
CREMA: A JAVA LIBRARY FOR CREDAL NETWORK INFERENCE

CREMA: A Java Library for Credal Network Inference

David Huber DAVID@IDSIA.CH

Rafael Cabañas RCABANAS@IDSIA.CH

Alessandro Antonucci ALESSANDRO@IDSIA.CH

Marco Zaffalon ZAFFALON@IDSIA.CH

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

Abstract

We present CREMA (Credal Models Algorithms), a Java library for inference in credal networks.
These models are analogous to Bayesian networks, but their local parameters are only con-
strained to vary in, so-called credal, sets. Inference in credal networks is intended as the com-
putation of the bounds of a query with respect to those local variations. For credal networks
the task is harder than in Bayesian networks, being NPPP-hard in general models. Yet, scalable
approximate algorithms have been shown to provide good accuracies on large or dense mod-
els, while exact techniques can be designed to process small or sparse models. CREMA embeds
these algorithms and also offers an API to build and query credal networks together with a spec-
ification format. This makes CREMA, whose features are discussed and described by a simple
example, the most advanced tool for credal network modelling and inference developed so far.

Keywords: Bayesian networks, credal networks; inference algorithms, convex sets.

1. Introduction

Bayesian networks are a popular class of probabilistic graphical models used in AI for both
machine learning and knowledge-based decision support (Koller and Friedman, 2009). Many
software tools, either commercial and open source, have been developed by companies or aca-
demics for Bayesian network modelling. Popular examples are: Agenarisk (agenarisk.com),
BayesFusion (bayesfusion.com), BayesiaLab (bayesia.com), Dezide Advisor (dezide.
com), Hugin Expert (hugin.com), Netica (norsys.com), and Samiam (reasoning.cs.
ucla.edu/samiam). These are basically modelling tools embedding inference libraries and
typically supporting graphical user interfaces. Besides that, also inference libraries such as Mer-
lin (github.com/radum2275/merlin) or Daoopt (github.com/lotten/daoopt) are
available to compute inferences in large models, as well as tools to process massive data streams
(Masegosa et al., 2019)) such as Amidst (amidsttoolbox.com).

Besides the graph modelling the dependence relations between its variables, the parameters
of a Bayesian network are probability mass functions for single variables conditional to the joint
states of the parent variables. Such parameters can be trained from data or elicited by an expert.
Yet, in both cases, the quantification might be inaccurate. The task of evaluating whether or
not a change/perturbation in these parameters significantly affects the results of an inference
is therefore very relevant. This is a major motivation for considering credal networks (Cozman,
2000), these being basically Bayesian networks whose conditional probability mass functions
have the additional freedom to vary in, so-called credal, sets.

1

agenarisk.com
bayesfusion.com
bayesia.com
dezide.com
dezide.com
hugin.com
norsys.com
reasoning.cs.ucla.edu/samiam
reasoning.cs.ucla.edu/samiam
github.com/radum2275/merlin
github.com/lotten/daoopt
amidsttoolbox.com


HUBER ET AL.

Computing a query such as the conditional probability of a variable given some evidence
(or a marginal) consists therefore in the evaluation of the bounds of the query with respect to
perturbations of the local probability mass functions consistent with the credal sets. This is how
inference is intended in credal networks, the task being more complex than Bayesian network
inference, namely NPPP-hard instead of NP-hard (Mauá et al., 2014).

While polynomial-time message-passing algorithms for singly connected topologies are de-
fined for Bayesian nets, the same can be done in credal networks only if all the variables are bi-
nary (Fagiuoli and Zaffalon, 1998). For topologies with bounded tree-width, variable elimination
techniques allow to compute inferences in polynomial time for Bayesian networks. Something
similar can be done for credal networks (Mauá et al., 2012), but without bounds on the complex-
ity when exact inferences are required.

As a consequence of that, and as a matter of fact, the above cited software tools do not sup-
port extensive sensitivity analysis for Bayesian networks1 nor allow to perform inference in ex-
plicit credal networks. A notable exception is OpenCossan (cossan.co.uk), a tool for un-
certainty quantification, offering partial support to credal networks, but only under specific as-
sumptions for the credal sets.

Yet, algorithms designed for general credal networks have been shown to provide good ac-
curacies even with large or dense models (Antonucci et al., 2015), while a credal version of the
variable elimination architecture allows to compute exact inferences in small or sparse models.
Thus, in order to fill this gap, we developed CREMA2, an open-source Java library distributed
through Maven under LGPL-3.0 License. Let us present CREMA here by means of some illustra-
tive examples. The reader is referred to the online documentation3 for technical details.

2. The CREMA Architecture

Factors, i.e., non-negative functions of one or more model variables, are the basic components
of a Bayesian network or a Markov random field. To model credal networks in CREMA, these ob-
jects are extended to the credal case by a set-valued factor specification achieved by linear con-
straints (H-representation) or, equivalently, by enumeration of the possible sharp specifications
(V-representation). Conversions between these two representations are performed by the Polco
Java library (SimplifiedBSD) for polyhedral computations (Terzer and Stelling, 2009). A model
is consequently a collection of generalized factors linked with the nodes of a directed acyclic
graphs by JGraphT (dual LGPL-EPL), a Java library for graph data structures (jgrapht.org).

Credal network inferences can be computed in CREMA with the ApproxLP algorithm An-
tonucci et al. (2015). This consists in a reduction of the optimization required by the exact
inference to a sequence of linear programming tasks (solved by the Apache Commons Math3
Solver), whose constraints are the local credal sets. The coefficient of the objective functions in
these tasks are inferences in an auxiliary Bayesian network structure. Being a subclass of credal
networks, CREMA supports Bayesian network modelling, while inferences in Bayesian networks
are computed by dedicated variable elimination tools. Note also that ApproxLP requires a H-
representation of the factors and conversion tools for that are implemented in CREMA.

1. In some cases (e.g., Samiam) sensitivity analysis is supported, but only for perturbations on single parameters.
2. https://github.com/IDSIA/crema.
3. http://crema-toolbox.readthedocs.io.

2

cossan.co.uk
jgrapht.org
https://github.com/IDSIA/crema
http://crema-toolbox.readthedocs.io


CREMA: A JAVA LIBRARY FOR CREDAL NETWORK INFERENCE

Alternatively, a variable elimination scheme can be also used for exact inference in credal
networks. This requires V-representation. The standard operations of combination and marginal-
ization for the Bayesian case should be iterated over all the possible combinations of the ele-
ments in the V-representation. To prevent an exponential blow-up, after any combination, the
convex hull (of Polco) is computed in order to prune inner elements of the V-representation, as
these are irrelevant for the optimization. Such exact procedure cannot provide guarantees in
terms of complexity, and it can be typically used for small or sparse models only.

Regarding inputs, the classical UAI format for Bayesian network specification is supported,
together with two extensions of the format supporting credal factors and networks in both V-
and H-representations. In the first case, single mass functions are replaced by lists of them,
while for H-representation, we use a matrix-array specification of the form (Â,~b) where the linear
constraint Â ·~p ≤~b are restricting the possible values of a mass function ~p. Normalization and
non-negativity constraints are left implicit as they should be satisfied by any credal set.

3. A Demonstrative Example

Consider the credal network over two variables in Figure 1. A V-representation of its local factors
is on the right. The corresponding CREMA code snippet is in Figure 2. After the specification of
the cardinalities of the two variables and the graph (lines 1-4), the two factors are specified (lines
5-17). A conditional query involved the computation of the bounds of P (B |A = 0) is achieved
by credal variable elimination (lines 18-20). The same can be done with a H-representation and
Figure 3 depicts the CREMA code for the credal set of B as in the top left of Figure 1.

H-Credal Set P (B) :

0.2 ≤ P (B = 0) ≤ 0.3

0.4 ≤ P (B = 1) ≤ 0.5

0.2 ≤ P (B = 2) ≤ 0.3

V-Credal Set P (B) ∈
{[0.2,0.5,0.3], [0.3,0.5,0.2], [0.3,0.4,0.3]}

H-Credal Sets P (A|B) :

0.5 ≤ P (A = 0|B = 0) ≤ 0.6

0.3 ≤ P (A = 0|B = 1) ≤ 0.4

0.1 ≤ P (A = 0|B = 2) ≤ 0.2

V-Credal Sets P (A|B)

P (A|B = 0) ∈ {[0.5,0.5], [0.6,0.4]}

P (A|B = 1) ∈ {[0.3,0.7], [0.4,0.6]}

P (A|B = 2) ∈ {[0.1,0.9], [0.2,0.8]}

B

A

Figure 1: A credal network and its V- and H-representations.

4. Conclusions

We presented CREMA, a new Java library for modelling and inference with credal networks. The
tool can be used for global sensitivity analysis in Bayesian networks, as well as for dedicated
applications of credal networks. To the best of our knowledge, CREMA represents the more ad-
vanced tool for these models released so far. Future work concerns the development of learning
(both structure and parameters) tools, as well as the support to generalized inference tasks (e.g.,
marginal MAP). Finally, let us note that CREMA is currently used by the twin project CREDICI,4

a Java library for causal inference in structural models, build on the top of CREMA.

4. https://github.com/IDSIA/credici

3

https://github.com/IDSIA/credici


HUBER ET AL.

1 SparseModel cnet = new SparseModel();
2 int a = cnet.addVariable(2);
3 int b = cnet.addVariable(3);
4 cnet.addParent(a,b);
5 VertexFactor fb = new VertexFactor(cnet.getDomain(b), Strides.empty());
6 fb.addVertex(new double[]{0.2, 0.5, 0.3});
7 fb.addVertex(new double[]{0.3, 0.4, 0.3});
8 fb.addVertex(new double[]{0.3, 0.2, 0.5});
9 cnet.setFactor(b,fb);

10 VertexFactor fa = new VertexFactor(cnet.getDomain(a), cnet.getDomain(b));
11 fa.addVertex(new double[]{0.5, 0.5}, 0);
12 fa.addVertex(new double[]{0.6, 0.4}, 0);
13 fa.addVertex(new double[]{0.3, 0.7}, 1);
14 fa.addVertex(new double[]{0.4, 0.4}, 1);
15 fa.addVertex(new double[]{0.2, 0.8}, 2);
16 fa.addVertex(new double[]{0.1, 0.9}, 2);
17 cnet.setFactor(a,fa);
18 Inference inf = new CredalVariableElimination(cnet);
19 VertexFactor res1 = (VertexFactor) inf.query(b, ObservationBuilder.observe(a,0));
20 VertexFactor res2 = (VertexFactor) inf.query(b);

Figure 2: Credal network modelling (V-representation) and querying in CREMA.

1 SeparateHalfspaceFactor fb = new SeparateHalfspaceFactor(cnet.getDomain(b),
2 Strides.empty());
3 fb.addConstraint(new double[]{1,0,0}, Relationship.GEQ, 0.2);
4 fb.addConstraint(new double[]{1,0,0}, Relationship.LEQ, 0.3);
5 fb.addConstraint(new double[]{0,1,0}, Relationship.GEQ, 0.4);
6 fb.addConstraint(new double[]{0,1,0}, Relationship.LEQ, 0.5);
7 fb.addConstraint(new double[]{0,0,1}, Relationship.GEQ, 0.2);
8 fb.addConstraint(new double[]{0,0,1}, Relationship.LEQ, 0.3);
9 cnet.setFactor(b,fb);

Figure 3: Credal set modelling (H-representation) in CREMA.

References

A. Antonucci, C. P. de Campos, D. Huber, and M. Zaffalon. Approximate credal network updating
by linear programming with applications to decision making. International Journal of Approx-
imate Reasoning, 58:25–38, 2015.

F. G. Cozman. Credal networks. Artificial intelligence, 120(2):199–233, 2000.

E. Fagiuoli and M. Zaffalon. 2U: an exact interval propagation algorithm for polytrees with binary
variables. Artificial Intelligence, 106(1):77–107, 1998. doi: 10.1016/S0004-3702(98)00089-7.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT, 2009.

A. R. Masegosa, A. M. Martinez, D. Ramos-López, R. Cabañas, A. Salmerón, H. Langseth, T. D.
Nielsen, and A. L. Madsen. AMIDST: A Java toolbox for scalable probabilistic machine learn-
ing. Knowledge-Based Systems, 163:595–597, 2019.

D. D. Mauá, C. P. De Campos, and M. Zaffalon. Updating credal networks is approximable in
polynomial time. International Journal of Approximate Reasoning, 53(8):1183–1199, 2012.

D. D. Mauá, C. P. De Campos, A. Benavoli, and A. Antonucci. Probabilistic inference in credal
networks: new complexity results. Journal of Artificial Intelligence Research, 50:603–637, 2014.

M. Terzer and J. Stelling. Parallel extreme ray and pathway computation. In International Con-
ference on Parallel Processing and Applied Mathematics, pages 300–309. Springer, 2009.

4


	Introduction
	The CREMA Architecture
	A Demonstrative Example
	Conclusions

