KAPC/KAFCI can be used to learn a causal graph from mixed data containing missing values.
MVEE is only based on the structure of the graph without analyzing its statistical meaning. For
future work, it is possible to combine MVEE with statistical based evaluation method to develop a
sophisticated evaluation method when the true graph is unknown.
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